Change rating system (DMOJ)

This commit is contained in:
cuom1999 2021-12-08 23:52:52 -06:00
parent e261fc9e3b
commit b6556a93f5
9 changed files with 369 additions and 117 deletions

1
.gitignore vendored
View file

@ -15,4 +15,5 @@ sass_processed
<desired bridge log path>
node_modules/
package-lock.json
/src

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1,208 @@
import math
from operator import attrgetter, itemgetter
from django.db import migrations, models
from django.db.models import Count, OuterRef, Subquery
from django.db.models.functions import Coalesce
from django.utils import timezone
def tie_ranker(iterable, key=attrgetter('points')):
rank = 0
delta = 1
last = None
buf = []
for item in iterable:
new = key(item)
if new != last:
for _ in buf:
yield rank + (delta - 1) / 2.0
rank += delta
delta = 0
buf = []
delta += 1
buf.append(item)
last = key(item)
for _ in buf:
yield rank + (delta - 1) / 2.0
def rational_approximation(t):
# Abramowitz and Stegun formula 26.2.23.
# The absolute value of the error should be less than 4.5 e-4.
c = [2.515517, 0.802853, 0.010328]
d = [1.432788, 0.189269, 0.001308]
numerator = (c[2] * t + c[1]) * t + c[0]
denominator = ((d[2] * t + d[1]) * t + d[0]) * t + 1.0
return t - numerator / denominator
def normal_CDF_inverse(p):
assert 0.0 < p < 1
# See article above for explanation of this section.
if p < 0.5:
# F^-1(p) = - G^-1(p)
return -rational_approximation(math.sqrt(-2.0 * math.log(p)))
else:
# F^-1(p) = G^-1(1-p)
return rational_approximation(math.sqrt(-2.0 * math.log(1.0 - p)))
def WP(RA, RB, VA, VB):
return (math.erf((RB - RA) / math.sqrt(2 * (VA * VA + VB * VB))) + 1) / 2.0
def recalculate_ratings(old_rating, old_volatility, actual_rank, times_rated, is_disqualified):
# actual_rank: 1 is first place, N is last place
# if there are ties, use the average of places (if places 2, 3, 4, 5 tie, use 3.5 for all of them)
N = len(old_rating)
new_rating = old_rating[:]
new_volatility = old_volatility[:]
if N <= 1:
return new_rating, new_volatility
ranking = list(range(N))
ranking.sort(key=old_rating.__getitem__, reverse=True)
ave_rating = float(sum(old_rating)) / N
sum1 = sum(i * i for i in old_volatility) / N
sum2 = sum((i - ave_rating) ** 2 for i in old_rating) / (N - 1)
CF = math.sqrt(sum1 + sum2)
for i in range(N):
ERank = 0.5
for j in range(N):
ERank += WP(old_rating[i], old_rating[j], old_volatility[i], old_volatility[j])
EPerf = -normal_CDF_inverse((ERank - 0.5) / N)
APerf = -normal_CDF_inverse((actual_rank[i] - 0.5) / N)
PerfAs = old_rating[i] + CF * (APerf - EPerf)
Weight = 1.0 / (1 - (0.42 / (times_rated[i] + 1) + 0.18)) - 1.0
if old_rating[i] > 2500:
Weight *= 0.8
elif old_rating[i] >= 2000:
Weight *= 0.9
Cap = 150.0 + 1500.0 / (times_rated[i] + 2)
new_rating[i] = (old_rating[i] + Weight * PerfAs) / (1.0 + Weight)
if abs(old_rating[i] - new_rating[i]) > Cap:
if old_rating[i] < new_rating[i]:
new_rating[i] = old_rating[i] + Cap
else:
new_rating[i] = old_rating[i] - Cap
if times_rated[i] == 0:
new_volatility[i] = 385
else:
new_volatility[i] = math.sqrt(((new_rating[i] - old_rating[i]) ** 2) / Weight +
(old_volatility[i] ** 2) / (Weight + 1))
if is_disqualified[i]:
# DQed users can manipulate TopCoder ratings to get higher volatility in order to increase their rating
# later on, prohibit this by ensuring their volatility never increases in this situation
new_volatility[i] = min(new_volatility[i], old_volatility[i])
# try to keep the sum of ratings constant
adjust = float(sum(old_rating) - sum(new_rating)) / N
new_rating = list(map(adjust.__add__, new_rating))
# inflate a little if we have to so people who placed first don't lose rating
best_rank = min(actual_rank)
for i in range(N):
if abs(actual_rank[i] - best_rank) <= 1e-3 and new_rating[i] < old_rating[i] + 1:
new_rating[i] = old_rating[i] + 1
return list(map(int, map(round, new_rating))), list(map(int, map(round, new_volatility)))
def tc_rate_contest(contest, Rating, Profile):
rating_subquery = Rating.objects.filter(user=OuterRef('user'))
rating_sorted = rating_subquery.order_by('-contest__end_time')
users = contest.users.order_by('is_disqualified', '-score', 'cumtime', 'tiebreaker') \
.annotate(submissions=Count('submission'),
last_rating=Coalesce(Subquery(rating_sorted.values('rating')[:1]), 1200),
volatility=Coalesce(Subquery(rating_sorted.values('volatility')[:1]), 535),
times=Coalesce(Subquery(rating_subquery.order_by().values('user_id')
.annotate(count=Count('id')).values('count')), 0)) \
.exclude(user_id__in=contest.rate_exclude.all()) \
.filter(virtual=0).values('id', 'user_id', 'score', 'cumtime', 'tiebreaker', 'is_disqualified',
'last_rating', 'volatility', 'times')
if not contest.rate_all:
users = users.filter(submissions__gt=0)
if contest.rating_floor is not None:
users = users.exclude(last_rating__lt=contest.rating_floor)
if contest.rating_ceiling is not None:
users = users.exclude(last_rating__gt=contest.rating_ceiling)
users = list(users)
participation_ids = list(map(itemgetter('id'), users))
user_ids = list(map(itemgetter('user_id'), users))
is_disqualified = list(map(itemgetter('is_disqualified'), users))
ranking = list(tie_ranker(users, key=itemgetter('score', 'cumtime', 'tiebreaker')))
old_rating = list(map(itemgetter('last_rating'), users))
old_volatility = list(map(itemgetter('volatility'), users))
times_ranked = list(map(itemgetter('times'), users))
rating, volatility = recalculate_ratings(old_rating, old_volatility, ranking, times_ranked, is_disqualified)
now = timezone.now()
ratings = [Rating(user_id=i, contest=contest, rating=r, volatility=v, last_rated=now, participation_id=p, rank=z)
for i, p, r, v, z in zip(user_ids, participation_ids, rating, volatility, ranking)]
Rating.objects.bulk_create(ratings)
Profile.objects.filter(contest_history__contest=contest, contest_history__virtual=0).update(
rating=Subquery(Rating.objects.filter(user=OuterRef('id'))
.order_by('-contest__end_time').values('rating')[:1]))
# inspired by rate_all_view
def rate_tc(apps, schema_editor):
Contest = apps.get_model('judge', 'Contest')
Rating = apps.get_model('judge', 'Rating')
Profile = apps.get_model('judge', 'Profile')
with schema_editor.connection.cursor() as cursor:
cursor.execute('TRUNCATE TABLE `%s`' % Rating._meta.db_table)
Profile.objects.update(rating=None)
for contest in Contest.objects.filter(is_rated=True, end_time__lte=timezone.now()).order_by('end_time'):
tc_rate_contest(contest, Rating, Profile)
# inspired by rate_all_view
def rate_elo_mmr(apps, schema_editor):
Rating = apps.get_model('judge', 'Rating')
Profile = apps.get_model('judge', 'Profile')
with schema_editor.connection.cursor() as cursor:
cursor.execute('TRUNCATE TABLE `%s`' % Rating._meta.db_table)
Profile.objects.update(rating=None)
# Don't populate Rating
class Migration(migrations.Migration):
dependencies = [
('judge', '0117_auto_20211209_0612'),
]
operations = [
migrations.RunPython(migrations.RunPython.noop, rate_tc, atomic=True),
migrations.AddField(
model_name='rating',
name='mean',
field=models.FloatField(verbose_name='raw rating'),
),
migrations.AddField(
model_name='rating',
name='performance',
field=models.FloatField(verbose_name='contest performance'),
),
migrations.RemoveField(
model_name='rating',
name='volatility',
field=models.IntegerField(verbose_name='volatility'),
),
migrations.RunPython(rate_elo_mmr, migrations.RunPython.noop, atomic=True),
]

View file

@ -531,7 +531,8 @@ class Rating(models.Model):
related_name='rating', on_delete=CASCADE)
rank = models.IntegerField(verbose_name=_('rank'))
rating = models.IntegerField(verbose_name=_('rating'))
volatility = models.IntegerField(verbose_name=_('volatility'))
mean = models.FloatField(verbose_name=_('raw rating'))
performance = models.FloatField(verbose_name=_('contest performance'))
last_rated = models.DateTimeField(db_index=True, verbose_name=_('last rated'))
class Meta:

View file

@ -1,5 +1,5 @@
import math
from bisect import bisect
from math import pi, sqrt, tanh
from operator import attrgetter, itemgetter
from django.db import transaction
@ -8,6 +8,18 @@ from django.db.models.functions import Coalesce
from django.utils import timezone
BETA2 = 328.33 ** 2
RATING_INIT = 1200 # Newcomer's rating when applying the rating floor/ceiling
MEAN_INIT = 1500.
VAR_INIT = 350**2 * (BETA2 / 212**2)
SD_INIT = sqrt(VAR_INIT)
VALID_RANGE = MEAN_INIT - 20 * SD_INIT, MEAN_INIT + 20 * SD_INIT
VAR_PER_CONTEST = 1219.047619 * (BETA2 / 212**2)
VAR_LIM = (sqrt(VAR_PER_CONTEST**2 + 4 * BETA2 * VAR_PER_CONTEST) - VAR_PER_CONTEST) / 2
SD_LIM = sqrt(VAR_LIM)
TANH_C = sqrt(3) / pi
def tie_ranker(iterable, key=attrgetter('points')):
rank = 0
delta = 1
@ -28,94 +40,103 @@ def tie_ranker(iterable, key=attrgetter('points')):
yield rank + (delta - 1) / 2.0
def rational_approximation(t):
# Abramowitz and Stegun formula 26.2.23.
# The absolute value of the error should be less than 4.5 e-4.
c = [2.515517, 0.802853, 0.010328]
d = [1.432788, 0.189269, 0.001308]
numerator = (c[2] * t + c[1]) * t + c[0]
denominator = ((d[2] * t + d[1]) * t + d[0]) * t + 1.0
return t - numerator / denominator
def eval_tanhs(tanh_terms, x):
return sum((wt / sd) * tanh((x - mu) / (2 * sd)) for mu, sd, wt in tanh_terms)
def normal_CDF_inverse(p):
assert 0.0 < p < 1
# See article above for explanation of this section.
if p < 0.5:
# F^-1(p) = - G^-1(p)
return -rational_approximation(math.sqrt(-2.0 * math.log(p)))
else:
# F^-1(p) = G^-1(1-p)
return rational_approximation(math.sqrt(-2.0 * math.log(1.0 - p)))
def WP(RA, RB, VA, VB):
return (math.erf((RB - RA) / math.sqrt(2 * (VA * VA + VB * VB))) + 1) / 2.0
def recalculate_ratings(old_rating, old_volatility, actual_rank, times_rated, is_disqualified):
# actual_rank: 1 is first place, N is last place
# if there are ties, use the average of places (if places 2, 3, 4, 5 tie, use 3.5 for all of them)
N = len(old_rating)
new_rating = old_rating[:]
new_volatility = old_volatility[:]
if N <= 1:
return new_rating, new_volatility
ranking = list(range(N))
ranking.sort(key=old_rating.__getitem__, reverse=True)
ave_rating = float(sum(old_rating)) / N
sum1 = sum(i * i for i in old_volatility) / N
sum2 = sum((i - ave_rating) ** 2 for i in old_rating) / (N - 1)
CF = math.sqrt(sum1 + sum2)
for i in range(N):
ERank = 0.5
for j in range(N):
ERank += WP(old_rating[i], old_rating[j], old_volatility[i], old_volatility[j])
EPerf = -normal_CDF_inverse((ERank - 0.5) / N)
APerf = -normal_CDF_inverse((actual_rank[i] - 0.5) / N)
PerfAs = old_rating[i] + CF * (APerf - EPerf)
Weight = 1.0 / (1 - (0.42 / (times_rated[i] + 1) + 0.18)) - 1.0
if old_rating[i] > 2500:
Weight *= 0.8
elif old_rating[i] >= 2000:
Weight *= 0.9
Cap = 150.0 + 1500.0 / (times_rated[i] + 2)
new_rating[i] = (old_rating[i] + Weight * PerfAs) / (1.0 + Weight)
if times_rated[i] == 0:
new_volatility[i] = 385
def solve(tanh_terms, y_tg, lin_factor=0, bounds=VALID_RANGE):
L, R = bounds
Ly, Ry = None, None
while R - L > 2:
x = (L + R) / 2
y = lin_factor * x + eval_tanhs(tanh_terms, x)
if y > y_tg:
R, Ry = x, y
elif y < y_tg:
L, Ly = x, y
else:
new_volatility[i] = math.sqrt(((new_rating[i] - old_rating[i]) ** 2) / Weight +
(old_volatility[i] ** 2) / (Weight + 1))
return x
# Use linear interpolation to be slightly more accurate.
if Ly is None:
Ly = lin_factor * L + eval_tanhs(tanh_terms, L)
if y_tg <= Ly:
return L
if Ry is None:
Ry = lin_factor * R + eval_tanhs(tanh_terms, R)
if y_tg >= Ry:
return R
ratio = (y_tg - Ly) / (Ry - Ly)
return L * (1 - ratio) + R * ratio
if is_disqualified[i]:
# DQed users can manipulate TopCoder ratings to get higher volatility in order to increase their rating
# later on, prohibit this by ensuring their volatility never increases in this situation
new_volatility[i] = min(new_volatility[i], old_volatility[i])
if abs(old_rating[i] - new_rating[i]) > Cap:
if old_rating[i] < new_rating[i]:
new_rating[i] = old_rating[i] + Cap
else:
new_rating[i] = old_rating[i] - Cap
def get_var(times_ranked, cache=[VAR_INIT]):
while times_ranked >= len(cache):
next_var = 1. / (1. / (cache[-1] + VAR_PER_CONTEST) + 1. / BETA2)
cache.append(next_var)
return cache[times_ranked]
# try to keep the sum of ratings constant
adjust = float(sum(old_rating) - sum(new_rating)) / N
new_rating = list(map(adjust.__add__, new_rating))
# inflate a little if we have to so people who placed first don't lose rating
best_rank = min(actual_rank)
for i in range(N):
if abs(actual_rank[i] - best_rank) <= 1e-3 and new_rating[i] < old_rating[i] + 1:
new_rating[i] = old_rating[i] + 1
return list(map(int, map(round, new_rating))), list(map(int, map(round, new_volatility)))
def recalculate_ratings(ranking, old_mean, times_ranked, historical_p):
n = len(ranking)
new_p = [0.] * n
new_mean = [0.] * n
# Note: pre-multiply delta by TANH_C to improve efficiency.
delta = [TANH_C * sqrt(get_var(t) + VAR_PER_CONTEST + BETA2) for t in times_ranked]
p_tanh_terms = [(m, d, 1) for m, d in zip(old_mean, delta)]
# Calculate performance at index i.
def solve_idx(i, bounds=VALID_RANGE):
r = ranking[i]
y_tg = 0
for d, s in zip(delta, ranking):
if s > r: # s loses to r
y_tg += 1. / d
elif s < r: # s beats r
y_tg -= 1. / d
# Otherwise, this is a tie that counts as half a win, as per Elo-MMR.
new_p[i] = solve(p_tanh_terms, y_tg, bounds=bounds)
# Fill all indices between i and j, inclusive. Use the fact that new_p is non-increasing.
def divconq(i, j):
if j - i > 1:
k = (i + j) // 2
solve_idx(k, bounds=(new_p[j], new_p[i]))
divconq(i, k)
divconq(k, j)
if n < 2:
new_p = list(old_mean)
new_mean = list(old_mean)
else:
# Calculate performance.
solve_idx(0)
solve_idx(n - 1)
divconq(0, n - 1)
# Calculate mean.
for i, r in enumerate(ranking):
tanh_terms = []
w_prev = 1.
w_sum = 0.
for j, h in enumerate([new_p[i]] + historical_p[i]):
gamma2 = (VAR_PER_CONTEST if j > 0 else 0)
h_var = get_var(times_ranked[i] + 1 - j)
k = h_var / (h_var + gamma2)
w = w_prev * k**2
# Future optimization: If j is around 20, then w < 1e-3 and it is possible to break early.
tanh_terms.append((h, sqrt(BETA2) * TANH_C, w))
w_prev = w
w_sum += w / BETA2
w0 = 1. / get_var(times_ranked[i] + 1) - w_sum
p0 = eval_tanhs(tanh_terms[1:], old_mean[i]) / w0 + old_mean[i]
new_mean[i] = solve(tanh_terms, w0 * p0, lin_factor=w0)
# Display a slightly lower rating to incentivize participation.
# As times_ranked increases, new_rating converges to new_mean.
new_rating = [max(1, round(m - (sqrt(get_var(t + 1)) - SD_LIM))) for m, t in zip(new_mean, times_ranked)]
return new_rating, new_mean, new_p
def rate_contest(contest):
@ -125,13 +146,13 @@ def rate_contest(contest):
rating_sorted = rating_subquery.order_by('-contest__end_time')
users = contest.users.order_by('is_disqualified', '-score', 'cumtime', 'tiebreaker') \
.annotate(submissions=Count('submission'),
last_rating=Coalesce(Subquery(rating_sorted.values('rating')[:1]), 1200),
volatility=Coalesce(Subquery(rating_sorted.values('volatility')[:1]), 535),
last_rating=Coalesce(Subquery(rating_sorted.values('rating')[:1]), RATING_INIT),
last_mean=Coalesce(Subquery(rating_sorted.values('mean')[:1]), MEAN_INIT),
times=Coalesce(Subquery(rating_subquery.order_by().values('user_id')
.annotate(count=Count('id')).values('count')), 0)) \
.exclude(user_id__in=contest.rate_exclude.all()) \
.filter(virtual=0).values('id', 'user_id', 'score', 'cumtime', 'tiebreaker', 'is_disqualified',
'last_rating', 'volatility', 'times')
.filter(virtual=0).values('id', 'user_id', 'score', 'cumtime', 'tiebreaker',
'last_rating', 'last_mean', 'times')
if not contest.rate_all:
users = users.filter(submissions__gt=0)
if contest.rating_floor is not None:
@ -142,27 +163,34 @@ def rate_contest(contest):
users = list(users)
participation_ids = list(map(itemgetter('id'), users))
user_ids = list(map(itemgetter('user_id'), users))
is_disqualified = list(map(itemgetter('is_disqualified'), users))
ranking = list(tie_ranker(users, key=itemgetter('score', 'cumtime', 'tiebreaker')))
old_rating = list(map(itemgetter('last_rating'), users))
old_volatility = list(map(itemgetter('volatility'), users))
old_mean = list(map(itemgetter('last_mean'), users))
times_ranked = list(map(itemgetter('times'), users))
rating, volatility = recalculate_ratings(old_rating, old_volatility, ranking, times_ranked, is_disqualified)
historical_p = [[] for _ in users]
user_id_to_idx = {uid: i for i, uid in enumerate(user_ids)}
for h in Rating.objects.filter(user_id__in=user_ids) \
.order_by('-contest__end_time') \
.values('user_id', 'performance'):
idx = user_id_to_idx[h['user_id']]
historical_p[idx].append(h['performance'])
rating, mean, performance = recalculate_ratings(ranking, old_mean, times_ranked, historical_p)
now = timezone.now()
ratings = [Rating(user_id=i, contest=contest, rating=r, volatility=v, last_rated=now, participation_id=p, rank=z)
for i, p, r, v, z in zip(user_ids, participation_ids, rating, volatility, ranking)]
ratings = [Rating(user_id=i, contest=contest, rating=r, mean=m, performance=perf,
last_rated=now, participation_id=pid, rank=z)
for i, pid, r, m, perf, z in zip(user_ids, participation_ids, rating, mean, performance, ranking)]
with transaction.atomic():
Rating.objects.filter(contest=contest).delete()
Rating.objects.bulk_create(ratings)
Profile.objects.filter(contest_history__contest=contest, contest_history__virtual=0) \
.update(rating=Subquery(Rating.objects.filter(user=OuterRef('id')) \
.order_by('-contest__end_time').values('rating')[:1]))
return old_rating, old_volatility, ranking, times_ranked, rating, volatility
Profile.objects.filter(contest_history__contest=contest, contest_history__virtual=0).update(
rating=Subquery(Rating.objects.filter(user=OuterRef('id'))
.order_by('-contest__end_time').values('rating')[:1]))
RATING_LEVELS = ['Newbie', 'Amateur', 'Expert', 'Candidate Master', 'Master', 'Grandmaster', 'Target']
RATING_VALUES = [1000, 1200, 1500, 1800, 2200, 3000]
RATING_VALUES = [1000, 1300, 1600, 1900, 2400, 3000]
RATING_CLASS = ['rate-newbie', 'rate-amateur', 'rate-expert', 'rate-candidate-master',
'rate-master', 'rate-grandmaster', 'rate-target']

View file

@ -137,16 +137,17 @@ def api_v1_user_info(request, user):
participations = ContestParticipation.objects.filter(user=profile, virtual=0, contest__is_visible=True,
contest__is_private=False,
contest__is_organization_private=False)
for contest_key, rating, volatility in participations.values_list('contest__key', 'rating__rating',
'rating__volatility'):
for contest_key, rating, mean, performance in participations.values_list(
'contest__key', 'rating__rating', 'rating__mean', 'rating__performance',
):
contest_history[contest_key] = {
'rating': rating,
'volatility': volatility,
'raw_rating': mean,
'performance': performance,
}
resp['contests'] = {
'current_rating': last_rating.rating if last_rating else None,
'volatility': last_rating.volatility if last_rating else None,
'history': contest_history,
}

View file

@ -89,7 +89,6 @@ def api_v2_user_info(request):
resp['contests'] = {
"current_rating": last_rating[0].rating if last_rating else None,
"volatility": last_rating[0].volatility if last_rating else None,
'history': contest_history,
}

View file

@ -467,26 +467,26 @@
},
{
begin: 1000,
end: 1200,
end: 1300,
color: 'rgb(0, 169, 0, 0.4)'
},
{
begin: 1200,
end: 1500,
begin: 1300,
end: 1600,
color: 'rgb(0, 0, 255, 0.4)'
},
{
begin: 1500,
end: 1800,
begin: 1600,
end: 1900,
color: 'rgb(128, 0, 128, 0.37)'
},
{
begin: 1800,
end: 2200,
begin: 1900,
end: 2400,
color: 'rgb(255, 177, 0, 0.4)'
},
{
begin: 2200,
begin: 2400,
end: 3000,
color: 'rgb(238, 0, 0, 0.4)'
},

View file

@ -120,10 +120,6 @@
<div class="user-stat-header">{{_('Contests written')}}:</div>
<div class="user-stat">{{ratings|length}}</div>
</div>
<div class="user-stat-container">
<div class="user-stat-header">{{ _('Volatility:') }}</div>
<div class="user-stat">{{ rating.volatility }}</div>
</div>
<div class="user-stat-container">
<div class="user-stat-header">{{ _('Min. rating:') }}</div>
<div class="user-stat">{{ rating_number(min_rating) }}</div>