import math from bisect import bisect from operator import attrgetter, itemgetter from django.db import transaction from django.db.models import Count, OuterRef, Subquery from django.db.models.functions import Coalesce from django.utils import timezone def tie_ranker(iterable, key=attrgetter('points')): rank = 0 delta = 1 last = None buf = [] for item in iterable: new = key(item) if new != last: for _ in buf: yield rank + (delta - 1) / 2.0 rank += delta delta = 0 buf = [] delta += 1 buf.append(item) last = key(item) for _ in buf: yield rank + (delta - 1) / 2.0 def rational_approximation(t): # Abramowitz and Stegun formula 26.2.23. # The absolute value of the error should be less than 4.5 e-4. c = [2.515517, 0.802853, 0.010328] d = [1.432788, 0.189269, 0.001308] numerator = (c[2] * t + c[1]) * t + c[0] denominator = ((d[2] * t + d[1]) * t + d[0]) * t + 1.0 return t - numerator / denominator def normal_CDF_inverse(p): assert 0.0 < p < 1 # See article above for explanation of this section. if p < 0.5: # F^-1(p) = - G^-1(p) return -rational_approximation(math.sqrt(-2.0 * math.log(p))) else: # F^-1(p) = G^-1(1-p) return rational_approximation(math.sqrt(-2.0 * math.log(1.0 - p))) def WP(RA, RB, VA, VB): return (math.erf((RB - RA) / math.sqrt(2 * (VA * VA + VB * VB))) + 1) / 2.0 def recalculate_ratings(old_rating, old_volatility, actual_rank, times_rated, is_disqualified): # actual_rank: 1 is first place, N is last place # if there are ties, use the average of places (if places 2, 3, 4, 5 tie, use 3.5 for all of them) N = len(old_rating) new_rating = old_rating[:] new_volatility = old_volatility[:] if N <= 1: return new_rating, new_volatility ranking = list(range(N)) ranking.sort(key=old_rating.__getitem__, reverse=True) ave_rating = float(sum(old_rating)) / N sum1 = sum(i * i for i in old_volatility) / N sum2 = sum((i - ave_rating) ** 2 for i in old_rating) / (N - 1) CF = math.sqrt(sum1 + sum2) for i in range(N): ERank = 0.5 for j in range(N): ERank += WP(old_rating[i], old_rating[j], old_volatility[i], old_volatility[j]) EPerf = -normal_CDF_inverse((ERank - 0.5) / N) APerf = -normal_CDF_inverse((actual_rank[i] - 0.5) / N) PerfAs = old_rating[i] + CF * (APerf - EPerf) Weight = 1.0 / (1 - (0.42 / (times_rated[i] + 1) + 0.18)) - 1.0 if old_rating[i] > 2500: Weight *= 0.8 elif old_rating[i] >= 2000: Weight *= 0.9 Cap = 150.0 + 1500.0 / (times_rated[i] + 2) new_rating[i] = (old_rating[i] + Weight * PerfAs) / (1.0 + Weight) if times_rated[i] == 0: new_volatility[i] = 385 else: new_volatility[i] = math.sqrt(((new_rating[i] - old_rating[i]) ** 2) / Weight + (old_volatility[i] ** 2) / (Weight + 1)) if is_disqualified[i]: # DQed users can manipulate TopCoder ratings to get higher volatility in order to increase their rating # later on, prohibit this by ensuring their volatility never increases in this situation new_volatility[i] = min(new_volatility[i], old_volatility[i]) if abs(old_rating[i] - new_rating[i]) > Cap: if old_rating[i] < new_rating[i]: new_rating[i] = old_rating[i] + Cap else: new_rating[i] = old_rating[i] - Cap # try to keep the sum of ratings constant adjust = float(sum(old_rating) - sum(new_rating)) / N new_rating = list(map(adjust.__add__, new_rating)) # inflate a little if we have to so people who placed first don't lose rating best_rank = min(actual_rank) for i in range(N): if abs(actual_rank[i] - best_rank) <= 1e-3 and new_rating[i] < old_rating[i] + 1: new_rating[i] = old_rating[i] + 1 return list(map(int, map(round, new_rating))), list(map(int, map(round, new_volatility))) def rate_contest(contest): from judge.models import Rating, Profile rating_subquery = Rating.objects.filter(user=OuterRef('user')) rating_sorted = rating_subquery.order_by('-contest__end_time') users = contest.users.order_by('is_disqualified', '-score', 'cumtime', 'tiebreaker') \ .annotate(submissions=Count('submission'), last_rating=Coalesce(Subquery(rating_sorted.values('rating')[:1]), 1200), volatility=Coalesce(Subquery(rating_sorted.values('volatility')[:1]), 535), times=Coalesce(Subquery(rating_subquery.order_by().values('user_id') .annotate(count=Count('id')).values('count')), 0)) \ .exclude(user_id__in=contest.rate_exclude.all()) \ .filter(virtual=0).values('id', 'user_id', 'score', 'cumtime', 'tiebreaker', 'is_disqualified', 'last_rating', 'volatility', 'times') if not contest.rate_all: users = users.filter(submissions__gt=0) if contest.rating_floor is not None: users = users.exclude(last_rating__lt=contest.rating_floor) if contest.rating_ceiling is not None: users = users.exclude(last_rating__gt=contest.rating_ceiling) users = list(users) participation_ids = list(map(itemgetter('id'), users)) user_ids = list(map(itemgetter('user_id'), users)) is_disqualified = list(map(itemgetter('is_disqualified'), users)) ranking = list(tie_ranker(users, key=itemgetter('score', 'cumtime', 'tiebreaker'))) old_rating = list(map(itemgetter('last_rating'), users)) old_volatility = list(map(itemgetter('volatility'), users)) times_ranked = list(map(itemgetter('times'), users)) rating, volatility = recalculate_ratings(old_rating, old_volatility, ranking, times_ranked, is_disqualified) now = timezone.now() ratings = [Rating(user_id=i, contest=contest, rating=r, volatility=v, last_rated=now, participation_id=p, rank=z) for i, p, r, v, z in zip(user_ids, participation_ids, rating, volatility, ranking)] with transaction.atomic(): Rating.objects.filter(contest=contest).delete() Rating.objects.bulk_create(ratings) Profile.objects.filter(contest_history__contest=contest, contest_history__virtual=0) \ .update(rating=Subquery(Rating.objects.filter(user=OuterRef('id')) \ .order_by('-contest__end_time').values('rating')[:1])) return old_rating, old_volatility, ranking, times_ranked, rating, volatility RATING_LEVELS = ['Newbie', 'Amateur', 'Expert', 'Candidate Master', 'Master', 'Grandmaster', 'Target'] RATING_VALUES = [1000, 1200, 1500, 1800, 2200, 3000] RATING_CLASS = ['rate-newbie', 'rate-amateur', 'rate-expert', 'rate-candidate-master', 'rate-master', 'rate-grandmaster', 'rate-target'] def rating_level(rating): return bisect(RATING_VALUES, rating) def rating_name(rating): return RATING_LEVELS[rating_level(rating)] def rating_class(rating): return RATING_CLASS[rating_level(rating)] def rating_progress(rating): level = bisect(RATING_VALUES, rating) if level == len(RATING_VALUES): return 1.0 prev = 0 if not level else RATING_VALUES[level - 1] next = RATING_VALUES[level] return (rating - prev + 0.0) / (next - prev)