Refactor problem feed code

This commit is contained in:
cuom1999 2023-11-09 02:43:11 -06:00
parent b6c9ce4763
commit 0b4eeb8751
4 changed files with 134 additions and 67 deletions

View file

@ -40,7 +40,10 @@ def cache_wrapper(prefix, timeout=None):
def _get(key):
if not l0_cache:
return cache.get(key)
return l0_cache.get(key) or cache.get(key)
result = l0_cache.get(key)
if result is None:
result = cache.get(key)
return result
def _set_l0(key, value):
if l0_cache:
@ -56,7 +59,7 @@ def cache_wrapper(prefix, timeout=None):
result = _get(cache_key)
if result is not None:
_set_l0(cache_key, result)
if result == NONE_RESULT:
if type(result) == str and result == NONE_RESULT:
result = None
return result
result = func(*args, **kwargs)

View file

@ -1,7 +1,9 @@
import numpy as np
from django.conf import settings
import os
import hashlib
from django.core.cache import cache
from django.conf import settings
from judge.caching import cache_wrapper
@ -12,14 +14,13 @@ class CollabFilter:
# name = 'collab_filter' or 'collab_filter_time'
def __init__(self, name):
embeddings = np.load(
self.embeddings = np.load(
os.path.join(settings.ML_OUTPUT_PATH, name + "/embeddings.npz"),
allow_pickle=True,
)
arr0, arr1 = embeddings.files
_, problem_arr = self.embeddings.files
self.name = name
self.user_embeddings = embeddings[arr0]
self.problem_embeddings = embeddings[arr1]
self.problem_embeddings = self.embeddings[problem_arr]
def __str__(self):
return self.name
@ -43,18 +44,32 @@ class CollabFilter:
scores = u.dot(V.T)
return scores
def _get_embedding_version(self):
first_problem = self.problem_embeddings[0]
array_bytes = first_problem.tobytes()
hash_object = hashlib.sha256(array_bytes)
hash_bytes = hash_object.digest()
return hash_bytes.hex()[:5]
@cache_wrapper(prefix="CFgue", timeout=86400)
def _get_user_embedding(self, user_id, embedding_version):
user_arr, _ = self.embeddings.files
user_embeddings = self.embeddings[user_arr]
if user_id >= len(user_embeddings):
return user_embeddings[0]
return user_embeddings[user_id]
def get_user_embedding(self, user_id):
version = self._get_embedding_version()
return self._get_user_embedding(user_id, version)
@cache_wrapper(prefix="user_recommendations", timeout=3600)
def user_recommendations(self, user, problems, measure=DOT, limit=None):
uid = user.id
if uid >= len(self.user_embeddings):
uid = 0
scores = self.compute_scores(
self.user_embeddings[uid], self.problem_embeddings, measure
)
def user_recommendations(self, user_id, problems, measure=DOT, limit=None):
user_embedding = self.get_user_embedding(user_id)
scores = self.compute_scores(user_embedding, self.problem_embeddings, measure)
res = [] # [(score, problem)]
for pid in problems:
# pid = problem.id
if pid < len(scores):
res.append((scores[pid], pid))

View file

@ -1,7 +1,8 @@
from collections import defaultdict
from math import e
from datetime import datetime
from datetime import datetime, timedelta
import random
from enum import Enum
from django.conf import settings
from django.core.cache import cache
@ -9,6 +10,7 @@ from django.db.models import Case, Count, ExpressionWrapper, F, Max, Q, When
from django.db.models.fields import FloatField
from django.utils import timezone
from django.utils.translation import gettext as _, gettext_noop
from django.http import Http404
from judge.models import Problem, Submission
from judge.ml.collab_filter import CollabFilter
@ -248,3 +250,72 @@ def finished_submission(sub):
keys += ["contest_complete:%d" % participation.id]
keys += ["contest_attempted:%d" % participation.id]
cache.delete_many(keys)
class RecommendationType(Enum):
HOT_PROBLEM = 1
CF_DOT = 2
CF_COSINE = 3
CF_TIME_DOT = 4
CF_TIME_COSINE = 5
# Return a list of list. Each inner list correspond to each type in types
def get_user_recommended_problems(
user_id,
problem_ids,
recommendation_types,
limits,
shuffle=False,
):
cf_model = CollabFilter("collab_filter")
cf_time_model = CollabFilter("collab_filter_time")
def get_problem_ids_from_type(rec_type, limit):
if type(rec_type) == int:
try:
rec_type = RecommendationType(rec_type)
except ValueError:
raise Http404()
if rec_type == RecommendationType.HOT_PROBLEM:
return [
problem.id
for problem in hot_problems(timedelta(days=7), limit)
if problem.id in set(problem_ids)
]
if rec_type == RecommendationType.CF_DOT:
return cf_model.user_recommendations(
user_id, problem_ids, cf_model.DOT, limit
)
if rec_type == RecommendationType.CF_COSINE:
return cf_model.user_recommendations(
user_id, problem_ids, cf_model.COSINE, limit
)
if rec_type == RecommendationType.CF_TIME_DOT:
return cf_time_model.user_recommendations(
user_id, problem_ids, cf_model.DOT, limit
)
if rec_type == RecommendationType.CF_TIME_COSINE:
return cf_time_model.user_recommendations(
user_id, problem_ids, cf_model.COSINE, limit
)
return []
all_problems = []
for rec_type, limit in zip(recommendation_types, limits):
all_problems += get_problem_ids_from_type(rec_type, limit)
if shuffle:
seed = datetime.now().strftime("%d%m%Y")
random.Random(seed).shuffle(all_problems)
# deduplicate problems
res = []
used_pid = set()
for obj in all_problems:
if type(obj) == tuple:
obj = obj[1]
if obj not in used_pid:
res.append(obj)
used_pid.add(obj)
return res

View file

@ -1,10 +1,8 @@
import logging
import os
import shutil
from datetime import timedelta, datetime
from operator import itemgetter
from random import randrange
import random
from copy import deepcopy
from django.core.cache import cache
@ -77,6 +75,8 @@ from judge.utils.problems import (
user_attempted_ids,
user_completed_ids,
get_related_problems,
get_user_recommended_problems,
RecommendationType,
)
from judge.utils.strings import safe_float_or_none, safe_int_or_none
from judge.utils.tickets import own_ticket_filter
@ -834,24 +834,34 @@ class ProblemFeed(ProblemList, FeedView):
title = _("Problem feed")
feed_type = None
# arr = [[], [], ..]
def merge_recommendation(self, arr):
seed = datetime.now().strftime("%d%m%Y")
merged_array = []
for a in arr:
merged_array += a
random.Random(seed).shuffle(merged_array)
def get_recommended_problem_ids(self, queryset):
user_id = self.request.profile.id
problem_ids = queryset.values_list("id", flat=True)
rec_types = [
RecommendationType.CF_DOT,
RecommendationType.CF_COSINE,
RecommendationType.CF_TIME_DOT,
RecommendationType.CF_TIME_COSINE,
RecommendationType.HOT_PROBLEM,
]
limits = [100, 100, 100, 100, 20]
shuffle = True
res = []
used_pid = set()
allow_debug_type = (
self.request.user.is_impersonate or self.request.user.is_superuser
)
if allow_debug_type and "debug_type" in self.request.GET:
try:
debug_type = int(self.request.GET.get("debug_type"))
except ValueError:
raise Http404()
rec_types = [debug_type]
limits = [100]
shuffle = False
for obj in merged_array:
if type(obj) == tuple:
obj = obj[1]
if obj not in used_pid:
res.append(obj)
used_pid.add(obj)
return res
return get_user_recommended_problems(
user_id, problem_ids, rec_types, limits, shuffle
)
def get_queryset(self):
if self.feed_type == "volunteer":
@ -885,40 +895,8 @@ class ProblemFeed(ProblemList, FeedView):
if not settings.ML_OUTPUT_PATH or not user:
return queryset.order_by("?").add_i18n_name(self.request.LANGUAGE_CODE)
cf_model = CollabFilter("collab_filter")
cf_time_model = CollabFilter("collab_filter_time")
q = self.get_recommended_problem_ids(queryset)
queryset = queryset.values_list("id", flat=True)
hot_problems_recommendations = [
problem.id
for problem in hot_problems(timedelta(days=7), 20)
if problem.id in set(queryset)
]
q = self.merge_recommendation(
[
cf_model.user_recommendations(user, queryset, cf_model.DOT, 100),
cf_model.user_recommendations(
user,
queryset,
cf_model.COSINE,
100,
),
cf_time_model.user_recommendations(
user,
queryset,
cf_time_model.COSINE,
100,
),
cf_time_model.user_recommendations(
user,
queryset,
cf_time_model.DOT,
100,
),
hot_problems_recommendations,
]
)
queryset = Problem.objects.filter(id__in=q)
queryset = queryset.add_i18n_name(self.request.LANGUAGE_CODE)