import math from bisect import bisect from operator import itemgetter from django.db import connection, transaction from django.db.models import Count from django.utils import timezone from judge.utils.ranker import tie_ranker def rational_approximation(t): # Abramowitz and Stegun formula 26.2.23. # The absolute value of the error should be less than 4.5 e-4. c = [2.515517, 0.802853, 0.010328] d = [1.432788, 0.189269, 0.001308] numerator = (c[2] * t + c[1]) * t + c[0] denominator = ((d[2] * t + d[1]) * t + d[0]) * t + 1.0 return t - numerator / denominator def normal_CDF_inverse(p): assert 0.0 < p < 1 # See article above for explanation of this section. if p < 0.5: # F^-1(p) = - G^-1(p) return -rational_approximation(math.sqrt(-2.0 * math.log(p))) else: # F^-1(p) = G^-1(1-p) return rational_approximation(math.sqrt(-2.0 * math.log(1.0 - p))) def WP(RA, RB, VA, VB): return (math.erf((RB - RA) / math.sqrt(2 * (VA * VA + VB * VB))) + 1) / 2.0 def recalculate_ratings(old_rating, old_volatility, actual_rank, times_rated): # actual_rank: 1 is first place, N is last place # if there are ties, use the average of places (if places 2, 3, 4, 5 tie, use 3.5 for all of them) N = len(old_rating) new_rating = old_rating[:] new_volatility = old_volatility[:] if N <= 1: return new_rating, new_volatility ranking = list(range(N)) ranking.sort(key=old_rating.__getitem__, reverse=True) ave_rating = float(sum(old_rating)) / N sum1 = sum(i * i for i in old_volatility) / N sum2 = sum((i - ave_rating) ** 2 for i in old_rating) / (N - 1) CF = math.sqrt(sum1 + sum2) for i in range(N): ERank = 0.5 for j in range(N): ERank += WP(old_rating[i], old_rating[j], old_volatility[i], old_volatility[j]) EPerf = -normal_CDF_inverse((ERank - 0.5) / N) APerf = -normal_CDF_inverse((actual_rank[i] - 0.5) / N) PerfAs = old_rating[i] + CF * (APerf - EPerf) Weight = 1.0 / (1 - (0.42 / (times_rated[i] + 1) + 0.18)) - 1.0 if old_rating[i] > 2500: Weight *= 0.8 elif old_rating[i] >= 2000: Weight *= 0.9 Cap = 150.0 + 1500.0 / (times_rated[i] + 2) new_rating[i] = (old_rating[i] + Weight * PerfAs) / (1.0 + Weight) if times_rated[i] == 0: new_volatility[i] = 385 else: new_volatility[i] = math.sqrt(((new_rating[i] - old_rating[i]) ** 2) / Weight + (old_volatility[i] ** 2) / (Weight + 1)) if abs(old_rating[i] - new_rating[i]) > Cap: if old_rating[i] < new_rating[i]: new_rating[i] = old_rating[i] + Cap else: new_rating[i] = old_rating[i] - Cap # try to keep the sum of ratings constant adjust = float(sum(old_rating) - sum(new_rating)) / N new_rating = list(map(adjust.__add__, new_rating)) # inflate a little if we have to so people who placed first don't lose rating best_rank = min(actual_rank) for i in range(N): if abs(actual_rank[i] - best_rank) <= 1e-3 and new_rating[i] < old_rating[i] + 1: new_rating[i] = old_rating[i] + 1 return list(map(int, map(round, new_rating))), list(map(int, map(round, new_volatility))) def rate_contest(contest): from judge.models import Rating, Profile cursor = connection.cursor() cursor.execute(''' SELECT judge_rating.user_id, judge_rating.rating, judge_rating.volatility, r.times FROM judge_rating INNER JOIN judge_contest ON (judge_contest.id = judge_rating.contest_id) INNER JOIN ( SELECT judge_rating.user_id AS id, MAX(judge_contest.end_time) AS last_time, COUNT(judge_rating.user_id) AS times FROM judge_contestparticipation INNER JOIN judge_rating ON (judge_rating.user_id = judge_contestparticipation.user_id) INNER JOIN judge_contest ON (judge_contest.id = judge_rating.contest_id) WHERE judge_contestparticipation.contest_id = %s AND judge_contest.end_time < %s AND judge_contestparticipation.user_id NOT IN ( SELECT profile_id FROM judge_contest_rate_exclude WHERE contest_id = %s ) AND judge_contestparticipation.virtual = 0 GROUP BY judge_rating.user_id ORDER BY judge_contestparticipation.score DESC, judge_contestparticipation.cumtime ASC ) AS r ON (judge_rating.user_id = r.id AND judge_contest.end_time = r.last_time) ''', (contest.id, contest.end_time, contest.id)) data = {user: (rating, volatility, times) for user, rating, volatility, times in cursor.fetchall()} cursor.close() users = contest.users.order_by('is_disqualified', '-score', 'cumtime').annotate(submissions=Count('submission')) \ .exclude(user_id__in=contest.rate_exclude.all()).filter(virtual=0, user__is_unlisted=False) \ .values_list('id', 'user_id', 'score', 'cumtime') if not contest.rate_all: users = users.filter(submissions__gt=0) if contest.rating_floor is not None: users = users.exclude(user__rating__lt=contest.rating_floor) if contest.rating_ceiling is not None: users = users.exclude(user__rating__gt=contest.rating_ceiling) users = list(tie_ranker(users, key=itemgetter(2, 3))) participation_ids = [user[1][0] for user in users] user_ids = [user[1][1] for user in users] ranking = list(map(itemgetter(0), users)) old_data = [data.get(user, (1200, 535, 0)) for user in user_ids] old_rating = list(map(itemgetter(0), old_data)) old_volatility = list(map(itemgetter(1), old_data)) times_ranked = list(map(itemgetter(2), old_data)) rating, volatility = recalculate_ratings(old_rating, old_volatility, ranking, times_ranked) now = timezone.now() ratings = [Rating(user_id=id, contest=contest, rating=r, volatility=v, last_rated=now, participation_id=p, rank=z) for id, p, r, v, z in zip(user_ids, participation_ids, rating, volatility, ranking)] cursor = connection.cursor() cursor.execute('CREATE TEMPORARY TABLE _profile_rating_update(id integer, rating integer)') cursor.executemany('INSERT INTO _profile_rating_update VALUES (%s, %s)', list(zip(user_ids, rating))) with transaction.atomic(): Rating.objects.filter(contest=contest).delete() Rating.objects.bulk_create(ratings) cursor.execute(''' UPDATE `%s` p INNER JOIN `_profile_rating_update` tmp ON (p.id = tmp.id) SET p.rating = tmp.rating ''' % Profile._meta.db_table) cursor.execute('DROP TABLE _profile_rating_update') cursor.close() return old_rating, old_volatility, ranking, times_ranked, rating, volatility RATING_LEVELS = ['Newbie', 'Amateur', 'Expert', 'Candidate Master', 'Master', 'Grandmaster', 'Target'] RATING_VALUES = [1000, 1200, 1500, 1800, 2200, 3000] RATING_CLASS = ['rate-newbie', 'rate-amateur', 'rate-expert', 'rate-candidate-master', 'rate-master', 'rate-grandmaster', 'rate-target'] def rating_level(rating): return bisect(RATING_VALUES, rating) def rating_name(rating): return RATING_LEVELS[rating_level(rating)] def rating_class(rating): return RATING_CLASS[rating_level(rating)] def rating_progress(rating): level = bisect(RATING_VALUES, rating) if level == len(RATING_VALUES): return 1.0 prev = 0 if not level else RATING_VALUES[level - 1] next = RATING_VALUES[level] return (rating - prev + 0.0) / (next - prev)