rtl8188eu/hal/rtl8188e_rf6052.c

1261 lines
38 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
/******************************************************************************
*
*
* Module: rtl8192c_rf6052.c ( Source C File)
*
* Note: Provide RF 6052 series relative API.
*
* Function:
*
* Export:
*
* Abbrev:
*
* History:
* Data Who Remark
*
* 09/25/2008 MHC Create initial version.
* 11/05/2008 MHC Add API for tw power setting.
*
*
******************************************************************************/
#define _RTL8188E_RF6052_C_
#include <drv_conf.h>
#include <osdep_service.h>
#include <drv_types.h>
#include <rtw_byteorder.h>
#include <rtl8188e_hal.h>
/*---------------------------Define Local Constant---------------------------*/
// Define local structure for debug!!!!!
typedef struct RF_Shadow_Compare_Map {
// Shadow register value
u32 Value;
// Compare or not flag
u8 Compare;
// Record If it had ever modified unpredicted
u8 ErrorOrNot;
// Recorver Flag
u8 Recorver;
//
u8 Driver_Write;
}RF_SHADOW_T;
/*---------------------------Define Local Constant---------------------------*/
/*------------------------Define global variable-----------------------------*/
/*------------------------Define global variable-----------------------------*/
/*------------------------Define local variable------------------------------*/
// 2008/11/20 MH For Debug only, RF
//static RF_SHADOW_T RF_Shadow[RF6052_MAX_PATH][RF6052_MAX_REG] = {0};
static RF_SHADOW_T RF_Shadow[RF6052_MAX_PATH][RF6052_MAX_REG];
/*------------------------Define local variable------------------------------*/
/*-----------------------------------------------------------------------------
* Function: RF_ChangeTxPath
*
* Overview: For RL6052, we must change some RF settign for 1T or 2T.
*
* Input: u2Byte DataRate // 0x80-8f, 0x90-9f
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 09/25/2008 MHC Create Version 0.
* Firmwaer support the utility later.
*
*---------------------------------------------------------------------------*/
void rtl8188e_RF_ChangeTxPath( IN PADAPTER Adapter,
IN u16 DataRate)
{
// We do not support gain table change inACUT now !!!! Delete later !!!
#if 0//(RTL92SE_FPGA_VERIFY == 0)
static u1Byte RF_Path_Type = 2; // 1 = 1T 2= 2T
static u4Byte tx_gain_tbl1[6]
= {0x17f50, 0x11f40, 0x0cf30, 0x08720, 0x04310, 0x00100};
static u4Byte tx_gain_tbl2[6]
= {0x15ea0, 0x10e90, 0x0c680, 0x08250, 0x04040, 0x00030};
u1Byte i;
if (RF_Path_Type == 2 && (DataRate&0xF) <= 0x7)
{
// Set TX SYNC power G2G3 loop filter
PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)RF_PATH_A,
RF_TXPA_G2, bRFRegOffsetMask, 0x0f000);
PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)RF_PATH_A,
RF_TXPA_G3, bRFRegOffsetMask, 0xeacf1);
// Change TX AGC gain table
for (i = 0; i < 6; i++)
PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)RF_PATH_A,
RF_TX_AGC, bRFRegOffsetMask, tx_gain_tbl1[i]);
// Set PA to high value
PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)RF_PATH_A,
RF_TXPA_G2, bRFRegOffsetMask, 0x01e39);
}
else if (RF_Path_Type == 1 && (DataRate&0xF) >= 0x8)
{
// Set TX SYNC power G2G3 loop filter
PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)RF_PATH_A,
RF_TXPA_G2, bRFRegOffsetMask, 0x04440);
PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)RF_PATH_A,
RF_TXPA_G3, bRFRegOffsetMask, 0xea4f1);
// Change TX AGC gain table
for (i = 0; i < 6; i++)
PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)RF_PATH_A,
RF_TX_AGC, bRFRegOffsetMask, tx_gain_tbl2[i]);
// Set PA low gain
PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)RF_PATH_A,
RF_TXPA_G2, bRFRegOffsetMask, 0x01e19);
}
#endif
} /* RF_ChangeTxPath */
/*-----------------------------------------------------------------------------
* Function: PHY_RF6052SetBandwidth()
*
* Overview: This function is called by SetBWModeCallback8190Pci() only
*
* Input: PADAPTER Adapter
* WIRELESS_BANDWIDTH_E Bandwidth //20M or 40M
*
* Output: NONE
*
* Return: NONE
*
* Note: For RF type 0222D
*---------------------------------------------------------------------------*/
VOID
rtl8188e_PHY_RF6052SetBandwidth(
IN PADAPTER Adapter,
IN HT_CHANNEL_WIDTH Bandwidth) //20M or 40M
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
switch (Bandwidth)
{
case HT_CHANNEL_WIDTH_20:
pHalData->RfRegChnlVal[0] = ((pHalData->RfRegChnlVal[0] & 0xfffff3ff) | BIT(10) | BIT(11));
PHY_SetRFReg(Adapter, RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask, pHalData->RfRegChnlVal[0]);
break;
case HT_CHANNEL_WIDTH_40:
pHalData->RfRegChnlVal[0] = ((pHalData->RfRegChnlVal[0] & 0xfffff3ff)| BIT(10));
PHY_SetRFReg(Adapter, RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask, pHalData->RfRegChnlVal[0]);
break;
default:
//RT_TRACE(COMP_DBG, DBG_LOUD, ("PHY_SetRF8225Bandwidth(): unknown Bandwidth: %#X\n",Bandwidth ));
break;
}
}
/*-----------------------------------------------------------------------------
* Function: PHY_RF6052SetCckTxPower
*
* Overview:
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/05/2008 MHC Simulate 8192series..
*
*---------------------------------------------------------------------------*/
VOID
rtl8188e_PHY_RF6052SetCckTxPower(
IN PADAPTER Adapter,
IN u8* pPowerlevel)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
struct dm_priv *pdmpriv = &pHalData->dmpriv;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
//PMGNT_INFO pMgntInfo=&Adapter->MgntInfo;
u32 TxAGC[2]={0, 0}, tmpval=0,pwrtrac_value;
BOOLEAN TurboScanOff = _FALSE;
u8 idx1, idx2;
u8* ptr;
u8 direction;
//FOR CE ,must disable turbo scan
TurboScanOff = _TRUE;
if (pmlmeext->sitesurvey_res.state == SCAN_PROCESS)
{
TxAGC[RF_PATH_A] = 0x3f3f3f3f;
TxAGC[RF_PATH_B] = 0x3f3f3f3f;
TurboScanOff = _TRUE;//disable turbo scan
if (TurboScanOff)
{
for (idx1=RF_PATH_A; idx1<=RF_PATH_B; idx1++)
{
TxAGC[idx1] =
pPowerlevel[idx1] | (pPowerlevel[idx1]<<8) |
(pPowerlevel[idx1]<<16) | (pPowerlevel[idx1]<<24);
#ifdef CONFIG_USB_HCI
// 2010/10/18 MH For external PA module. We need to limit power index to be less than 0x20.
if (TxAGC[idx1] > 0x20 && pHalData->ExternalPA)
TxAGC[idx1] = 0x20;
#endif
}
}
}
else
{
// 20100427 Joseph: Driver dynamic Tx power shall not affect Tx power. It shall be determined by power training mechanism.
// Currently, we cannot fully disable driver dynamic tx power mechanism because it is referenced by BT coexist mechanism.
// In the future, two mechanism shall be separated from each other and maintained independantly. Thanks for Lanhsin's reminder.
if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_Level1)
{
TxAGC[RF_PATH_A] = 0x10101010;
TxAGC[RF_PATH_B] = 0x10101010;
}
else if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_Level2)
{
TxAGC[RF_PATH_A] = 0x00000000;
TxAGC[RF_PATH_B] = 0x00000000;
}
else
{
for (idx1=RF_PATH_A; idx1<=RF_PATH_B; idx1++)
{
TxAGC[idx1] =
pPowerlevel[idx1] | (pPowerlevel[idx1]<<8) |
(pPowerlevel[idx1]<<16) | (pPowerlevel[idx1]<<24);
}
if (pHalData->EEPROMRegulatory==0)
{
tmpval = (pHalData->MCSTxPowerLevelOriginalOffset[0][6]) +
(pHalData->MCSTxPowerLevelOriginalOffset[0][7]<<8);
TxAGC[RF_PATH_A] += tmpval;
tmpval = (pHalData->MCSTxPowerLevelOriginalOffset[0][14]) +
(pHalData->MCSTxPowerLevelOriginalOffset[0][15]<<24);
TxAGC[RF_PATH_B] += tmpval;
}
}
}
for (idx1=RF_PATH_A; idx1<=RF_PATH_B; idx1++)
{
ptr = (u8*)(&(TxAGC[idx1]));
for (idx2=0; idx2<4; idx2++)
{
if (*ptr > RF6052_MAX_TX_PWR)
*ptr = RF6052_MAX_TX_PWR;
ptr++;
}
}
ODM_TxPwrTrackAdjust88E(&pHalData->odmpriv, 1, &direction, &pwrtrac_value);
if (direction == 1) // Increase TX pwoer
{
TxAGC[0] += pwrtrac_value;
TxAGC[1] += pwrtrac_value;
}
else if (direction == 2) // Decrease TX pwoer
{
TxAGC[0] -= pwrtrac_value;
TxAGC[1] -= pwrtrac_value;
}
// rf-A cck tx power
tmpval = TxAGC[RF_PATH_A]&0xff;
PHY_SetBBReg(Adapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, tmpval);
//RTPRINT(FPHY, PHY_TXPWR, ("CCK PWR 1M (rf-A) = 0x%x (reg 0x%x)\n", tmpval, rTxAGC_A_CCK1_Mcs32));
tmpval = TxAGC[RF_PATH_A]>>8;
PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, 0xffffff00, tmpval);
//RTPRINT(FPHY, PHY_TXPWR, ("CCK PWR 2~11M (rf-A) = 0x%x (reg 0x%x)\n", tmpval, rTxAGC_B_CCK11_A_CCK2_11));
// rf-B cck tx power
tmpval = TxAGC[RF_PATH_B]>>24;
PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte0, tmpval);
//RTPRINT(FPHY, PHY_TXPWR, ("CCK PWR 11M (rf-B) = 0x%x (reg 0x%x)\n", tmpval, rTxAGC_B_CCK11_A_CCK2_11));
tmpval = TxAGC[RF_PATH_B]&0x00ffffff;
PHY_SetBBReg(Adapter, rTxAGC_B_CCK1_55_Mcs32, 0xffffff00, tmpval);
//RTPRINT(FPHY, PHY_TXPWR, ("CCK PWR 1~5.5M (rf-B) = 0x%x (reg 0x%x)\n",
// tmpval, rTxAGC_B_CCK1_55_Mcs32));
} /* PHY_RF6052SetCckTxPower */
#if 0
//
// powerbase0 for OFDM rates
// powerbase1 for HT MCS rates
//
static void getPowerBase(
IN PADAPTER Adapter,
IN u8* pPowerLevel,
IN u8 Channel,
IN OUT u32* OfdmBase,
IN OUT u32* MCSBase
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 powerBase0, powerBase1;
u8 Legacy_pwrdiff=0, HT20_pwrdiff=0;
u8 i, powerlevel[2];
for (i=0; i<2; i++)
{
powerlevel[i] = pPowerLevel[i];
Legacy_pwrdiff = pHalData->TxPwrLegacyHtDiff[i][Channel-1];
powerBase0 = powerlevel[i] + Legacy_pwrdiff;
powerBase0 = (powerBase0<<24) | (powerBase0<<16) |(powerBase0<<8) |powerBase0;
*(OfdmBase+i) = powerBase0;
//RTPRINT(FPHY, PHY_TXPWR, (" [OFDM power base index rf(%c) = 0x%x]\n", ((i==0)?'A':'B'), *(OfdmBase+i)));
}
for (i=0; i<2; i++)
{
//Check HT20 to HT40 diff
if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_20)
{
HT20_pwrdiff = pHalData->TxPwrHt20Diff[i][Channel-1];
powerlevel[i] += HT20_pwrdiff;
}
powerBase1 = powerlevel[i];
powerBase1 = (powerBase1<<24) | (powerBase1<<16) |(powerBase1<<8) |powerBase1;
*(MCSBase+i) = powerBase1;
//RTPRINT(FPHY, PHY_TXPWR, (" [MCS power base index rf(%c) = 0x%x]\n", ((i==0)?'A':'B'), *(MCSBase+i)));
}
}
#endif
//
// powerbase0 for OFDM rates
// powerbase1 for HT MCS rates
//
void getPowerBase88E(
IN PADAPTER Adapter,
IN u8* pPowerLevelOFDM,
IN u8* pPowerLevelBW20,
IN u8* pPowerLevelBW40,
IN u8 Channel,
IN OUT u32* OfdmBase,
IN OUT u32* MCSBase
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 powerBase0, powerBase1;
u8 Legacy_pwrdiff=0;
s8 HT20_pwrdiff=0;
u8 i, powerlevel[2];
for (i=0; i<2; i++)
{
powerBase0 = pPowerLevelOFDM[i];
powerBase0 = (powerBase0<<24) | (powerBase0<<16) |(powerBase0<<8) |powerBase0;
*(OfdmBase+i) = powerBase0;
//DBG_871X(" [OFDM power base index rf(%c) = 0x%x]\n", ((i==0)?'A':'B'), *(OfdmBase+i));
}
for (i=0; i<pHalData->NumTotalRFPath; i++)
{
//Check HT20 to HT40 diff
if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_20)
{
powerlevel[i] = pPowerLevelBW20[i];
}
else
{
powerlevel[i] = pPowerLevelBW40[i];
}
powerBase1 = powerlevel[i];
powerBase1 = (powerBase1<<24) | (powerBase1<<16) |(powerBase1<<8) |powerBase1;
*(MCSBase+i) = powerBase1;
//DBG_871X(" [MCS power base index rf(%c) = 0x%x]\n", ((i==0)?'A':'B'), *(MCSBase+i));
}
}
#if 0
static void getTxPowerWriteValByRegulatory(
IN PADAPTER Adapter,
IN u8 Channel,
IN u8 index,
IN u32* powerBase0,
IN u32* powerBase1,
OUT u32* pOutWriteVal
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct dm_priv *pdmpriv = &pHalData->dmpriv;
u8 i, chnlGroup, pwr_diff_limit[4];
u32 writeVal, customer_limit, rf;
//
// Index 0 & 1= legacy OFDM, 2-5=HT_MCS rate
//
for (rf=0; rf<2; rf++)
{
switch (pHalData->EEPROMRegulatory)
{
case 0: // Realtek better performance
// increase power diff defined by Realtek for large power
chnlGroup = 0;
//RTPRINT(FPHY, PHY_TXPWR, ("MCSTxPowerLevelOriginalOffset[%d][%d] = 0x%x\n",
// chnlGroup, index, pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)]));
writeVal = pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)] +
((index<2)?powerBase0[rf]:powerBase1[rf]);
//RTPRINT(FPHY, PHY_TXPWR, ("RTK better performance, writeVal(%c) = 0x%x\n", ((rf==0)?'A':'B'), writeVal));
break;
case 1: // Realtek regulatory
// increase power diff defined by Realtek for regulatory
{
if (pHalData->pwrGroupCnt == 1)
chnlGroup = 0;
if (pHalData->pwrGroupCnt >= 3)
{
if (Channel <= 3)
chnlGroup = 0;
else if (Channel >= 4 && Channel <= 9)
chnlGroup = 1;
else if (Channel > 9)
chnlGroup = 2;
if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_20)
chnlGroup++;
else
chnlGroup+=4;
}
//RTPRINT(FPHY, PHY_TXPWR, ("MCSTxPowerLevelOriginalOffset[%d][%d] = 0x%x\n",
//chnlGroup, index, pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)]));
writeVal = pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)] +
((index<2)?powerBase0[rf]:powerBase1[rf]);
//RTPRINT(FPHY, PHY_TXPWR, ("Realtek regulatory, 20MHz, writeVal(%c) = 0x%x\n", ((rf==0)?'A':'B'), writeVal));
}
break;
case 2: // Better regulatory
// don't increase any power diff
writeVal = ((index<2)?powerBase0[rf]:powerBase1[rf]);
//RTPRINT(FPHY, PHY_TXPWR, ("Better regulatory, writeVal(%c) = 0x%x\n", ((rf==0)?'A':'B'), writeVal));
break;
case 3: // Customer defined power diff.
// increase power diff defined by customer.
chnlGroup = 0;
//RTPRINT(FPHY, PHY_TXPWR, ("MCSTxPowerLevelOriginalOffset[%d][%d] = 0x%x\n",
// chnlGroup, index, pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)]));
if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_40)
{
//RTPRINT(FPHY, PHY_TXPWR, ("customer's limit, 40MHz rf(%c) = 0x%x\n",
// ((rf==0)?'A':'B'), pHalData->PwrGroupHT40[rf][Channel-1]));
}
else
{
//RTPRINT(FPHY, PHY_TXPWR, ("customer's limit, 20MHz rf(%c) = 0x%x\n",
// ((rf==0)?'A':'B'), pHalData->PwrGroupHT20[rf][Channel-1]));
}
for (i=0; i<4; i++)
{
pwr_diff_limit[i] = (u8)((pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)]&(0x7f<<(i*8)))>>(i*8));
if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_40)
{
if (pwr_diff_limit[i] > pHalData->PwrGroupHT40[rf][Channel-1])
pwr_diff_limit[i] = pHalData->PwrGroupHT40[rf][Channel-1];
}
else
{
if (pwr_diff_limit[i] > pHalData->PwrGroupHT20[rf][Channel-1])
pwr_diff_limit[i] = pHalData->PwrGroupHT20[rf][Channel-1];
}
}
customer_limit = (pwr_diff_limit[3]<<24) | (pwr_diff_limit[2]<<16) |
(pwr_diff_limit[1]<<8) | (pwr_diff_limit[0]);
//RTPRINT(FPHY, PHY_TXPWR, ("Customer's limit rf(%c) = 0x%x\n", ((rf==0)?'A':'B'), customer_limit));
writeVal = customer_limit + ((index<2)?powerBase0[rf]:powerBase1[rf]);
//RTPRINT(FPHY, PHY_TXPWR, ("Customer, writeVal rf(%c)= 0x%x\n", ((rf==0)?'A':'B'), writeVal));
break;
default:
chnlGroup = 0;
writeVal = pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)] +
((index<2)?powerBase0[rf]:powerBase1[rf]);
//RTPRINT(FPHY, PHY_TXPWR, ("RTK better performance, writeVal rf(%c) = 0x%x\n", ((rf==0)?'A':'B'), writeVal));
break;
}
// 20100427 Joseph: Driver dynamic Tx power shall not affect Tx power. It shall be determined by power training mechanism.
// Currently, we cannot fully disable driver dynamic tx power mechanism because it is referenced by BT coexist mechanism.
// In the future, two mechanism shall be separated from each other and maintained independantly. Thanks for Lanhsin's reminder.
if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_Level1)
writeVal = 0x14141414;
else if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_Level2)
writeVal = 0x00000000;
// 20100628 Joseph: High power mode for BT-Coexist mechanism.
// This mechanism is only applied when Driver-Highpower-Mechanism is OFF.
if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_BT1)
{
//RTPRINT(FBT, BT_TRACE, ("Tx Power (-6)\n"));
writeVal = writeVal - 0x06060606;
}
else if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_BT2)
{
//RTPRINT(FBT, BT_TRACE, ("Tx Power (-0)\n"));
writeVal = writeVal;
}
*(pOutWriteVal+rf) = writeVal;
}
}
#endif
void getTxPowerWriteValByRegulatory88E(
IN PADAPTER Adapter,
IN u8 Channel,
IN u8 index,
IN u32* powerBase0,
IN u32* powerBase1,
OUT u32* pOutWriteVal
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct dm_priv *pdmpriv = &pHalData->dmpriv;
u1Byte i, chnlGroup=0, pwr_diff_limit[4], customer_pwr_limit;
s1Byte pwr_diff=0;
u4Byte writeVal, customer_limit, rf;
u1Byte Regulatory = pHalData->EEPROMRegulatory;
//
// Index 0 & 1= legacy OFDM, 2-5=HT_MCS rate
//
#if 0 // (INTEL_PROXIMITY_SUPPORT == 1)
if (pMgntInfo->IntelProximityModeInfo.PowerOutput > 0)
Regulatory = 2;
#endif
for (rf=0; rf<2; rf++)
{
switch (Regulatory)
{
case 0: // Realtek better performance
// increase power diff defined by Realtek for large power
chnlGroup = 0;
//RTPRINT(FPHY, PHY_TXPWR, ("MCSTxPowerLevelOriginalOffset[%d][%d] = 0x%x\n",
// chnlGroup, index, pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)]));
writeVal = pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)] +
((index<2)?powerBase0[rf]:powerBase1[rf]);
//RTPRINT(FPHY, PHY_TXPWR, ("RTK better performance, writeVal(%c) = 0x%x\n", ((rf==0)?'A':'B'), writeVal));
break;
case 1: // Realtek regulatory
// increase power diff defined by Realtek for regulatory
{
if (pHalData->pwrGroupCnt == 1)
chnlGroup = 0;
if (pHalData->pwrGroupCnt >= pHalData->PGMaxGroup)
{
if (Channel < 3) // Chanel 1-2
chnlGroup = 0;
else if (Channel < 6) // Channel 3-5
chnlGroup = 1;
else if (Channel <9) // Channel 6-8
chnlGroup = 2;
else if (Channel <12) // Channel 9-11
chnlGroup = 3;
else if (Channel <14) // Channel 12-13
chnlGroup = 4;
else if (Channel ==14) // Channel 14
chnlGroup = 5;
/*
if (Channel <= 3)
chnlGroup = 0;
else if (Channel >= 4 && Channel <= 9)
chnlGroup = 1;
else if (Channel > 9)
chnlGroup = 2;
if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_20)
chnlGroup++;
else
chnlGroup+=4;
*/
}
//RTPRINT(FPHY, PHY_TXPWR, ("MCSTxPowerLevelOriginalOffset[%d][%d] = 0x%x\n",
//chnlGroup, index, pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)]));
writeVal = pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)] +
((index<2)?powerBase0[rf]:powerBase1[rf]);
//RTPRINT(FPHY, PHY_TXPWR, ("Realtek regulatory, 20MHz, writeVal(%c) = 0x%x\n", ((rf==0)?'A':'B'), writeVal));
}
break;
case 2: // Better regulatory
// don't increase any power diff
writeVal = ((index<2)?powerBase0[rf]:powerBase1[rf]);
//RTPRINT(FPHY, PHY_TXPWR, ("Better regulatory, writeVal(%c) = 0x%x\n", ((rf==0)?'A':'B'), writeVal));
break;
case 3: // Customer defined power diff.
// increase power diff defined by customer.
chnlGroup = 0;
//RTPRINT(FPHY, PHY_TXPWR, ("MCSTxPowerLevelOriginalOffset[%d][%d] = 0x%x\n",
// chnlGroup, index, pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)]));
/*
if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_20_40)
{
RTPRINT(FPHY, PHY_TXPWR, ("customer's limit, 40MHz rf(%c) = 0x%x\n",
((rf==0)?'A':'B'), pHalData->PwrGroupHT40[rf][Channel-1]));
}
else
{
RTPRINT(FPHY, PHY_TXPWR, ("customer's limit, 20MHz rf(%c) = 0x%x\n",
((rf==0)?'A':'B'), pHalData->PwrGroupHT20[rf][Channel-1]));
}*/
if (index < 2)
pwr_diff = pHalData->TxPwrLegacyHtDiff[rf][Channel-1];
else if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_20)
pwr_diff = pHalData->TxPwrHt20Diff[rf][Channel-1];
//RTPRINT(FPHY, PHY_TXPWR, ("power diff rf(%c) = 0x%x\n", ((rf==0)?'A':'B'), pwr_diff));
if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_40)
customer_pwr_limit = pHalData->PwrGroupHT40[rf][Channel-1];
else
customer_pwr_limit = pHalData->PwrGroupHT20[rf][Channel-1];
//RTPRINT(FPHY, PHY_TXPWR, ("customer pwr limit rf(%c) = 0x%x\n", ((rf==0)?'A':'B'), customer_pwr_limit));
if (pwr_diff >= customer_pwr_limit)
pwr_diff = 0;
else
pwr_diff = customer_pwr_limit - pwr_diff;
for (i=0; i<4; i++)
{
pwr_diff_limit[i] = (u1Byte)((pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)]&(0x7f<<(i*8)))>>(i*8));
if (pwr_diff_limit[i] > pwr_diff)
pwr_diff_limit[i] = pwr_diff;
}
customer_limit = (pwr_diff_limit[3]<<24) | (pwr_diff_limit[2]<<16) |
(pwr_diff_limit[1]<<8) | (pwr_diff_limit[0]);
//RTPRINT(FPHY, PHY_TXPWR, ("Customer's limit rf(%c) = 0x%x\n", ((rf==0)?'A':'B'), customer_limit));
writeVal = customer_limit + ((index<2)?powerBase0[rf]:powerBase1[rf]);
//RTPRINT(FPHY, PHY_TXPWR, ("Customer, writeVal rf(%c)= 0x%x\n", ((rf==0)?'A':'B'), writeVal));
break;
default:
chnlGroup = 0;
writeVal = pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)] +
((index<2)?powerBase0[rf]:powerBase1[rf]);
//RTPRINT(FPHY, PHY_TXPWR, ("RTK better performance, writeVal rf(%c) = 0x%x\n", ((rf==0)?'A':'B'), writeVal));
break;
}
// 20100427 Joseph: Driver dynamic Tx power shall not affect Tx power. It shall be determined by power training mechanism.
// Currently, we cannot fully disable driver dynamic tx power mechanism because it is referenced by BT coexist mechanism.
// In the future, two mechanism shall be separated from each other and maintained independantly. Thanks for Lanhsin's reminder.
//92d do not need this
if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_Level1)
writeVal = 0x14141414;
else if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_Level2)
writeVal = 0x00000000;
// 20100628 Joseph: High power mode for BT-Coexist mechanism.
// This mechanism is only applied when Driver-Highpower-Mechanism is OFF.
if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_BT1)
{
//RTPRINT(FBT, BT_TRACE, ("Tx Power (-6)\n"));
writeVal = writeVal - 0x06060606;
}
else if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_BT2)
{
//RTPRINT(FBT, BT_TRACE, ("Tx Power (-0)\n"));
writeVal = writeVal ;
}
/*
if (pMgntInfo->bDisableTXPowerByRate)
{
// add for OID_RT_11N_TX_POWER_BY_RATE ,disable tx powre change by rate
writeVal = 0x2c2c2c2c;
}
*/
*(pOutWriteVal+rf) = writeVal;
}
}
static void writeOFDMPowerReg88E(
IN PADAPTER Adapter,
IN u8 index,
IN u32* pValue
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u16 RegOffset_A[6] = { rTxAGC_A_Rate18_06, rTxAGC_A_Rate54_24,
rTxAGC_A_Mcs03_Mcs00, rTxAGC_A_Mcs07_Mcs04,
rTxAGC_A_Mcs11_Mcs08, rTxAGC_A_Mcs15_Mcs12};
u16 RegOffset_B[6] = { rTxAGC_B_Rate18_06, rTxAGC_B_Rate54_24,
rTxAGC_B_Mcs03_Mcs00, rTxAGC_B_Mcs07_Mcs04,
rTxAGC_B_Mcs11_Mcs08, rTxAGC_B_Mcs15_Mcs12};
u8 i, rf, pwr_val[4];
u32 writeVal;
u16 RegOffset;
for (rf=0; rf<2; rf++)
{
writeVal = pValue[rf];
for (i=0; i<4; i++)
{
pwr_val[i] = (u8)((writeVal & (0x7f<<(i*8)))>>(i*8));
if (pwr_val[i] > RF6052_MAX_TX_PWR)
pwr_val[i] = RF6052_MAX_TX_PWR;
}
writeVal = (pwr_val[3]<<24) | (pwr_val[2]<<16) |(pwr_val[1]<<8) |pwr_val[0];
if (rf == 0)
RegOffset = RegOffset_A[index];
else
RegOffset = RegOffset_B[index];
PHY_SetBBReg(Adapter, RegOffset, bMaskDWord, writeVal);
//RTPRINT(FPHY, PHY_TXPWR, ("Set 0x%x = %08x\n", RegOffset, writeVal));
// 201005115 Joseph: Set Tx Power diff for Tx power training mechanism.
if (((pHalData->rf_type == RF_2T2R) &&
(RegOffset == rTxAGC_A_Mcs15_Mcs12 || RegOffset == rTxAGC_B_Mcs15_Mcs12))||
((pHalData->rf_type != RF_2T2R) &&
(RegOffset == rTxAGC_A_Mcs07_Mcs04 || RegOffset == rTxAGC_B_Mcs07_Mcs04)) )
{
writeVal = pwr_val[3];
if (RegOffset == rTxAGC_A_Mcs15_Mcs12 || RegOffset == rTxAGC_A_Mcs07_Mcs04)
RegOffset = 0xc90;
if (RegOffset == rTxAGC_B_Mcs15_Mcs12 || RegOffset == rTxAGC_B_Mcs07_Mcs04)
RegOffset = 0xc98;
for (i=0; i<3; i++)
{
if (i!=2)
writeVal = (writeVal>8)?(writeVal-8):0;
else
writeVal = (writeVal>6)?(writeVal-6):0;
rtw_write8(Adapter, (u32)(RegOffset+i), (u8)writeVal);
}
}
}
}
/*-----------------------------------------------------------------------------
* Function: PHY_RF6052SetOFDMTxPower
*
* Overview: For legacy and HY OFDM, we must read EEPROM TX power index for
* different channel and read original value in TX power register area from
* 0xe00. We increase offset and original value to be correct tx pwr.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/05/2008 MHC Simulate 8192 series method.
* 01/06/2009 MHC 1. Prevent Path B tx power overflow or underflow dure to
* A/B pwr difference or legacy/HT pwr diff.
* 2. We concern with path B legacy/HT OFDM difference.
* 01/22/2009 MHC Support new EPRO format from SD3.
*
*---------------------------------------------------------------------------*/
VOID
rtl8188e_PHY_RF6052SetOFDMTxPower(
IN PADAPTER Adapter,
IN u8* pPowerLevelOFDM,
IN u8* pPowerLevelBW20,
IN u8* pPowerLevelBW40,
IN u8 Channel)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 writeVal[2], powerBase0[2], powerBase1[2], pwrtrac_value;
u8 direction;
u8 index = 0;
//DBG_871X("PHY_RF6052SetOFDMTxPower, channel(%d)\n", Channel);
getPowerBase88E(Adapter, pPowerLevelOFDM,pPowerLevelBW20,pPowerLevelBW40, Channel, &powerBase0[0], &powerBase1[0]);
//
// 2012/04/23 MH According to power tracking value, we need to revise OFDM tx power.
// This is ued to fix unstable power tracking mode.
//
ODM_TxPwrTrackAdjust88E(&pHalData->odmpriv, 0, &direction, &pwrtrac_value);
for (index=0; index<6; index++)
{
getTxPowerWriteValByRegulatory88E(Adapter, Channel, index,
&powerBase0[0], &powerBase1[0], &writeVal[0]);
if (direction == 1)
{
writeVal[0] += pwrtrac_value;
writeVal[1] += pwrtrac_value;
}
else if (direction == 2)
{
writeVal[0] -= pwrtrac_value;
writeVal[1] -= pwrtrac_value;
}
writeOFDMPowerReg88E(Adapter, index, &writeVal[0]);
}
}
static VOID
phy_RF6052_Config_HardCode(
IN PADAPTER Adapter
)
{
// Set Default Bandwidth to 20M
//Adapter->HalFunc .SetBWModeHandler(Adapter, HT_CHANNEL_WIDTH_20);
// TODO: Set Default Channel to channel one for RTL8225
}
static int
phy_RF6052_Config_ParaFile(
IN PADAPTER Adapter
)
{
u32 u4RegValue;
u8 eRFPath;
BB_REGISTER_DEFINITION_T *pPhyReg;
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
static char sz88eRadioAFile[] = RTL8188E_PHY_RADIO_A;
static char sz88eRadioBFile[] = RTL8188E_PHY_RADIO_B;
char *pszRadioAFile, *pszRadioBFile;
pszRadioAFile = sz88eRadioAFile;
pszRadioBFile = sz88eRadioBFile;
//3//-----------------------------------------------------------------
//3// <2> Initialize RF
//3//-----------------------------------------------------------------
//for (eRFPath = RF_PATH_A; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
for (eRFPath = 0; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
{
pPhyReg = &pHalData->PHYRegDef[eRFPath];
/*----Store original RFENV control type----*/
switch (eRFPath)
{
case RF_PATH_A:
case RF_PATH_C:
u4RegValue = PHY_QueryBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV);
break;
case RF_PATH_B :
case RF_PATH_D:
u4RegValue = PHY_QueryBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV<<16);
break;
}
/*----Set RF_ENV enable----*/
PHY_SetBBReg(Adapter, pPhyReg->rfintfe, bRFSI_RFENV<<16, 0x1);
rtw_udelay_os(1);//PlatformStallExecution(1);
/*----Set RF_ENV output high----*/
PHY_SetBBReg(Adapter, pPhyReg->rfintfo, bRFSI_RFENV, 0x1);
rtw_udelay_os(1);//PlatformStallExecution(1);
/* Set bit number of Address and Data for RF register */
PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, b3WireAddressLength, 0x0); // Set 1 to 4 bits for 8255
rtw_udelay_os(1);//PlatformStallExecution(1);
PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, b3WireDataLength, 0x0); // Set 0 to 12 bits for 8255
rtw_udelay_os(1);//PlatformStallExecution(1);
/*----Initialize RF fom connfiguration file----*/
switch (eRFPath)
{
case RF_PATH_A:
#ifdef CONFIG_EMBEDDED_FWIMG
#ifdef CONFIG_PHY_SETTING_WITH_ODM
if (HAL_STATUS_FAILURE ==ODM_ConfigRFWithHeaderFile(&pHalData->odmpriv,(ODM_RF_RADIO_PATH_E)eRFPath, (ODM_RF_RADIO_PATH_E)eRFPath))
rtStatus= _FAIL;
#else
rtStatus= rtl8188e_PHY_ConfigRFWithHeaderFile(Adapter,(RF_RADIO_PATH_E)eRFPath);
#endif//#ifdef CONFIG_PHY_SETTING_WITH_ODM
#else
rtStatus = rtl8188e_PHY_ConfigRFWithParaFile(Adapter, pszRadioAFile, (RF_RADIO_PATH_E)eRFPath);
#endif//#ifdef CONFIG_EMBEDDED_FWIMG
break;
case RF_PATH_B:
#ifdef CONFIG_EMBEDDED_FWIMG
#ifdef CONFIG_PHY_SETTING_WITH_ODM
if (HAL_STATUS_FAILURE ==ODM_ConfigRFWithHeaderFile(&pHalData->odmpriv,(ODM_RF_RADIO_PATH_E)eRFPath, (ODM_RF_RADIO_PATH_E)eRFPath))
rtStatus= _FAIL;
#else
rtStatus = rtl8188e_PHY_ConfigRFWithHeaderFile(Adapter,(RF_RADIO_PATH_E)eRFPath);
#endif //#ifdef CONFIG_PHY_SETTING_WITH_ODM
#else
rtStatus =rtl8188e_PHY_ConfigRFWithParaFile(Adapter, pszRadioBFile, (RF_RADIO_PATH_E)eRFPath);
#endif
break;
case RF_PATH_C:
break;
case RF_PATH_D:
break;
}
/*----Restore RFENV control type----*/;
switch (eRFPath)
{
case RF_PATH_A:
case RF_PATH_C:
PHY_SetBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV, u4RegValue);
break;
case RF_PATH_B :
case RF_PATH_D:
PHY_SetBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV<<16, u4RegValue);
break;
}
if (rtStatus != _SUCCESS){
//RT_TRACE(COMP_FPGA, DBG_LOUD, ("phy_RF6052_Config_ParaFile():Radio[%d] Fail!!", eRFPath));
goto phy_RF6052_Config_ParaFile_Fail;
}
}
//RT_TRACE(COMP_INIT, DBG_LOUD, ("<---phy_RF6052_Config_ParaFile()\n"));
return rtStatus;
phy_RF6052_Config_ParaFile_Fail:
return rtStatus;
}
int
PHY_RF6052_Config8188E(
IN PADAPTER Adapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
//
// Initialize general global value
//
// TODO: Extend RF_PATH_C and RF_PATH_D in the future
if (pHalData->rf_type == RF_1T1R)
pHalData->NumTotalRFPath = 1;
else
pHalData->NumTotalRFPath = 2;
//
// Config BB and RF
//
rtStatus = phy_RF6052_Config_ParaFile(Adapter);
#if 0
switch ( Adapter->MgntInfo.bRegHwParaFile )
{
case 0:
phy_RF6052_Config_HardCode(Adapter);
break;
case 1:
rtStatus = phy_RF6052_Config_ParaFile(Adapter);
break;
case 2:
// Partial Modify.
phy_RF6052_Config_HardCode(Adapter);
phy_RF6052_Config_ParaFile(Adapter);
break;
default:
phy_RF6052_Config_HardCode(Adapter);
break;
}
#endif
return rtStatus;
}
//
// ==> RF shadow Operation API Code Section!!!
//
/*-----------------------------------------------------------------------------
* Function: PHY_RFShadowRead
* PHY_RFShadowWrite
* PHY_RFShadowCompare
* PHY_RFShadowRecorver
* PHY_RFShadowCompareAll
* PHY_RFShadowRecorverAll
* PHY_RFShadowCompareFlagSet
* PHY_RFShadowRecorverFlagSet
*
* Overview: When we set RF register, we must write shadow at first.
* When we are running, we must compare shadow abd locate error addr.
* Decide to recorver or not.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/20/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
u32
PHY_RFShadowRead(
IN PADAPTER Adapter,
IN RF_RADIO_PATH_E eRFPath,
IN u32 Offset)
{
return RF_Shadow[eRFPath][Offset].Value;
} /* PHY_RFShadowRead */
VOID
PHY_RFShadowWrite(
IN PADAPTER Adapter,
IN RF_RADIO_PATH_E eRFPath,
IN u32 Offset,
IN u32 Data)
{
RF_Shadow[eRFPath][Offset].Value = (Data & bRFRegOffsetMask);
RF_Shadow[eRFPath][Offset].Driver_Write = _TRUE;
} /* PHY_RFShadowWrite */
BOOLEAN
PHY_RFShadowCompare(
IN PADAPTER Adapter,
IN RF_RADIO_PATH_E eRFPath,
IN u32 Offset)
{
u32 reg;
// Check if we need to check the register
if (RF_Shadow[eRFPath][Offset].Compare == _TRUE)
{
reg = PHY_QueryRFReg(Adapter, eRFPath, Offset, bRFRegOffsetMask);
// Compare shadow and real rf register for 20bits!!
if (RF_Shadow[eRFPath][Offset].Value != reg)
{
// Locate error position.
RF_Shadow[eRFPath][Offset].ErrorOrNot = _TRUE;
//RT_TRACE(COMP_INIT, DBG_LOUD,
//("PHY_RFShadowCompare RF-%d Addr%02lx Err = %05lx\n",
//eRFPath, Offset, reg));
}
return RF_Shadow[eRFPath][Offset].ErrorOrNot ;
}
return _FALSE;
} /* PHY_RFShadowCompare */
VOID
PHY_RFShadowRecorver(
IN PADAPTER Adapter,
IN RF_RADIO_PATH_E eRFPath,
IN u32 Offset)
{
// Check if the address is error
if (RF_Shadow[eRFPath][Offset].ErrorOrNot == _TRUE)
{
// Check if we need to recorver the register.
if (RF_Shadow[eRFPath][Offset].Recorver == _TRUE)
{
PHY_SetRFReg(Adapter, eRFPath, Offset, bRFRegOffsetMask,
RF_Shadow[eRFPath][Offset].Value);
//RT_TRACE(COMP_INIT, DBG_LOUD,
//("PHY_RFShadowRecorver RF-%d Addr%02lx=%05lx",
//eRFPath, Offset, RF_Shadow[eRFPath][Offset].Value));
}
}
} /* PHY_RFShadowRecorver */
VOID
PHY_RFShadowCompareAll(
IN PADAPTER Adapter)
{
u32 eRFPath;
u32 Offset;
for (eRFPath = 0; eRFPath < RF6052_MAX_PATH; eRFPath++)
{
for (Offset = 0; Offset <= RF6052_MAX_REG; Offset++)
{
PHY_RFShadowCompare(Adapter, (RF_RADIO_PATH_E)eRFPath, Offset);
}
}
} /* PHY_RFShadowCompareAll */
VOID
PHY_RFShadowRecorverAll(
IN PADAPTER Adapter)
{
u32 eRFPath;
u32 Offset;
for (eRFPath = 0; eRFPath < RF6052_MAX_PATH; eRFPath++)
{
for (Offset = 0; Offset <= RF6052_MAX_REG; Offset++)
{
PHY_RFShadowRecorver(Adapter, (RF_RADIO_PATH_E)eRFPath, Offset);
}
}
} /* PHY_RFShadowRecorverAll */
VOID
PHY_RFShadowCompareFlagSet(
IN PADAPTER Adapter,
IN RF_RADIO_PATH_E eRFPath,
IN u32 Offset,
IN u8 Type)
{
// Set True or False!!!
RF_Shadow[eRFPath][Offset].Compare = Type;
} /* PHY_RFShadowCompareFlagSet */
VOID
PHY_RFShadowRecorverFlagSet(
IN PADAPTER Adapter,
IN RF_RADIO_PATH_E eRFPath,
IN u32 Offset,
IN u8 Type)
{
// Set True or False!!!
RF_Shadow[eRFPath][Offset].Recorver= Type;
} /* PHY_RFShadowRecorverFlagSet */
VOID
PHY_RFShadowCompareFlagSetAll(
IN PADAPTER Adapter)
{
u32 eRFPath;
u32 Offset;
for (eRFPath = 0; eRFPath < RF6052_MAX_PATH; eRFPath++)
{
for (Offset = 0; Offset <= RF6052_MAX_REG; Offset++)
{
// 2008/11/20 MH For S3S4 test, we only check reg 26/27 now!!!!
if (Offset != 0x26 && Offset != 0x27)
PHY_RFShadowCompareFlagSet(Adapter, (RF_RADIO_PATH_E)eRFPath, Offset, _FALSE);
else
PHY_RFShadowCompareFlagSet(Adapter, (RF_RADIO_PATH_E)eRFPath, Offset, _TRUE);
}
}
} /* PHY_RFShadowCompareFlagSetAll */
VOID
PHY_RFShadowRecorverFlagSetAll(
IN PADAPTER Adapter)
{
u32 eRFPath;
u32 Offset;
for (eRFPath = 0; eRFPath < RF6052_MAX_PATH; eRFPath++)
{
for (Offset = 0; Offset <= RF6052_MAX_REG; Offset++)
{
// 2008/11/20 MH For S3S4 test, we only check reg 26/27 now!!!!
if (Offset != 0x26 && Offset != 0x27)
PHY_RFShadowRecorverFlagSet(Adapter, (RF_RADIO_PATH_E)eRFPath, Offset, _FALSE);
else
PHY_RFShadowRecorverFlagSet(Adapter, (RF_RADIO_PATH_E)eRFPath, Offset, _TRUE);
}
}
} /* PHY_RFShadowCompareFlagSetAll */
VOID
PHY_RFShadowRefresh(
IN PADAPTER Adapter)
{
u32 eRFPath;
u32 Offset;
for (eRFPath = 0; eRFPath < RF6052_MAX_PATH; eRFPath++)
{
for (Offset = 0; Offset <= RF6052_MAX_REG; Offset++)
{
RF_Shadow[eRFPath][Offset].Value = 0;
RF_Shadow[eRFPath][Offset].Compare = _FALSE;
RF_Shadow[eRFPath][Offset].Recorver = _FALSE;
RF_Shadow[eRFPath][Offset].ErrorOrNot = _FALSE;
RF_Shadow[eRFPath][Offset].Driver_Write = _FALSE;
}
}
} /* PHY_RFShadowRead */
/* End of HalRf6052.c */