rtl8188eu/os_dep/osdep_service.c

1329 lines
28 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright(c) 2007 - 2012 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _OSDEP_SERVICE_C_
#include <drv_conf.h>
#include <osdep_service.h>
#include <drv_types.h>
#include <recv_osdep.h>
#include <rtw_ioctl_set.h>
#include <linux/vmalloc.h>
#define RT_TAG '1178'
/*
* Translate the OS dependent @param error_code to OS independent RTW_STATUS_CODE
* @return: one of RTW_STATUS_CODE
*/
inline int RTW_STATUS_CODE(int error_code) {
if (error_code >=0)
return _SUCCESS;
switch (error_code) {
/* case -ETIMEDOUT: */
/* return RTW_STATUS_TIMEDOUT; */
default:
return _FAIL;
}
}
u32 rtw_atoi(u8* s)
{
int num=0,flag=0;
int i;
for (i=0;i<=strlen(s);i++) {
if (s[i] >= '0' && s[i] <= '9')
num = num * 10 + s[i] -'0';
else if (s[0] == '-' && i== 0)
flag =1;
else
break;
}
if (flag == 1)
num = num * -1;
return num;
}
inline u8* _rtw_vmalloc(u32 sz)
{
u8 *pbuf;
pbuf = vmalloc(sz);
return pbuf;
}
inline u8* _rtw_zvmalloc(u32 sz)
{
u8 *pbuf;
pbuf = _rtw_vmalloc(sz);
if (pbuf != NULL)
memset(pbuf, 0, sz);
return pbuf;
}
inline void _rtw_vmfree(u8 *pbuf, u32 sz)
{
vfree(pbuf);
}
u8* _rtw_malloc(u32 sz)
{
u8 *pbuf= NULL;
pbuf = kmalloc(sz,in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
return pbuf;
}
u8* _rtw_zmalloc(u32 sz)
{
u8 *pbuf = _rtw_malloc(sz);
if (pbuf != NULL) {
memset(pbuf, 0, sz);
}
return pbuf;
}
void _rtw_mfree(u8 *pbuf, u32 sz)
{
kfree(pbuf);
}
inline struct sk_buff *_rtw_skb_alloc(u32 sz)
{
return __dev_alloc_skb(sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
}
inline void _rtw_skb_free(struct sk_buff *skb)
{
dev_kfree_skb_any(skb);
}
inline struct sk_buff *_rtw_skb_copy(const struct sk_buff *skb)
{
return skb_copy(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
}
inline struct sk_buff *_rtw_skb_clone(struct sk_buff *skb)
{
return skb_clone(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
}
inline int _rtw_netif_rx(struct net_device * ndev, struct sk_buff *skb)
{
skb->dev = ndev;
return netif_rx(skb);
}
void _rtw_skb_queue_purge(struct sk_buff_head *list)
{
struct sk_buff *skb;
while ((skb = skb_dequeue(list)) != NULL)
_rtw_skb_free(skb);
}
inline void *_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35))
return usb_alloc_coherent(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma);
#else
return usb_buffer_alloc(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma);
#endif
}
inline void _rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35))
usb_free_coherent(dev, size, addr, dma);
#else
usb_buffer_free(dev, size, addr, dma);
#endif
}
#ifdef DBG_MEM_ALLOC
struct rtw_mem_stat {
ATOMIC_T alloc; /* the memory bytes we allocate currently */
ATOMIC_T peak; /* the peak memory bytes we allocate */
ATOMIC_T alloc_cnt; /* the alloc count for alloc currently */
ATOMIC_T alloc_err_cnt; /* the error times we fail to allocate memory */
};
struct rtw_mem_stat rtw_mem_type_stat[mstat_tf_idx(MSTAT_TYPE_MAX)];
struct rtw_mem_stat rtw_mem_func_stat[mstat_ff_idx(MSTAT_FUNC_MAX)];
char *MSTAT_TYPE_str[] = {
"VIR",
"PHY",
"SKB",
"USB",
};
char *MSTAT_FUNC_str[] = {
"UNSP",
"IO",
"TXIO",
"RXIO",
"TX",
"RX",
};
int _rtw_mstat_dump(char *buf, int len)
{
int cnt = 0;
int i;
int value_t[4][mstat_tf_idx(MSTAT_TYPE_MAX)];
int value_f[4][mstat_ff_idx(MSTAT_FUNC_MAX)];
int vir_alloc, vir_peak, vir_alloc_err, phy_alloc, phy_peak, phy_alloc_err;
int tx_alloc, tx_peak, tx_alloc_err, rx_alloc, rx_peak, rx_alloc_err;
for (i=0;i<mstat_tf_idx(MSTAT_TYPE_MAX);i++) {
value_t[0][i] = ATOMIC_READ(&rtw_mem_type_stat[i].alloc);
value_t[1][i] = ATOMIC_READ(&rtw_mem_type_stat[i].peak);
value_t[2][i] = ATOMIC_READ(&rtw_mem_type_stat[i].alloc_cnt);
value_t[3][i] = ATOMIC_READ(&rtw_mem_type_stat[i].alloc_err_cnt);
}
cnt += snprintf(buf+cnt, len-cnt, "===================== MSTAT =====================\n");
cnt += snprintf(buf+cnt, len-cnt, "%4s %10s %10s %10s %10s\n", "TAG", "alloc", "peak", "aloc_cnt", "err_cnt");
cnt += snprintf(buf+cnt, len-cnt, "-------------------------------------------------\n");
for (i=0;i<mstat_tf_idx(MSTAT_TYPE_MAX);i++) {
cnt += snprintf(buf+cnt, len-cnt, "%4s %10d %10d %10d %10d\n", MSTAT_TYPE_str[i], value_t[0][i], value_t[1][i], value_t[2][i], value_t[3][i]);
}
return cnt;
}
void rtw_mstat_dump(void)
{
char buf[768] = {0};
_rtw_mstat_dump(buf, 768);
DBG_88E("\n%s", buf);
}
void rtw_mstat_update(const enum mstat_f flags, const MSTAT_STATUS status, u32 sz)
{
static u32 update_time = 0;
int peak, alloc;
int i;
/* initialization */
if (!update_time) {
for (i=0;i<mstat_tf_idx(MSTAT_TYPE_MAX);i++) {
ATOMIC_SET(&rtw_mem_type_stat[i].alloc, 0);
ATOMIC_SET(&rtw_mem_type_stat[i].peak, 0);
ATOMIC_SET(&rtw_mem_type_stat[i].alloc_cnt, 0);
ATOMIC_SET(&rtw_mem_type_stat[i].alloc_err_cnt, 0);
}
for (i=0;i<mstat_ff_idx(MSTAT_FUNC_MAX);i++) {
ATOMIC_SET(&rtw_mem_func_stat[i].alloc, 0);
ATOMIC_SET(&rtw_mem_func_stat[i].peak, 0);
ATOMIC_SET(&rtw_mem_func_stat[i].alloc_cnt, 0);
ATOMIC_SET(&rtw_mem_func_stat[i].alloc_err_cnt, 0);
}
}
switch (status) {
case MSTAT_ALLOC_SUCCESS:
ATOMIC_INC(&rtw_mem_type_stat[mstat_tf_idx(flags].alloc_cnt));
alloc = ATOMIC_ADD_RETURN(&rtw_mem_type_stat[mstat_tf_idx(flags].alloc), sz);
peak=ATOMIC_READ(&rtw_mem_type_stat[mstat_tf_idx(flags].peak));
if (peak<alloc)
ATOMIC_SET(&rtw_mem_type_stat[mstat_tf_idx(flags].peak), alloc);
ATOMIC_INC(&rtw_mem_func_stat[mstat_ff_idx(flags].alloc_cnt));
alloc = ATOMIC_ADD_RETURN(&rtw_mem_func_stat[mstat_ff_idx(flags].alloc), sz);
peak=ATOMIC_READ(&rtw_mem_func_stat[mstat_ff_idx(flags].peak));
if (peak<alloc)
ATOMIC_SET(&rtw_mem_func_stat[mstat_ff_idx(flags].peak), alloc);
break;
case MSTAT_ALLOC_FAIL:
ATOMIC_INC(&rtw_mem_type_stat[mstat_tf_idx(flags].alloc_err_cnt));
ATOMIC_INC(&rtw_mem_func_stat[mstat_ff_idx(flags].alloc_err_cnt));
break;
case MSTAT_FREE:
ATOMIC_DEC(&rtw_mem_type_stat[mstat_tf_idx(flags].alloc_cnt));
ATOMIC_SUB(&rtw_mem_type_stat[mstat_tf_idx(flags].alloc), sz);
ATOMIC_DEC(&rtw_mem_func_stat[mstat_ff_idx(flags].alloc_cnt));
ATOMIC_SUB(&rtw_mem_func_stat[mstat_ff_idx(flags].alloc), sz);
break;
};
/* if (rtw_get_passing_time_ms(update_time) > 5000) { */
/* rtw_mstat_dump(); */
update_time=jiffies;
/* */
}
inline u8* dbg_rtw_vmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
{
u8 *p;
/* DBG_88E("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); */
p=_rtw_vmalloc((sz));
rtw_mstat_update(
flags
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, sz
);
return p;
}
inline u8* dbg_rtw_zvmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
{
u8 *p;
/* DBG_88E("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); */
p=_rtw_zvmalloc((sz));
rtw_mstat_update(
flags
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, sz
);
return p;
}
inline void dbg_rtw_vmfree(u8 *pbuf, u32 sz, const enum mstat_f flags, const char *func, const int line)
{
/* DBG_88E("DBG_MEM_ALLOC %s:%d %s(%p,%d)\n", func, line, __FUNCTION__, (pbuf), (sz)); */
_rtw_vmfree((pbuf), (sz));
rtw_mstat_update(
flags
, MSTAT_FREE
, sz
);
}
inline u8* dbg_rtw_malloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
{
u8 *p;
/* if (sz>=153 && sz<=306) */
/* DBG_88E("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); */
/* if ((sz)>4096) */
/* DBG_88E("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); */
p=_rtw_malloc((sz));
rtw_mstat_update(
flags
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, sz
);
return p;
}
inline u8* dbg_rtw_zmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
{
u8 *p;
/* if (sz>=153 && sz<=306) */
/* DBG_88E("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); */
/* if ((sz)>4096) */
/* DBG_88E("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); */
p = _rtw_zmalloc((sz));
rtw_mstat_update(
flags
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, sz
);
return p;
}
inline void dbg_rtw_mfree(u8 *pbuf, u32 sz, const enum mstat_f flags, const char *func, const int line)
{
/* if (sz>=153 && sz<=306) */
/* DBG_88E("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); */
/* if ((sz)>4096) */
/* DBG_88E("DBG_MEM_ALLOC %s:%d %s(%p,%d)\n", func, line, __FUNCTION__, (pbuf), (sz)); */
_rtw_mfree((pbuf), (sz));
rtw_mstat_update(
flags
, MSTAT_FREE
, sz
);
}
inline struct sk_buff * dbg_rtw_skb_alloc(unsigned int size, const enum mstat_f flags, const char *func, int line)
{
struct sk_buff *skb;
unsigned int truesize = 0;
skb = _rtw_skb_alloc(size);
if (skb)
truesize = skb->truesize;
if (!skb || truesize < size /*|| size > 4096*/)
DBG_88E("DBG_MEM_ALLOC %s:%d %s(%d), skb:%p, truesize=%u\n", func, line, __FUNCTION__, size, skb, truesize);
rtw_mstat_update(
flags
, skb ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, truesize
);
return skb;
}
inline void dbg_rtw_skb_free(struct sk_buff *skb, const enum mstat_f flags, const char *func, int line)
{
unsigned int truesize = skb->truesize;
/* if (truesize > 4096) */
/* DBG_88E("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize); */
_rtw_skb_free(skb);
rtw_mstat_update(
flags
, MSTAT_FREE
, truesize
);
}
inline struct sk_buff *dbg_rtw_skb_copy(const struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line)
{
struct sk_buff *skb_cp;
unsigned int truesize = skb->truesize;
unsigned int cp_truesize = 0;
skb_cp = _rtw_skb_copy(skb);
if (skb_cp)
cp_truesize = skb_cp->truesize;
if (!skb_cp || cp_truesize != truesize /*||cp_truesize > 4096*/)
DBG_88E("DBG_MEM_ALLOC %s:%d %s(%u), skb_cp:%p, cp_truesize=%u\n", func, line, __FUNCTION__, truesize, skb_cp, cp_truesize);
rtw_mstat_update(
flags
, skb_cp ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, truesize
);
return skb_cp;
}
inline struct sk_buff *dbg_rtw_skb_clone(struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line)
{
struct sk_buff *skb_cl;
unsigned int truesize = skb->truesize;
unsigned int cl_truesize = 0;
skb_cl = _rtw_skb_clone(skb);
if (skb_cl)
cl_truesize = skb_cl->truesize;
if (!skb_cl || cl_truesize != truesize /*|| cl_truesize > 4096*/)
DBG_88E("DBG_MEM_ALLOC %s:%d %s(%u), skb_cl:%p, cl_truesize=%u\n", func, line, __FUNCTION__, truesize, skb_cl, cl_truesize);
rtw_mstat_update(
flags
, skb_cl ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, truesize
);
return skb_cl;
}
inline int dbg_rtw_netif_rx(struct net_device * ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line)
{
int ret;
unsigned int truesize = skb->truesize;
/* if (truesize > 4096) */
/* DBG_88E("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize); */
ret = _rtw_netif_rx(ndev, skb);
rtw_mstat_update(
flags
, MSTAT_FREE
, truesize
);
return ret;
}
inline void dbg_rtw_skb_queue_purge(struct sk_buff_head *list, enum mstat_f flags, const char *func, int line)
{
struct sk_buff *skb;
while ((skb = skb_dequeue(list)) != NULL)
dbg_rtw_skb_free(skb, flags, func, line);
}
inline void *dbg_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma, const enum mstat_f flags, const char *func, int line)
{
void *p;
/* DBG_88E("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, size); */
p = _rtw_usb_buffer_alloc(dev, size, dma);
rtw_mstat_update(
flags
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, size
);
return p;
}
inline void dbg_rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma, const enum mstat_f flags, const char *func, int line)
{
/* DBG_88E("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, size); */
_rtw_usb_buffer_free(dev, size, addr, dma);
rtw_mstat_update(
flags
, MSTAT_FREE
, size
);
}
#endif /* DBG_MEM_ALLOC */
void* rtw_malloc2d(int h, int w, int size)
{
int j;
void **a = (void **) rtw_zmalloc( h*sizeof(void *) + h*w*size );
if (a == NULL)
{
DBG_88E("%s: alloc memory fail!\n", __FUNCTION__);
return NULL;
}
for ( j=0; j<h; j++ )
a[j] = ((char *)(a+h)) + j*w*size;
return a;
}
void rtw_mfree2d(void *pbuf, int h, int w, int size)
{
rtw_mfree((u8 *)pbuf, h*sizeof(void*) + w*h*size);
}
int _rtw_memcmp(void *dst, void *src, u32 sz)
{
/* under Linux/GNU/GLibc, the return value of memcmp for two same mem. chunk is 0 */
if (!(memcmp(dst, src, sz)))
return true;
else
return false;
}
void _rtw_init_listhead(struct list_head *list)
{
INIT_LIST_HEAD(list);
}
/*
For the following list_xxx operations,
caller must guarantee the atomic context.
Otherwise, there will be racing condition.
*/
u32 rtw_is_list_empty(struct list_head *phead)
{
if (list_empty(phead))
return true;
else
return false;
}
void rtw_list_insert_head(struct list_head *plist, struct list_head *phead)
{
list_add(plist, phead);
}
void rtw_list_insert_tail(struct list_head *plist, struct list_head *phead)
{
list_add_tail(plist, phead);
}
/*
Caller must check if the list is empty before calling rtw_list_delete
*/
void _rtw_init_sema(struct semaphore *sema, int init_val)
{
sema_init(sema, init_val);
}
void _rtw_free_sema(struct semaphore *sema)
{
}
void _rtw_up_sema(struct semaphore *sema)
{
up(sema);
}
u32 _rtw_down_sema(struct semaphore *sema)
{
if (down_interruptible(sema))
return _FAIL;
else
return _SUCCESS;
}
void _rtw_mutex_init(_mutex *pmutex)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37))
mutex_init(pmutex);
#else
init_MUTEX(pmutex);
#endif
}
void _rtw_mutex_free(_mutex *pmutex)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37))
mutex_destroy(pmutex);
#endif
}
void _rtw_init_queue(struct __queue *pqueue)
{
_rtw_init_listhead(&pqueue->queue);
spin_lock_init(&pqueue->lock);
}
u32 _rtw_queue_empty(struct __queue *pqueue)
{
return (rtw_is_list_empty(&pqueue->queue));
}
u32 rtw_end_of_queue_search(struct list_head *head, struct list_head *plist)
{
if (head == plist)
return true;
else
return false;
}
inline u32 rtw_systime_to_ms(u32 systime)
{
return systime * 1000 / HZ;
}
inline u32 rtw_ms_to_systime(u32 ms)
{
return ms * HZ / 1000;
}
/* the input parameter start use jiffies */
inline s32 rtw_get_passing_time_ms(u32 start)
{
return rtw_systime_to_ms(jiffies-start);
}
inline s32 rtw_get_time_interval_ms(u32 start, u32 end)
{
return rtw_systime_to_ms(end-start);
}
void rtw_sleep_schedulable(int ms)
{
u32 delta;
delta = (ms * HZ)/1000;/* ms) */
if (delta == 0) {
delta = 1;/* 1 ms */
}
set_current_state(TASK_INTERRUPTIBLE);
if (schedule_timeout(delta) != 0) {
return ;
}
}
void rtw_msleep_os(int ms)
{
msleep((unsigned int)ms);
}
void rtw_usleep_os(int us)
{
if ( 1 < (us/1000) )
msleep(1);
else
msleep( (us/1000) + 1);
}
#ifdef DBG_DELAY_OS
void _rtw_mdelay_os(int ms, const char *func, const int line)
{
DBG_88E("%s:%d %s(%d)\n", func, line, __FUNCTION__, ms);
mdelay((unsigned long)ms);
}
void _rtw_udelay_os(int us, const char *func, const int line)
{
DBG_88E("%s:%d %s(%d)\n", func, line, __FUNCTION__, us);
udelay((unsigned long)us);
}
#else
void rtw_mdelay_os(int ms)
{
mdelay((unsigned long)ms);
}
void rtw_udelay_os(int us)
{
udelay((unsigned long)us);
}
#endif
void rtw_yield_os(void)
{
yield();
}
#define RTW_SUSPEND_LOCK_NAME "rtw_wifi"
#define RTW_SUSPEND_EXT_LOCK_NAME "rtw_wifi_ext"
inline void rtw_suspend_lock_init(void)
{
}
inline void rtw_suspend_lock_uninit(void)
{
}
inline void rtw_lock_suspend(void)
{
}
inline void rtw_unlock_suspend(void)
{
}
inline void rtw_lock_suspend_timeout(u32 timeout_ms)
{
}
inline void rtw_lock_ext_suspend_timeout(u32 timeout_ms)
{
}
inline void ATOMIC_SET(ATOMIC_T *v, int i)
{
atomic_set(v,i);
}
inline int ATOMIC_READ(ATOMIC_T *v)
{
return atomic_read(v);
}
inline void ATOMIC_ADD(ATOMIC_T *v, int i)
{
atomic_add(i,v);
}
inline void ATOMIC_SUB(ATOMIC_T *v, int i)
{
atomic_sub(i,v);
}
inline void ATOMIC_INC(ATOMIC_T *v)
{
atomic_inc(v);
}
inline void ATOMIC_DEC(ATOMIC_T *v)
{
atomic_dec(v);
}
inline int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i)
{
return atomic_add_return(i,v);
}
inline int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i)
{
return atomic_sub_return(i,v);
}
inline int ATOMIC_INC_RETURN(ATOMIC_T *v)
{
return atomic_inc_return(v);
}
inline int ATOMIC_DEC_RETURN(ATOMIC_T *v)
{
return atomic_dec_return(v);
}
/*
* Open a file with the specific @param path, @param flag, @param mode
* @param fpp the pointer of struct file pointer to get struct file pointer while file opening is success
* @param path the path of the file to open
* @param flag file operation flags, please refer to linux document
* @param mode please refer to linux document
* @return Linux specific error code
*/
static int openFile(struct file **fpp, char *path, int flag, int mode)
{
struct file *fp;
fp=filp_open(path, flag, mode);
if (IS_ERR(fp)) {
*fpp= NULL;
return PTR_ERR(fp);
}
else {
*fpp=fp;
return 0;
}
}
/*
* Close the file with the specific @param fp
* @param fp the pointer of struct file to close
* @return always 0
*/
static int closeFile(struct file *fp)
{
filp_close(fp,NULL);
return 0;
}
static int readFile(struct file *fp,char *buf,int len)
{
int rlen=0, sum=0;
if (!fp->f_op || !fp->f_op->read)
return -EPERM;
while (sum<len) {
rlen=fp->f_op->read(fp,(char __user *)buf+sum,len-sum, &fp->f_pos);
if (rlen>0)
sum+=rlen;
else if (0 != rlen)
return rlen;
else
break;
}
return sum;
}
static int writeFile(struct file *fp,char *buf,int len)
{
int wlen=0, sum=0;
if (!fp->f_op || !fp->f_op->write)
return -EPERM;
while (sum<len) {
wlen=fp->f_op->write(fp,(char __user *)buf+sum,len-sum, &fp->f_pos);
if (wlen>0)
sum+=wlen;
else if (0 != wlen)
return wlen;
else
break;
}
return sum;
}
/*
* Test if the specifi @param path is a file and readable
* @param path the path of the file to test
* @return Linux specific error code
*/
static int isFileReadable(char *path)
{
struct file *fp;
int ret = 0;
#ifdef set_fs
mm_segment_t oldfs;
#endif
char buf;
fp=filp_open(path, O_RDONLY, 0);
if (IS_ERR(fp)) {
ret = PTR_ERR(fp);
}
else {
#ifdef set_fs
oldfs = get_fs(); set_fs(KERNEL_DS);
#endif
if (1!=readFile(fp, &buf, 1))
ret = PTR_ERR(fp);
#ifdef set_fs
set_fs(oldfs);
#endif
filp_close(fp,NULL);
}
return ret;
}
/*
* Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most
* @param path the path of the file to open and read
* @param buf the starting address of the buffer to store file content
* @param sz how many bytes to read at most
* @return the byte we've read, or Linux specific error code
*/
static int retriveFromFile(char *path, u8* buf, u32 sz)
{
int ret =-1;
struct file *fp;
if (path && buf) {
if ( 0 == (ret=openFile(&fp,path, O_RDONLY, 0)) ) {
DBG_88E("%s openFile path:%s fp=%p\n",__FUNCTION__, path ,fp);
#ifdef set_fs
set_fs(KERNEL_DS);
#endif
ret=readFile(fp, buf, sz);
closeFile(fp);
DBG_88E("%s readFile, ret:%d\n",__FUNCTION__, ret);
} else {
DBG_88E("%s openFile path:%s Fail, ret:%d\n",__FUNCTION__, path, ret);
}
} else {
DBG_88E("%s NULL pointer\n",__FUNCTION__);
ret = -EINVAL;
}
return ret;
}
/*
* Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file
* @param path the path of the file to open and write
* @param buf the starting address of the data to write into file
* @param sz how many bytes to write at most
* @return the byte we've written, or Linux specific error code
*/
static int storeToFile(char *path, u8* buf, u32 sz)
{
int ret =0;
struct file *fp;
if (path && buf) {
if ( 0 == (ret=openFile(&fp, path, O_CREAT|O_WRONLY, 0666)) ) {
DBG_88E("%s openFile path:%s fp=%p\n",__FUNCTION__, path ,fp);
#ifdef set_fs
set_fs(KERNEL_DS);
#endif
ret=writeFile(fp, buf, sz);
closeFile(fp);
DBG_88E("%s writeFile, ret:%d\n",__FUNCTION__, ret);
} else {
DBG_88E("%s openFile path:%s Fail, ret:%d\n",__FUNCTION__, path, ret);
}
} else {
DBG_88E("%s NULL pointer\n",__FUNCTION__);
ret = -EINVAL;
}
return ret;
}
/*
* Test if the specifi @param path is a file and readable
* @param path the path of the file to test
* @return true or false
*/
int rtw_is_file_readable(char *path)
{
if (isFileReadable(path) == 0)
return true;
else
return false;
}
/*
* Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most
* @param path the path of the file to open and read
* @param buf the starting address of the buffer to store file content
* @param sz how many bytes to read at most
* @return the byte we've read
*/
int rtw_retrive_from_file(char *path, u8* buf, u32 sz)
{
int ret =retriveFromFile(path, buf, sz);
return ret>=0?ret:0;
}
/*
* Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file
* @param path the path of the file to open and write
* @param buf the starting address of the data to write into file
* @param sz how many bytes to write at most
* @return the byte we've written
*/
int rtw_store_to_file(char *path, u8* buf, u32 sz)
{
int ret =storeToFile(path, buf, sz);
return ret>=0?ret:0;
}
struct net_device *rtw_alloc_etherdev_with_old_priv(int sizeof_priv, void *old_priv)
{
struct net_device *pnetdev;
struct rtw_netdev_priv_indicator *pnpi;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35))
pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4);
#else
pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator));
#endif
if (!pnetdev)
goto RETURN;
pnpi = netdev_priv(pnetdev);
pnpi->priv=old_priv;
pnpi->sizeof_priv=sizeof_priv;
RETURN:
return pnetdev;
}
struct net_device *rtw_alloc_etherdev(int sizeof_priv)
{
struct net_device *pnetdev;
struct rtw_netdev_priv_indicator *pnpi;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35))
pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4);
#else
pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator));
#endif
if (!pnetdev)
goto RETURN;
pnpi = netdev_priv(pnetdev);
pnpi->priv = rtw_zvmalloc(sizeof_priv);
if (!pnpi->priv) {
free_netdev(pnetdev);
pnetdev = NULL;
goto RETURN;
}
pnpi->sizeof_priv=sizeof_priv;
RETURN:
return pnetdev;
}
void rtw_free_netdev(struct net_device * netdev)
{
struct rtw_netdev_priv_indicator *pnpi;
if (!netdev)
goto RETURN;
pnpi = netdev_priv(netdev);
if (!pnpi->priv)
goto RETURN;
rtw_vmfree(pnpi->priv, pnpi->sizeof_priv);
free_netdev(netdev);
RETURN:
return;
}
/*
* Jeff: this function should be called under ioctl (rtnl_lock is accquired) while
* LINUX_VERSION_CODE < KERNEL_VERSION(2,6,26)
*/
int rtw_change_ifname(struct adapter *padapter, const char *ifname)
{
struct net_device *pnetdev;
struct net_device *cur_pnetdev;
struct rereg_nd_name_data *rereg_priv;
int ret;
if (!padapter)
goto error;
cur_pnetdev = padapter->pnetdev;
rereg_priv = &padapter->rereg_nd_name_priv;
/* free the old_pnetdev */
if (rereg_priv->old_pnetdev) {
free_netdev(rereg_priv->old_pnetdev);
rereg_priv->old_pnetdev = NULL;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
if (!rtnl_is_locked())
unregister_netdev(cur_pnetdev);
else
#endif
unregister_netdevice(cur_pnetdev);
rtw_proc_remove_one(cur_pnetdev);
rereg_priv->old_pnetdev=cur_pnetdev;
pnetdev = rtw_init_netdev(padapter);
if (!pnetdev) {
ret = -1;
goto error;
}
SET_NETDEV_DEV(pnetdev, dvobj_to_dev(adapter_to_dvobj(padapter)));
rtw_init_netdev_name(pnetdev, ifname);
memcpy(pnetdev->dev_addr, padapter->eeprompriv.mac_addr, ETH_ALEN);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
if (!rtnl_is_locked())
ret = register_netdev(pnetdev);
else
#endif
ret = register_netdevice(pnetdev);
if ( ret != 0) {
RT_TRACE(_module_hci_intfs_c_,_drv_err_,("register_netdev() failed\n"));
goto error;
}
rtw_proc_init_one(pnetdev);
return 0;
error:
return -1;
}
u64 rtw_modular64(u64 x, u64 y)
{
return do_div(x, y);
}
u64 rtw_division64(u64 x, u64 y)
{
do_div(x, y);
return x;
}
void rtw_buf_free(u8 **buf, u32 *buf_len)
{
u32 ori_len;
if (!buf || !buf_len)
return;
ori_len = *buf_len;
if (*buf) {
u32 tmp_buf_len = *buf_len;
*buf_len = 0;
rtw_mfree(*buf, tmp_buf_len);
*buf = NULL;
}
}
void rtw_buf_update(u8 **buf, u32 *buf_len, u8 *src, u32 src_len)
{
u32 ori_len = 0, dup_len = 0;
u8 *ori = NULL;
u8 *dup = NULL;
if (!buf || !buf_len)
return;
if (!src || !src_len)
goto keep_ori;
/* duplicate src */
dup = rtw_malloc(src_len);
if (dup) {
dup_len = src_len;
memcpy(dup, src, dup_len);
}
keep_ori:
ori = *buf;
ori_len = *buf_len;
/* replace buf with dup */
*buf_len = 0;
*buf = dup;
*buf_len = dup_len;
/* free ori */
if (ori && ori_len > 0)
rtw_mfree(ori, ori_len);
}
/**
* rtw_cbuf_full - test if cbuf is full
* @cbuf: pointer of struct rtw_cbuf
*
* Returns: true if cbuf is full
*/
inline bool rtw_cbuf_full(struct rtw_cbuf *cbuf)
{
return (cbuf->write == cbuf->read-1)? true : false;
}
/**
* rtw_cbuf_empty - test if cbuf is empty
* @cbuf: pointer of struct rtw_cbuf
*
* Returns: true if cbuf is empty
*/
inline bool rtw_cbuf_empty(struct rtw_cbuf *cbuf)
{
return (cbuf->write == cbuf->read)? true : false;
}
/**
* rtw_cbuf_push - push a pointer into cbuf
* @cbuf: pointer of struct rtw_cbuf
* @buf: pointer to push in
*
* Lock free operation, be careful of the use scheme
* Returns: true push success
*/
bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf)
{
if (rtw_cbuf_full(cbuf))
return _FAIL;
if (0)
DBG_88E("%s on %u\n", __func__, cbuf->write);
cbuf->bufs[cbuf->write] = buf;
cbuf->write = (cbuf->write+1)%cbuf->size;
return _SUCCESS;
}
/**
* rtw_cbuf_pop - pop a pointer from cbuf
* @cbuf: pointer of struct rtw_cbuf
*
* Lock free operation, be careful of the use scheme
* Returns: pointer popped out
*/
void *rtw_cbuf_pop(struct rtw_cbuf *cbuf)
{
void *buf;
if (rtw_cbuf_empty(cbuf))
return NULL;
if (0)
DBG_88E("%s on %u\n", __func__, cbuf->read);
buf = cbuf->bufs[cbuf->read];
cbuf->read = (cbuf->read+1)%cbuf->size;
return buf;
}
/**
* rtw_cbuf_alloc - allocte a rtw_cbuf with given size and do initialization
* @size: size of pointer
*
* Returns: pointer of srtuct rtw_cbuf, NULL for allocation failure
*/
struct rtw_cbuf *rtw_cbuf_alloc(u32 size)
{
struct rtw_cbuf *cbuf;
cbuf = (struct rtw_cbuf *)rtw_malloc(sizeof(*cbuf) + sizeof(void*)*size);
if (cbuf) {
cbuf->write = cbuf->read = 0;
cbuf->size = size;
}
return cbuf;
}
/**
* rtw_cbuf_free - free the given rtw_cbuf
* @cbuf: pointer of struct rtw_cbuf to free
*/
void rtw_cbuf_free(struct rtw_cbuf *cbuf)
{
rtw_mfree((u8*)cbuf, sizeof(*cbuf) + sizeof(void*)*cbuf->size);
}