NDOJ/judge/ratings.py
2020-01-21 15:35:58 +09:00

181 lines
7.5 KiB
Python

import math
from bisect import bisect
from operator import itemgetter
from django.db import connection, transaction
from django.db.models import Count
from django.utils import timezone
from judge.utils.ranker import tie_ranker
def rational_approximation(t):
# Abramowitz and Stegun formula 26.2.23.
# The absolute value of the error should be less than 4.5 e-4.
c = [2.515517, 0.802853, 0.010328]
d = [1.432788, 0.189269, 0.001308]
numerator = (c[2] * t + c[1]) * t + c[0]
denominator = ((d[2] * t + d[1]) * t + d[0]) * t + 1.0
return t - numerator / denominator
def normal_CDF_inverse(p):
assert 0.0 < p < 1
# See article above for explanation of this section.
if p < 0.5:
# F^-1(p) = - G^-1(p)
return -rational_approximation(math.sqrt(-2.0 * math.log(p)))
else:
# F^-1(p) = G^-1(1-p)
return rational_approximation(math.sqrt(-2.0 * math.log(1.0 - p)))
def WP(RA, RB, VA, VB):
return (math.erf((RB - RA) / math.sqrt(2 * (VA * VA + VB * VB))) + 1) / 2.0
def recalculate_ratings(old_rating, old_volatility, actual_rank, times_rated):
# actual_rank: 1 is first place, N is last place
# if there are ties, use the average of places (if places 2, 3, 4, 5 tie, use 3.5 for all of them)
N = len(old_rating)
new_rating = old_rating[:]
new_volatility = old_volatility[:]
if N <= 1:
return new_rating, new_volatility
ranking = list(range(N))
ranking.sort(key=old_rating.__getitem__, reverse=True)
ave_rating = float(sum(old_rating)) / N
sum1 = sum(i * i for i in old_volatility) / N
sum2 = sum((i - ave_rating) ** 2 for i in old_rating) / (N - 1)
CF = math.sqrt(sum1 + sum2)
for i in range(N):
ERank = 0.5
for j in range(N):
ERank += WP(old_rating[i], old_rating[j], old_volatility[i], old_volatility[j])
EPerf = -normal_CDF_inverse((ERank - 0.5) / N)
APerf = -normal_CDF_inverse((actual_rank[i] - 0.5) / N)
PerfAs = old_rating[i] + CF * (APerf - EPerf)
Weight = 1.0 / (1 - (0.42 / (times_rated[i] + 1) + 0.18)) - 1.0
if old_rating[i] > 2500:
Weight *= 0.8
elif old_rating[i] >= 2000:
Weight *= 0.9
Cap = 150.0 + 1500.0 / (times_rated[i] + 2)
new_rating[i] = (old_rating[i] + Weight * PerfAs) / (1.0 + Weight)
if times_rated[i] == 0:
new_volatility[i] = 385
else:
new_volatility[i] = math.sqrt(((new_rating[i] - old_rating[i]) ** 2) / Weight +
(old_volatility[i] ** 2) / (Weight + 1))
if abs(old_rating[i] - new_rating[i]) > Cap:
if old_rating[i] < new_rating[i]:
new_rating[i] = old_rating[i] + Cap
else:
new_rating[i] = old_rating[i] - Cap
# try to keep the sum of ratings constant
adjust = float(sum(old_rating) - sum(new_rating)) / N
new_rating = list(map(adjust.__add__, new_rating))
# inflate a little if we have to so people who placed first don't lose rating
best_rank = min(actual_rank)
for i in range(N):
if abs(actual_rank[i] - best_rank) <= 1e-3 and new_rating[i] < old_rating[i] + 1:
new_rating[i] = old_rating[i] + 1
return list(map(int, map(round, new_rating))), list(map(int, map(round, new_volatility)))
def rate_contest(contest):
from judge.models import Rating, Profile
cursor = connection.cursor()
cursor.execute('''
SELECT judge_rating.user_id, judge_rating.rating, judge_rating.volatility, r.times
FROM judge_rating INNER JOIN
judge_contest ON (judge_contest.id = judge_rating.contest_id) INNER JOIN (
SELECT judge_rating.user_id AS id, MAX(judge_contest.end_time) AS last_time,
COUNT(judge_rating.user_id) AS times
FROM judge_contestparticipation INNER JOIN
judge_rating ON (judge_rating.user_id = judge_contestparticipation.user_id) INNER JOIN
judge_contest ON (judge_contest.id = judge_rating.contest_id)
WHERE judge_contestparticipation.contest_id = %s AND judge_contest.end_time < %s AND
judge_contestparticipation.user_id NOT IN (
SELECT profile_id FROM judge_contest_rate_exclude WHERE contest_id = %s
) AND judge_contestparticipation.virtual = 0
GROUP BY judge_rating.user_id
ORDER BY judge_contestparticipation.score DESC, judge_contestparticipation.cumtime ASC
) AS r ON (judge_rating.user_id = r.id AND judge_contest.end_time = r.last_time)
''', (contest.id, contest.end_time, contest.id))
data = {user: (rating, volatility, times) for user, rating, volatility, times in cursor.fetchall()}
cursor.close()
users = contest.users.order_by('is_disqualified', '-score', 'cumtime').annotate(submissions=Count('submission')) \
.exclude(user_id__in=contest.rate_exclude.all()).filter(virtual=0, user__is_unlisted=False) \
.values_list('id', 'user_id', 'score', 'cumtime')
if not contest.rate_all:
users = users.filter(submissions__gt=0)
if contest.rating_floor is not None:
users = users.exclude(user__rating__lt=contest.rating_floor)
if contest.rating_ceiling is not None:
users = users.exclude(user__rating__gt=contest.rating_ceiling)
users = list(tie_ranker(users, key=itemgetter(2, 3)))
participation_ids = [user[1][0] for user in users]
user_ids = [user[1][1] for user in users]
ranking = list(map(itemgetter(0), users))
old_data = [data.get(user, (1200, 535, 0)) for user in user_ids]
old_rating = list(map(itemgetter(0), old_data))
old_volatility = list(map(itemgetter(1), old_data))
times_ranked = list(map(itemgetter(2), old_data))
rating, volatility = recalculate_ratings(old_rating, old_volatility, ranking, times_ranked)
now = timezone.now()
ratings = [Rating(user_id=id, contest=contest, rating=r, volatility=v, last_rated=now, participation_id=p, rank=z)
for id, p, r, v, z in zip(user_ids, participation_ids, rating, volatility, ranking)]
cursor = connection.cursor()
cursor.execute('CREATE TEMPORARY TABLE _profile_rating_update(id integer, rating integer)')
cursor.executemany('INSERT INTO _profile_rating_update VALUES (%s, %s)', list(zip(user_ids, rating)))
with transaction.atomic():
Rating.objects.filter(contest=contest).delete()
Rating.objects.bulk_create(ratings)
cursor.execute('''
UPDATE `%s` p INNER JOIN `_profile_rating_update` tmp ON (p.id = tmp.id)
SET p.rating = tmp.rating
''' % Profile._meta.db_table)
cursor.execute('DROP TABLE _profile_rating_update')
cursor.close()
return old_rating, old_volatility, ranking, times_ranked, rating, volatility
RATING_LEVELS = ['Newbie', 'Amateur', 'Expert', 'Candidate Master', 'Master', 'Grandmaster', 'Target']
RATING_VALUES = [1000, 1200, 1500, 1800, 2200, 3000]
RATING_CLASS = ['rate-newbie', 'rate-amateur', 'rate-expert', 'rate-candidate-master',
'rate-master', 'rate-grandmaster', 'rate-target']
def rating_level(rating):
return bisect(RATING_VALUES, rating)
def rating_name(rating):
return RATING_LEVELS[rating_level(rating)]
def rating_class(rating):
return RATING_CLASS[rating_level(rating)]
def rating_progress(rating):
level = bisect(RATING_VALUES, rating)
if level == len(RATING_VALUES):
return 1.0
prev = 0 if not level else RATING_VALUES[level - 1]
next = RATING_VALUES[level]
return (rating - prev + 0.0) / (next - prev)