rtl8188eu/hal/rtl8188e_hal_init.c

4646 lines
127 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _HAL_INIT_C_
#include <drv_types.h>
#include <rtl8188e_hal.h>
#ifdef CONFIG_SFW_SUPPORTED
#include "hal8188e_s_fw.h"
#endif
#include "hal8188e_t_fw.h"
#if defined(CONFIG_IOL)
static void iol_mode_enable(PADAPTER padapter, u8 enable)
{
u8 reg_0xf0 = 0;
if (enable) {
/* Enable initial offload */
reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
/* RTW_INFO("%s reg_0xf0:0x%02x, write 0x%02x\n", __func__, reg_0xf0, reg_0xf0|SW_OFFLOAD_EN); */
rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 | SW_OFFLOAD_EN);
if (padapter->bFWReady == false) {
RTW_INFO("bFWReady == false call reset 8051...\n");
_8051Reset88E(padapter);
}
} else {
/* disable initial offload */
reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
/* RTW_INFO("%s reg_0xf0:0x%02x, write 0x%02x\n", __func__, reg_0xf0, reg_0xf0& ~SW_OFFLOAD_EN); */
rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN);
}
}
static s32 iol_execute(PADAPTER padapter, u8 control)
{
s32 status = _FAIL;
u8 reg_0x88 = 0, reg_1c7 = 0;
u32 start = 0, passing_time = 0;
u32 t1, t2;
control = control & 0x0f;
reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0);
/* RTW_INFO("%s reg_0x88:0x%02x, write 0x%02x\n", __func__, reg_0x88, reg_0x88|control); */
rtw_write8(padapter, REG_HMEBOX_E0, reg_0x88 | control);
t1 = start = rtw_get_current_time();
while (
/* (reg_1c7 = rtw_read8(padapter, 0x1c7) >1) && */
(reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0)) & control
&& (passing_time = rtw_get_passing_time_ms(start)) < 1000
) {
/* RTW_INFO("%s polling reg_0x88:0x%02x,reg_0x1c7:0x%02x\n", __func__, reg_0x88,rtw_read8(padapter, 0x1c7) ); */
/* rtw_udelay_os(100); */
}
reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0);
status = (reg_0x88 & control) ? _FAIL : _SUCCESS;
if (reg_0x88 & control << 4)
status = _FAIL;
t2 = rtw_get_current_time();
return status;
}
static s32 iol_InitLLTTable(
PADAPTER padapter,
u8 txpktbuf_bndy
)
{
s32 rst = _SUCCESS;
iol_mode_enable(padapter, 1);
/* RTW_INFO("%s txpktbuf_bndy:%u\n", __func__, txpktbuf_bndy); */
rtw_write8(padapter, REG_TDECTRL + 1, txpktbuf_bndy);
rst = iol_execute(padapter, CMD_INIT_LLT);
iol_mode_enable(padapter, 0);
return rst;
}
static void
efuse_phymap_to_logical(u8 *phymap, u16 _offset, u16 _size_byte, u8 *pbuf)
{
u8 *efuseTbl = NULL;
u8 rtemp8;
u16 eFuse_Addr = 0;
u8 offset, wren;
u16 i, j;
u16 **eFuseWord = NULL;
u16 efuse_utilized = 0;
u8 efuse_usage = 0;
u8 u1temp = 0;
efuseTbl = (u8 *)rtw_zmalloc(EFUSE_MAP_LEN_88E);
if (efuseTbl == NULL) {
RTW_INFO("%s: alloc efuseTbl fail!\n", __func__);
goto exit;
}
eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, 2);
if (eFuseWord == NULL) {
RTW_INFO("%s: alloc eFuseWord fail!\n", __func__);
goto exit;
}
/* 0. Refresh efuse init map as all oxFF. */
for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
eFuseWord[i][j] = 0xFFFF;
/* */
/* 1. Read the first byte to check if efuse is empty!!! */
/* */
/* */
rtemp8 = *(phymap + eFuse_Addr);
if (rtemp8 != 0xFF) {
efuse_utilized++;
eFuse_Addr++;
} else {
RTW_INFO("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, rtemp8);
goto exit;
}
/* */
/* 2. Read real efuse content. Filter PG header and every section data. */
/* */
while ((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8)); */
/* Check PG header for section num. */
if ((rtemp8 & 0x1F) == 0x0F) { /* extended header */
u1temp = ((rtemp8 & 0xE0) >> 5);
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0)); */
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x\n", u1temp)); */
rtemp8 = *(phymap + eFuse_Addr);
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8)); */
if ((rtemp8 & 0x0F) == 0x0F) {
eFuse_Addr++;
rtemp8 = *(phymap + eFuse_Addr);
if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
eFuse_Addr++;
continue;
} else {
offset = ((rtemp8 & 0xF0) >> 1) | u1temp;
wren = (rtemp8 & 0x0F);
eFuse_Addr++;
}
} else {
offset = ((rtemp8 >> 4) & 0x0f);
wren = (rtemp8 & 0x0f);
}
if (offset < EFUSE_MAX_SECTION_88E) {
/* Get word enable value from PG header */
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren)); */
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wren & 0x01)) {
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d\n", eFuse_Addr)); */
rtemp8 = *(phymap + eFuse_Addr);
eFuse_Addr++;
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8)); */
efuse_utilized++;
eFuseWord[offset][i] = (rtemp8 & 0xff);
if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
break;
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr)); */
rtemp8 = *(phymap + eFuse_Addr);
eFuse_Addr++;
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8)); */
efuse_utilized++;
eFuseWord[offset][i] |= (((u16)rtemp8 << 8) & 0xff00);
if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
break;
}
wren >>= 1;
}
}
/* Read next PG header */
rtemp8 = *(phymap + eFuse_Addr);
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8)); */
if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
efuse_utilized++;
eFuse_Addr++;
}
}
/* */
/* 3. Collect 16 sections and 4 word unit into Efuse map. */
/* */
for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) {
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
efuseTbl[(i * 8) + (j * 2)] = (eFuseWord[i][j] & 0xff);
efuseTbl[(i * 8) + ((j * 2) + 1)] = ((eFuseWord[i][j] >> 8) & 0xff);
}
}
/* */
/* 4. Copy from Efuse map to output pointer memory!!! */
/* */
for (i = 0; i < _size_byte; i++)
pbuf[i] = efuseTbl[_offset + i];
/* */
/* 5. Calculate Efuse utilization. */
/* */
efuse_usage = (u8)((efuse_utilized * 100) / EFUSE_REAL_CONTENT_LEN_88E);
/* rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_utilized); */
exit:
if (efuseTbl)
rtw_mfree(efuseTbl, EFUSE_MAP_LEN_88E);
if (eFuseWord)
rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
}
static void efuse_read_phymap_from_txpktbuf(
ADAPTER *adapter,
int bcnhead, /* beacon head, where FW store len(2-byte) and efuse physical map. */
u8 *content, /* buffer to store efuse physical map */
u16 *size /* for efuse content: the max byte to read. will update to byte read */
)
{
u16 dbg_addr = 0;
u32 start = 0, passing_time = 0;
u8 reg_0x143 = 0;
u8 reg_0x106 = 0;
u32 lo32 = 0, hi32 = 0;
u16 len = 0, count = 0;
int i = 0;
u16 limit = *size;
u8 *pos = content;
if (bcnhead < 0) /* if not valid */
bcnhead = rtw_read8(adapter, REG_TDECTRL + 1);
RTW_INFO("%s bcnhead:%d\n", __func__, bcnhead);
/* reg_0x106 = rtw_read8(adapter, REG_PKT_BUFF_ACCESS_CTRL); */
/* RTW_INFO("%s reg_0x106:0x%02x, write 0x%02x\n", __func__, reg_0x106, 0x69); */
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
/* RTW_INFO("%s reg_0x106:0x%02x\n", __func__, rtw_read8(adapter, 0x106)); */
dbg_addr = bcnhead * 128 / 8; /* 8-bytes addressing */
while (1) {
/* RTW_INFO("%s dbg_addr:0x%x\n", __func__, dbg_addr+i); */
rtw_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr + i);
/* RTW_INFO("%s write reg_0x143:0x00\n", __func__); */
rtw_write8(adapter, REG_TXPKTBUF_DBG, 0);
start = rtw_get_current_time();
while (!(reg_0x143 = rtw_read8(adapter, REG_TXPKTBUF_DBG)) /* dbg */
/* while(rtw_read8(adapter, REG_TXPKTBUF_DBG) & BIT0 */
&& (passing_time = rtw_get_passing_time_ms(start)) < 1000
) {
RTW_INFO("%s polling reg_0x143:0x%02x, reg_0x106:0x%02x\n", __func__, reg_0x143, rtw_read8(adapter, 0x106));
rtw_usleep_os(100);
}
lo32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L);
hi32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H);
if (i == 0) {
u8 lenc[2];
u16 lenbak, aaabak;
u16 aaa;
lenc[0] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L);
lenc[1] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L + 1);
aaabak = le16_to_cpup((__le16 *)lenc);
lenbak = le16_to_cpu(*((__le16 *)lenc));
aaa = le16_to_cpup((__le16 *)&lo32);
len = le16_to_cpu(*((__le16 *)&lo32));
limit = (len - 2 < limit) ? len - 2 : limit;
RTW_INFO("%s len:%u, lenbak:%u, aaa:%u, aaabak:%u\n", __func__, len, lenbak, aaa, aaabak);
memcpy(pos, ((u8 *)&lo32) + 2, (limit >= count + 2) ? 2 : limit - count);
count += (limit >= count + 2) ? 2 : limit - count;
pos = content + count;
} else {
memcpy(pos, ((u8 *)&lo32), (limit >= count + 4) ? 4 : limit - count);
count += (limit >= count + 4) ? 4 : limit - count;
pos = content + count;
}
if (limit > count && len - 2 > count) {
memcpy(pos, (u8 *)&hi32, (limit >= count + 4) ? 4 : limit - count);
count += (limit >= count + 4) ? 4 : limit - count;
pos = content + count;
}
if (limit <= count || len - 2 <= count)
break;
i++;
}
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS);
RTW_INFO("%s read count:%u\n", __func__, count);
*size = count;
}
static s32 iol_read_efuse(
PADAPTER padapter,
u8 txpktbuf_bndy,
u16 offset,
u16 size_byte,
u8 *logical_map
)
{
s32 status = _FAIL;
u8 reg_0x106 = 0;
u8 physical_map[512];
u16 size = 512;
int i;
rtw_write8(padapter, REG_TDECTRL + 1, txpktbuf_bndy);
memset(physical_map, 0xFF, 512);
rtw_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
status = iol_execute(padapter, CMD_READ_EFUSE_MAP);
if (status == _SUCCESS)
efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size);
efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map);
return status;
}
s32 rtl8188e_iol_efuse_patch(PADAPTER padapter)
{
s32 result = _SUCCESS;
if (rtw_IOL_applied(padapter)) {
iol_mode_enable(padapter, 1);
result = iol_execute(padapter, CMD_READ_EFUSE_MAP);
if (result == _SUCCESS)
result = iol_execute(padapter, CMD_EFUSE_PATCH);
iol_mode_enable(padapter, 0);
}
return result;
}
static s32 iol_ioconfig(
PADAPTER padapter,
u8 iocfg_bndy
)
{
s32 rst = _SUCCESS;
/* RTW_INFO("%s iocfg_bndy:%u\n", __func__, iocfg_bndy); */
rtw_write8(padapter, REG_TDECTRL + 1, iocfg_bndy);
rst = iol_execute(padapter, CMD_IOCONFIG);
return rst;
}
static int rtl8188e_IOL_exec_cmds_sync(ADAPTER *adapter, struct xmit_frame *xmit_frame, u32 max_wating_ms, u32 bndy_cnt)
{
u32 start_time = rtw_get_current_time();
u32 passing_time_ms;
u8 polling_ret, i;
int ret = _FAIL;
u32 t1, t2;
if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS)
goto exit;
{
struct pkt_attrib *pattrib = &xmit_frame->attrib;
if (rtw_usb_bulk_size_boundary(adapter, TXDESC_SIZE + pattrib->last_txcmdsz)) {
if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS)
goto exit;
}
}
/* rtw_IOL_cmd_buf_dump(adapter,xmit_frame->attrib.pktlen+TXDESC_OFFSET,xmit_frame->buf_addr); */
/* rtw_hal_mgnt_xmit(adapter, xmit_frame); */
/* rtw_dump_xframe_sync(adapter, xmit_frame); */
dump_mgntframe_and_wait(adapter, xmit_frame, max_wating_ms);
t1 = rtw_get_current_time();
iol_mode_enable(adapter, 1);
for (i = 0; i < bndy_cnt; i++) {
u8 page_no = 0;
page_no = i * 2 ;
ret = iol_ioconfig(adapter, page_no);
if (ret != _SUCCESS)
break;
}
iol_mode_enable(adapter, 0);
t2 = rtw_get_current_time();
exit:
/* restore BCN_HEAD */
rtw_write8(adapter, REG_TDECTRL + 1, 0);
return ret;
}
void rtw_IOL_cmd_tx_pkt_buf_dump(ADAPTER *Adapter, int data_len)
{
u32 fifo_data, reg_140;
u32 addr, rstatus, loop = 0;
u16 data_cnts = (data_len / 8) + 1;
u8 *pbuf = rtw_zvmalloc(data_len + 10);
RTW_INFO("###### %s ######\n", __func__);
rtw_write8(Adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
if (pbuf) {
for (addr = 0; addr < data_cnts; addr++) {
rtw_write32(Adapter, 0x140, addr);
rtw_usleep_os(2);
loop = 0;
do {
rstatus = (reg_140 = rtw_read32(Adapter, REG_PKTBUF_DBG_CTRL) & BIT24);
if (rstatus) {
fifo_data = rtw_read32(Adapter, REG_PKTBUF_DBG_DATA_L);
memcpy(pbuf + (addr * 8), &fifo_data , 4);
fifo_data = rtw_read32(Adapter, REG_PKTBUF_DBG_DATA_H);
memcpy(pbuf + (addr * 8 + 4), &fifo_data, 4);
}
rtw_usleep_os(2);
} while (!rstatus && (loop++ < 10));
}
rtw_IOL_cmd_buf_dump(Adapter, data_len, pbuf);
rtw_vmfree(pbuf, data_len + 10);
}
RTW_INFO("###### %s ######\n", __func__);
}
#endif /* defined(CONFIG_IOL) */
static void
_FWDownloadEnable_8188E(
PADAPTER padapter,
bool enable
)
{
u8 tmp;
if (enable) {
/* MCU firmware download enable. */
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01);
/* 8051 reset */
tmp = rtw_read8(padapter, REG_MCUFWDL + 2);
rtw_write8(padapter, REG_MCUFWDL + 2, tmp & 0xf7);
} else {
/* MCU firmware download disable. */
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp & 0xfe);
/* Reserved for fw extension. */
rtw_write8(padapter, REG_MCUFWDL + 1, 0x00);
}
}
#define MAX_REG_BOLCK_SIZE 196
static int
_BlockWrite(
PADAPTER padapter,
void * buffer,
u32 buffSize
)
{
int ret = _SUCCESS;
u32 blockSize_p1 = 4; /* (Default) Phase #1 : PCI muse use 4-byte write to download FW */
u32 blockSize_p2 = 8; /* Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
u32 blockSize_p3 = 1; /* Phase #3 : Use 1-byte, the remnant of FW image. */
u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
u32 remainSize_p1 = 0, remainSize_p2 = 0;
u8 *bufferPtr = (u8 *)buffer;
u32 i = 0, offset = 0;
blockSize_p1 = MAX_REG_BOLCK_SIZE;
/* 3 Phase #1 */
blockCount_p1 = buffSize / blockSize_p1;
remainSize_p1 = buffSize % blockSize_p1;
for (i = 0; i < blockCount_p1; i++) {
ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1));
if (ret == _FAIL)
goto exit;
}
/* 3 Phase #2 */
if (remainSize_p1) {
offset = blockCount_p1 * blockSize_p1;
blockCount_p2 = remainSize_p1 / blockSize_p2;
remainSize_p2 = remainSize_p1 % blockSize_p2;
for (i = 0; i < blockCount_p2; i++) {
ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + offset + i * blockSize_p2), blockSize_p2, (bufferPtr + offset + i * blockSize_p2));
if (ret == _FAIL)
goto exit;
}
}
/* 3 Phase #3 */
if (remainSize_p2) {
offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
blockCount_p3 = remainSize_p2 / blockSize_p3;
for (i = 0 ; i < blockCount_p3 ; i++) {
ret = rtw_write8(padapter, (FW_8188E_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
if (ret == _FAIL)
goto exit;
}
}
exit:
return ret;
}
static int
_PageWrite(
PADAPTER padapter,
u32 page,
void * buffer,
u32 size
)
{
u8 value8;
u8 u8Page = (u8)(page & 0x07) ;
value8 = (rtw_read8(padapter, REG_MCUFWDL + 2) & 0xF8) | u8Page ;
rtw_write8(padapter, REG_MCUFWDL + 2, value8);
return _BlockWrite(padapter, buffer, size);
}
static void
_FillDummy(
u8 *pFwBuf,
u32 *pFwLen
)
{
u32 FwLen = *pFwLen;
u8 remain = (u8)(FwLen % 4);
remain = (remain == 0) ? 0 : (4 - remain);
while (remain > 0) {
pFwBuf[FwLen] = 0;
FwLen++;
remain--;
}
*pFwLen = FwLen;
}
static int
_WriteFW(
PADAPTER padapter,
void * buffer,
u32 size
)
{
/* Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
int ret = _SUCCESS;
u32 pageNums, remainSize ;
u32 page, offset;
u8 *bufferPtr = (u8 *)buffer;
pageNums = size / MAX_DLFW_PAGE_SIZE ;
/* RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */
remainSize = size % MAX_DLFW_PAGE_SIZE;
for (page = 0; page < pageNums; page++) {
offset = page * MAX_DLFW_PAGE_SIZE;
ret = _PageWrite(padapter, page, bufferPtr + offset, MAX_DLFW_PAGE_SIZE);
if (ret == _FAIL)
goto exit;
}
if (remainSize) {
offset = pageNums * MAX_DLFW_PAGE_SIZE;
page = pageNums;
ret = _PageWrite(padapter, page, bufferPtr + offset, remainSize);
if (ret == _FAIL)
goto exit;
}
exit:
return ret;
}
static void _MCUIO_Reset88E(PADAPTER padapter, u8 bReset)
{
u8 u1bTmp;
if (bReset == true) {
u1bTmp = rtw_read8(padapter, REG_RSV_CTRL);
rtw_write8(padapter, REG_RSV_CTRL, (u1bTmp & (~BIT1)));
/* Reset MCU IO Wrapper- sugggest by SD1-Gimmy */
u1bTmp = rtw_read8(padapter, REG_RSV_CTRL + 1);
rtw_write8(padapter, REG_RSV_CTRL + 1, (u1bTmp & (~BIT3)));
} else {
u1bTmp = rtw_read8(padapter, REG_RSV_CTRL);
rtw_write8(padapter, REG_RSV_CTRL, (u1bTmp & (~BIT1)));
/* Enable MCU IO Wrapper */
u1bTmp = rtw_read8(padapter, REG_RSV_CTRL + 1);
rtw_write8(padapter, REG_RSV_CTRL + 1, u1bTmp | BIT3);
}
}
void _8051Reset88E(PADAPTER padapter)
{
u8 u1bTmp;
_MCUIO_Reset88E(padapter, true);
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
rtw_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp & (~BIT2));
_MCUIO_Reset88E(padapter, false);
rtw_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp | (BIT2));
RTW_INFO("=====> _8051Reset88E(): 8051 reset success .\n");
}
static s32 polling_fwdl_chksum(_adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
s32 ret = _FAIL;
u32 value32;
u32 start = rtw_get_current_time();
u32 cnt = 0;
/* polling CheckSum report */
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
if (value32 & FWDL_ChkSum_rpt || RTW_CANNOT_IO(adapter))
break;
rtw_yield_os();
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (!(value32 & FWDL_ChkSum_rpt))
goto exit;
if (rtw_fwdl_test_trigger_chksum_fail())
goto exit;
ret = _SUCCESS;
exit:
RTW_INFO("%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __func__
, (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32);
return ret;
}
static s32 _FWFreeToGo(_adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
s32 ret = _FAIL;
u32 value32;
u32 start = rtw_get_current_time();
u32 cnt = 0;
value32 = rtw_read32(adapter, REG_MCUFWDL);
value32 |= MCUFWDL_RDY;
value32 &= ~WINTINI_RDY;
rtw_write32(adapter, REG_MCUFWDL, value32);
_8051Reset88E(adapter);
/* polling for FW ready */
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
if (value32 & WINTINI_RDY || RTW_CANNOT_IO(adapter))
break;
rtw_yield_os();
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (!(value32 & WINTINI_RDY))
goto exit;
if (rtw_fwdl_test_trigger_wintint_rdy_fail())
goto exit;
ret = _SUCCESS;
exit:
RTW_INFO("%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __func__
, (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32);
return ret;
}
#define IS_FW_81xxC(padapter) (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
#ifdef CONFIG_FILE_FWIMG
extern char *rtw_fw_file_path;
extern char *rtw_fw_wow_file_path;
u8 FwBuffer8188E[FW_8188E_SIZE];
#endif /* CONFIG_FILE_FWIMG */
/*
* Description:
* Download 8192C firmware code.
*
* */
s32 rtl8188e_FirmwareDownload(PADAPTER padapter, bool bUsedWoWLANFw)
{
s32 rtStatus = _SUCCESS;
u8 write_fw = 0;
u32 fwdl_start_time;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PRT_FIRMWARE_8188E pFirmware = NULL;
PRT_8188E_FIRMWARE_HDR pFwHdr = NULL;
u8 *pFirmwareBuf;
u32 FirmwareLen, tmp_fw_len = 0;
#ifdef CONFIG_FILE_FWIMG
u8 *fwfilepath;
#endif /* CONFIG_FILE_FWIMG */
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
#endif
pFirmware = (PRT_FIRMWARE_8188E)rtw_zmalloc(sizeof(RT_FIRMWARE_8188E));
if (!pFirmware) {
rtStatus = _FAIL;
goto exit;
}
#ifdef CONFIG_FILE_FWIMG
#ifdef CONFIG_WOWLAN
if (bUsedWoWLANFw)
fwfilepath = rtw_fw_wow_file_path;
else
#endif /* CONFIG_WOWLAN */
{
fwfilepath = rtw_fw_file_path;
}
#endif /* CONFIG_FILE_FWIMG */
#ifdef CONFIG_FILE_FWIMG
if (rtw_is_file_readable(fwfilepath) == true) {
RTW_INFO("%s accquire FW from file:%s\n", __func__, fwfilepath);
pFirmware->eFWSource = FW_SOURCE_IMG_FILE;
} else
#endif /* CONFIG_FILE_FWIMG */
{
pFirmware->eFWSource = FW_SOURCE_HEADER_FILE;
}
switch (pFirmware->eFWSource) {
case FW_SOURCE_IMG_FILE:
#ifdef CONFIG_FILE_FWIMG
rtStatus = rtw_retrieve_from_file(fwfilepath, FwBuffer8188E, FW_8188E_SIZE);
pFirmware->ulFwLength = rtStatus >= 0 ? rtStatus : 0;
pFirmware->szFwBuffer = FwBuffer8188E;
#endif /* CONFIG_FILE_FWIMG */
break;
case FW_SOURCE_HEADER_FILE:
if (bUsedWoWLANFw) {
#ifdef CONFIG_WOWLAN
if (pwrpriv->wowlan_mode) {
#ifdef CONFIG_SFW_SUPPORTED
if (IS_VENDOR_8188E_I_CUT_SERIES(padapter)) {
pFirmware->szFwBuffer = array_mp_8188e_s_fw_wowlan;
pFirmware->ulFwLength = array_length_mp_8188e_s_fw_wowlan;
} else
#endif
{
pFirmware->szFwBuffer = array_mp_8188e_t_fw_wowlan;
pFirmware->ulFwLength = array_length_mp_8188e_t_fw_wowlan;
}
RTW_INFO("%s fw:%s, size: %d\n", __func__,
"WoWLAN", pFirmware->ulFwLength);
}
#endif /*CONFIG_WOWLAN*/
#ifdef CONFIG_AP_WOWLAN
if (pwrpriv->wowlan_ap_mode) {
pFirmware->szFwBuffer = array_mp_8188e_t_fw_ap;
pFirmware->ulFwLength = array_length_mp_8188e_t_fw_ap;
RTW_INFO("%s fw: %s, size: %d\n", __func__,
"AP_WoWLAN", pFirmware->ulFwLength);
}
#endif /*CONFIG_AP_WOWLAN*/
} else {
#ifdef CONFIG_SFW_SUPPORTED
if (IS_VENDOR_8188E_I_CUT_SERIES(padapter)) {
pFirmware->szFwBuffer = array_mp_8188e_s_fw_nic;
pFirmware->ulFwLength = array_length_mp_8188e_s_fw_nic;
} else
#endif
{
pFirmware->szFwBuffer = array_mp_8188e_t_fw_nic;
pFirmware->ulFwLength = array_length_mp_8188e_t_fw_nic;
}
RTW_INFO("%s fw:%s, size: %d\n", __func__, "NIC", pFirmware->ulFwLength);
}
break;
}
tmp_fw_len = IS_VENDOR_8188E_I_CUT_SERIES(padapter) ? FW_8188E_SIZE_2 : FW_8188E_SIZE;
if ((pFirmware->ulFwLength - 32) > tmp_fw_len) {
rtStatus = _FAIL;
RTW_ERR("Firmware size:%u exceed %u\n", pFirmware->ulFwLength, tmp_fw_len);
goto exit;
}
pFirmwareBuf = pFirmware->szFwBuffer;
FirmwareLen = pFirmware->ulFwLength;
/* To Check Fw header. Added by tynli. 2009.12.04. */
pFwHdr = (PRT_8188E_FIRMWARE_HDR)pFirmwareBuf;
pHalData->firmware_version = le16_to_cpu(pFwHdr->Version);
pHalData->firmware_sub_version = pFwHdr->Subversion;
pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature);
RTW_INFO("%s: fw_ver=%x fw_subver=%04x sig=0x%x, Month=%02x, Date=%02x, Hour=%02x, Minute=%02x\n",
__func__, pHalData->firmware_version,
pHalData->firmware_sub_version, pHalData->FirmwareSignature,
pFwHdr->Month, pFwHdr->Date, pFwHdr->Hour, pFwHdr->Minute);
if (IS_FW_HEADER_EXIST_88E(pFwHdr)) {
/* Shift 32 bytes for FW header */
pFirmwareBuf = pFirmwareBuf + 32;
FirmwareLen = FirmwareLen - 32;
}
/* Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
/* or it will cause download Fw fail. 2010.02.01. by tynli. */
if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
rtw_write8(padapter, REG_MCUFWDL, 0x00);
_8051Reset88E(padapter);
}
_FWDownloadEnable_8188E(padapter, true);
fwdl_start_time = rtw_get_current_time();
while (!RTW_CANNOT_IO(padapter)
&& (write_fw++ < 3 || rtw_get_passing_time_ms(fwdl_start_time) < 500)) {
/* reset FWDL chksum */
rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL) | FWDL_ChkSum_rpt);
rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
if (rtStatus != _SUCCESS)
continue;
rtStatus = polling_fwdl_chksum(padapter, 5, 50);
if (rtStatus == _SUCCESS)
break;
}
_FWDownloadEnable_8188E(padapter, false);
if (_SUCCESS != rtStatus)
goto fwdl_stat;
rtStatus = _FWFreeToGo(padapter, 10, 200);
if (_SUCCESS != rtStatus)
goto fwdl_stat;
fwdl_stat:
RTW_INFO("FWDL %s. write_fw:%u, %dms\n"
, (rtStatus == _SUCCESS) ? "success" : "fail"
, write_fw
, rtw_get_passing_time_ms(fwdl_start_time)
);
exit:
if (pFirmware)
rtw_mfree((u8 *)pFirmware, sizeof(RT_FIRMWARE_8188E));
rtl8188e_InitializeFirmwareVars(padapter);
return rtStatus;
}
void rtl8188e_InitializeFirmwareVars(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
/* Init Fw LPS related. */
pwrpriv->bFwCurrentInPSMode = false;
/* Init H2C cmd. */
rtw_write8(padapter, REG_HMETFR, 0x0f);
/* Init H2C counter. by tynli. 2009.12.09. */
pHalData->LastHMEBoxNum = 0;
}
/* ***********************************************************
* Efuse related code
* *********************************************************** */
enum {
VOLTAGE_V25 = 0x03,
LDOE25_SHIFT = 28 ,
};
static bool
hal_EfusePgPacketWrite2ByteHeader(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
bool bPseudoTest);
static bool
hal_EfusePgPacketWrite1ByteHeader(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
bool bPseudoTest);
static bool
hal_EfusePgPacketWriteData(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
bool bPseudoTest);
static void
hal_EfusePowerSwitch_RTL8188E(
PADAPTER pAdapter,
u8 bWrite,
u8 PwrState)
{
u8 tempval;
u16 tmpV16;
if (PwrState == true) {
rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON);
/* Reset: 0x0000h[28], default valid */
tmpV16 = rtw_read16(pAdapter, REG_SYS_FUNC_EN);
if (!(tmpV16 & FEN_ELDR)) {
tmpV16 |= FEN_ELDR ;
rtw_write16(pAdapter, REG_SYS_FUNC_EN, tmpV16);
}
/* Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
tmpV16 = rtw_read16(pAdapter, REG_SYS_CLKR);
if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) {
tmpV16 |= (LOADER_CLK_EN | ANA8M) ;
rtw_write16(pAdapter, REG_SYS_CLKR, tmpV16);
}
if (bWrite == true) {
/* Enable LDO 2.5V before read/write action */
tempval = rtw_read8(pAdapter, EFUSE_TEST + 3);
if (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) {
tempval &= 0x87;
tempval |= 0x38; /* 0x34[30:27] = 0b'0111, Use LDO 2.25V, Suggested by SD1 Pisa */
} else {
tempval &= 0x0F;
tempval |= (VOLTAGE_V25 << 4);
}
rtw_write8(pAdapter, EFUSE_TEST + 3, (tempval | 0x80));
}
} else {
rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
if (bWrite == true) {
/* Disable LDO 2.5V after read/write action */
tempval = rtw_read8(pAdapter, EFUSE_TEST + 3);
rtw_write8(pAdapter, EFUSE_TEST + 3, (tempval & 0x7F));
}
}
}
static void
rtl8188e_EfusePowerSwitch(
PADAPTER pAdapter,
u8 bWrite,
u8 PwrState)
{
hal_EfusePowerSwitch_RTL8188E(pAdapter, bWrite, PwrState);
}
static bool efuse_read_phymap(
PADAPTER Adapter,
u8 *pbuf, /* buffer to store efuse physical map */
u16 *size /* the max byte to read. will update to byte read */
)
{
u8 *pos = pbuf;
u16 limit = *size;
u16 addr = 0;
bool reach_end = false;
/* */
/* Refresh efuse init map as all 0xFF. */
/* */
memset(pbuf, 0xFF, limit);
/* */
/* Read physical efuse content. */
/* */
while (addr < limit) {
ReadEFuseByte(Adapter, addr, pos, false);
if (*pos != 0xFF) {
pos++;
addr++;
} else {
reach_end = true;
break;
}
}
*size = addr;
return reach_end;
}
static void
Hal_EfuseReadEFuse88E(
PADAPTER Adapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
bool bPseudoTest
)
{
/* u8 efuseTbl[EFUSE_MAP_LEN_88E]; */
u8 *efuseTbl = NULL;
u8 rtemp8[1];
u16 eFuse_Addr = 0;
u8 offset, wren;
u16 i, j;
/* u16 eFuseWord[EFUSE_MAX_SECTION_88E][EFUSE_MAX_WORD_UNIT]; */
u16 **eFuseWord = NULL;
u16 efuse_utilized = 0;
u8 efuse_usage = 0;
u8 u1temp = 0;
/* */
/* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
/* */
if ((_offset + _size_byte) > EFUSE_MAP_LEN_88E) {
/* total E-Fuse table is 512bytes */
RTW_INFO("Hal_EfuseReadEFuse88E(): Invalid offset(%#x) with read bytes(%#x)!!\n", _offset, _size_byte);
goto exit;
}
efuseTbl = (u8 *)rtw_zmalloc(EFUSE_MAP_LEN_88E);
if (efuseTbl == NULL) {
RTW_INFO("%s: alloc efuseTbl fail!\n", __func__);
goto exit;
}
eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, 2);
if (eFuseWord == NULL) {
RTW_INFO("%s: alloc eFuseWord fail!\n", __func__);
goto exit;
}
/* 0. Refresh efuse init map as all oxFF. */
for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
eFuseWord[i][j] = 0xFFFF;
/* */
/* 1. Read the first byte to check if efuse is empty!!! */
/* */
/* */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
if (*rtemp8 != 0xFF) {
efuse_utilized++;
/* RTW_INFO("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8); */
eFuse_Addr++;
} else {
RTW_INFO("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8);
goto exit;
}
/* */
/* 2. Read real efuse content. Filter PG header and every section data. */
/* */
while ((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8)); */
/* Check PG header for section num. */
if ((*rtemp8 & 0x1F) == 0x0F) { /* extended header */
u1temp = ((*rtemp8 & 0xE0) >> 5);
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0)); */
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x\n", u1temp)); */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8)); */
if ((*rtemp8 & 0x0F) == 0x0F) {
eFuse_Addr++;
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
eFuse_Addr++;
continue;
} else {
offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
wren = (*rtemp8 & 0x0F);
eFuse_Addr++;
}
} else {
offset = ((*rtemp8 >> 4) & 0x0f);
wren = (*rtemp8 & 0x0f);
}
if (offset < EFUSE_MAX_SECTION_88E) {
/* Get word enable value from PG header */
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren)); */
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wren & 0x01)) {
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d\n", eFuse_Addr)); */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
eFuse_Addr++;
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8)); */
efuse_utilized++;
eFuseWord[offset][i] = (*rtemp8 & 0xff);
if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
break;
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr)); */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
eFuse_Addr++;
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8)); */
efuse_utilized++;
eFuseWord[offset][i] |= (((u16)*rtemp8 << 8) & 0xff00);
if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
break;
}
wren >>= 1;
}
} else { /* deal with error offset,skip error data */
RTW_PRINT("invalid offset:0x%02x\n", offset);
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wren & 0x01)) {
eFuse_Addr++;
efuse_utilized++;
if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
break;
eFuse_Addr++;
efuse_utilized++;
if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
break;
}
}
}
/* Read next PG header */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8)); */
if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
efuse_utilized++;
eFuse_Addr++;
}
}
/* */
/* 3. Collect 16 sections and 4 word unit into Efuse map. */
/* */
for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) {
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
efuseTbl[(i * 8) + (j * 2)] = (eFuseWord[i][j] & 0xff);
efuseTbl[(i * 8) + ((j * 2) + 1)] = ((eFuseWord[i][j] >> 8) & 0xff);
}
}
/* */
/* 4. Copy from Efuse map to output pointer memory!!! */
/* */
for (i = 0; i < _size_byte; i++)
pbuf[i] = efuseTbl[_offset + i];
/* */
/* 5. Calculate Efuse utilization. */
/* */
efuse_usage = (u8)((eFuse_Addr * 100) / EFUSE_REAL_CONTENT_LEN_88E);
rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr);
exit:
if (efuseTbl)
rtw_mfree(efuseTbl, EFUSE_MAP_LEN_88E);
if (eFuseWord)
rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
}
static bool
Hal_EfuseSwitchToBank(
PADAPTER pAdapter,
u8 bank,
bool bPseudoTest
)
{
bool bRet = false;
u32 value32 = 0;
/* RTPRINT(FEEPROM, EFUSE_PG, ("Efuse switch bank to %d\n", bank)); */
if (bPseudoTest) {
fakeEfuseBank = bank;
bRet = true;
} else
bRet = true;
return bRet;
}
static void
ReadEFuseByIC(
PADAPTER Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
bool bPseudoTest
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
#ifdef DBG_IOL_READ_EFUSE_MAP
u8 logical_map[512];
#endif
#ifdef CONFIG_IOL_READ_EFUSE_MAP
if (!bPseudoTest) { /* && rtw_IOL_applied(Adapter)) */
int ret = _FAIL;
if (rtw_IOL_applied(Adapter)) {
rtw_hal_power_on(Adapter);
iol_mode_enable(Adapter, 1);
#ifdef DBG_IOL_READ_EFUSE_MAP
iol_read_efuse(Adapter, 0, _offset, _size_byte, logical_map);
#else
ret = iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf);
#endif
iol_mode_enable(Adapter, 0);
if (_SUCCESS == ret)
goto exit;
}
}
#endif
Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
exit:
#ifdef DBG_IOL_READ_EFUSE_MAP
if (!memcmp(logical_map, pHalData->efuse_eeprom_data, 0x130) == false) {
int i;
RTW_INFO("%s compare first 0x130 byte fail\n", __func__);
for (i = 0; i < 512; i++) {
if (i % 16 == 0)
RTW_INFO("0x%03x: ", i);
RTW_INFO("%02x ", logical_map[i]);
if (i % 16 == 15)
RTW_INFO("\n");
}
RTW_INFO("\n");
}
#endif
return;
}
static void
ReadEFuse_Pseudo(
PADAPTER Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
bool bPseudoTest
)
{
Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
}
static void
rtl8188e_ReadEFuse(
PADAPTER Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
bool bPseudoTest
)
{
if (bPseudoTest)
ReadEFuse_Pseudo(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
else
ReadEFuseByIC(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
}
/* Do not support BT */
static void
Hal_EFUSEGetEfuseDefinition88E(
PADAPTER pAdapter,
u8 efuseType,
u8 type,
void * pOut
)
{
switch (type) {
case TYPE_EFUSE_MAX_SECTION: {
u8 *pMax_section;
pMax_section = (u8 *)pOut;
*pMax_section = EFUSE_MAX_SECTION_88E;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
}
break;
case TYPE_EFUSE_MAP_LEN: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = (u16)EFUSE_MAP_LEN_88E;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK: {
u8 *pu1Tmp;
pu1Tmp = (u8 *)pOut;
*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E);
}
break;
default: {
u8 *pu1Tmp;
pu1Tmp = (u8 *)pOut;
*pu1Tmp = 0;
}
break;
}
}
static void
Hal_EFUSEGetEfuseDefinition_Pseudo88E(
PADAPTER pAdapter,
u8 efuseType,
u8 type,
void * pOut
)
{
switch (type) {
case TYPE_EFUSE_MAX_SECTION: {
u8 *pMax_section;
pMax_section = (u8 *)pOut;
*pMax_section = EFUSE_MAX_SECTION_88E;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
}
break;
case TYPE_EFUSE_MAP_LEN: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = (u16)EFUSE_MAP_LEN_88E;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK: {
u8 *pu1Tmp;
pu1Tmp = (u8 *)pOut;
*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E);
}
break;
default: {
u8 *pu1Tmp;
pu1Tmp = (u8 *)pOut;
*pu1Tmp = 0;
}
break;
}
}
static void
rtl8188e_EFUSE_GetEfuseDefinition(
PADAPTER pAdapter,
u8 efuseType,
u8 type,
void *pOut,
bool bPseudoTest
)
{
if (bPseudoTest)
Hal_EFUSEGetEfuseDefinition_Pseudo88E(pAdapter, efuseType, type, pOut);
else
Hal_EFUSEGetEfuseDefinition88E(pAdapter, efuseType, type, pOut);
}
static u8
Hal_EfuseWordEnableDataWrite(PADAPTER pAdapter,
u16 efuse_addr,
u8 word_en,
u8 *data,
bool bPseudoTest)
{
u16 tmpaddr = 0;
u16 start_addr = efuse_addr;
u8 badworden = 0x0F;
u8 tmpdata[8];
memset((void *)tmpdata, 0xff, PGPKT_DATA_SIZE);
if (!(word_en & BIT0)) {
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter, start_addr++, data[0], bPseudoTest);
efuse_OneByteWrite(pAdapter, start_addr++, data[1], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[0], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[1], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
badworden &= (~BIT0);
}
if (!(word_en & BIT1)) {
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter, start_addr++, data[2], bPseudoTest);
efuse_OneByteWrite(pAdapter, start_addr++, data[3], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, tmpaddr , &tmpdata[2], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[3], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
badworden &= (~BIT1);
}
if (!(word_en & BIT2)) {
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter, start_addr++, data[4], bPseudoTest);
efuse_OneByteWrite(pAdapter, start_addr++, data[5], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[4], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[5], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
badworden &= (~BIT2);
}
if (!(word_en & BIT3)) {
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter, start_addr++, data[6], bPseudoTest);
efuse_OneByteWrite(pAdapter, start_addr++, data[7], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[6], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[7], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
badworden &= (~BIT3);
}
return badworden;
}
static u8
Hal_EfuseWordEnableDataWrite_Pseudo(PADAPTER pAdapter,
u16 efuse_addr,
u8 word_en,
u8 *data,
bool bPseudoTest)
{
u8 ret = 0;
ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
return ret;
}
static u8
rtl8188e_Efuse_WordEnableDataWrite(PADAPTER pAdapter,
u16 efuse_addr,
u8 word_en,
u8 *data,
bool bPseudoTest)
{
u8 ret = 0;
if (bPseudoTest)
ret = Hal_EfuseWordEnableDataWrite_Pseudo(pAdapter, efuse_addr, word_en, data, bPseudoTest);
else
ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
return ret;
}
static u16
hal_EfuseGetCurrentSize_8188e(PADAPTER pAdapter,
bool bPseudoTest)
{
int bContinual = true;
u16 efuse_addr = 0;
u8 hoffset = 0, hworden = 0;
u8 efuse_data, word_cnts = 0;
if (bPseudoTest)
efuse_addr = (u16)(fakeEfuseUsedBytes);
else
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
/* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), start_efuse_addr = %d\n", efuse_addr)); */
while (bContinual &&
efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) &&
AVAILABLE_EFUSE_ADDR(efuse_addr)) {
if (efuse_data != 0xFF) {
if ((efuse_data & 0x1F) == 0x0F) { /* extended header */
hoffset = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest);
if ((efuse_data & 0x0F) == 0x0F) {
efuse_addr++;
continue;
} else {
hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
/* read next header */
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
} else
bContinual = false ;
}
if (bPseudoTest) {
fakeEfuseUsedBytes = efuse_addr;
/* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", fakeEfuseUsedBytes)); */
} else {
rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
/* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", efuse_addr)); */
}
return efuse_addr;
}
static u16
Hal_EfuseGetCurrentSize_Pseudo(PADAPTER pAdapter,
bool bPseudoTest)
{
u16 ret = 0;
ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest);
return ret;
}
static u16
rtl8188e_EfuseGetCurrentSize(
PADAPTER pAdapter,
u8 efuseType,
bool bPseudoTest)
{
u16 ret = 0;
if (bPseudoTest)
ret = Hal_EfuseGetCurrentSize_Pseudo(pAdapter, bPseudoTest);
else
ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest);
return ret;
}
static int
hal_EfusePgPacketRead_8188e(
PADAPTER pAdapter,
u8 offset,
u8 *data,
bool bPseudoTest)
{
u8 ReadState = PG_STATE_HEADER;
int bContinual = true;
int bDataEmpty = true ;
u8 efuse_data, word_cnts = 0;
u16 efuse_addr = 0;
u8 hoffset = 0, hworden = 0;
u8 tmpidx = 0;
u8 tmpdata[8];
u8 max_section = 0;
u8 tmp_header = 0;
EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, (void *)&max_section, bPseudoTest);
if (data == NULL)
return false;
if (offset > max_section)
return false;
memset((void *)data, 0xff, sizeof(u8) * PGPKT_DATA_SIZE);
memset((void *)tmpdata, 0xff, sizeof(u8) * PGPKT_DATA_SIZE);
/* */
/* <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
/* Skip dummy parts to prevent unexpected data read from Efuse. */
/* By pass right now. 2009.02.19. */
/* */
while (bContinual && AVAILABLE_EFUSE_ADDR(efuse_addr)) {
/* ------- Header Read ------------- */
if (ReadState & PG_STATE_HEADER) {
if (efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
if (EXT_HEADER(efuse_data)) {
tmp_header = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest);
if (!ALL_WORDS_DISABLED(efuse_data)) {
hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
} else {
RTW_INFO("Error, All words disabled\n");
efuse_addr++;
continue;
}
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
bDataEmpty = true ;
if (hoffset == offset) {
for (tmpidx = 0; tmpidx < word_cnts * 2 ; tmpidx++) {
if (efuse_OneByteRead(pAdapter, efuse_addr + 1 + tmpidx , &efuse_data, bPseudoTest)) {
tmpdata[tmpidx] = efuse_data;
if (efuse_data != 0xff)
bDataEmpty = false;
}
}
if (bDataEmpty == false)
ReadState = PG_STATE_DATA;
else { /* read next header */
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
ReadState = PG_STATE_HEADER;
}
} else { /* read next header */
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
ReadState = PG_STATE_HEADER;
}
} else
bContinual = false ;
}
/* ------- Data section Read ------------- */
else if (ReadState & PG_STATE_DATA) {
efuse_WordEnableDataRead(hworden, tmpdata, data);
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
ReadState = PG_STATE_HEADER;
}
}
if ((data[0] == 0xff) && (data[1] == 0xff) && (data[2] == 0xff) && (data[3] == 0xff) &&
(data[4] == 0xff) && (data[5] == 0xff) && (data[6] == 0xff) && (data[7] == 0xff))
return false;
else
return true;
}
static int
Hal_EfusePgPacketRead(PADAPTER pAdapter,
u8 offset,
u8 *data,
bool bPseudoTest)
{
int ret = 0;
ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest);
return ret;
}
static int
Hal_EfusePgPacketRead_Pseudo(PADAPTER pAdapter,
u8 offset,
u8 *data,
bool bPseudoTest)
{
int ret = 0;
ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest);
return ret;
}
static int
rtl8188e_Efuse_PgPacketRead(PADAPTER pAdapter,
u8 offset,
u8 *data,
bool bPseudoTest)
{
int ret = 0;
if (bPseudoTest)
ret = Hal_EfusePgPacketRead_Pseudo(pAdapter, offset, data, bPseudoTest);
else
ret = Hal_EfusePgPacketRead(pAdapter, offset, data, bPseudoTest);
return ret;
}
static bool
hal_EfuseFixHeaderProcess(
PADAPTER pAdapter,
u8 efuseType,
PPGPKT_STRUCT pFixPkt,
u16 *pAddr,
bool bPseudoTest
)
{
u8 originaldata[8], badworden = 0;
u16 efuse_addr = *pAddr;
u32 PgWriteSuccess = 0;
memset((void *)originaldata, 0xff, 8);
if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest)) {
/* check if data exist */
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pFixPkt->word_en, originaldata, bPseudoTest);
if (badworden != 0xf) { /* write fail */
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest);
if (!PgWriteSuccess)
return false;
else
efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
} else
efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1;
} else
efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1;
*pAddr = efuse_addr;
return true;
}
static bool
hal_EfusePgPacketWrite2ByteHeader(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
bool bPseudoTest)
{
bool bRet = false, bContinual = true;
u16 efuse_addr = *pAddr, efuse_max_available_len = 0;
u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0;
u8 repeatcnt = 0;
/* RTPRINT(FEEPROM, EFUSE_PG, ("Wirte 2byte header\n")); */
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (void *)&efuse_max_available_len, bPseudoTest);
while (efuse_addr < efuse_max_available_len) {
pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
/* RTPRINT(FEEPROM, EFUSE_PG, ("pg_header = 0x%x\n", pg_header)); */
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
while (tmp_header == 0xFF || pg_header != tmp_header) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
/* RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for pg_header!!\n")); */
return false;
}
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
}
/* to write ext_header */
if (tmp_header == pg_header) {
efuse_addr++;
pg_header_temp = pg_header;
pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
while (tmp_header == 0xFF || pg_header != tmp_header) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
/* RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for ext_header!!\n")); */
return false;
}
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
}
if ((tmp_header & 0x0F) == 0x0F) { /* word_en PG fail */
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
/* RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for word_en!!\n")); */
return false;
} else {
efuse_addr++;
continue;
}
} else if (pg_header != tmp_header) { /* offset PG fail */
PGPKT_STRUCT fixPkt;
/* RTPRINT(FEEPROM, EFUSE_PG, ("Error condition for offset PG fail, need to cover the existed data\n")); */
fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
fixPkt.word_en = tmp_header & 0x0F;
fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
return false;
} else {
bRet = true;
break;
}
} else if ((tmp_header & 0x1F) == 0x0F) { /* wrong extended header */
efuse_addr += 2;
continue;
}
}
*pAddr = efuse_addr;
return bRet;
}
static bool
hal_EfusePgPacketWrite1ByteHeader(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
bool bPseudoTest)
{
bool bRet = false;
u8 pg_header = 0, tmp_header = 0;
u16 efuse_addr = *pAddr;
u8 repeatcnt = 0;
/* RTPRINT(FEEPROM, EFUSE_PG, ("Wirte 1byte header\n")); */
pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
while (tmp_header == 0xFF || pg_header != tmp_header) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
return false;
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
}
if (pg_header == tmp_header)
bRet = true;
else {
PGPKT_STRUCT fixPkt;
/* RTPRINT(FEEPROM, EFUSE_PG, ("Error condition for fixed PG packet, need to cover the existed data\n")); */
fixPkt.offset = (tmp_header >> 4) & 0x0F;
fixPkt.word_en = tmp_header & 0x0F;
fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
return false;
}
*pAddr = efuse_addr;
return bRet;
}
static bool
hal_EfusePgPacketWriteData(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
bool bPseudoTest)
{
bool bRet = false;
u16 efuse_addr = *pAddr;
u8 badworden = 0;
u32 PgWriteSuccess = 0;
badworden = 0x0f;
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
if (badworden == 0x0F) {
/* write ok */
/* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgPacketWriteData ok!!\n")); */
return true;
} else {
/* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgPacketWriteData Fail!!\n")); */
/* reorganize other pg packet */
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
if (!PgWriteSuccess)
return false;
else
return true;
}
return bRet;
}
static bool
hal_EfusePgPacketWriteHeader(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
bool bPseudoTest)
{
bool bRet = false;
if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
bRet = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
else
bRet = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
return bRet;
}
static bool
wordEnMatched(
PPGPKT_STRUCT pTargetPkt,
PPGPKT_STRUCT pCurPkt,
u8 *pWden
)
{
u8 match_word_en = 0x0F; /* default all words are disabled */
u8 i;
/* check if the same words are enabled both target and current PG packet */
if (((pTargetPkt->word_en & BIT0) == 0) &&
((pCurPkt->word_en & BIT0) == 0)) {
match_word_en &= ~BIT0; /* enable word 0 */
}
if (((pTargetPkt->word_en & BIT1) == 0) &&
((pCurPkt->word_en & BIT1) == 0)) {
match_word_en &= ~BIT1; /* enable word 1 */
}
if (((pTargetPkt->word_en & BIT2) == 0) &&
((pCurPkt->word_en & BIT2) == 0)) {
match_word_en &= ~BIT2; /* enable word 2 */
}
if (((pTargetPkt->word_en & BIT3) == 0) &&
((pCurPkt->word_en & BIT3) == 0)) {
match_word_en &= ~BIT3; /* enable word 3 */
}
*pWden = match_word_en;
if (match_word_en != 0xf)
return true;
else
return false;
}
static bool
hal_EfuseCheckIfDatafollowed(
PADAPTER pAdapter,
u8 word_cnts,
u16 startAddr,
bool bPseudoTest
)
{
bool bRet = false;
u8 i, efuse_data;
for (i = 0; i < (word_cnts * 2) ; i++) {
if (efuse_OneByteRead(pAdapter, (startAddr + i) , &efuse_data, bPseudoTest) && (efuse_data != 0xFF))
bRet = true;
}
return bRet;
}
static bool
hal_EfusePartialWriteCheck(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
bool bPseudoTest
)
{
bool bRet = false;
u8 i, efuse_data = 0, cur_header = 0;
u8 new_wden = 0, matched_wden = 0, badworden = 0;
u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
PGPKT_STRUCT curPkt;
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (void *)&efuse_max_available_len, bPseudoTest);
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_REAL_CONTENT_LEN, (void *)&efuse_max, bPseudoTest);
if (efuseType == EFUSE_WIFI) {
if (bPseudoTest)
startAddr = (u16)(fakeEfuseUsedBytes % EFUSE_REAL_CONTENT_LEN);
else {
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
startAddr %= EFUSE_REAL_CONTENT_LEN;
}
} else {
if (bPseudoTest)
startAddr = (u16)(fakeBTEfuseUsedBytes % EFUSE_REAL_CONTENT_LEN);
else
startAddr = (u16)(BTEfuseUsedBytes % EFUSE_REAL_CONTENT_LEN);
}
/* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePartialWriteCheck(), startAddr=%d\n", startAddr)); */
while (1) {
if (startAddr >= efuse_max_available_len) {
bRet = false;
break;
}
if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
if (EXT_HEADER(efuse_data)) {
cur_header = efuse_data;
startAddr++;
efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data)) {
/* RTPRINT(FEEPROM, EFUSE_PG, ("Error condition, all words disabled")); */
bRet = false;
break;
} else {
curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
curPkt.word_en = efuse_data & 0x0F;
}
} else {
cur_header = efuse_data;
curPkt.offset = (cur_header >> 4) & 0x0F;
curPkt.word_en = cur_header & 0x0F;
}
curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
/* if same header is found but no data followed */
/* write some part of data followed by the header. */
if ((curPkt.offset == pTargetPkt->offset) &&
(!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr + 1, bPseudoTest)) &&
wordEnMatched(pTargetPkt, &curPkt, &matched_wden)) {
/* RTPRINT(FEEPROM, EFUSE_PG, ("Need to partial write data by the previous wrote header\n")); */
/* Here to write partial data */
badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr + 1, matched_wden, pTargetPkt->data, bPseudoTest);
if (badworden != 0x0F) {
u32 PgWriteSuccess = 0;
/* if write fail on some words, write these bad words again */
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
if (!PgWriteSuccess) {
bRet = false; /* write fail, return */
break;
}
}
/* partial write ok, update the target packet for later use */
for (i = 0; i < 4; i++) {
if ((matched_wden & (0x1 << i)) == 0) { /* this word has been written */
pTargetPkt->word_en |= (0x1 << i); /* disable the word */
}
}
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
/* read from next header */
startAddr = startAddr + (curPkt.word_cnts * 2) + 1;
} else {
/* not used header, 0xff */
*pAddr = startAddr;
/* RTPRINT(FEEPROM, EFUSE_PG, ("Started from unused header offset=%d\n", startAddr)); */
bRet = true;
break;
}
}
return bRet;
}
static bool
hal_EfusePgCheckAvailableAddr(
PADAPTER pAdapter,
u8 efuseType,
bool bPseudoTest
)
{
u16 efuse_max_available_len = 0;
/* Change to check TYPE_EFUSE_MAP_LEN ,beacuse 8188E raw 256,logic map over 256. */
EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&efuse_max_available_len, false);
/* EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (void *)&efuse_max_available_len, bPseudoTest); */
/* RTPRINT(FEEPROM, EFUSE_PG, ("efuse_max_available_len = %d\n", efuse_max_available_len)); */
if (Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= efuse_max_available_len) {
/* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgCheckAvailableAddr error!!\n")); */
return false;
}
return true;
}
static void
hal_EfuseConstructPGPkt(
u8 offset,
u8 word_en,
u8 *pData,
PPGPKT_STRUCT pTargetPkt
)
{
memset((void *)pTargetPkt->data, 0xFF, sizeof(u8) * 8);
pTargetPkt->offset = offset;
pTargetPkt->word_en = word_en;
efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
/* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseConstructPGPkt(), targetPkt, offset=%d, word_en=0x%x, word_cnts=%d\n", pTargetPkt->offset, pTargetPkt->word_en, pTargetPkt->word_cnts)); */
}
static bool
hal_EfusePgPacketWrite_BT(
PADAPTER pAdapter,
u8 offset,
u8 word_en,
u8 *pData,
bool bPseudoTest
)
{
PGPKT_STRUCT targetPkt;
u16 startAddr = 0;
u8 efuseType = EFUSE_BT;
if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest))
return false;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
return true;
}
static bool
hal_EfusePgPacketWrite_8188e(
PADAPTER pAdapter,
u8 offset,
u8 word_en,
u8 *pData,
bool bPseudoTest
)
{
PGPKT_STRUCT targetPkt;
u16 startAddr = 0;
u8 efuseType = EFUSE_WIFI;
if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest))
return false;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
return true;
}
static int
Hal_EfusePgPacketWrite_Pseudo(PADAPTER pAdapter,
u8 offset,
u8 word_en,
u8 *data,
bool bPseudoTest)
{
int ret;
ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest);
return ret;
}
static int
Hal_EfusePgPacketWrite(PADAPTER pAdapter,
u8 offset,
u8 word_en,
u8 *data,
bool bPseudoTest)
{
int ret = 0;
ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest);
return ret;
}
static int
rtl8188e_Efuse_PgPacketWrite(PADAPTER pAdapter,
u8 offset,
u8 word_en,
u8 *data,
bool bPseudoTest)
{
int ret;
if (bPseudoTest)
ret = Hal_EfusePgPacketWrite_Pseudo(pAdapter, offset, word_en, data, bPseudoTest);
else
ret = Hal_EfusePgPacketWrite(pAdapter, offset, word_en, data, bPseudoTest);
return ret;
}
static void read_chip_version_8188e(PADAPTER padapter)
{
u32 value32;
HAL_DATA_TYPE *pHalData;
pHalData = GET_HAL_DATA(padapter);
value32 = rtw_read32(padapter, REG_SYS_CFG);
pHalData->version_id.ICType = CHIP_8188E;
pHalData->version_id.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
pHalData->version_id.RFType = RF_TYPE_1T1R;
pHalData->version_id.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
pHalData->version_id.CUTVersion = (value32 & CHIP_VER_RTL_MASK) >> CHIP_VER_RTL_SHIFT; /* IC version (CUT) */
/* For regulator mode. by tynli. 2011.01.14 */
pHalData->RegulatorMode = ((value32 & TRP_BT_EN) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
pHalData->version_id.ROMVer = 0; /* ROM code version. */
pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
rtw_hal_config_rftype(padapter);
dump_chip_info(pHalData->version_id);
}
void rtl8188e_start_thread(_adapter *padapter)
{
}
void rtl8188e_stop_thread(_adapter *padapter)
{
}
static void hal_notch_filter_8188e(_adapter *adapter, bool enable)
{
if (enable) {
RTW_INFO("Enable notch filter\n");
rtw_write8(adapter, rOFDM0_RxDSP + 1, rtw_read8(adapter, rOFDM0_RxDSP + 1) | BIT1);
} else {
RTW_INFO("Disable notch filter\n");
rtw_write8(adapter, rOFDM0_RxDSP + 1, rtw_read8(adapter, rOFDM0_RxDSP + 1) & ~BIT1);
}
}
static void update_ra_mask_8188e(_adapter *padapter, struct sta_info *psta, struct macid_cfg *h2c_macid_cfg)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(padapter);
if (hal_data->fw_ractrl == true) {
u8 arg[4] = {0};
arg[0] = h2c_macid_cfg->mac_id;/* MACID */
arg[1] = h2c_macid_cfg->rate_id;
arg[2] = (h2c_macid_cfg->ignore_bw << 4) | h2c_macid_cfg->short_gi;
arg[3] = psta->init_rate;
rtl8188e_set_raid_cmd(padapter, h2c_macid_cfg->ra_mask, arg, h2c_macid_cfg->bandwidth);
} else {
#if (RATE_ADAPTIVE_SUPPORT == 1)
odm_ra_update_rate_info_8188e(
&(hal_data->odmpriv),
h2c_macid_cfg->mac_id,
h2c_macid_cfg->rate_id,
h2c_macid_cfg->ra_mask,
h2c_macid_cfg->short_gi
);
#endif
}
}
void init_hal_spec_8188e(_adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
hal_spec->ic_name = "rtl8188e";
hal_spec->macid_num = 64;
hal_spec->sec_cam_ent_num = 32;
hal_spec->sec_cap = 0;
hal_spec->rfpath_num_2g = 1;
hal_spec->rfpath_num_5g = 0;
hal_spec->max_tx_cnt = 1;
hal_spec->tx_nss_num = 1;
hal_spec->rx_nss_num = 1;
hal_spec->band_cap = BAND_CAP_2G;
hal_spec->bw_cap = BW_CAP_20M | BW_CAP_40M;
hal_spec->port_num = 2;
hal_spec->proto_cap = PROTO_CAP_11B | PROTO_CAP_11G | PROTO_CAP_11N;
hal_spec->wl_func = 0
| WL_FUNC_P2P
| WL_FUNC_MIRACAST
| WL_FUNC_TDLS
;
}
#ifdef CONFIG_RFKILL_POLL
bool rtl8188e_gpio_radio_on_off_check(_adapter *adapter, u8 *valid)
{
u32 tmp32;
bool ret;
*valid = 0;
return false; /* unblock */
}
#endif
void rtl8188e_init_default_value(_adapter *adapter)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
adapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
}
void rtl8188e_set_hal_ops(struct hal_ops *pHalFunc)
{
pHalFunc->dm_init = &rtl8188e_init_dm_priv;
pHalFunc->dm_deinit = &rtl8188e_deinit_dm_priv;
pHalFunc->read_chip_version = read_chip_version_8188e;
pHalFunc->update_ra_mask_handler = update_ra_mask_8188e;
pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8188E;
pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8188E;
pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8188E;
pHalFunc->get_tx_power_index_handler = &PHY_GetTxPowerIndex_8188E;
pHalFunc->hal_dm_watchdog = &rtl8188e_HalDmWatchDog;
pHalFunc->run_thread = &rtl8188e_start_thread;
pHalFunc->cancel_thread = &rtl8188e_stop_thread;
pHalFunc->read_bbreg = &PHY_QueryBBReg8188E;
pHalFunc->write_bbreg = &PHY_SetBBReg8188E;
pHalFunc->read_rfreg = &PHY_QueryRFReg8188E;
pHalFunc->write_rfreg = &PHY_SetRFReg8188E;
/* Efuse related function */
pHalFunc->EfusePowerSwitch = &rtl8188e_EfusePowerSwitch;
pHalFunc->ReadEFuse = &rtl8188e_ReadEFuse;
pHalFunc->EFUSEGetEfuseDefinition = &rtl8188e_EFUSE_GetEfuseDefinition;
pHalFunc->EfuseGetCurrentSize = &rtl8188e_EfuseGetCurrentSize;
pHalFunc->Efuse_PgPacketRead = &rtl8188e_Efuse_PgPacketRead;
pHalFunc->Efuse_PgPacketWrite = &rtl8188e_Efuse_PgPacketWrite;
pHalFunc->Efuse_WordEnableDataWrite = &rtl8188e_Efuse_WordEnableDataWrite;
#ifdef DBG_CONFIG_ERROR_DETECT
pHalFunc->sreset_init_value = &sreset_init_value;
pHalFunc->sreset_reset_value = &sreset_reset_value;
pHalFunc->silentreset = &sreset_reset;
pHalFunc->sreset_xmit_status_check = &rtl8188e_sreset_xmit_status_check;
pHalFunc->sreset_linked_status_check = &rtl8188e_sreset_linked_status_check;
pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status;
pHalFunc->sreset_inprogress = &sreset_inprogress;
#endif /* DBG_CONFIG_ERROR_DETECT */
pHalFunc->GetHalODMVarHandler = GetHalODMVar;
pHalFunc->SetHalODMVarHandler = SetHalODMVar;
#ifdef CONFIG_IOL
pHalFunc->IOL_exec_cmds_sync = &rtl8188e_IOL_exec_cmds_sync;
#endif
pHalFunc->hal_notch_filter = &hal_notch_filter_8188e;
pHalFunc->fill_h2c_cmd = &FillH2CCmd_88E;
pHalFunc->fill_fake_txdesc = &rtl8188e_fill_fake_txdesc;
pHalFunc->fw_dl = &rtl8188e_FirmwareDownload;
pHalFunc->hal_get_tx_buff_rsvd_page_num = &GetTxBufferRsvdPageNum8188E;
#ifdef CONFIG_GPIO_API
pHalFunc->hal_gpio_func_check = &rtl8188e_GpioFuncCheck;
#endif
#ifdef CONFIG_RFKILL_POLL
pHalFunc->hal_radio_onoff_check = rtl8188e_gpio_radio_on_off_check;
#endif
}
u8 GetEEPROMSize8188E(PADAPTER padapter)
{
u8 size = 0;
u32 cr;
cr = rtw_read16(padapter, REG_9346CR);
/* 6: EEPROM used is 93C46, 4: boot from E-Fuse. */
size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
RTW_INFO("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
return size;
}
/* -------------------------------------------------------------------------
*
* LLT R/W/Init function
*
* ------------------------------------------------------------------------- */
static s32 _LLTWrite(PADAPTER padapter, u32 address, u32 data)
{
s32 status = _SUCCESS;
s8 count = POLLING_LLT_THRESHOLD;
u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
rtw_write32(padapter, REG_LLT_INIT, value);
/* polling */
do {
value = rtw_read32(padapter, REG_LLT_INIT);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
break;
} while (--count);
if (count <= 0) {
RTW_INFO("Failed to polling write LLT done at address %d!\n", address);
status = _FAIL;
}
return status;
}
static u8 _LLTRead(PADAPTER padapter, u32 address)
{
s32 count = POLLING_LLT_THRESHOLD;
u32 value = _LLT_INIT_ADDR(address) | _LLT_OP(_LLT_READ_ACCESS);
u16 LLTReg = REG_LLT_INIT;
rtw_write32(padapter, LLTReg, value);
/* polling and get value */
do {
value = rtw_read32(padapter, LLTReg);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
return (u8)value;
} while (--count);
return 0xFF;
}
s32 InitLLTTable(PADAPTER padapter, u8 txpktbuf_bndy)
{
s32 status = _FAIL;
u32 i;
u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER_8188E(padapter);/* 176, 22k */
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
#if defined(CONFIG_IOL_LLT)
if (rtw_IOL_applied(padapter))
status = iol_InitLLTTable(padapter, txpktbuf_bndy);
else
#endif
{
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
status = _LLTWrite(padapter, i, i + 1);
if (_SUCCESS != status)
return status;
}
/* end of list */
status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF);
if (_SUCCESS != status)
return status;
/* Make the other pages as ring buffer */
/* This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */
/* Otherwise used as local loopback buffer. */
for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
status = _LLTWrite(padapter, i, (i + 1));
if (_SUCCESS != status)
return status;
}
/* Let last entry point to the start entry of ring buffer */
status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
if (_SUCCESS != status)
return status;
}
return status;
}
void
Hal_InitPGData88E(PADAPTER padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u32 i;
u16 value16;
if (false == pHalData->bautoload_fail_flag) {
/* autoload OK. */
if (is_boot_from_eeprom(padapter)) {
/* Read all Content from EEPROM or EFUSE. */
for (i = 0; i < HWSET_MAX_SIZE; i += 2) {
/* value16 = EF2Byte(ReadEEprom(pAdapter, (u16) (i>>1)));
* *((u16*)(&PROMContent[i])) = value16; */
}
} else {
/* Read EFUSE real map to shadow. */
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
}
} else {
/* autoload fail */
/* pHalData->AutoloadFailFlag = true; */
/* update to default value 0xFF */
if (!is_boot_from_eeprom(padapter))
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
}
#ifdef CONFIG_EFUSE_CONFIG_FILE
if (check_phy_efuse_tx_power_info_valid(padapter) == false) {
if (Hal_readPGDataFromConfigFile(padapter) != _SUCCESS)
RTW_ERR("invalid phy efuse and read from file fail, will use driver default!!\n");
}
#endif
}
void
Hal_EfuseParseIDCode88E(
PADAPTER padapter,
u8 *hwinfo
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u16 EEPROMId;
/* Checl 0x8129 again for making sure autoload status!! */
EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
if (EEPROMId != RTL_EEPROM_ID) {
RTW_INFO("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
pHalData->bautoload_fail_flag = true;
} else
pHalData->bautoload_fail_flag = false;
RTW_INFO("EEPROM ID=0x%04x\n", EEPROMId);
}
void Hal_ReadPowerSavingMode88E(
PADAPTER padapter,
u8 *hwinfo,
bool AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
u8 tmpvalue;
if (AutoLoadFail) {
pwrctl->bHWPowerdown = false;
pwrctl->bSupportRemoteWakeup = false;
} else {
/* hw power down mode selection , 0:rf-off / 1:power down */
if (padapter->registrypriv.hwpdn_mode == 2)
pwrctl->bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_88E] & BIT4);
else
pwrctl->bHWPowerdown = padapter->registrypriv.hwpdn_mode;
/* decide hw if support remote wakeup function */
/* if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume */
pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1) ? true : false;
RTW_INFO("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) ,bSupportRemoteWakeup(%x)\n", __func__,
pwrctl->bHWPwrPindetect, pwrctl->bHWPowerdown, pwrctl->bSupportRemoteWakeup);
RTW_INFO("### PS params=> power_mgnt(%x),usbss_enable(%x) ###\n", padapter->registrypriv.power_mgnt, padapter->registrypriv.usbss_enable);
}
}
void
Hal_ReadTxPowerInfo88E(
PADAPTER padapter,
u8 *PROMContent,
bool AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
TxPowerInfo24G pwrInfo24G;
hal_load_txpwr_info(padapter, &pwrInfo24G, NULL, PROMContent);
/* 2010/10/19 MH Add Regulator recognize for EU. */
if (!AutoLoadFail) {
struct registry_priv *registry_par = &padapter->registrypriv;
if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION & 0x7); /* bit0~2 */
else
pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_88E] & 0x7); /* bit0~2 */
} else
pHalData->EEPROMRegulatory = 0;
RTW_INFO("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory);
}
void
Hal_EfuseParseXtal_8188E(
PADAPTER pAdapter,
u8 *hwinfo,
bool AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if (!AutoLoadFail) {
pHalData->crystal_cap = hwinfo[EEPROM_XTAL_88E];
if (pHalData->crystal_cap == 0xFF)
pHalData->crystal_cap = EEPROM_Default_CrystalCap_88E;
} else
pHalData->crystal_cap = EEPROM_Default_CrystalCap_88E;
RTW_INFO("crystal_cap: 0x%2x\n", pHalData->crystal_cap);
}
void
Hal_ReadPAType_8188E(
PADAPTER Adapter,
u8 *PROMContent,
bool AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 PA_LNAType_2G = 0;
if (!AutoloadFail) {
if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO*/
/* PA & LNA Type */
PA_LNAType_2G = LE_BITS_TO_1BYTE(&PROMContent[EEPROM_RFE_OPTION_8188E], 2, 2); /* 0xCA[3:2] */
/*
ePA/eLNA sel.(ePA+eLNA=0x0, ePA+iLNA enable = 0x1, iPA+eLNA enable =0x2, iPA+iLNA=0x3)
*/
switch (PA_LNAType_2G) {
case 0:
pHalData->ExternalPA_2G = 1;
pHalData->ExternalLNA_2G = 1;
break;
case 1:
pHalData->ExternalPA_2G = 1;
pHalData->ExternalLNA_2G = 0;
break;
case 2:
pHalData->ExternalPA_2G = 0;
pHalData->ExternalLNA_2G = 1;
break;
case 3:
default:
pHalData->ExternalPA_2G = 0;
pHalData->ExternalLNA_2G = 0;
break;
}
} else {
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0;
}
} else {
pHalData->ExternalPA_2G = EEPROM_Default_PAType;
pHalData->external_pa_5g = EEPROM_Default_PAType;
pHalData->ExternalLNA_2G = EEPROM_Default_LNAType;
pHalData->external_lna_5g = EEPROM_Default_LNAType;
if (GetRegAmplifierType2G(Adapter) == 0) {
/* AUTO*/
pHalData->ExternalPA_2G = EEPROM_Default_PAType;
pHalData->ExternalLNA_2G = EEPROM_Default_LNAType;
} else {
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0;
}
}
RTW_INFO("pHalData->ExternalPA_2G = %d , pHalData->ExternalLNA_2G = %d\n", pHalData->ExternalPA_2G, pHalData->ExternalLNA_2G);
}
void
Hal_ReadAmplifierType_8188E(
PADAPTER Adapter,
u8 * PROMContent,
bool AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 GLNA_type = 0;
if (!AutoloadFail) {
if (GetRegGLNAType(Adapter) == 0) /* AUTO */
GLNA_type = LE_BITS_TO_1BYTE(&PROMContent[EEPROM_RFE_OPTION_8188E], 4, 3); /* 0xCA[6:4] */
else
GLNA_type = GetRegGLNAType(Adapter) & 0x7;
} else {
if (GetRegGLNAType(Adapter) == 0) /* AUTO */
GLNA_type = 0;
else
GLNA_type = GetRegGLNAType(Adapter) & 0x7;
}
/*
Ext-LNA Gain sel.(form 10dB to 24dB, 1table/2dB,ext: 000=10dB, 001=12dB...)
*/
switch (GLNA_type) {
case 0:
pHalData->TypeGLNA = 0x1; /* (10dB) */
break;
case 2:
pHalData->TypeGLNA = 0x2; /* (14dB) */
break;
default:
pHalData->TypeGLNA = 0x0; /* (others not support) */
break;
}
RTW_INFO("pHalData->TypeGLNA is 0x%x\n", pHalData->TypeGLNA);
}
void
Hal_ReadRFEType_8188E(
PADAPTER Adapter,
u8 * PROMContent,
bool AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
/* Keep the same flow as 8192EU to be extensible */
const u8 RFETypeMaxVal = 1, RFETypeMask = 0x1;
if (!AutoloadFail) {
if (GetRegRFEType(Adapter) != 64) {
pHalData->rfe_type = GetRegRFEType(Adapter);
/*
Above 1, rfe_type is filled the default value.
*/
if (pHalData->rfe_type > RFETypeMaxVal)
pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8188E;
} else if ((0xFF == PROMContent[EEPROM_RFE_OPTION_8188E]) ||
((pHalData->ExternalPA_2G == 0) && (pHalData->ExternalLNA_2G == 0)))
pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8188E;
else {
/*
type 0:0x00 for 88EE/ER_HP RFE control
*/
pHalData->rfe_type = PROMContent[EEPROM_RFE_OPTION_8188E] & RFETypeMask; /* 0xCA[1:0] */
}
} else {
if (GetRegRFEType(Adapter) != 64) {
pHalData->rfe_type = GetRegRFEType(Adapter);
/*
Above 3, rfe_type is filled the default value.
*/
if (pHalData->rfe_type > RFETypeMaxVal)
pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8188E;
} else
pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8188E;
}
RTW_INFO("pHalData->rfe_type is 0x%x\n", pHalData->rfe_type);
}
void
Hal_EfuseParseBoardType88E(
PADAPTER pAdapter,
u8 *hwinfo,
bool AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if (!AutoLoadFail) {
pHalData->InterfaceSel = ((hwinfo[EEPROM_RF_BOARD_OPTION_88E] & 0xE0) >> 5);
if (hwinfo[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
pHalData->InterfaceSel = (EEPROM_DEFAULT_BOARD_OPTION & 0xE0) >> 5;
} else
pHalData->InterfaceSel = 0;
RTW_INFO("Board Type: 0x%2x\n", pHalData->InterfaceSel);
}
void
Hal_EfuseParseEEPROMVer88E(
PADAPTER padapter,
u8 *hwinfo,
bool AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (!AutoLoadFail) {
pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_88E];
if (pHalData->EEPROMVersion == 0xFF)
pHalData->EEPROMVersion = EEPROM_Default_Version;
} else
pHalData->EEPROMVersion = 1;
}
void
rtl8188e_EfuseParseChnlPlan(
PADAPTER padapter,
u8 *hwinfo,
bool AutoLoadFail
)
{
padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
padapter
, hwinfo ? &hwinfo[EEPROM_COUNTRY_CODE_88E] : NULL
, hwinfo ? hwinfo[EEPROM_ChannelPlan_88E] : 0xFF
, padapter->registrypriv.alpha2
, padapter->registrypriv.channel_plan
, RTW_CHPLAN_WORLD_NULL
, AutoLoadFail
);
}
void
Hal_EfuseParseCustomerID88E(
PADAPTER padapter,
u8 *hwinfo,
bool AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (!AutoLoadFail) {
pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_88E];
/* pHalData->EEPROMSubCustomerID = hwinfo[EEPROM_CustomID_88E]; */
} else {
pHalData->EEPROMCustomerID = 0;
pHalData->EEPROMSubCustomerID = 0;
}
RTW_INFO("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID);
/* RTW_INFO("EEPROM SubCustomer ID: 0x%02x\n", pHalData->EEPROMSubCustomerID); */
}
void
Hal_ReadAntennaDiversity88E(
PADAPTER pAdapter,
u8 *PROMContent,
bool AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
struct registry_priv *registry_par = &pAdapter->registrypriv;
if (!AutoLoadFail) {
/* Antenna Diversity setting. */
if (registry_par->antdiv_cfg == 2) { /* 2:By EFUSE */
pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_88E] & 0x18) >> 3;
if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION & 0x18) >> 3;
} else {
pHalData->AntDivCfg = registry_par->antdiv_cfg ; /* 0:OFF , 1:ON, 2:By EFUSE */
}
if (registry_par->antdiv_type == 0) { /* If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead. */
pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_88E];
if (pHalData->TRxAntDivType == 0xFF)
pHalData->TRxAntDivType = CG_TRX_HW_ANTDIV; /* For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port) */
} else
pHalData->TRxAntDivType = registry_par->antdiv_type ;
if (pHalData->TRxAntDivType == CG_TRX_HW_ANTDIV || pHalData->TRxAntDivType == CGCS_RX_HW_ANTDIV)
pHalData->AntDivCfg = 1; /* 0xC1[3] is ignored. */
} else
pHalData->AntDivCfg = 0;
RTW_INFO("EEPROM : AntDivCfg = %x, TRxAntDivType = %x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType);
}
void
Hal_ReadThermalMeter_88E(
PADAPTER Adapter,
u8 *PROMContent,
bool AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 tempval;
/* */
/* ThermalMeter from EEPROM */
/* */
if (!AutoloadFail)
pHalData->eeprom_thermal_meter = PROMContent[EEPROM_THERMAL_METER_88E];
else
pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_88E;
/* pHalData->eeprom_thermal_meter = (tempval&0x1f); */ /* [4:0] */
if (pHalData->eeprom_thermal_meter == 0xff || AutoloadFail) {
pHalData->odmpriv.rf_calibrate_info.is_apk_thermal_meter_ignore = true;
pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_88E;
}
/* pHalData->ThermalMeter[0] = pHalData->eeprom_thermal_meter; */
RTW_INFO("ThermalMeter = 0x%x\n", pHalData->eeprom_thermal_meter);
}
#ifdef CONFIG_RF_POWER_TRIM
void Hal_ReadRFGainOffset(
PADAPTER Adapter,
u8 *PROMContent,
bool AutoloadFail)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 thermal_offset = 0;
/* */
/* BB_RF Gain Offset from EEPROM */
/* */
if (!AutoloadFail) {
pHalData->EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
if ((pHalData->EEPROMRFGainOffset != 0xFF) &&
(pHalData->EEPROMRFGainOffset & BIT4))
efuse_OneByteRead(Adapter, EEPROM_RF_GAIN_VAL, &pHalData->EEPROMRFGainVal, false);
else {
pHalData->EEPROMRFGainOffset = 0;
pHalData->EEPROMRFGainVal = 0;
}
RTW_INFO("pHalData->EEPROMRFGainVal=%x\n", pHalData->EEPROMRFGainVal);
} else {
efuse_OneByteRead(Adapter, EEPROM_RF_GAIN_VAL, &pHalData->EEPROMRFGainVal, false);
if (pHalData->EEPROMRFGainVal != 0xFF)
pHalData->EEPROMRFGainOffset = BIT4;
else
pHalData->EEPROMRFGainOffset = 0;
RTW_INFO("else AutoloadFail =%x,\n", AutoloadFail);
}
if (Adapter->registrypriv.RegPwrTrimEnable == 1) {
efuse_OneByteRead(Adapter, EEPROM_RF_GAIN_VAL, &pHalData->EEPROMRFGainVal, false);
RTW_INFO("pHalData->EEPROMRFGainVal=%x\n", pHalData->EEPROMRFGainVal);
}
/* */
/* BB_RF Thermal Offset from EEPROM */
/* */
if (((pHalData->EEPROMRFGainOffset != 0xFF) && (pHalData->EEPROMRFGainOffset & BIT4)) || (Adapter->registrypriv.RegPwrTrimEnable == 1)) {
efuse_OneByteRead(Adapter, EEPROM_THERMAL_OFFSET, &thermal_offset, false);
if (thermal_offset != 0xFF) {
if (thermal_offset & BIT0)
pHalData->eeprom_thermal_meter += ((thermal_offset >> 1) & 0x0F);
else
pHalData->eeprom_thermal_meter -= ((thermal_offset >> 1) & 0x0F);
RTW_INFO("%s =>thermal_offset:0x%02x pHalData->eeprom_thermal_meter=0x%02x\n", __func__ , thermal_offset, pHalData->eeprom_thermal_meter);
}
}
RTW_INFO("%s => EEPRORFGainOffset = 0x%02x,EEPROMRFGainVal=0x%02x,thermal_offset:0x%02x\n",
__func__, pHalData->EEPROMRFGainOffset, pHalData->EEPROMRFGainVal, thermal_offset);
}
#endif /*CONFIG_RF_POWER_TRIM*/
bool HalDetectPwrDownMode88E(PADAPTER Adapter)
{
u8 tmpvalue = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(Adapter);
EFUSE_ShadowRead(Adapter, 1, EEPROM_RF_FEATURE_OPTION_88E, (u32 *)&tmpvalue);
/* 2010/08/25 MH INF priority > PDN Efuse value. */
if (tmpvalue & BIT(4) && pwrctrlpriv->reg_pdnmode)
pHalData->pwrdown = true;
else
pHalData->pwrdown = false;
RTW_INFO("HalDetectPwrDownMode(): PDN=%d\n", pHalData->pwrdown);
return pHalData->pwrdown;
} /* HalDetectPwrDownMode */
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
void Hal_DetectWoWMode(PADAPTER pAdapter)
{
adapter_to_pwrctl(pAdapter)->bSupportRemoteWakeup = true;
}
#endif
/* ************************************************************************************
*
* 20100209 Joseph:
* This function is used only for 92C to set REG_BCN_CTRL(0x550) register.
* We just reserve the value of the register in variable pHalData->RegBcnCtrlVal and then operate
* the value of the register via atomic operation.
* This prevents from race condition when setting this register.
* The value of pHalData->RegBcnCtrlVal is initialized in HwConfigureRTL8192CE() function.
* */
void SetBcnCtrlReg(
PADAPTER padapter,
u8 SetBits,
u8 ClearBits)
{
PHAL_DATA_TYPE pHalData;
pHalData = GET_HAL_DATA(padapter);
pHalData->RegBcnCtrlVal |= SetBits;
pHalData->RegBcnCtrlVal &= ~ClearBits;
rtw_write8(padapter, REG_BCN_CTRL, (u8)pHalData->RegBcnCtrlVal);
}
void _InitTransferPageSize(PADAPTER padapter)
{
/* Tx page size is always 128. */
u8 value8;
value8 = _PSRX(PBP_128) | _PSTX(PBP_128);
rtw_write8(padapter, REG_PBP, value8);
}
static void hw_var_set_monitor(PADAPTER Adapter, u8 variable, u8 *val)
{
u32 value_rcr, rcr_bits;
u16 value_rxfltmap2;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv);
if (*((u8 *)val) == _HW_STATE_MONITOR_) {
/* Receive all type */
rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_ACF | RCR_AMF | RCR_APP_PHYST_RXFF;
/* Append FCS */
rcr_bits |= RCR_APPFCS;
/* Receive all data frames */
value_rxfltmap2 = 0xFFFF;
value_rcr = rcr_bits;
rtw_write32(Adapter, REG_RCR, value_rcr);
rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);
} else {
/* do nothing */
}
}
static void hw_var_set_opmode(PADAPTER Adapter, u8 variable, u8 *val)
{
u8 val8;
u8 mode = *((u8 *)val);
static u8 isMonitor = false;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (isMonitor == true) {
/* reset RCR */
rtw_write32(Adapter, REG_RCR, pHalData->ReceiveConfig);
isMonitor = false;
}
RTW_INFO(ADPT_FMT "- Port-%d set opmode = %d\n", ADPT_ARG(Adapter),
get_hw_port(Adapter), mode);
if (mode == _HW_STATE_MONITOR_) {
isMonitor = true;
/* set net_type */
Set_MSR(Adapter, _HW_STATE_NOLINK_);
hw_var_set_monitor(Adapter, variable, val);
return;
}
rtw_hal_set_hwreg(Adapter, HW_VAR_MAC_ADDR, adapter_mac_addr(Adapter)); /* set mac addr to mac register */
#ifdef CONFIG_CONCURRENT_MODE
if (Adapter->hw_port == HW_PORT1) {
/* disable Port1 TSF update */
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) | BIT(4));
/* set net_type */
Set_MSR(Adapter, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
if (!rtw_mi_check_status(Adapter, MI_AP_MODE)) {
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* restore early int time to 5ms */
UpdateInterruptMask8188EU(Adapter, true, 0, IMR_BCNDMAINT0_88E);
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8188EU(Adapter, true , 0, (IMR_TBDER_88E | IMR_TBDOK_88E));
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
StopTxBeacon(Adapter);
}
rtw_write8(Adapter, REG_BCN_CTRL_1, 0x11); /* disable atim wnd and disable beacon function */
/* rtw_write8(Adapter,REG_BCN_CTRL_1, 0x18); */
} else if ((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/) {
/* Beacon is polled to TXBUF */
rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR) | BIT(8));
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL_1, 0x1a);
/* BIT4 - If set 0, hw will clr bcnq when tx becon ok/fail or port 1 */
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4));
} else if (mode == _HW_STATE_AP_) {
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8188EU(Adapter, true , IMR_BCNDMAINT0_88E, 0);
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8188EU(Adapter, true , (IMR_TBDER_88E | IMR_TBDOK_88E), 0);
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL_1, 0x12);
/* Beacon is polled to TXBUF */
rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR) | BIT(8));
/* Set RCR */
/* rtw_write32(padapter, REG_RCR, 0x70002a8e); */ /* CBSSID_DATA must set to 0 */
if (Adapter->registrypriv.wifi_spec)
/* for 11n Logo 4.2.31/4.2.32, disable BSSID BCN check for AP mode */
rtw_write32(Adapter, REG_RCR, (0x7000208e & ~(RCR_CBSSID_BCN)));
else
rtw_write32(Adapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0,Reject ICV_ERROR packets */
/* enable to rx data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/* enable to rx ps-poll */
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
/* Beacon Control related register for first time */
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* 5ms */
/* rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); */
rtw_write8(Adapter, REG_ATIMWND_1, 0x0c); /* 13ms for port1 */
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
/* TBTT setup time:128 us */
rtw_write8(Adapter, REG_TBTT_PROHIBIT, 0x04);
/*TBTT hold time :4ms 0x540[19:8]*/
rtw_write8(Adapter, REG_TBTT_PROHIBIT + 1,
TBTT_PROBIHIT_HOLD_TIME & 0xFF);
rtw_write8(Adapter, REG_TBTT_PROHIBIT + 2,
(rtw_read8(Adapter, REG_TBTT_PROHIBIT + 2) & 0xF0) | (TBTT_PROBIHIT_HOLD_TIME >> 8));
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/* reset TSF2 */
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
/* BIT4 - If set 0, hw will clr bcnq when tx becon ok/fail or port 1 */
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4));
/* enable BCN1 Function for if2 */
/* don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received) */
rtw_write8(Adapter, REG_BCN_CTRL_1, (DIS_TSF_UDT0_NORMAL_CHIP | EN_BCN_FUNCTION | EN_TXBCN_RPT | BIT(1)));
if (!rtw_mi_buddy_check_fwstate(Adapter, WIFI_FW_ASSOC_SUCCESS))
rtw_write8(Adapter, REG_BCN_CTRL,
rtw_read8(Adapter, REG_BCN_CTRL) & ~EN_BCN_FUNCTION);
/* BCN1 TSF will sync to BCN0 TSF with offset(0x518) if if1_sta linked */
/* rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(5)); */
/* rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(3)); */
/* dis BCN0 ATIM WND if if1 is station */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | BIT(0));
#ifdef CONFIG_TSF_RESET_OFFLOAD
/* Reset TSF for STA+AP concurrent mode */
if (rtw_mi_buddy_check_fwstate(Adapter, (WIFI_STATION_STATE | WIFI_ASOC_STATE))) {
if (reset_tsf(Adapter, HW_PORT1) == false)
RTW_INFO("ERROR! %s()-%d: Reset port1 TSF fail\n",
__func__, __LINE__);
}
#endif /* CONFIG_TSF_RESET_OFFLOAD */
}
} else /* (Adapter->hw_port == HW_PORT1)*/
#endif /* CONFIG_CONCURRENT_MODE */
{
#ifdef CONFIG_MI_WITH_MBSSID_CAM /*For Port0 - MBSS CAM*/
hw_var_set_opmode_mbid(Adapter, mode);
#else
/* disable Port0 TSF update */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | BIT(4));
/* set net_type */
Set_MSR(Adapter, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
#ifdef CONFIG_CONCURRENT_MODE
if (!rtw_mi_check_status(Adapter, MI_AP_MODE))
#endif /*CONFIG_CONCURRENT_MODE*/
{
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* restore early int time to 5ms */
UpdateInterruptMask8188EU(Adapter, true, 0, IMR_BCNDMAINT0_88E);
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8188EU(Adapter, true , 0, (IMR_TBDER_88E | IMR_TBDOK_88E));
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
StopTxBeacon(Adapter);
}
rtw_write8(Adapter, REG_BCN_CTRL, 0x19); /* disable atim wnd */
/* rtw_write8(Adapter,REG_BCN_CTRL, 0x18); */
} else if ((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/) {
/* Beacon is polled to TXBUF */
rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR) | BIT(8));
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x1a);
/* BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0 */
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4));
} else if (mode == _HW_STATE_AP_) {
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8188EU(Adapter, true , IMR_BCNDMAINT0_88E, 0);
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8188EU(Adapter, true , (IMR_TBDER_88E | IMR_TBDOK_88E), 0);
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x12);
/* Beacon is polled to TXBUF */
rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR) | BIT(8));
/* Set RCR */
/* rtw_write32(padapter, REG_RCR, 0x70002a8e); */ /* CBSSID_DATA must set to 0 */
if (Adapter->registrypriv.wifi_spec)
/* for 11n Logo 4.2.31/4.2.32, disable BSSID BCN check for AP mode */
rtw_write32(Adapter, REG_RCR, (0x7000208e & ~(RCR_CBSSID_BCN)));
else
rtw_write32(Adapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0,reject ICV_ERR packet */
/* enable to rx data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/* enable to rx ps-poll */
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
/* Beacon Control related register for first time */
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* 5ms */
/* rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); */
rtw_write8(Adapter, REG_ATIMWND, 0x0c); /* 13ms */
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
/* TBTT setup time:128 us */
rtw_write8(Adapter, REG_TBTT_PROHIBIT, 0x04);
/*TBTT hold time :4ms 0x540[19:8]*/
rtw_write8(Adapter, REG_TBTT_PROHIBIT + 1,
TBTT_PROBIHIT_HOLD_TIME & 0xFF);
rtw_write8(Adapter, REG_TBTT_PROHIBIT + 2,
(rtw_read8(Adapter, REG_TBTT_PROHIBIT + 2) & 0xF0) | (TBTT_PROBIHIT_HOLD_TIME >> 8));
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/* reset TSF */
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
/* BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0 */
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4));
/* enable BCN0 Function for if1 */
/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
#if defined(CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR)
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP | EN_BCN_FUNCTION | EN_TXBCN_RPT | BIT(1)));
#else
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP | EN_BCN_FUNCTION | BIT(1)));
#endif
#ifdef CONFIG_CONCURRENT_MODE
if (!rtw_mi_buddy_check_fwstate(Adapter, WIFI_FW_ASSOC_SUCCESS))
rtw_write8(Adapter, REG_BCN_CTRL_1,
rtw_read8(Adapter, REG_BCN_CTRL_1) & ~EN_BCN_FUNCTION);
#endif
/* dis BCN1 ATIM WND if if2 is station */
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) | BIT(0));
#ifdef CONFIG_TSF_RESET_OFFLOAD
/* Reset TSF for STA+AP concurrent mode */
if (rtw_mi_buddy_check_fwstate(Adapter, (WIFI_STATION_STATE | WIFI_ASOC_STATE))) {
if (reset_tsf(Adapter, HW_PORT0) == false)
RTW_INFO("ERROR! %s()-%d: Reset port0 TSF fail\n",
__func__, __LINE__);
}
#endif /* CONFIG_TSF_RESET_OFFLOAD */
}
#endif
}
}
static void hw_var_set_bcn_func(PADAPTER Adapter, u8 variable, u8 *val)
{
u32 bcn_ctrl_reg;
#ifdef CONFIG_CONCURRENT_MODE
if (Adapter->hw_port == HW_PORT1)
bcn_ctrl_reg = REG_BCN_CTRL_1;
else
#endif
bcn_ctrl_reg = REG_BCN_CTRL;
if (*((u8 *)val))
rtw_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
else
rtw_write8(Adapter, bcn_ctrl_reg, rtw_read8(Adapter, bcn_ctrl_reg) & (~(EN_BCN_FUNCTION | EN_TXBCN_RPT)));
}
static void hw_var_set_correct_tsf(PADAPTER Adapter, u8 variable, u8 *val)
{
#ifdef CONFIG_MI_WITH_MBSSID_CAM
/*do nothing*/
#else
u64 tsf;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if (((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE)) {
/* pHalData->RegTxPause |= STOP_BCNQ;BIT(6) */
/* rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)|BIT(6))); */
StopTxBeacon(Adapter);
}
/*tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us */
tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval * 1024)) - 1024; /*us*/
rtw_hal_correct_tsf(Adapter, Adapter->hw_port, tsf);
#ifdef CONFIG_CONCURRENT_MODE
/* Update buddy port's TSF if it is SoftAP for beacon TX issue!*/
if ((pmlmeinfo->state & 0x03) == WIFI_FW_STATION_STATE
&& rtw_mi_check_status(Adapter, MI_AP_MODE)) {
struct dvobj_priv *dvobj = adapter_to_dvobj(Adapter);
int i;
_adapter *iface;
for (i = 0; i < dvobj->iface_nums; i++) {
iface = dvobj->padapters[i];
if (!iface)
continue;
if (iface == Adapter)
continue;
if (check_fwstate(&iface->mlmepriv, WIFI_AP_STATE) == true
&& check_fwstate(&iface->mlmepriv, WIFI_ASOC_STATE) == true
) {
rtw_hal_correct_tsf(iface, iface->hw_port, tsf);
#ifdef CONFIG_TSF_RESET_OFFLOAD
if (reset_tsf(iface, iface->hw_port) == false)
RTW_INFO("%s-[ERROR] "ADPT_FMT" Reset port%d TSF fail\n", __func__, ADPT_ARG(iface), iface->hw_port);
#endif /* CONFIG_TSF_RESET_OFFLOAD*/
}
}
}
#endif/*CONFIG_CONCURRENT_MODE*/
if (((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE)) {
/* pHalData->RegTxPause &= (~STOP_BCNQ); */
/* rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)&(~BIT(6)))); */
ResumeTxBeacon(Adapter);
}
#endif /*CONFIG_MI_WITH_MBSSID_CAM*/
}
static void hw_var_set_mlme_disconnect(PADAPTER Adapter, u8 variable, u8 *val)
{
/*Set RCR to not to receive data frame when NO LINK state
rtw_write32(Adapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF);
reject all data frames */
#ifdef CONFIG_CONCURRENT_MODE
if (rtw_mi_check_status(Adapter, MI_LINKED) == false)
#endif
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
#ifdef CONFIG_CONCURRENT_MODE
if (Adapter->hw_port == HW_PORT1) {
/*reset TSF1*/
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
/*disable update TSF1*/
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) | DIS_TSF_UDT);
/* disable Port1's beacon function*/
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) & (~BIT(3)));
} else
#endif
{
/*reset TSF*/
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
/*disable update TSF*/
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | DIS_TSF_UDT);
}
}
static void hw_var_set_mlme_sitesurvey(PADAPTER Adapter, u8 variable, u8 *val)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(Adapter);
u32 value_rcr, rcr_clear_bit;
u16 value_rxfltmap2;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int i;
_adapter *iface;
#ifdef DBG_IFACE_STATUS
DBG_IFACE_STATUS_DUMP(Adapter);
#endif
#ifdef CONFIG_FIND_BEST_CHANNEL
rcr_clear_bit = (RCR_CBSSID_BCN | RCR_CBSSID_DATA);
/* Receive all data frames */
value_rxfltmap2 = 0xFFFF;
#else /* CONFIG_FIND_BEST_CHANNEL */
rcr_clear_bit = RCR_CBSSID_BCN;
/* config RCR to receive different BSSID & not to receive data frame */
value_rxfltmap2 = 0;
#endif /* CONFIG_FIND_BEST_CHANNEL */
if (rtw_mi_check_fwstate(Adapter, WIFI_AP_STATE))
rcr_clear_bit = RCR_CBSSID_BCN;
#ifdef CONFIG_TDLS
/* TDLS will clear RCR_CBSSID_DATA bit for connection.*/
else if (Adapter->tdlsinfo.link_established == true)
rcr_clear_bit = RCR_CBSSID_BCN;
#endif /*CONFIG_TDLS*/
value_rcr = rtw_read32(Adapter, REG_RCR);
if (*((u8 *)val)) {/*under sitesurvey*/
/*
* 1. configure REG_RXFLTMAP2
* 2. disable TSF update & buddy TSF update to avoid updating wrong TSF due to clear RCR_CBSSID_BCN
* 3. config RCR to receive different BSSID BCN or probe rsp
*/
rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);
#ifdef CONFIG_MI_WITH_MBSSID_CAM
/*do nothing~~*/
#else
/* disable update TSF */
for (i = 0; i < dvobj->iface_nums; i++) {
iface = dvobj->padapters[i];
if (!iface)
continue;
if (rtw_linked_check(iface) &&
check_fwstate(&(iface->mlmepriv), WIFI_AP_STATE) != true) {
if (iface->hw_port == HW_PORT1)
rtw_write8(iface, REG_BCN_CTRL_1, rtw_read8(iface, REG_BCN_CTRL_1) | DIS_TSF_UDT);
else
rtw_write8(iface, REG_BCN_CTRL, rtw_read8(iface, REG_BCN_CTRL) | DIS_TSF_UDT);
iface->mlmeextpriv.en_hw_update_tsf = false;
}
}
#endif/*CONFIG_MI_WITH_MBSSID_CAM*/
value_rcr &= ~(rcr_clear_bit);
rtw_write32(Adapter, REG_RCR, value_rcr);
/* Save orignal RRSR setting.*/
pHalData->RegRRSR = rtw_read16(Adapter, REG_RRSR);
if (rtw_mi_check_status(Adapter, MI_AP_MODE))
StopTxBeacon(Adapter);
} else {/*sitesurvey done*/
/*
* 1. enable rx data frame
* 2. config RCR not to receive different BSSID BCN or probe rsp
* 3. doesn't enable TSF update & buddy TSF right now to avoid HW conflict
* so, we enable TSF update when rx first BCN after sitesurvey done
*/
if (rtw_mi_check_fwstate(Adapter, _FW_LINKED | WIFI_AP_STATE))
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);/*enable to rx data frame*/
#ifdef CONFIG_MI_WITH_MBSSID_CAM
value_rcr &= ~(RCR_CBSSID_BCN | RCR_CBSSID_DATA);
#else
value_rcr |= rcr_clear_bit;
#endif
/* for 11n Logo 4.2.31/4.2.32, disable BSSID BCN check for AP mode */
if (Adapter->registrypriv.wifi_spec && MLME_IS_AP(Adapter))
value_rcr &= ~(RCR_CBSSID_BCN);
rtw_write32(Adapter, REG_RCR, value_rcr);
#ifdef CONFIG_MI_WITH_MBSSID_CAM
/*if ((rtw_mi_get_assoced_sta_num(Adapter) == 1) && (!rtw_mi_check_status(Adapter, MI_AP_MODE)))
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~DIS_TSF_UDT));*/
#else
for (i = 0; i < dvobj->iface_nums; i++) {
iface = dvobj->padapters[i];
if (!iface)
continue;
if (rtw_linked_check(iface) &&
check_fwstate(&(iface->mlmepriv), WIFI_AP_STATE) != true) {
/* enable HW TSF update when recive beacon*/
/*if (iface->hw_port == HW_PORT1)
rtw_write8(iface, REG_BCN_CTRL_1, rtw_read8(iface, REG_BCN_CTRL_1)&(~(DIS_TSF_UDT)));
else
rtw_write8(iface, REG_BCN_CTRL, rtw_read8(iface, REG_BCN_CTRL)&(~(DIS_TSF_UDT)));
*/
iface->mlmeextpriv.en_hw_update_tsf = true;
}
}
#endif
/* Restore orignal RRSR setting. */
rtw_write16(Adapter, REG_RRSR, pHalData->RegRRSR);
if (rtw_mi_get_ap_num(Adapter)) {
ResumeTxBeacon(Adapter);
rtw_mi_tx_beacon_hdl(Adapter);
}
}
}
static void hw_var_set_mlme_join(PADAPTER Adapter, u8 variable, u8 *val)
{
#ifdef CONFIG_CONCURRENT_MODE
u8 RetryLimit = 0x30;
u8 type = *((u8 *)val);
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
if (type == 0) { /* prepare to join */
if (rtw_mi_check_status(Adapter, MI_AP_MODE))
StopTxBeacon(Adapter);
/*enable to rx data frame.Accept all data frame*/
/*rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF);*/
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
#ifdef CONFIG_MI_WITH_MBSSID_CAM
/*
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) && (rtw_mi_get_assoced_sta_num(Adapter) == 1))
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
else if ((rtw_mi_get_ap_num(Adapter) == 1) && (rtw_mi_get_assoced_sta_num(Adapter) == 1))
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
else*/
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR) & (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN)));
#else
if (rtw_mi_check_status(Adapter, MI_AP_MODE))
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR) | RCR_CBSSID_BCN);
else
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR) | RCR_CBSSID_DATA | RCR_CBSSID_BCN);
#endif
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
else /* Ad-hoc Mode */
RetryLimit = 0x7;
} else if (type == 1) { /* joinbss_event call back when join res < 0 */
if (rtw_mi_check_status(Adapter, MI_LINKED) == false)
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
if (rtw_mi_check_status(Adapter, MI_AP_MODE)) {
ResumeTxBeacon(Adapter);
/* reset TSF 1/2 after ResumeTxBeacon */
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1) | BIT(0));
}
} else if (type == 2) { /* sta add event call back */
#ifdef CONFIG_MI_WITH_MBSSID_CAM
/*if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) && (rtw_mi_get_assoced_sta_num(Adapter) == 1))
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~DIS_TSF_UDT));*/
#else
/* enable update TSF */
if (Adapter->hw_port == HW_PORT1)
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) & (~DIS_TSF_UDT));
else
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & (~DIS_TSF_UDT));
#endif
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
/* fixed beacon issue for 8191su........... */
rtw_write8(Adapter, 0x542 , 0x02);
RetryLimit = 0x7;
}
if (rtw_mi_check_status(Adapter, MI_AP_MODE)) {
ResumeTxBeacon(Adapter);
/* reset TSF 1/2 after ResumeTxBeacon */
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1) | BIT(0));
}
}
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
#endif
}
void SetHwReg8188E(_adapter *adapter, u8 variable, u8 *val)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter);
struct PHY_DM_STRUCT *podmpriv = &pHalData->odmpriv;
switch (variable) {
case HW_VAR_SET_OPMODE:
hw_var_set_opmode(adapter, variable, val);
break;
case HW_VAR_BASIC_RATE: {
struct mlme_ext_info *mlmext_info = &adapter->mlmeextpriv.mlmext_info;
u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
u16 rrsr_2g_force_mask = RRSR_CCK_RATES;
u16 rrsr_2g_allow_mask = (RRSR_24M | RRSR_12M | RRSR_6M | RRSR_CCK_RATES);
HalSetBrateCfg(adapter, val, &BrateCfg);
input_b = BrateCfg;
/* apply force and allow mask */
BrateCfg |= rrsr_2g_force_mask;
BrateCfg &= rrsr_2g_allow_mask;
masked = BrateCfg;
/* IOT consideration */
if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
/* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
if ((BrateCfg & (RRSR_24M | RRSR_12M | RRSR_6M)) == 0)
BrateCfg |= RRSR_6M;
}
ioted = BrateCfg;
pHalData->BasicRateSet = BrateCfg;
RTW_INFO("HW_VAR_BASIC_RATE: %#x->%#x->%#x\n", input_b, masked, ioted);
/* Set RRSR rate table. */
rtw_write16(adapter, REG_RRSR, BrateCfg);
rtw_write8(adapter, REG_RRSR + 2, rtw_read8(adapter, REG_RRSR + 2) & 0xf0);
rtw_hal_set_hwreg(adapter, HW_VAR_INIT_RTS_RATE, (u8 *)&BrateCfg);
}
break;
case HW_VAR_TXPAUSE:
rtw_write8(adapter, REG_TXPAUSE, *((u8 *)val));
break;
case HW_VAR_BCN_FUNC:
hw_var_set_bcn_func(adapter, variable, val);
break;
case HW_VAR_CORRECT_TSF:
hw_var_set_correct_tsf(adapter, variable, val);
break;
case HW_VAR_CHECK_BSSID:
if (*((u8 *)val))
rtw_write32(adapter, REG_RCR, rtw_read32(adapter, REG_RCR) | RCR_CBSSID_DATA | RCR_CBSSID_BCN);
else {
u32 val32;
val32 = rtw_read32(adapter, REG_RCR);
val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
rtw_write32(adapter, REG_RCR, val32);
}
break;
case HW_VAR_MLME_DISCONNECT:
hw_var_set_mlme_disconnect(adapter, variable, val);
break;
case HW_VAR_MLME_SITESURVEY:
hw_var_set_mlme_sitesurvey(adapter, variable, val);
break;
case HW_VAR_MLME_JOIN:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_mlme_join(adapter, variable, val);
#else
{
u8 RetryLimit = 0x30;
u8 type = *((u8 *)val);
struct mlme_priv *pmlmepriv = &adapter->mlmepriv;
if (type == 0) { /* prepare to join */
/* enable to rx data frame.Accept all data frame */
/* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); */
rtw_write16(adapter, REG_RXFLTMAP2, 0xFFFF);
if (adapter->in_cta_test) {
u32 v = rtw_read32(adapter, REG_RCR);
v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN); /* | RCR_ADF */
rtw_write32(adapter, REG_RCR, v);
} else
rtw_write32(adapter, REG_RCR, rtw_read32(adapter, REG_RCR) | RCR_CBSSID_DATA | RCR_CBSSID_BCN);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
else /* Ad-hoc Mode */
RetryLimit = 0x7;
} else if (type == 1) /* joinbss_event call back when join res < 0 */
rtw_write16(adapter, REG_RXFLTMAP2, 0x00);
else if (type == 2) { /* sta add event call back */
/* enable update TSF */
rtw_write8(adapter, REG_BCN_CTRL, rtw_read8(adapter, REG_BCN_CTRL) & (~BIT(4)));
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE))
RetryLimit = 0x7;
}
rtw_write16(adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
}
#endif
break;
case HW_VAR_ON_RCR_AM:
rtw_write32(adapter, REG_RCR, rtw_read32(adapter, REG_RCR) | RCR_AM);
RTW_INFO("%s, %d, RCR= %x\n", __func__, __LINE__, rtw_read32(adapter, REG_RCR));
break;
case HW_VAR_OFF_RCR_AM:
rtw_write32(adapter, REG_RCR, rtw_read32(adapter, REG_RCR) & (~RCR_AM));
RTW_INFO("%s, %d, RCR= %x\n", __func__, __LINE__, rtw_read32(adapter, REG_RCR));
break;
case HW_VAR_BEACON_INTERVAL:
rtw_write16(adapter, REG_BCN_INTERVAL, *((u16 *)val));
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
{
struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
u16 bcn_interval = *((u16 *)val);
if ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE) {
RTW_INFO("%s==> bcn_interval:%d, eraly_int:%d\n", __func__, bcn_interval, bcn_interval >> 1);
rtw_write8(adapter, REG_DRVERLYINT, bcn_interval >> 1); /* 50ms for sdio */
}
}
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
break;
case HW_VAR_SLOT_TIME: {
rtw_write8(adapter, REG_SLOT, val[0]);
}
break;
case HW_VAR_ACK_PREAMBLE: {
u8 regTmp;
u8 bShortPreamble = *((bool *)val);
/* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
regTmp = (pHalData->nCur40MhzPrimeSC) << 5;
rtw_write8(adapter, REG_RRSR + 2, regTmp);
regTmp = rtw_read8(adapter, REG_WMAC_TRXPTCL_CTL + 2);
if (bShortPreamble)
regTmp |= BIT1;
else
regTmp &= (~BIT1);
rtw_write8(adapter, REG_WMAC_TRXPTCL_CTL + 2, regTmp);
}
break;
case HW_VAR_CAM_EMPTY_ENTRY: {
u8 ucIndex = *((u8 *)val);
u8 i;
u32 ulCommand = 0;
u32 ulContent = 0;
u32 ulEncAlgo = CAM_AES;
for (i = 0; i < CAM_CONTENT_COUNT; i++) {
/* filled id in CAM config 2 byte */
if (i == 0) {
ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo) << 2);
/* ulContent |= CAM_VALID; */
} else
ulContent = 0;
/* polling bit, and No Write enable, and address */
ulCommand = CAM_CONTENT_COUNT * ucIndex + i;
ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
/* write content 0 is equall to mark invalid */
rtw_write32(adapter, WCAMI, ulContent); /* delay_ms(40); */
rtw_write32(adapter, RWCAM, ulCommand); /* delay_ms(40); */
}
}
break;
case HW_VAR_CAM_INVALID_ALL:
rtw_write32(adapter, RWCAM, BIT(31) | BIT(30));
break;
case HW_VAR_AC_PARAM_VO:
rtw_write32(adapter, REG_EDCA_VO_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_VI:
rtw_write32(adapter, REG_EDCA_VI_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_BE:
pHalData->ac_param_be = ((u32 *)(val))[0];
rtw_write32(adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_BK:
rtw_write32(adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_ACM_CTRL: {
u8 acm_ctrl = *((u8 *)val);
u8 AcmCtrl = rtw_read8(adapter, REG_ACMHWCTRL);
if (acm_ctrl > 1)
AcmCtrl = AcmCtrl | 0x1;
if (acm_ctrl & BIT(3))
AcmCtrl |= AcmHw_VoqEn;
else
AcmCtrl &= (~AcmHw_VoqEn);
if (acm_ctrl & BIT(2))
AcmCtrl |= AcmHw_ViqEn;
else
AcmCtrl &= (~AcmHw_ViqEn);
if (acm_ctrl & BIT(1))
AcmCtrl |= AcmHw_BeqEn;
else
AcmCtrl &= (~AcmHw_BeqEn);
RTW_INFO("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);
rtw_write8(adapter, REG_ACMHWCTRL, AcmCtrl);
}
break;
case HW_VAR_AMPDU_FACTOR: {
u8 RegToSet_Normal[4] = {0x41, 0xa8, 0x72, 0xb9};
u8 RegToSet_BT[4] = {0x31, 0x74, 0x42, 0x97};
u8 FactorToSet;
u8 *pRegToSet;
u8 index = 0;
#ifdef CONFIG_BT_COEXIST
if ((pHalData->bt_coexist.BT_Coexist) &&
(pHalData->bt_coexist.BT_CoexistType == BT_CSR_BC4))
pRegToSet = RegToSet_BT; /* 0x97427431; */
else
#endif
pRegToSet = RegToSet_Normal; /* 0xb972a841; */
FactorToSet = *((u8 *)val);
if (FactorToSet <= 3) {
FactorToSet = (1 << (FactorToSet + 2));
if (FactorToSet > 0xf)
FactorToSet = 0xf;
for (index = 0; index < 4; index++) {
if ((pRegToSet[index] & 0xf0) > (FactorToSet << 4))
pRegToSet[index] = (pRegToSet[index] & 0x0f) | (FactorToSet << 4);
if ((pRegToSet[index] & 0x0f) > FactorToSet)
pRegToSet[index] = (pRegToSet[index] & 0xf0) | (FactorToSet);
rtw_write8(adapter, (REG_AGGLEN_LMT + index), pRegToSet[index]);
}
}
}
break;
case HW_VAR_H2C_FW_PWRMODE: {
u8 psmode = (*(u8 *)val);
/* Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
/* saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
if (psmode != PS_MODE_ACTIVE)
odm_rf_saving(podmpriv, true);
rtl8188e_set_FwPwrMode_cmd(adapter, psmode);
}
break;
case HW_VAR_H2C_FW_JOINBSSRPT: {
u8 mstatus = (*(u8 *)val);
rtl8188e_set_FwJoinBssReport_cmd(adapter, mstatus);
}
break;
#ifdef CONFIG_P2P_PS
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD: {
u8 p2p_ps_state = (*(u8 *)val);
rtl8188e_set_p2p_ps_offload_cmd(adapter, p2p_ps_state);
}
break;
#endif /* CONFIG_P2P_PS */
#ifdef CONFIG_TDLS
case HW_VAR_TDLS_WRCR:
rtw_write32(adapter, REG_RCR, rtw_read32(adapter, REG_RCR) & (~RCR_CBSSID_DATA));
break;
case HW_VAR_TDLS_RS_RCR:
rtw_write32(adapter, REG_RCR, rtw_read32(adapter, REG_RCR) | (RCR_CBSSID_DATA));
break;
#endif /* CONFIG_TDLS */
#ifdef CONFIG_BT_COEXIST
case HW_VAR_BT_SET_COEXIST: {
u8 bStart = (*(u8 *)val);
rtl8192c_set_dm_bt_coexist(adapter, bStart);
}
break;
case HW_VAR_BT_ISSUE_DELBA: {
u8 dir = (*(u8 *)val);
rtl8192c_issue_delete_ba(adapter, dir);
}
break;
#endif
#if (RATE_ADAPTIVE_SUPPORT == 1)
case HW_VAR_RPT_TIMER_SETTING: {
u16 min_rpt_time = (*(u16 *)val);
odm_ra_set_tx_rpt_time(podmpriv, min_rpt_time);
}
break;
#endif
case HW_VAR_EFUSE_BYTES: /* To set EFUE total used bytes, added by Roger, 2008.12.22. */
pHalData->EfuseUsedBytes = *((u16 *)val);
break;
case HW_VAR_FIFO_CLEARN_UP: {
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
u8 trycnt = 100;
/* pause tx */
rtw_write8(adapter, REG_TXPAUSE, 0xff);
/* keep sn */
adapter->xmitpriv.nqos_ssn = rtw_read16(adapter, REG_NQOS_SEQ);
if (pwrpriv->bkeepfwalive != true) {
/* RX DMA stop */
rtw_write32(adapter, REG_RXPKT_NUM, (rtw_read32(adapter, REG_RXPKT_NUM) | RW_RELEASE_EN));
do {
if (!(rtw_read32(adapter, REG_RXPKT_NUM) & RXDMA_IDLE))
break;
} while (trycnt--);
if (trycnt == 0)
RTW_INFO("Stop RX DMA failed......\n");
/* RQPN Load 0 */
rtw_write16(adapter, REG_RQPN_NPQ, 0x0);
rtw_write32(adapter, REG_RQPN, 0x80000000);
rtw_mdelay_os(10);
}
}
break;
case HW_VAR_RESTORE_HW_SEQ:
/* restore Sequence No. */
rtw_write8(adapter, 0x4dc, adapter->xmitpriv.nqos_ssn);
break;
#if (RATE_ADAPTIVE_SUPPORT == 1)
case HW_VAR_TX_RPT_MAX_MACID: {
u8 maxMacid = *val;
RTW_INFO("### MacID(%d),Set Max Tx RPT MID(%d)\n", maxMacid, maxMacid + 1);
rtw_write8(adapter, REG_TX_RPT_CTRL + 1, maxMacid + 1);
}
break;
#endif /* (RATE_ADAPTIVE_SUPPORT == 1) */
case HW_VAR_BCN_VALID:
/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
rtw_write8(adapter, REG_TDECTRL + 2, rtw_read8(adapter, REG_TDECTRL + 2) | BIT0);
break;
case HW_VAR_CHECK_TXBUF: {
u8 retry_limit;
u16 val16;
u32 reg_200 = 0, reg_204 = 0;
u32 init_reg_200 = 0, init_reg_204 = 0;
u32 start = rtw_get_current_time();
u32 pass_ms;
int i = 0;
retry_limit = 0x01;
val16 = retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT;
rtw_write16(adapter, REG_RL, val16);
while (rtw_get_passing_time_ms(start) < 2000
&& !RTW_CANNOT_RUN(adapter)
) {
reg_200 = rtw_read32(adapter, 0x200);
reg_204 = rtw_read32(adapter, 0x204);
if (i == 0) {
init_reg_200 = reg_200;
init_reg_204 = reg_204;
}
i++;
if ((reg_200 & 0x00ffffff) != (reg_204 & 0x00ffffff)) {
/* RTW_INFO("%s: (HW_VAR_CHECK_TXBUF)TXBUF NOT empty - 0x204=0x%x, 0x200=0x%x (%d)\n", __func__, reg_204, reg_200, i); */
rtw_msleep_os(10);
} else
break;
}
pass_ms = rtw_get_passing_time_ms(start);
if (RTW_CANNOT_RUN(adapter))
;
else if (pass_ms >= 2000 || (reg_200 & 0x00ffffff) != (reg_204 & 0x00ffffff)) {
RTW_PRINT("%s:(HW_VAR_CHECK_TXBUF)NOT empty(%d) in %d ms\n", __func__, i, pass_ms);
RTW_PRINT("%s:(HW_VAR_CHECK_TXBUF)0x200=0x%08x, 0x204=0x%08x (0x%08x, 0x%08x)\n",
__func__, reg_200, reg_204, init_reg_200, init_reg_204);
/* rtw_warn_on(1); */
} else
RTW_INFO("%s:(HW_VAR_CHECK_TXBUF)TXBUF Empty(%d) in %d ms\n", __func__, i, pass_ms);
retry_limit = 0x30;
val16 = retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT;
rtw_write16(adapter, REG_RL, val16);
}
break;
case HW_VAR_RESP_SIFS: {
struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv;
if ((pmlmeext->cur_wireless_mode == WIRELESS_11G) ||
(pmlmeext->cur_wireless_mode == WIRELESS_11BG)) { /* WIRELESS_MODE_G){ */
val[0] = 0x0a;
val[1] = 0x0a;
} else {
val[0] = 0x0e;
val[1] = 0x0e;
}
/* SIFS for OFDM Data ACK */
rtw_write8(adapter, REG_SIFS_CTX + 1, val[0]);
/* SIFS for OFDM consecutive tx like CTS data! */
rtw_write8(adapter, REG_SIFS_TRX + 1, val[1]);
rtw_write8(adapter, REG_SPEC_SIFS + 1, val[0]);
rtw_write8(adapter, REG_MAC_SPEC_SIFS + 1, val[0]);
/* RESP_SIFS for OFDM */
rtw_write8(adapter, REG_RESP_SIFS_OFDM, val[0]);
rtw_write8(adapter, REG_RESP_SIFS_OFDM + 1, val[0]);
}
break;
case HW_VAR_MACID_LINK: {
u32 reg_macid_no_link;
u8 bit_shift;
u8 id = *(u8 *)val;
u32 val32;
if (id < 32) {
reg_macid_no_link = REG_MACID_NO_LINK_0;
bit_shift = id;
} else if (id < 64) {
reg_macid_no_link = REG_MACID_NO_LINK_1;
bit_shift = id - 32;
} else {
rtw_warn_on(1);
break;
}
val32 = rtw_read32(adapter, reg_macid_no_link);
if (!(val32 & BIT(bit_shift)))
break;
val32 &= ~BIT(bit_shift);
rtw_write32(adapter, reg_macid_no_link, val32);
}
break;
case HW_VAR_MACID_NOLINK: {
u32 reg_macid_no_link;
u8 bit_shift;
u8 id = *(u8 *)val;
u32 val32;
if (id < 32) {
reg_macid_no_link = REG_MACID_NO_LINK_0;
bit_shift = id;
} else if (id < 64) {
reg_macid_no_link = REG_MACID_NO_LINK_1;
bit_shift = id - 32;
} else {
rtw_warn_on(1);
break;
}
val32 = rtw_read32(adapter, reg_macid_no_link);
if (val32 & BIT(bit_shift))
break;
val32 |= BIT(bit_shift);
rtw_write32(adapter, reg_macid_no_link, val32);
}
break;
case HW_VAR_MACID_SLEEP: {
u32 reg_macid_sleep;
u8 bit_shift;
u8 id = *(u8 *)val;
u32 val32;
if (id < 32) {
reg_macid_sleep = REG_MACID_PAUSE_0;
bit_shift = id;
} else if (id < 64) {
reg_macid_sleep = REG_MACID_PAUSE_1;
bit_shift = id - 32;
} else {
rtw_warn_on(1);
break;
}
val32 = rtw_read32(adapter, reg_macid_sleep);
RTW_INFO(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] macid=%d, org reg_0x%03x=0x%08X\n",
FUNC_ADPT_ARG(adapter), id, reg_macid_sleep, val32);
if (val32 & BIT(bit_shift))
break;
val32 |= BIT(bit_shift);
rtw_write32(adapter, reg_macid_sleep, val32);
}
break;
case HW_VAR_MACID_WAKEUP: {
u32 reg_macid_sleep;
u8 bit_shift;
u8 id = *(u8 *)val;
u32 val32;
if (id < 32) {
reg_macid_sleep = REG_MACID_PAUSE_0;
bit_shift = id;
} else if (id < 64) {
reg_macid_sleep = REG_MACID_PAUSE_1;
bit_shift = id - 32;
} else {
rtw_warn_on(1);
break;
}
val32 = rtw_read32(adapter, reg_macid_sleep);
RTW_INFO(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] macid=%d, org reg_0x%03x=0x%08X\n",
FUNC_ADPT_ARG(adapter), id, reg_macid_sleep, val32);
if (!(val32 & BIT(bit_shift)))
break;
val32 &= ~BIT(bit_shift);
rtw_write32(adapter, reg_macid_sleep, val32);
}
break;
default:
SetHwReg(adapter, variable, val);
break;
}
}
struct qinfo_88e {
u32 head:8;
u32 pkt_num:8;
u32 tail:8;
u32 ac:2;
u32 macid:6;
};
struct bcn_qinfo_88e {
u16 head:8;
u16 pkt_num:8;
};
static void dump_qinfo_88e(void *sel, struct qinfo_88e *info, const char *tag)
{
/* if (info->pkt_num) */
RTW_PRINT_SEL(sel, "%shead:0x%02x, tail:0x%02x, pkt_num:%u, macid:%u, ac:%u\n"
, tag ? tag : "", info->head, info->tail, info->pkt_num, info->macid, info->ac
);
}
static void dump_bcn_qinfo_88e(void *sel, struct bcn_qinfo_88e *info, const char *tag)
{
/* if (info->pkt_num) */
RTW_PRINT_SEL(sel, "%shead:0x%02x, pkt_num:%u\n"
, tag ? tag : "", info->head, info->pkt_num
);
}
static void dump_mac_qinfo_88e(void *sel, _adapter *adapter)
{
u32 q0_info;
u32 q1_info;
u32 q2_info;
u32 q3_info;
/*
u32 q4_info;
u32 q5_info;
u32 q6_info;
u32 q7_info;
*/
u32 mg_q_info;
u32 hi_q_info;
u16 bcn_q_info;
q0_info = rtw_read32(adapter, REG_Q0_INFO);
q1_info = rtw_read32(adapter, REG_Q1_INFO);
q2_info = rtw_read32(adapter, REG_Q2_INFO);
q3_info = rtw_read32(adapter, REG_Q3_INFO);
/*
q4_info = rtw_read32(adapter, REG_Q4_INFO);
q5_info = rtw_read32(adapter, REG_Q5_INFO);
q6_info = rtw_read32(adapter, REG_Q6_INFO);
q7_info = rtw_read32(adapter, REG_Q7_INFO);
*/
mg_q_info = rtw_read32(adapter, REG_MGQ_INFO);
hi_q_info = rtw_read32(adapter, REG_HGQ_INFO);
bcn_q_info = rtw_read16(adapter, REG_BCNQ_INFO);
dump_qinfo_88e(sel, (struct qinfo_88e *)&q0_info, "Q0 ");
dump_qinfo_88e(sel, (struct qinfo_88e *)&q1_info, "Q1 ");
dump_qinfo_88e(sel, (struct qinfo_88e *)&q2_info, "Q2 ");
dump_qinfo_88e(sel, (struct qinfo_88e *)&q3_info, "Q3 ");
/*
dump_qinfo_88e(sel, (struct qinfo_88e *)&q4_info, "Q4 ");
dump_qinfo_88e(sel, (struct qinfo_88e *)&q5_info, "Q5 ");
dump_qinfo_88e(sel, (struct qinfo_88e *)&q6_info, "Q6 ");
dump_qinfo_88e(sel, (struct qinfo_88e *)&q7_info, "Q7 ");
*/
dump_qinfo_88e(sel, (struct qinfo_88e *)&mg_q_info, "MG ");
dump_qinfo_88e(sel, (struct qinfo_88e *)&hi_q_info, "HI ");
dump_bcn_qinfo_88e(sel, (struct bcn_qinfo_88e *)&bcn_q_info, "BCN ");
}
void GetHwReg8188E(_adapter *adapter, u8 variable, u8 *val)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter);
switch (variable) {
case HW_VAR_SYS_CLKR:
*val = rtw_read8(adapter, REG_SYS_CLKR);
break;
case HW_VAR_TXPAUSE:
val[0] = rtw_read8(adapter, REG_TXPAUSE);
break;
case HW_VAR_BCN_VALID:
/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
val[0] = (BIT0 & rtw_read8(adapter, REG_TDECTRL + 2)) ? true : false;
break;
case HW_VAR_FWLPS_RF_ON: {
/* When we halt NIC, we should check if FW LPS is leave. */
if (adapter_to_pwrctl(adapter)->rf_pwrstate == rf_off) {
/* If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
/* because Fw is unload. */
val[0] = true;
} else {
u32 valRCR;
valRCR = rtw_read32(adapter, REG_RCR);
valRCR &= 0x00070000;
if (valRCR)
val[0] = false;
else
val[0] = true;
}
}
break;
case HW_VAR_EFUSE_BYTES: /* To get EFUE total used bytes, added by Roger, 2008.12.22. */
*((u16 *)(val)) = pHalData->EfuseUsedBytes;
break;
case HW_VAR_CHK_HI_QUEUE_EMPTY:
*val = ((rtw_read32(adapter, REG_HGQ_INFO) & 0x0000ff00) == 0) ? true : false;
break;
case HW_VAR_DUMP_MAC_QUEUE_INFO:
dump_mac_qinfo_88e(val, adapter);
break;
default:
GetHwReg(adapter, variable, val);
break;
}
}
static void hal_ra_info_dump(_adapter *padapter , void *sel)
{
int i;
u8 mac_id;
u8 bLinked = false;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj);
_adapter *iface;
for (i = 0; i < dvobj->iface_nums; i++) {
iface = dvobj->padapters[i];
if ((iface) && rtw_is_adapter_up(iface)) {
if (rtw_linked_check(iface)) {
bLinked = true;
break;
}
}
}
for (i = 0; i < macid_ctl->num; i++) {
if (rtw_macid_is_used(macid_ctl, i) && !rtw_macid_is_bmc(macid_ctl, i)) {
mac_id = (u8) i;
if (bLinked) {
_RTW_PRINT_SEL(sel , "============ RA status - Mac_id:%d ===================\n", mac_id);
if (pHalData->fw_ractrl == false) {
#if (RATE_ADAPTIVE_SUPPORT == 1)
_RTW_PRINT_SEL(sel , "Mac_id:%d ,RSSI:%d(%%)\n", mac_id, pHalData->odmpriv.ra_info[mac_id].rssi_sta_ra);
_RTW_PRINT_SEL(sel , "rate_sgi = %d, decision_rate = %s\n", pHalData->odmpriv.ra_info[mac_id].rate_sgi,
HDATA_RATE(pHalData->odmpriv.ra_info[mac_id].decision_rate));
_RTW_PRINT_SEL(sel , "pt_stage = %d\n", pHalData->odmpriv.ra_info[mac_id].pt_stage);
_RTW_PRINT_SEL(sel , "rate_id = %d,ra_use_rate = 0x%08x\n", pHalData->odmpriv.ra_info[mac_id].rate_id, pHalData->odmpriv.ra_info[mac_id].ra_use_rate);
#endif /* (RATE_ADAPTIVE_SUPPORT == 1)*/
} else {
u8 cur_rate = rtw_read8(padapter, REG_ADAPTIVE_DATA_RATE_0 + mac_id);
u8 sgi = (cur_rate & BIT7) ? true : false;
cur_rate &= 0x7f;
_RTW_PRINT_SEL(sel , "Mac_id:%d ,SGI:%d ,Rate:%s\n", mac_id, sgi, HDATA_RATE(cur_rate));
}
}
}
}
}
u8
GetHalDefVar8188E(
PADAPTER Adapter,
HAL_DEF_VARIABLE eVariable,
void * pValue
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 bResult = _SUCCESS;
switch (eVariable) {
case HAL_DEF_IS_SUPPORT_ANT_DIV:
#ifdef CONFIG_ANTENNA_DIVERSITY
*((u8 *)pValue) = (pHalData->AntDivCfg == 0) ? false : true;
#endif
break;
case HAL_DEF_DRVINFO_SZ:
*((u32 *)pValue) = DRVINFO_SZ;
break;
case HAL_DEF_MAX_RECVBUF_SZ:
*((u32 *)pValue) = MAX_RECVBUF_SZ;
break;
case HAL_DEF_RX_PACKET_OFFSET:
*((u32 *)pValue) = RXDESC_SIZE + DRVINFO_SZ * 8;
break;
#if (RATE_ADAPTIVE_SUPPORT == 1)
case HAL_DEF_RA_DECISION_RATE: {
u8 MacID = *((u8 *)pValue);
*((u8 *)pValue) = odm_ra_get_decision_rate_8188e(&(pHalData->odmpriv), MacID);
}
break;
case HAL_DEF_RA_SGI: {
u8 MacID = *((u8 *)pValue);
*((u8 *)pValue) = odm_ra_get_sgi_8188e(&(pHalData->odmpriv), MacID);
}
break;
#endif
case HAL_DEF_PT_PWR_STATUS:
#if (POWER_TRAINING_ACTIVE == 1)
{
u8 MacID = *((u8 *)pValue);
*((u8 *)pValue) = odm_ra_get_hw_pwr_status_8188e(&(pHalData->odmpriv), MacID);
}
#endif /* (POWER_TRAINING_ACTIVE==1) */
break;
case HAL_DEF_EXPLICIT_BEAMFORMEE:
case HAL_DEF_EXPLICIT_BEAMFORMER:
*((u8 *)pValue) = false;
break;
case HW_DEF_RA_INFO_DUMP:
hal_ra_info_dump(Adapter, pValue);
break;
case HAL_DEF_TX_PAGE_SIZE:
*((u32 *)pValue) = PAGE_SIZE_128;
break;
case HAL_DEF_TX_PAGE_BOUNDARY:
if (!Adapter->registrypriv.wifi_spec)
*(u8 *)pValue = TX_PAGE_BOUNDARY_88E(Adapter);
else
*(u8 *)pValue = WMM_NORMAL_TX_PAGE_BOUNDARY_88E(Adapter);
break;
case HAL_DEF_MACID_SLEEP:
*(u8 *)pValue = true; /* support macid sleep */
break;
case HAL_DEF_RX_DMA_SZ_WOW:
*(u32 *)pValue = RX_DMA_SIZE_88E(Adapter) - RESV_FMWF;
break;
case HAL_DEF_RX_DMA_SZ:
*(u32 *)pValue = MAX_RX_DMA_BUFFER_SIZE_88E(Adapter);
break;
case HAL_DEF_RX_PAGE_SIZE:
*(u32 *)pValue = PAGE_SIZE_128;
break;
case HW_VAR_BEST_AMPDU_DENSITY:
*((u32 *)pValue) = AMPDU_DENSITY_VALUE_7;
break;
default:
bResult = GetHalDefVar(Adapter, eVariable, pValue);
break;
}
return bResult;
}
#ifdef CONFIG_GPIO_API
int rtl8188e_GpioFuncCheck(PADAPTER adapter, u8 gpio_num)
{
int ret = _SUCCESS;
if (IS_HARDWARE_TYPE_8188E(adapter) == _FAIL) {
if ((gpio_num > 7) || (gpio_num < 4)) {
RTW_INFO("%s The gpio number does not included 4~7.\n",__func__);
ret = _FAIL;
}
}
return ret;
}
#endif