NDOJ/judge/migrations/0118_rating.py
2022-05-14 12:57:27 -05:00

262 lines
8.8 KiB
Python

import math
from operator import attrgetter, itemgetter
from django.db import migrations, models
from django.db.models import Count, OuterRef, Subquery
from django.db.models.functions import Coalesce
from django.utils import timezone
def tie_ranker(iterable, key=attrgetter("points")):
rank = 0
delta = 1
last = None
buf = []
for item in iterable:
new = key(item)
if new != last:
for _ in buf:
yield rank + (delta - 1) / 2.0
rank += delta
delta = 0
buf = []
delta += 1
buf.append(item)
last = key(item)
for _ in buf:
yield rank + (delta - 1) / 2.0
def rational_approximation(t):
# Abramowitz and Stegun formula 26.2.23.
# The absolute value of the error should be less than 4.5 e-4.
c = [2.515517, 0.802853, 0.010328]
d = [1.432788, 0.189269, 0.001308]
numerator = (c[2] * t + c[1]) * t + c[0]
denominator = ((d[2] * t + d[1]) * t + d[0]) * t + 1.0
return t - numerator / denominator
def normal_CDF_inverse(p):
assert 0.0 < p < 1
# See article above for explanation of this section.
if p < 0.5:
# F^-1(p) = - G^-1(p)
return -rational_approximation(math.sqrt(-2.0 * math.log(p)))
else:
# F^-1(p) = G^-1(1-p)
return rational_approximation(math.sqrt(-2.0 * math.log(1.0 - p)))
def WP(RA, RB, VA, VB):
return (math.erf((RB - RA) / math.sqrt(2 * (VA * VA + VB * VB))) + 1) / 2.0
def recalculate_ratings(
old_rating, old_volatility, actual_rank, times_rated, is_disqualified
):
# actual_rank: 1 is first place, N is last place
# if there are ties, use the average of places (if places 2, 3, 4, 5 tie, use 3.5 for all of them)
N = len(old_rating)
new_rating = old_rating[:]
new_volatility = old_volatility[:]
if N <= 1:
return new_rating, new_volatility
ranking = list(range(N))
ranking.sort(key=old_rating.__getitem__, reverse=True)
ave_rating = float(sum(old_rating)) / N
sum1 = sum(i * i for i in old_volatility) / N
sum2 = sum((i - ave_rating) ** 2 for i in old_rating) / (N - 1)
CF = math.sqrt(sum1 + sum2)
for i in range(N):
ERank = 0.5
for j in range(N):
ERank += WP(
old_rating[i], old_rating[j], old_volatility[i], old_volatility[j]
)
EPerf = -normal_CDF_inverse((ERank - 0.5) / N)
APerf = -normal_CDF_inverse((actual_rank[i] - 0.5) / N)
PerfAs = old_rating[i] + CF * (APerf - EPerf)
Weight = 1.0 / (1 - (0.42 / (times_rated[i] + 1) + 0.18)) - 1.0
if old_rating[i] > 2500:
Weight *= 0.8
elif old_rating[i] >= 2000:
Weight *= 0.9
Cap = 150.0 + 1500.0 / (times_rated[i] + 2)
new_rating[i] = (old_rating[i] + Weight * PerfAs) / (1.0 + Weight)
if abs(old_rating[i] - new_rating[i]) > Cap:
if old_rating[i] < new_rating[i]:
new_rating[i] = old_rating[i] + Cap
else:
new_rating[i] = old_rating[i] - Cap
if times_rated[i] == 0:
new_volatility[i] = 385
else:
new_volatility[i] = math.sqrt(
((new_rating[i] - old_rating[i]) ** 2) / Weight
+ (old_volatility[i] ** 2) / (Weight + 1)
)
if is_disqualified[i]:
# DQed users can manipulate TopCoder ratings to get higher volatility in order to increase their rating
# later on, prohibit this by ensuring their volatility never increases in this situation
new_volatility[i] = min(new_volatility[i], old_volatility[i])
# try to keep the sum of ratings constant
adjust = float(sum(old_rating) - sum(new_rating)) / N
new_rating = list(map(adjust.__add__, new_rating))
# inflate a little if we have to so people who placed first don't lose rating
best_rank = min(actual_rank)
for i in range(N):
if (
abs(actual_rank[i] - best_rank) <= 1e-3
and new_rating[i] < old_rating[i] + 1
):
new_rating[i] = old_rating[i] + 1
return list(map(int, map(round, new_rating))), list(
map(int, map(round, new_volatility))
)
def tc_rate_contest(contest, Rating, Profile):
rating_subquery = Rating.objects.filter(user=OuterRef("user"))
rating_sorted = rating_subquery.order_by("-contest__end_time")
users = (
contest.users.order_by("is_disqualified", "-score", "cumtime", "tiebreaker")
.annotate(
submissions=Count("submission"),
last_rating=Coalesce(Subquery(rating_sorted.values("rating")[:1]), 1200),
volatility=Coalesce(Subquery(rating_sorted.values("volatility")[:1]), 535),
times=Coalesce(
Subquery(
rating_subquery.order_by()
.values("user_id")
.annotate(count=Count("id"))
.values("count")
),
0,
),
)
.exclude(user_id__in=contest.rate_exclude.all())
.filter(virtual=0)
.values(
"id",
"user_id",
"score",
"cumtime",
"tiebreaker",
"is_disqualified",
"last_rating",
"volatility",
"times",
)
)
if not contest.rate_all:
users = users.filter(submissions__gt=0)
if contest.rating_floor is not None:
users = users.exclude(last_rating__lt=contest.rating_floor)
if contest.rating_ceiling is not None:
users = users.exclude(last_rating__gt=contest.rating_ceiling)
users = list(users)
participation_ids = list(map(itemgetter("id"), users))
user_ids = list(map(itemgetter("user_id"), users))
is_disqualified = list(map(itemgetter("is_disqualified"), users))
ranking = list(tie_ranker(users, key=itemgetter("score", "cumtime", "tiebreaker")))
old_rating = list(map(itemgetter("last_rating"), users))
old_volatility = list(map(itemgetter("volatility"), users))
times_ranked = list(map(itemgetter("times"), users))
rating, volatility = recalculate_ratings(
old_rating, old_volatility, ranking, times_ranked, is_disqualified
)
now = timezone.now()
ratings = [
Rating(
user_id=i,
contest=contest,
rating=r,
volatility=v,
last_rated=now,
participation_id=p,
rank=z,
)
for i, p, r, v, z in zip(
user_ids, participation_ids, rating, volatility, ranking
)
]
Rating.objects.bulk_create(ratings)
Profile.objects.filter(
contest_history__contest=contest, contest_history__virtual=0
).update(
rating=Subquery(
Rating.objects.filter(user=OuterRef("id"))
.order_by("-contest__end_time")
.values("rating")[:1]
)
)
# inspired by rate_all_view
def rate_tc(apps, schema_editor):
Contest = apps.get_model("judge", "Contest")
Rating = apps.get_model("judge", "Rating")
Profile = apps.get_model("judge", "Profile")
with schema_editor.connection.cursor() as cursor:
cursor.execute("TRUNCATE TABLE `%s`" % Rating._meta.db_table)
Profile.objects.update(rating=None)
for contest in Contest.objects.filter(
is_rated=True, end_time__lte=timezone.now()
).order_by("end_time"):
tc_rate_contest(contest, Rating, Profile)
# inspired by rate_all_view
def rate_elo_mmr(apps, schema_editor):
Rating = apps.get_model("judge", "Rating")
Profile = apps.get_model("judge", "Profile")
with schema_editor.connection.cursor() as cursor:
cursor.execute("TRUNCATE TABLE `%s`" % Rating._meta.db_table)
Profile.objects.update(rating=None)
# Don't populate Rating
class Migration(migrations.Migration):
dependencies = [
("judge", "0117_auto_20211209_0612"),
]
operations = [
migrations.RunPython(migrations.RunPython.noop, rate_tc, atomic=True),
migrations.AddField(
model_name="rating",
name="mean",
field=models.FloatField(verbose_name="raw rating"),
),
migrations.AddField(
model_name="rating",
name="performance",
field=models.FloatField(verbose_name="contest performance"),
),
migrations.RemoveField(
model_name="rating",
name="volatility",
field=models.IntegerField(verbose_name="volatility"),
),
migrations.RunPython(rate_elo_mmr, migrations.RunPython.noop, atomic=True),
]