rtl8188eu/include/osdep_service.h

713 lines
20 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#ifndef __OSDEP_SERVICE_H_
#define __OSDEP_SERVICE_H_
#include <drv_conf.h>
#include <basic_types.h>
#define _FAIL 0
#define _SUCCESS 1
#define RTW_RX_HANDLED 2
#include <linux/version.h>
#include <linux/spinlock.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,5))
#include <linux/kref.h>
#endif
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/circ_buf.h>
#include <asm/uaccess.h>
#include <asm/byteorder.h>
#include <asm/atomic.h>
#include <asm/io.h>
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,26))
#include <asm/semaphore.h>
#else
#include <linux/semaphore.h>
#endif
#include <linux/sem.h>
#include <linux/sched.h>
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <net/iw_handler.h>
#include <linux/if_arp.h>
#include <linux/rtnetlink.h>
#include <linux/delay.h>
#include <linux/proc_fs.h> // Necessary because we use the proc fs
#include <linux/interrupt.h> // for struct tasklet_struct
#include <linux/ip.h>
#include <linux/kthread.h>
#ifdef CONFIG_IOCTL_CFG80211
#include <net/ieee80211_radiotap.h>
#include <net/cfg80211.h>
#endif //CONFIG_IOCTL_CFG80211
#ifdef CONFIG_TCP_CSUM_OFFLOAD_TX
#include <linux/in.h>
#include <linux/udp.h>
#endif
#include <linux/usb.h>
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,21))
#include <linux/usb_ch9.h>
#else
#include <linux/usb/ch9.h>
#endif
typedef struct urb * PURB;
#if (LINUX_VERSION_CODE>=KERNEL_VERSION(2,6,22))
#ifdef CONFIG_USB_SUSPEND
#define CONFIG_AUTOSUSPEND 1
#endif
#endif
typedef struct semaphore _sema;
typedef spinlock_t _lock;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37))
typedef struct mutex _mutex;
#else
typedef struct semaphore _mutex;
#endif
typedef struct timer_list _timer;
struct __queue {
struct list_head queue;
_lock lock;
};
typedef struct sk_buff _pkt;
typedef unsigned char _buffer;
typedef struct __queue _queue;
typedef struct list_head _list;
typedef int _OS_STATUS;
//typedef u32 _irqL;
typedef unsigned long _irqL;
typedef struct net_device * _nic_hdl;
typedef void* _thread_hdl_;
typedef int thread_return;
typedef void* thread_context;
#define thread_exit() complete_and_exit(NULL, 0)
typedef void timer_hdl_return;
typedef void* timer_hdl_context;
typedef struct work_struct _workitem;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24))
#define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22))
// Porting from linux kernel, for compatible with old kernel.
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
return skb->tail;
}
static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
skb->tail = skb->data;
}
static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
skb->tail = skb->data + offset;
}
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
return skb->end;
}
#endif
__inline static _list *get_next(_list *list)
{
return list->next;
}
__inline static _list *get_list_head(_queue *queue)
{
return (&(queue->queue));
}
#define LIST_CONTAINOR(ptr, type, member) \
((type *)((char *)(ptr)-(SIZE_T)(&((type *)0)->member)))
__inline static void _enter_critical(_lock *plock, _irqL *pirqL)
{
spin_lock_irqsave(plock, *pirqL);
}
__inline static void _exit_critical(_lock *plock, _irqL *pirqL)
{
spin_unlock_irqrestore(plock, *pirqL);
}
__inline static void _enter_critical_ex(_lock *plock, _irqL *pirqL)
{
spin_lock_irqsave(plock, *pirqL);
}
__inline static void _exit_critical_ex(_lock *plock, _irqL *pirqL)
{
spin_unlock_irqrestore(plock, *pirqL);
}
__inline static void _enter_critical_bh(_lock *plock, _irqL *pirqL)
{
spin_lock_bh(plock);
}
__inline static void _exit_critical_bh(_lock *plock, _irqL *pirqL)
{
spin_unlock_bh(plock);
}
__inline static int _enter_critical_mutex(_mutex *pmutex, _irqL *pirqL)
{
int ret = 0;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37))
ret = mutex_lock_interruptible(pmutex);
#else
ret = down_interruptible(pmutex);
#endif
return ret;
}
__inline static void _exit_critical_mutex(_mutex *pmutex, _irqL *pirqL)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37))
mutex_unlock(pmutex);
#else
up(pmutex);
#endif
}
__inline static void rtw_list_delete(_list *plist)
{
list_del_init(plist);
}
__inline static void _init_timer(_timer *ptimer,_nic_hdl nic_hdl,void *pfunc,void* cntx)
{
ptimer->function = pfunc;
ptimer->data = (unsigned long)cntx;
init_timer(ptimer);
}
__inline static void _set_timer(_timer *ptimer,u32 delay_time)
{
mod_timer(ptimer , (jiffies+(delay_time*HZ/1000)));
}
__inline static void _cancel_timer(_timer *ptimer,u8 *bcancelled)
{
del_timer_sync(ptimer);
*bcancelled= true;//true ==1; false==0
}
#ifdef PLATFORM_LINUX
#define RTW_TIMER_HDL_ARGS void *FunctionContext
#elif defined(PLATFORM_OS_CE) || defined(PLATFORM_WINDOWS)
#define RTW_TIMER_HDL_ARGS void * SystemSpecific1, void * FunctionContext, PVOID SystemSpecific2, PVOID SystemSpecific3
#endif
#define RTW_TIMER_HDL_NAME(name) rtw_##name##_timer_hdl
#define RTW_DECLARE_TIMER_HDL(name) void RTW_TIMER_HDL_NAME(name)(RTW_TIMER_HDL_ARGS)
__inline static void _init_workitem(_workitem *pwork, void *pfunc, void * cntx)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20))
INIT_WORK(pwork, pfunc);
#else
INIT_WORK(pwork, pfunc,pwork);
#endif
}
__inline static void _set_workitem(_workitem *pwork)
{
schedule_work(pwork);
}
__inline static void _cancel_workitem_sync(_workitem *pwork)
{
#if (LINUX_VERSION_CODE>=KERNEL_VERSION(2,6,22))
cancel_work_sync(pwork);
#else
flush_scheduled_work();
#endif
}
//
// Global Mutex: can only be used at PASSIVE level.
//
#define ACQUIRE_GLOBAL_MUTEX(_MutexCounter) \
{ \
while (atomic_inc_return((atomic_t *)&(_MutexCounter)) != 1)\
{ \
atomic_dec((atomic_t *)&(_MutexCounter)); \
msleep(10); \
} \
}
#define RELEASE_GLOBAL_MUTEX(_MutexCounter) \
{ \
atomic_dec((atomic_t *)&(_MutexCounter)); \
}
static inline int rtw_netif_queue_stopped(struct net_device *pnetdev)
{
#if (LINUX_VERSION_CODE>=KERNEL_VERSION(2,6,35))
return (netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 0)) &&
netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 1)) &&
netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 2)) &&
netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 3)) );
#else
return netif_queue_stopped(pnetdev);
#endif
}
static inline void rtw_netif_wake_queue(struct net_device *pnetdev)
{
#if (LINUX_VERSION_CODE>=KERNEL_VERSION(2,6,35))
netif_tx_wake_all_queues(pnetdev);
#else
netif_wake_queue(pnetdev);
#endif
}
static inline void rtw_netif_start_queue(struct net_device *pnetdev)
{
#if (LINUX_VERSION_CODE>=KERNEL_VERSION(2,6,35))
netif_tx_start_all_queues(pnetdev);
#else
netif_start_queue(pnetdev);
#endif
}
static inline void rtw_netif_stop_queue(struct net_device *pnetdev)
{
#if (LINUX_VERSION_CODE>=KERNEL_VERSION(2,6,35))
netif_tx_stop_all_queues(pnetdev);
#else
netif_stop_queue(pnetdev);
#endif
}
#ifndef BIT
#define BIT(x) ( 1 << (x))
#endif
#define BIT0 0x00000001
#define BIT1 0x00000002
#define BIT2 0x00000004
#define BIT3 0x00000008
#define BIT4 0x00000010
#define BIT5 0x00000020
#define BIT6 0x00000040
#define BIT7 0x00000080
#define BIT8 0x00000100
#define BIT9 0x00000200
#define BIT10 0x00000400
#define BIT11 0x00000800
#define BIT12 0x00001000
#define BIT13 0x00002000
#define BIT14 0x00004000
#define BIT15 0x00008000
#define BIT16 0x00010000
#define BIT17 0x00020000
#define BIT18 0x00040000
#define BIT19 0x00080000
#define BIT20 0x00100000
#define BIT21 0x00200000
#define BIT22 0x00400000
#define BIT23 0x00800000
#define BIT24 0x01000000
#define BIT25 0x02000000
#define BIT26 0x04000000
#define BIT27 0x08000000
#define BIT28 0x10000000
#define BIT29 0x20000000
#define BIT30 0x40000000
#define BIT31 0x80000000
#define BIT32 0x0100000000
#define BIT33 0x0200000000
#define BIT34 0x0400000000
#define BIT35 0x0800000000
#define BIT36 0x1000000000
extern int RTW_STATUS_CODE(int error_code);
#define CONFIG_USE_VMALLOC
//flags used for rtw_update_mem_stat()
enum {
MEM_STAT_VIR_ALLOC_SUCCESS,
MEM_STAT_VIR_ALLOC_FAIL,
MEM_STAT_VIR_FREE,
MEM_STAT_PHY_ALLOC_SUCCESS,
MEM_STAT_PHY_ALLOC_FAIL,
MEM_STAT_PHY_FREE,
MEM_STAT_TX, //used to distinguish TX/RX, asigned from caller
MEM_STAT_TX_ALLOC_SUCCESS,
MEM_STAT_TX_ALLOC_FAIL,
MEM_STAT_TX_FREE,
MEM_STAT_RX, //used to distinguish TX/RX, asigned from caller
MEM_STAT_RX_ALLOC_SUCCESS,
MEM_STAT_RX_ALLOC_FAIL,
MEM_STAT_RX_FREE
};
#ifdef DBG_MEM_ALLOC
void rtw_update_mem_stat(u8 flag, u32 sz);
void rtw_dump_mem_stat (void);
extern u8* dbg_rtw_vmalloc(u32 sz, const char *func, int line);
extern u8* dbg_rtw_zvmalloc(u32 sz, const char *func, int line);
extern void dbg_rtw_vmfree(u8 *pbuf, u32 sz, const char *func, int line);
extern u8* dbg_rtw_malloc(u32 sz, const char *func, int line);
extern u8* dbg_rtw_zmalloc(u32 sz, const char *func, int line);
extern void dbg_rtw_mfree(u8 *pbuf, u32 sz, const char *func, int line);
#ifdef CONFIG_USE_VMALLOC
#define rtw_vmalloc(sz) dbg_rtw_vmalloc((sz), __func__, __LINE__)
#define rtw_zvmalloc(sz) dbg_rtw_zvmalloc((sz), __func__, __LINE__)
#define rtw_vmfree(pbuf, sz) dbg_rtw_vmfree((pbuf), (sz), __func__, __LINE__)
#else //CONFIG_USE_VMALLOC
#define rtw_vmalloc(sz) dbg_rtw_malloc((sz), __func__, __LINE__)
#define rtw_zvmalloc(sz) dbg_rtw_zmalloc((sz), __func__, __LINE__)
#define rtw_vmfree(pbuf, sz) dbg_rtw_mfree((pbuf), (sz), __func__, __LINE__)
#endif //CONFIG_USE_VMALLOC
#define rtw_malloc(sz) dbg_rtw_malloc((sz), __func__, __LINE__)
#define rtw_zmalloc(sz) dbg_rtw_zmalloc((sz), __func__, __LINE__)
#define rtw_mfree(pbuf, sz) dbg_rtw_mfree((pbuf), (sz), __func__, __LINE__)
#else
#define rtw_update_mem_stat(flag, sz) do {} while (0)
extern u8* _rtw_vmalloc(u32 sz);
extern u8* _rtw_zvmalloc(u32 sz);
extern void _rtw_vmfree(u8 *pbuf, u32 sz);
extern u8* _rtw_zmalloc(u32 sz);
extern u8* _rtw_malloc(u32 sz);
extern void _rtw_mfree(u8 *pbuf, u32 sz);
#ifdef CONFIG_USE_VMALLOC
#define rtw_vmalloc(sz) _rtw_vmalloc((sz))
#define rtw_zvmalloc(sz) _rtw_zvmalloc((sz))
#define rtw_vmfree(pbuf, sz) _rtw_vmfree((pbuf), (sz))
#else //CONFIG_USE_VMALLOC
#define rtw_vmalloc(sz) _rtw_malloc((sz))
#define rtw_zvmalloc(sz) _rtw_zmalloc((sz))
#define rtw_vmfree(pbuf, sz) _rtw_mfree((pbuf), (sz))
#endif //CONFIG_USE_VMALLOC
#define rtw_malloc(sz) _rtw_malloc((sz))
#define rtw_zmalloc(sz) _rtw_zmalloc((sz))
#define rtw_mfree(pbuf, sz) _rtw_mfree((pbuf), (sz))
#endif
extern void* rtw_malloc2d(int h, int w, int size);
extern void rtw_mfree2d(void *pbuf, int h, int w, int size);
extern void _rtw_memcpy(void* dec, void* sour, u32 sz);
extern int _rtw_memcmp(void *dst, void *src, u32 sz);
extern void _rtw_memset(void *pbuf, int c, u32 sz);
extern void _rtw_init_listhead(_list *list);
extern u32 rtw_is_list_empty(_list *phead);
extern void rtw_list_insert_head(_list *plist, _list *phead);
extern void rtw_list_insert_tail(_list *plist, _list *phead);
extern void rtw_list_delete(_list *plist);
extern void _rtw_init_sema(_sema *sema, int init_val);
extern void _rtw_free_sema(_sema *sema);
extern void _rtw_up_sema(_sema *sema);
extern u32 _rtw_down_sema(_sema *sema);
extern void _rtw_mutex_init(_mutex *pmutex);
extern void _rtw_mutex_free(_mutex *pmutex);
extern void _rtw_spinlock_init(_lock *plock);
extern void _rtw_spinlock_free(_lock *plock);
extern void _rtw_init_queue(_queue *pqueue);
extern u32 _rtw_queue_empty(_queue *pqueue);
extern u32 rtw_end_of_queue_search(_list *queue, _list *pelement);
extern u32 rtw_get_current_time(void);
extern u32 rtw_systime_to_ms(u32 systime);
extern u32 rtw_ms_to_systime(u32 ms);
extern s32 rtw_get_passing_time_ms(u32 start);
extern s32 rtw_get_time_interval_ms(u32 start, u32 end);
extern void rtw_sleep_schedulable(int ms);
extern void rtw_msleep_os(int ms);
extern void rtw_usleep_os(int us);
extern u32 rtw_atoi(u8* s);
#ifdef DBG_DELAY_OS
#define rtw_mdelay_os(ms) _rtw_mdelay_os((ms), __func__, __LINE__)
#define rtw_udelay_os(ms) _rtw_udelay_os((ms), __func__, __LINE__)
extern void _rtw_mdelay_os(int ms, const char *func, const int line);
extern void _rtw_udelay_os(int us, const char *func, const int line);
#else
extern void rtw_mdelay_os(int ms);
extern void rtw_udelay_os(int us);
#endif
extern void rtw_yield_os(void);
__inline static unsigned char _cancel_timer_ex(_timer *ptimer)
{
return del_timer_sync(ptimer);
}
static __inline void thread_enter(char *name)
{
#ifdef daemonize
daemonize("%s", name);
#endif
allow_signal(SIGTERM);
}
__inline static void flush_signals_thread(void)
{
if (signal_pending (current))
flush_signals(current);
}
__inline static _OS_STATUS res_to_status(sint res)
{
return res;
}
#define _RND(sz, r) ((((sz)+((r)-1))/(r))*(r))
#define RND4(x) (((x >> 2) + (((x & 3) == 0) ? 0: 1)) << 2)
__inline static u32 _RND4(u32 sz)
{
u32 val;
val = ((sz >> 2) + ((sz & 3) ? 1: 0)) << 2;
return val;
}
__inline static u32 _RND8(u32 sz)
{
u32 val;
val = ((sz >> 3) + ((sz & 7) ? 1: 0)) << 3;
return val;
}
__inline static u32 _RND128(u32 sz)
{
u32 val;
val = ((sz >> 7) + ((sz & 127) ? 1: 0)) << 7;
return val;
}
__inline static u32 _RND256(u32 sz)
{
u32 val;
val = ((sz >> 8) + ((sz & 255) ? 1: 0)) << 8;
return val;
}
__inline static u32 _RND512(u32 sz)
{
u32 val;
val = ((sz >> 9) + ((sz & 511) ? 1: 0)) << 9;
return val;
}
__inline static u32 bitshift(u32 bitmask)
{
u32 i;
for (i = 0; i <= 31; i++)
if (((bitmask>>i) & 0x1) == 1) break;
return i;
}
#define STRUCT_PACKED __attribute__ ((packed))
// limitation of path length
#define PATH_LENGTH_MAX PATH_MAX
// Suspend lock prevent system from going suspend
#ifdef CONFIG_WAKELOCK
#include <linux/wakelock.h>
#elif defined(CONFIG_ANDROID_POWER)
#include <linux/android_power.h>
#endif
extern void rtw_suspend_lock_init(void);
extern void rtw_suspend_lock_uninit(void);
extern void rtw_lock_suspend(void);
extern void rtw_unlock_suspend(void);
#ifdef CONFIG_WOWLAN
extern void rtw_lock_suspend_timeout(long timeout);
#endif //CONFIG_WOWLAN
//Atomic integer operations
#define ATOMIC_T atomic_t
extern void ATOMIC_SET(ATOMIC_T *v, int i);
extern int ATOMIC_READ(ATOMIC_T *v);
extern void ATOMIC_ADD(ATOMIC_T *v, int i);
extern void ATOMIC_SUB(ATOMIC_T *v, int i);
extern void ATOMIC_INC(ATOMIC_T *v);
extern void ATOMIC_DEC(ATOMIC_T *v);
extern int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i);
extern int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i);
extern int ATOMIC_INC_RETURN(ATOMIC_T *v);
extern int ATOMIC_DEC_RETURN(ATOMIC_T *v);
//File operation APIs, just for linux now
extern int rtw_is_file_readable(char *path);
extern int rtw_retrive_from_file(char *path, u8 __user *buf, u32 sz);
extern int rtw_store_to_file(char *path, u8 __user *buf, u32 sz);
struct rtw_netdev_priv_indicator {
void *priv;
u32 sizeof_priv;
};
struct net_device *rtw_alloc_etherdev_with_old_priv(int sizeof_priv, void *old_priv);
extern struct net_device * rtw_alloc_etherdev(int sizeof_priv);
#define rtw_netdev_priv(netdev) ( ((struct rtw_netdev_priv_indicator *)netdev_priv(netdev))->priv )
extern void rtw_free_netdev(struct net_device * netdev);
#define NDEV_FMT "%s"
#define NDEV_ARG(ndev) ndev->name
#define ADPT_FMT "%s"
#define ADPT_ARG(adapter) adapter->pnetdev->name
#define FUNC_NDEV_FMT "%s(%s)"
#define FUNC_NDEV_ARG(ndev) __func__, ndev->name
#define FUNC_ADPT_FMT "%s(%s)"
#define FUNC_ADPT_ARG(adapter) __func__, adapter->pnetdev->name
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,27))
#define rtw_signal_process(pid, sig) kill_pid(find_vpid((pid)),(sig), 1)
#else //(LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,27))
#define rtw_signal_process(pid, sig) kill_proc((pid), (sig), 1)
#endif //(LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,27))
extern u64 rtw_modular64(u64 x, u64 y);
extern u64 rtw_division64(u64 x, u64 y);
/* Macros for handling unaligned memory accesses */
#define RTW_GET_BE16(a) ((u16) (((a)[0] << 8) | (a)[1]))
#define RTW_PUT_BE16(a, val) \
do { \
(a)[0] = ((u16) (val)) >> 8; \
(a)[1] = ((u16) (val)) & 0xff; \
} while (0)
#define RTW_GET_LE16(a) ((u16) (((a)[1] << 8) | (a)[0]))
#define RTW_PUT_LE16(a, val) \
do { \
(a)[1] = ((u16) (val)) >> 8; \
(a)[0] = ((u16) (val)) & 0xff; \
} while (0)
#define RTW_GET_BE24(a) ((((u32) (a)[0]) << 16) | (((u32) (a)[1]) << 8) | \
((u32) (a)[2]))
#define RTW_PUT_BE24(a, val) \
do { \
(a)[0] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[2] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_BE32(a) ((((u32) (a)[0]) << 24) | (((u32) (a)[1]) << 16) | \
(((u32) (a)[2]) << 8) | ((u32) (a)[3]))
#define RTW_PUT_BE32(a, val) \
do { \
(a)[0] = (u8) ((((u32) (val)) >> 24) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[2] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[3] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_LE32(a) ((((u32) (a)[3]) << 24) | (((u32) (a)[2]) << 16) | \
(((u32) (a)[1]) << 8) | ((u32) (a)[0]))
#define RTW_PUT_LE32(a, val) \
do { \
(a)[3] = (u8) ((((u32) (val)) >> 24) & 0xff); \
(a)[2] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[0] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_BE64(a) ((((u64) (a)[0]) << 56) | (((u64) (a)[1]) << 48) | \
(((u64) (a)[2]) << 40) | (((u64) (a)[3]) << 32) | \
(((u64) (a)[4]) << 24) | (((u64) (a)[5]) << 16) | \
(((u64) (a)[6]) << 8) | ((u64) (a)[7]))
#define RTW_PUT_BE64(a, val) \
do { \
(a)[0] = (u8) (((u64) (val)) >> 56); \
(a)[1] = (u8) (((u64) (val)) >> 48); \
(a)[2] = (u8) (((u64) (val)) >> 40); \
(a)[3] = (u8) (((u64) (val)) >> 32); \
(a)[4] = (u8) (((u64) (val)) >> 24); \
(a)[5] = (u8) (((u64) (val)) >> 16); \
(a)[6] = (u8) (((u64) (val)) >> 8); \
(a)[7] = (u8) (((u64) (val)) & 0xff); \
} while (0)
#define RTW_GET_LE64(a) ((((u64) (a)[7]) << 56) | (((u64) (a)[6]) << 48) | \
(((u64) (a)[5]) << 40) | (((u64) (a)[4]) << 32) | \
(((u64) (a)[3]) << 24) | (((u64) (a)[2]) << 16) | \
(((u64) (a)[1]) << 8) | ((u64) (a)[0]))
void rtw_buf_free(u8 **buf, u32 *buf_len);
void rtw_buf_update(u8 **buf, u32 *buf_len, u8 *src, u32 src_len);
struct rtw_cbuf {
u32 write;
u32 read;
u32 size;
void *bufs[0];
};
bool rtw_cbuf_full(struct rtw_cbuf *cbuf);
bool rtw_cbuf_empty(struct rtw_cbuf *cbuf);
bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf);
void *rtw_cbuf_pop(struct rtw_cbuf *cbuf);
struct rtw_cbuf *rtw_cbuf_alloc(u32 size);
void rtw_cbuf_free(struct rtw_cbuf *cbuf);
#endif