rtl8188eu/hal/rtl8188e_phycfg.c

1765 lines
48 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _RTL8188E_PHYCFG_C_
#include <osdep_service.h>
#include <drv_types.h>
#include <rtw_iol.h>
#include <rtl8188e_hal.h>
/*---------------------------Define Local Constant---------------------------*/
/* Channel switch:The size of command tables for switch channel*/
#define MAX_PRECMD_CNT 16
#define MAX_RFDEPENDCMD_CNT 16
#define MAX_POSTCMD_CNT 16
#define MAX_DOZE_WAITING_TIMES_9x 64
/*---------------------------Define Local Constant---------------------------*/
/*------------------------Define global variable-----------------------------*/
/*------------------------Define local variable------------------------------*/
/*--------------------Define export function prototype-----------------------*/
/* Please refer to header file */
/*--------------------Define export function prototype-----------------------*/
/*----------------------------Function Body----------------------------------*/
/* */
/* 1. BB register R/W API */
/* */
/**
* Function: phy_CalculateBitShift
*
* OverView: Get shifted position of the BitMask
*
* Input:
* u4Byte BitMask,
*
* Output: none
* Return: u4Byte Return the shift bit bit position of the mask
*/
static u32
phy_CalculateBitShift(
u32 BitMask
)
{
u32 i;
for (i=0; i<=31; i++)
{
if ( ((BitMask>>i) & 0x1 ) == 1)
break;
}
return (i);
}
#if (SIC_ENABLE == 1)
static bool
sic_IsSICReady(
PADAPTER Adapter
)
{
bool bRet=false;
u32 retryCnt=0;
u8 sic_cmd=0xff;
while (1)
{
if (retryCnt++ >= SIC_MAX_POLL_CNT)
{
return false;
}
sic_cmd = rtw_read8(Adapter, SIC_CMD_REG);
#if (SIC_HW_SUPPORT == 1)
sic_cmd &= 0xf0; /* [7:4] */
#endif
if (sic_cmd == SIC_CMD_READY)
return true;
else
{
rtw_msleep_os(1);
}
}
return bRet;
}
static u32
sic_Read4Byte(
void * Adapter,
u32 offset
)
{
u32 u4ret=0xffffffff;
#if RTL8188E_SUPPORT == 1
u8 retry = 0;
#endif
if (sic_IsSICReady(Adapter))
{
#if (SIC_HW_SUPPORT == 1)
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_PREREAD);
#endif
rtw_write8(Adapter, SIC_ADDR_REG, (u8)(offset&0xff));
rtw_write8(Adapter, SIC_ADDR_REG+1, (u8)((offset&0xff00)>>8));
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_READ);
#if RTL8188E_SUPPORT == 1
retry = 4;
while (retry--){
rtw_udelay_os(50);
}
#else
rtw_udelay_os(200);
#endif
if (sic_IsSICReady(Adapter))
u4ret = rtw_read32(Adapter, SIC_DATA_REG);
}
return u4ret;
}
static void
sic_Write4Byte(
void * Adapter,
u32 offset,
u32 data
)
{
#if RTL8188E_SUPPORT == 1
u8 retry = 6;
#endif
if (sic_IsSICReady(Adapter))
{
#if (SIC_HW_SUPPORT == 1)
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_PREWRITE);
#endif
rtw_write8(Adapter, SIC_ADDR_REG, (u8)(offset&0xff));
rtw_write8(Adapter, SIC_ADDR_REG+1, (u8)((offset&0xff00)>>8));
rtw_write32(Adapter, SIC_DATA_REG, (u32)data);
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_WRITE);
#if RTL8188E_SUPPORT == 1
while (retry--){
rtw_udelay_os(50);
}
#else
rtw_udelay_os(150);
#endif
}
}
/* */
/* extern function */
/* */
static void
SIC_SetBBReg(
PADAPTER Adapter,
u32 RegAddr,
u32 BitMask,
u32 Data
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u32 OriginalValue, BitShift;
u16 BBWaitCounter = 0;
/* */
/* Critical section start */
/* */
if (BitMask!= bMaskDWord){/* if not "double word" write */
OriginalValue = sic_Read4Byte(Adapter, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Data = (((OriginalValue) & (~BitMask)) | (Data << BitShift));
}
sic_Write4Byte(Adapter, RegAddr, Data);
}
static u32
SIC_QueryBBReg(
PADAPTER Adapter,
u32 RegAddr,
u32 BitMask
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u32 ReturnValue = 0, OriginalValue, BitShift;
u16 BBWaitCounter = 0;
OriginalValue = sic_Read4Byte(Adapter, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
ReturnValue = (OriginalValue & BitMask) >> BitShift;
return (ReturnValue);
}
void
SIC_Init(
PADAPTER Adapter
)
{
/* Here we need to write 0x1b8~0x1bf = 0 after fw is downloaded */
/* because for 8723E at beginning 0x1b8=0x1e, that will cause */
/* sic always not be ready */
#if (SIC_HW_SUPPORT == 1)
rtw_write8(Adapter, SIC_INIT_REG, SIC_INIT_VAL);
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_INIT);
#else
rtw_write32(Adapter, SIC_CMD_REG, 0);
rtw_write32(Adapter, SIC_CMD_REG+4, 0);
#endif
}
static bool
SIC_LedOff(
PADAPTER Adapter
)
{
/* When SIC is enabled, led pin will be used as debug pin, */
/* so don't execute led function when SIC is enabled. */
return true;
}
#endif
/**
* Function: PHY_QueryBBReg
*
* OverView: Read "sepcific bits" from BB register
*
* Input:
* PADAPTER Adapter,
* u4Byte RegAddr, The target address to be readback
* u4Byte BitMask The target bit position in the target address
* to be readback
* Output: None
* Return: u4Byte Data The readback register value
* Note: This function is equal to "GetRegSetting" in PHY programming guide
*/
u32
rtl8188e_PHY_QueryBBReg(
PADAPTER Adapter,
u32 RegAddr,
u32 BitMask
)
{
u32 ReturnValue = 0, OriginalValue, BitShift;
u16 BBWaitCounter = 0;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
#if (SIC_ENABLE == 1)
return SIC_QueryBBReg(Adapter, RegAddr, BitMask);
#endif
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
ReturnValue = (OriginalValue & BitMask) >> BitShift;
return (ReturnValue);
}
/**
* Function: PHY_SetBBReg
*
* OverView: Write "Specific bits" to BB register (page 8~)
*
* Input:
* PADAPTER Adapter,
* u4Byte RegAddr, The target address to be modified
* u4Byte BitMask The target bit position in the target address
* to be modified
* u4Byte Data The new register value in the target bit position
* of the target address
*
* Output: None
* Return: None
* Note: This function is equal to "PutRegSetting" in PHY programming guide
*/
void
rtl8188e_PHY_SetBBReg(
PADAPTER Adapter,
u32 RegAddr,
u32 BitMask,
u32 Data
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u32 OriginalValue, BitShift;
#if (DISABLE_BB_RF == 1)
return;
#endif
#if (SIC_ENABLE == 1)
SIC_SetBBReg(Adapter, RegAddr, BitMask, Data);
return;
#endif
if (BitMask!= bMaskDWord){/* if not "double word" write */
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Data = ((OriginalValue & (~BitMask)) | (Data << BitShift));
}
rtw_write32(Adapter, RegAddr, Data);
}
/* */
/* 2. RF register R/W API */
/* */
/**
* Function: phy_RFSerialRead
*
* OverView: Read regster from RF chips
*
* Input:
* PADAPTER Adapter,
* enum rf_radio_path eRFPath, Radio path of A/B/C/D
* u4Byte Offset, The target address to be read
*
* Output: None
* Return: u4Byte reback value
* Note: Threre are three types of serial operations:
* 1. Software serial write
* 2. Hardware LSSI-Low Speed Serial Interface
* 3. Hardware HSSI-High speed
* serial write. Driver need to implement (1) and (2).
* This function is equal to the combination of RF_ReadReg() and RFLSSIRead()
*/
static u32
phy_RFSerialRead(
PADAPTER Adapter,
enum rf_radio_path eRFPath,
u32 Offset
)
{
u32 retValue = 0;
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
struct bb_reg_def *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset;
u32 tmplong,tmplong2;
u8 RfPiEnable=0;
/* */
/* Make sure RF register offset is correct */
/* */
Offset &= 0xff;
/* */
/* Switch page for 8256 RF IC */
/* */
NewOffset = Offset;
/* For 92S LSSI Read RFLSSIRead */
/* For RF A/B write 0x824/82c(does not work in the future) */
/* We must use 0x824 for RF A and B to execute read trigger */
tmplong = PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord);
if (eRFPath == RF_PATH_A)
tmplong2 = tmplong;
else
tmplong2 = PHY_QueryBBReg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord);
tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset<<23) | bLSSIReadEdge; /* T65 RF */
PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord, tmplong&(~bLSSIReadEdge));
rtw_udelay_os(10);/* PlatformStallExecution(10); */
PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord, tmplong2);
rtw_udelay_os(100);/* PlatformStallExecution(100); */
rtw_udelay_os(10);/* PlatformStallExecution(10); */
if (eRFPath == RF_PATH_A)
RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter1, BIT8);
else if (eRFPath == RF_PATH_B)
RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XB_HSSIParameter1, BIT8);
if (RfPiEnable)
{ /* Read from BBreg8b8, 12 bits for 8190, 20bits for T65 RF */
retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBackPi, bLSSIReadBackData);
}
else
{ /* Read from BBreg8a0, 12 bits for 8190, 20 bits for T65 RF */
retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBack, bLSSIReadBackData);
}
return retValue;
}
/**
* Function: phy_RFSerialWrite
*
* OverView: Write data to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
* enum rf_radio_path eRFPath, Radio path of A/B/C/D
* u4Byte Offset, The target address to be read
* u4Byte Data The new register Data in the target bit position
* of the target to be read
*
* Output: None
* Return: None
* Note: Threre are three types of serial operations:
* 1. Software serial write
* 2. Hardware LSSI-Low Speed Serial Interface
* 3. Hardware HSSI-High speed
* serial write. Driver need to implement (1) and (2).
* This function is equal to the combination of RF_ReadReg() and RFLSSIRead()
*
* Note: For RF8256 only
* The total count of RTL8256(Zebra4) register is around 36 bit it only employs
* 4-bit RF address. RTL8256 uses "register mode control bit" (Reg00[12], Reg00[10])
* to access register address bigger than 0xf. See "Appendix-4 in PHY Configuration
* programming guide" for more details.
* Thus, we define a sub-finction for RTL8526 register address conversion
* ===========================================================
* Register Mode RegCTL[1] RegCTL[0] Note
* (Reg00[12]) (Reg00[10])
* ===========================================================
* Reg_Mode0 0 x Reg 0 ~15(0x0 ~ 0xf)
* ------------------------------------------------------------------
* Reg_Mode1 1 0 Reg 16 ~30(0x1 ~ 0xf)
* ------------------------------------------------------------------
* Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf)
* ------------------------------------------------------------------
*
* 2008/09/02 MH Add 92S RF definition
*
*
*
*/
static void
phy_RFSerialWrite(
PADAPTER Adapter,
enum rf_radio_path eRFPath,
u32 Offset,
u32 Data
)
{
u32 DataAndAddr = 0;
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
struct bb_reg_def *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset;
/* 2009/06/17 MH We can not execute IO for power save or other accident mode. */
Offset &= 0xff;
/* */
/* Switch page for 8256 RF IC */
/* */
NewOffset = Offset;
/* */
/* Put write addr in [5:0] and write data in [31:16] */
/* */
DataAndAddr = ((NewOffset<<20) | (Data&0x000fffff)) & 0x0fffffff; /* T65 RF */
/* */
/* Write Operation */
/* */
PHY_SetBBReg(Adapter, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
}
/**
* Function: PHY_QueryRFReg
*
* OverView: Query "Specific bits" to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
* enum rf_radio_path eRFPath, Radio path of A/B/C/D
* u4Byte RegAddr, The target address to be read
* u4Byte BitMask The target bit position in the target address
* to be read
*
* Output: None
* Return: u4Byte Readback value
* Note: This function is equal to "GetRFRegSetting" in PHY programming guide
*/
u32 rtl8188e_PHY_QueryRFReg(PADAPTER Adapter, enum rf_radio_path eRFPath,
u32 RegAddr, u32 BitMask)
{
u32 Original_Value, Readback_Value, BitShift;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Readback_Value = (Original_Value & BitMask) >> BitShift;
return (Readback_Value);
}
/**
* Function: PHY_SetRFReg
*
* OverView: Write "Specific bits" to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
* enum rf_radio_path eRFPath, Radio path of A/B/C/D
* u4Byte RegAddr, The target address to be modified
* u4Byte BitMask The target bit position in the target address
* to be modified
* u4Byte Data The new register Data in the target bit position
* of the target address
*
* Output: None
* Return: None
* Note: This function is equal to "PutRFRegSetting" in PHY programming guide
*/
void
rtl8188e_PHY_SetRFReg(
PADAPTER Adapter,
enum rf_radio_path eRFPath,
u32 RegAddr,
u32 BitMask,
u32 Data
)
{
u32 Original_Value, BitShift;
#if (DISABLE_BB_RF == 1)
return;
#endif
/* RF data is 12 bits only */
if (BitMask != bRFRegOffsetMask)
{
Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Data = ((Original_Value & (~BitMask)) | (Data<< BitShift));
}
phy_RFSerialWrite(Adapter, eRFPath, RegAddr, Data);
}
/* */
/* 3. Initial MAC/BB/RF config by reading MAC/BB/RF txt. */
/* */
/*-----------------------------------------------------------------------------
* Function: phy_ConfigMACWithParaFile()
*
* Overview: This function read BB parameters from general file format, and do register
* Read/Write
*
* Input: PADAPTER Adapter
* ps1Byte pFileName
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
*
* Note: The format of MACPHY_REG.txt is different from PHY and RF.
* [Register][Mask][Value]
*---------------------------------------------------------------------------*/
static int
phy_ConfigMACWithParaFile(
PADAPTER Adapter,
u8* pFileName
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _FAIL;
return rtStatus;
}
/*-----------------------------------------------------------------------------
* Function: PHY_MACConfig8192C
*
* Overview: Condig MAC by header file or parameter file.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 08/12/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
s32 PHY_MACConfig8188E(PADAPTER Adapter)
{
int rtStatus = _SUCCESS;
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
s8 sz8188EMACRegFile[] = RTL8188E_PHY_MACREG;
/* */
/* Config MAC */
/* */
if (HAL_STATUS_FAILURE == ODM_ConfigMACWithHeaderFile(&pHalData->odmpriv))
rtStatus = _FAIL;
/* 2010.07.13 AMPDU aggregation number B */
rtw_write16(Adapter, REG_MAX_AGGR_NUM, MAX_AGGR_NUM);
return rtStatus;
}
/**
* Function: phy_InitBBRFRegisterDefinition
*
* OverView: Initialize Register definition offset for Radio Path A/B/C/D
*
* Input:
* PADAPTER Adapter,
*
* Output: None
* Return: None
* Note: The initialization value is constant and it should never be changes
*/
static void
phy_InitBBRFRegisterDefinition(
PADAPTER Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
/* RF Interface Sowrtware Control */
pHalData->PHYRegDef[RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 LSBs if read 32-bit from 0x870 */
pHalData->PHYRegDef[RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */
pHalData->PHYRegDef[RF_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW;/* 16 LSBs if read 32-bit from 0x874 */
pHalData->PHYRegDef[RF_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW;/* 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */
/* RF Interface Readback Value */
pHalData->PHYRegDef[RF_PATH_A].rfintfi = rFPGA0_XAB_RFInterfaceRB; /* 16 LSBs if read 32-bit from 0x8E0 */
pHalData->PHYRegDef[RF_PATH_B].rfintfi = rFPGA0_XAB_RFInterfaceRB;/* 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) */
pHalData->PHYRegDef[RF_PATH_C].rfintfi = rFPGA0_XCD_RFInterfaceRB;/* 16 LSBs if read 32-bit from 0x8E4 */
pHalData->PHYRegDef[RF_PATH_D].rfintfi = rFPGA0_XCD_RFInterfaceRB;/* 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) */
/* RF Interface Output (and Enable) */
pHalData->PHYRegDef[RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x860 */
pHalData->PHYRegDef[RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x864 */
/* RF Interface (Output and) Enable */
pHalData->PHYRegDef[RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */
pHalData->PHYRegDef[RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */
/* Addr of LSSI. Wirte RF register by driver */
pHalData->PHYRegDef[RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; /* LSSI Parameter */
pHalData->PHYRegDef[RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;
/* RF parameter */
pHalData->PHYRegDef[RF_PATH_A].rfLSSI_Select = rFPGA0_XAB_RFParameter; /* BB Band Select */
pHalData->PHYRegDef[RF_PATH_B].rfLSSI_Select = rFPGA0_XAB_RFParameter;
pHalData->PHYRegDef[RF_PATH_C].rfLSSI_Select = rFPGA0_XCD_RFParameter;
pHalData->PHYRegDef[RF_PATH_D].rfLSSI_Select = rFPGA0_XCD_RFParameter;
/* Tx AGC Gain Stage (same for all path. Should we remove this?) */
pHalData->PHYRegDef[RF_PATH_A].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */
pHalData->PHYRegDef[RF_PATH_B].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */
pHalData->PHYRegDef[RF_PATH_C].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */
pHalData->PHYRegDef[RF_PATH_D].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */
/* Tranceiver A~D HSSI Parameter-1 */
pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara1 = rFPGA0_XA_HSSIParameter1; /* wire control parameter1 */
pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara1 = rFPGA0_XB_HSSIParameter1; /* wire control parameter1 */
/* Tranceiver A~D HSSI Parameter-2 */
pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; /* wire control parameter2 */
pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; /* wire control parameter2 */
/* RF switch Control */
pHalData->PHYRegDef[RF_PATH_A].rfSwitchControl = rFPGA0_XAB_SwitchControl; /* TR/Ant switch control */
pHalData->PHYRegDef[RF_PATH_B].rfSwitchControl = rFPGA0_XAB_SwitchControl;
pHalData->PHYRegDef[RF_PATH_C].rfSwitchControl = rFPGA0_XCD_SwitchControl;
pHalData->PHYRegDef[RF_PATH_D].rfSwitchControl = rFPGA0_XCD_SwitchControl;
/* AGC control 1 */
pHalData->PHYRegDef[RF_PATH_A].rfAGCControl1 = rOFDM0_XAAGCCore1;
pHalData->PHYRegDef[RF_PATH_B].rfAGCControl1 = rOFDM0_XBAGCCore1;
pHalData->PHYRegDef[RF_PATH_C].rfAGCControl1 = rOFDM0_XCAGCCore1;
pHalData->PHYRegDef[RF_PATH_D].rfAGCControl1 = rOFDM0_XDAGCCore1;
/* AGC control 2 */
pHalData->PHYRegDef[RF_PATH_A].rfAGCControl2 = rOFDM0_XAAGCCore2;
pHalData->PHYRegDef[RF_PATH_B].rfAGCControl2 = rOFDM0_XBAGCCore2;
pHalData->PHYRegDef[RF_PATH_C].rfAGCControl2 = rOFDM0_XCAGCCore2;
pHalData->PHYRegDef[RF_PATH_D].rfAGCControl2 = rOFDM0_XDAGCCore2;
/* RX AFE control 1 */
pHalData->PHYRegDef[RF_PATH_A].rfRxIQImbalance = rOFDM0_XARxIQImbalance;
pHalData->PHYRegDef[RF_PATH_B].rfRxIQImbalance = rOFDM0_XBRxIQImbalance;
pHalData->PHYRegDef[RF_PATH_C].rfRxIQImbalance = rOFDM0_XCRxIQImbalance;
pHalData->PHYRegDef[RF_PATH_D].rfRxIQImbalance = rOFDM0_XDRxIQImbalance;
/* RX AFE control 1 */
pHalData->PHYRegDef[RF_PATH_A].rfRxAFE = rOFDM0_XARxAFE;
pHalData->PHYRegDef[RF_PATH_B].rfRxAFE = rOFDM0_XBRxAFE;
pHalData->PHYRegDef[RF_PATH_C].rfRxAFE = rOFDM0_XCRxAFE;
pHalData->PHYRegDef[RF_PATH_D].rfRxAFE = rOFDM0_XDRxAFE;
/* Tx AFE control 1 */
pHalData->PHYRegDef[RF_PATH_A].rfTxIQImbalance = rOFDM0_XATxIQImbalance;
pHalData->PHYRegDef[RF_PATH_B].rfTxIQImbalance = rOFDM0_XBTxIQImbalance;
pHalData->PHYRegDef[RF_PATH_C].rfTxIQImbalance = rOFDM0_XCTxIQImbalance;
pHalData->PHYRegDef[RF_PATH_D].rfTxIQImbalance = rOFDM0_XDTxIQImbalance;
/* Tx AFE control 2 */
pHalData->PHYRegDef[RF_PATH_A].rfTxAFE = rOFDM0_XATxAFE;
pHalData->PHYRegDef[RF_PATH_B].rfTxAFE = rOFDM0_XBTxAFE;
pHalData->PHYRegDef[RF_PATH_C].rfTxAFE = rOFDM0_XCTxAFE;
pHalData->PHYRegDef[RF_PATH_D].rfTxAFE = rOFDM0_XDTxAFE;
/* Tranceiver LSSI Readback SI mode */
pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack;
/* Tranceiver LSSI Readback PI mode */
pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback;
pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback;
}
/*-----------------------------------------------------------------------------
* Function: phy_ConfigBBWithParaFile()
*
* Overview: This function read BB parameters from general file format, and do register
* Read/Write
*
* Input: PADAPTER Adapter
* ps1Byte pFileName
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
* 2008/11/06 MH For 92S we do not support silent reset now. Disable
* parameter file compare!!!!!!??
*
*---------------------------------------------------------------------------*/
static int
phy_ConfigBBWithParaFile(
PADAPTER Adapter,
u8* pFileName
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
return rtStatus;
}
/* */
/* The following is for High Power PA */
/* */
static void phy_ConfigBBExternalPA(PADAPTER Adapter)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u16 i=0;
u32 temp=0;
if (!pHalData->ExternalPA)
return;
/* 2010/10/19 MH According to Jenyu/EEChou 's opinion, we need not to execute the */
/* same code as SU. It is already updated in PHY_REG_1T_HP.txt. */
}
void
storePwrIndexDiffRateOffset(
PADAPTER Adapter,
u32 RegAddr,
u32 BitMask,
u32 Data
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
if (RegAddr == rTxAGC_A_Rate18_06)
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0] = Data;
if (RegAddr == rTxAGC_A_Rate54_24)
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][1] = Data;
if (RegAddr == rTxAGC_A_CCK1_Mcs32)
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][6] = Data;
if (RegAddr == rTxAGC_B_CCK11_A_CCK2_11 && BitMask == 0xffffff00)
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][7] = Data;
if (RegAddr == rTxAGC_A_Mcs03_Mcs00)
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][2] = Data;
if (RegAddr == rTxAGC_A_Mcs07_Mcs04)
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][3] = Data;
if (RegAddr == rTxAGC_A_Mcs11_Mcs08)
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][4] = Data;
if (RegAddr == rTxAGC_A_Mcs15_Mcs12) {
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][5] = Data;
if (pHalData->rf_type== RF_1T1R)
pHalData->pwrGroupCnt++;
}
if (RegAddr == rTxAGC_B_Rate18_06)
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][8] = Data;
if (RegAddr == rTxAGC_B_Rate54_24)
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][9] = Data;
if (RegAddr == rTxAGC_B_CCK1_55_Mcs32)
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][14] = Data;
if (RegAddr == rTxAGC_B_CCK11_A_CCK2_11 && BitMask == 0x000000ff)
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][15] = Data;
if (RegAddr == rTxAGC_B_Mcs03_Mcs00)
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][10] = Data;
if (RegAddr == rTxAGC_B_Mcs07_Mcs04)
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][11] = Data;
if (RegAddr == rTxAGC_B_Mcs11_Mcs08)
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][12] = Data;
if (RegAddr == rTxAGC_B_Mcs15_Mcs12) {
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][13] = Data;
if (pHalData->rf_type != RF_1T1R)
pHalData->pwrGroupCnt++;
}
}
/*-----------------------------------------------------------------------------
* Function: phy_ConfigBBWithPgParaFile
*
* Overview:
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/06/2008 MHC Create Version 0.
* 2009/07/29 tynli (porting from 92SE branch)2009/03/11 Add copy parameter file to buffer for silent reset
*---------------------------------------------------------------------------*/
static int
phy_ConfigBBWithPgParaFile(
PADAPTER Adapter,
u8* pFileName)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
return rtStatus;
} /* phy_ConfigBBWithPgParaFile */
static void
phy_BB8192C_Config_1T(
PADAPTER Adapter
)
{
/* for path - B */
PHY_SetBBReg(Adapter, rFPGA0_TxInfo, 0x3, 0x2);
PHY_SetBBReg(Adapter, rFPGA1_TxInfo, 0x300033, 0x200022);
/* 20100519 Joseph: Add for 1T2R config. Suggested by Kevin, Jenyu and Yunan. */
PHY_SetBBReg(Adapter, rCCK0_AFESetting, bMaskByte3, 0x45);
PHY_SetBBReg(Adapter, rOFDM0_TRxPathEnable, bMaskByte0, 0x23);
PHY_SetBBReg(Adapter, rOFDM0_AGCParameter1, 0x30, 0x1); /* B path first AGC */
PHY_SetBBReg(Adapter, 0xe74, 0x0c000000, 0x2);
PHY_SetBBReg(Adapter, 0xe78, 0x0c000000, 0x2);
PHY_SetBBReg(Adapter, 0xe7c, 0x0c000000, 0x2);
PHY_SetBBReg(Adapter, 0xe80, 0x0c000000, 0x2);
PHY_SetBBReg(Adapter, 0xe88, 0x0c000000, 0x2);
}
/* Joseph test: new initialize order!! */
/* Test only!! This part need to be re-organized. */
/* Now it is just for 8256. */
static int
phy_BB8190_Config_HardCode(
PADAPTER Adapter
)
{
return _SUCCESS;
}
static int
phy_BB8188E_Config_ParaFile(
PADAPTER Adapter
)
{
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(Adapter);
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
u8 sz8188EBBRegFile[] = RTL8188E_PHY_REG;
u8 sz8188EAGCTableFile[] = RTL8188E_AGC_TAB;
u8 sz8188EBBRegPgFile[] = RTL8188E_PHY_REG_PG;
u8 sz8188EBBRegMpFile[] = RTL8188E_PHY_REG_MP;
/* */
/* 1. Read PHY_REG.TXT BB INIT!! */
/* We will seperate as 88C / 92C according to chip version */
/* */
if (HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG))
rtStatus = _FAIL;
if (rtStatus != _SUCCESS)
goto phy_BB8190_Config_ParaFile_Fail;
/* */
/* 2. If EEPROM or EFUSE autoload OK, We must config by PHY_REG_PG.txt */
/* */
if (pEEPROM->bautoload_fail_flag == false)
{
pHalData->pwrGroupCnt = 0;
if (HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG_PG))
rtStatus = _FAIL;
}
if (rtStatus != _SUCCESS)
goto phy_BB8190_Config_ParaFile_Fail;
/* */
/* 3. BB AGC table Initialization */
/* */
if (HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_AGC_TAB))
rtStatus = _FAIL;
if (rtStatus != _SUCCESS)
goto phy_BB8190_Config_ParaFile_Fail;
phy_BB8190_Config_ParaFile_Fail:
return rtStatus;
}
int
PHY_BBConfig8188E(
PADAPTER Adapter
)
{
int rtStatus = _SUCCESS;
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u32 RegVal;
u8 TmpU1B=0;
u8 value8,CrystalCap;
phy_InitBBRFRegisterDefinition(Adapter);
/* Enable BB and RF */
RegVal = rtw_read16(Adapter, REG_SYS_FUNC_EN);
rtw_write16(Adapter, REG_SYS_FUNC_EN, (u16)(RegVal|BIT13|BIT0|BIT1));
/* 20090923 Joseph: Advised by Steven and Jenyu. Power sequence before init RF. */
rtw_write8(Adapter, REG_RF_CTRL, RF_EN|RF_RSTB|RF_SDMRSTB);
rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_USBA | FEN_USBD | FEN_BB_GLB_RSTn | FEN_BBRSTB);
/* */
/* Config BB and AGC */
/* */
rtStatus = phy_BB8188E_Config_ParaFile(Adapter);
/* write 0x24[16:11] = 0x24[22:17] = CrystalCap */
CrystalCap = pHalData->CrystalCap & 0x3F;
PHY_SetBBReg(Adapter, REG_AFE_XTAL_CTRL, 0x7ff800, (CrystalCap | (CrystalCap << 6)));
return rtStatus;
}
int
PHY_RFConfig8188E(
PADAPTER Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
/* */
/* RF config */
/* */
rtStatus = PHY_RF6052_Config8188E(Adapter);
return rtStatus;
}
/*-----------------------------------------------------------------------------
* Function: PHY_ConfigRFWithParaFile()
*
* Overview: This function read RF parameters from general file format, and do RF 3-wire
*
* Input: PADAPTER Adapter
* ps1Byte pFileName
* enum rf_radio_path eRFPath
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
*
* Note: Delay may be required for RF configuration
*---------------------------------------------------------------------------*/
int
rtl8188e_PHY_ConfigRFWithParaFile(
PADAPTER Adapter,
u8* pFileName,
enum rf_radio_path eRFPath
)
{
return _SUCCESS;
}
static int PHY_ConfigRFExternalPA(PADAPTER Adapter, enum rf_radio_path eRFPath)
{
int rtStatus = _SUCCESS;
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u16 i=0;
if (!pHalData->ExternalPA)
return rtStatus;
/* 2010/10/19 MH According to Jenyu/EEChou 's opinion, we need not to execute the */
/* same code as SU. It is already updated in radio_a_1T_HP.txt. */
return rtStatus;
}
void
rtl8192c_PHY_GetHWRegOriginalValue(
PADAPTER Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
/* read rx initial gain */
pHalData->DefaultInitialGain[0] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XAAGCCore1, bMaskByte0);
pHalData->DefaultInitialGain[1] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XBAGCCore1, bMaskByte0);
pHalData->DefaultInitialGain[2] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XCAGCCore1, bMaskByte0);
pHalData->DefaultInitialGain[3] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XDAGCCore1, bMaskByte0);
/* read framesync */
pHalData->framesync = (u8)PHY_QueryBBReg(Adapter, rOFDM0_RxDetector3, bMaskByte0);
pHalData->framesyncC34 = PHY_QueryBBReg(Adapter, rOFDM0_RxDetector2, bMaskDWord);
}
/* */
/* Description: */
/* Map dBm into Tx power index according to */
/* current HW model, for example, RF and PA, and */
/* current wireless mode. */
/* By Bruce, 2008-01-29. */
/* */
static u8
phy_DbmToTxPwrIdx(
PADAPTER Adapter,
enum wireless_mode WirelessMode,
int PowerInDbm
)
{
u8 TxPwrIdx = 0;
int Offset = 0;
/* */
/* Tested by MP, we found that CCK Index 0 equals to 8dbm, OFDM legacy equals to */
/* 3dbm, and OFDM HT equals to 0dbm repectively. */
/* Note: */
/* The mapping may be different by different NICs. Do not use this formula for what needs accurate result. */
/* By Bruce, 2008-01-29. */
/* */
switch (WirelessMode)
{
case WIRELESS_MODE_B:
Offset = -7;
break;
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
Offset = -8;
break;
default:
Offset = -8;
break;
}
if ((PowerInDbm - Offset) > 0)
TxPwrIdx = (u8)((PowerInDbm - Offset) * 2);
else
TxPwrIdx = 0;
/* Tx Power Index is too large. */
if (TxPwrIdx > MAX_TXPWR_IDX_NMODE_92S)
TxPwrIdx = MAX_TXPWR_IDX_NMODE_92S;
return TxPwrIdx;
}
/* */
/* Description: */
/* Map Tx power index into dBm according to */
/* current HW model, for example, RF and PA, and */
/* current wireless mode. */
/* By Bruce, 2008-01-29. */
/* */
static int phy_TxPwrIdxToDbm(PADAPTER Adapter, enum wireless_mode WirelessMode, u8 TxPwrIdx)
{
int Offset = 0;
int PwrOutDbm = 0;
/* */
/* Tested by MP, we found that CCK Index 0 equals to -7dbm, OFDM legacy equals to -8dbm. */
/* Note: */
/* The mapping may be different by different NICs. Do not use this formula for what needs accurate result. */
/* By Bruce, 2008-01-29. */
/* */
switch (WirelessMode)
{
case WIRELESS_MODE_B:
Offset = -7;
break;
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
Offset = -8;
default:
Offset = -8;
break;
}
PwrOutDbm = TxPwrIdx / 2 + Offset; /* Discard the decimal part. */
return PwrOutDbm;
}
/*-----------------------------------------------------------------------------
* Function: GetTxPowerLevel8190()
*
* Overview: This function is export to "common" moudule
*
* Input: PADAPTER Adapter
* psByte Power Level
*
* Output: NONE
*
* Return: NONE
*
*---------------------------------------------------------------------------*/
void
PHY_GetTxPowerLevel8188E(
PADAPTER Adapter,
u32* powerlevel
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u8 TxPwrLevel = 0;
int TxPwrDbm;
/* */
/* Because the Tx power indexes are different, we report the maximum of them to */
/* meet the CCX TPC request. By Bruce, 2008-01-31. */
/* */
/* CCK */
TxPwrLevel = pHalData->CurrentCckTxPwrIdx;
TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_B, TxPwrLevel);
/* Legacy OFDM */
TxPwrLevel = pHalData->CurrentOfdm24GTxPwrIdx + pHalData->LegacyHTTxPowerDiff;
/* Compare with Legacy OFDM Tx power. */
if (phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_G, TxPwrLevel) > TxPwrDbm)
TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_G, TxPwrLevel);
/* HT OFDM */
TxPwrLevel = pHalData->CurrentOfdm24GTxPwrIdx;
/* Compare with HT OFDM Tx power. */
if (phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_N_24G, TxPwrLevel) > TxPwrDbm)
TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_N_24G, TxPwrLevel);
*powerlevel = TxPwrDbm;
}
static void getTxPowerIndex88E(PADAPTER Adapter, u8 channel, u8 *cckPowerLevel,
u8 *ofdmPowerLevel, u8 *BW20PowerLevel,
u8 *BW40PowerLevel)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u8 index = (channel -1);
u8 TxCount=0,path_nums;
if ((RF_1T2R == pHalData->rf_type) || (RF_1T1R ==pHalData->rf_type))
path_nums = 1;
else
path_nums = 2;
for (TxCount=0; TxCount < path_nums; TxCount++) {
if (TxCount==RF_PATH_A) {
/* 1. CCK */
cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index];
/* 2. OFDM */
ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->OFDM_24G_Diff[TxCount][RF_PATH_A];
/* 1. BW20 */
BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[TxCount][RF_PATH_A];
/* 2. BW40 */
BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index];
} else if (TxCount==RF_PATH_B) {
/* 1. CCK */
cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index];
/* 2. OFDM */
ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[TxCount][index];
/* 1. BW20 */
BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[TxCount][RF_PATH_A]+
pHalData->BW20_24G_Diff[TxCount][index];
/* 2. BW40 */
BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index];
} else if (TxCount==RF_PATH_C) {
/* 1. CCK */
cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index];
/* 2. OFDM */
ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_B][index]+
pHalData->BW20_24G_Diff[TxCount][index];
/* 1. BW20 */
BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_B][index]+
pHalData->BW20_24G_Diff[TxCount][index];
/* 2. BW40 */
BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index];
} else if (TxCount==RF_PATH_D) {
/* 1. CCK */
cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index];
/* 2. OFDM */
ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_B][index]+
pHalData->BW20_24G_Diff[RF_PATH_C][index]+
pHalData->BW20_24G_Diff[TxCount][index];
/* 1. BW20 */
BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_B][index]+
pHalData->BW20_24G_Diff[RF_PATH_C][index]+
pHalData->BW20_24G_Diff[TxCount][index];
/* 2. BW40 */
BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index];
}
}
}
static void phy_PowerIndexCheck88E(PADAPTER Adapter, u8 channel, u8 *cckPowerLevel,
u8 *ofdmPowerLevel, u8 *BW20PowerLevel, u8 *BW40PowerLevel)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
pHalData->CurrentCckTxPwrIdx = cckPowerLevel[0];
pHalData->CurrentOfdm24GTxPwrIdx = ofdmPowerLevel[0];
pHalData->CurrentBW2024GTxPwrIdx = BW20PowerLevel[0];
pHalData->CurrentBW4024GTxPwrIdx = BW40PowerLevel[0];
}
/*-----------------------------------------------------------------------------
* Function: SetTxPowerLevel8190()
*
* Overview: This function is export to "HalCommon" moudule
* We must consider RF path later!!!!!!!
*
* Input: PADAPTER Adapter
* u1Byte channel
*
* Output: NONE
*
* Return: NONE
* 2008/11/04 MHC We remove EEPROM_93C56.
* We need to move CCX relative code to independet file.
* 2009/01/21 MHC Support new EEPROM format from SD3 requirement.
*
*---------------------------------------------------------------------------*/
void
PHY_SetTxPowerLevel8188E(
PADAPTER Adapter,
u8 channel
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u8 cckPowerLevel[MAX_TX_COUNT], ofdmPowerLevel[MAX_TX_COUNT];/* [0]:RF-A, [1]:RF-B */
u8 BW20PowerLevel[MAX_TX_COUNT], BW40PowerLevel[MAX_TX_COUNT];
u8 i=0;
getTxPowerIndex88E(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0],&BW20PowerLevel[0],&BW40PowerLevel[0]);
phy_PowerIndexCheck88E(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0],&BW20PowerLevel[0],&BW40PowerLevel[0]);
rtl8188e_PHY_RF6052SetCckTxPower(Adapter, &cckPowerLevel[0]);
rtl8188e_PHY_RF6052SetOFDMTxPower(Adapter, &ofdmPowerLevel[0],&BW20PowerLevel[0],&BW40PowerLevel[0], channel);
}
/* */
/* Description: */
/* Update transmit power level of all channel supported. */
/* */
/* TODO: */
/* A mode. */
/* By Bruce, 2008-02-04. */
/* */
bool
PHY_UpdateTxPowerDbm8188E(
PADAPTER Adapter,
int powerInDbm
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u8 idx;
u8 rf_path;
/* TODO: A mode Tx power. */
u8 CckTxPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_B, powerInDbm);
u8 OfdmTxPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_N_24G, powerInDbm);
if (OfdmTxPwrIdx - pHalData->LegacyHTTxPowerDiff > 0)
OfdmTxPwrIdx -= pHalData->LegacyHTTxPowerDiff;
else
OfdmTxPwrIdx = 0;
for (idx = 0; idx < 14; idx++)
{
for (rf_path = 0; rf_path < 2; rf_path++)
{
pHalData->TxPwrLevelCck[rf_path][idx] = CckTxPwrIdx;
pHalData->TxPwrLevelHT40_1S[rf_path][idx] =
pHalData->TxPwrLevelHT40_2S[rf_path][idx] = OfdmTxPwrIdx;
}
}
return true;
}
void
PHY_ScanOperationBackup8188E(
PADAPTER Adapter,
u8 Operation
)
{
}
/*-----------------------------------------------------------------------------
* Function: PHY_SetBWModeCallback8192C()
*
* Overview: Timer callback function for SetSetBWMode
*
* Input: PRT_TIMER pTimer
*
* Output: NONE
*
* Return: NONE
*
* Note: (1) We do not take j mode into consideration now
* (2) Will two workitem of "switch channel" and "switch channel bandwidth" run
* concurrently?
*---------------------------------------------------------------------------*/
static void
_PHY_SetBWMode92C(
PADAPTER Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u8 regBwOpMode;
u8 regRRSR_RSC;
if (pHalData->rf_chip == RF_PSEUDO_11N)
return;
/* There is no 40MHz mode in RF_8225. */
if (pHalData->rf_chip==RF_8225)
return;
if (Adapter->bDriverStopped)
return;
/* 3 */
/* 3<1>Set MAC register */
/* 3 */
regBwOpMode = rtw_read8(Adapter, REG_BWOPMODE);
regRRSR_RSC = rtw_read8(Adapter, REG_RRSR+2);
switch (pHalData->CurrentChannelBW)
{
case HT_CHANNEL_WIDTH_20:
regBwOpMode |= BW_OPMODE_20MHZ;
/* 2007/02/07 Mark by Emily becasue we have not verify whether this register works */
rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode);
break;
case HT_CHANNEL_WIDTH_40:
regBwOpMode &= ~BW_OPMODE_20MHZ;
/* 2007/02/07 Mark by Emily becasue we have not verify whether this register works */
rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode);
regRRSR_RSC = (regRRSR_RSC&0x90) |(pHalData->nCur40MhzPrimeSC<<5);
rtw_write8(Adapter, REG_RRSR+2, regRRSR_RSC);
break;
default:
break;
}
/* 3 */
/* 3 <2>Set PHY related register */
/* 3 */
switch (pHalData->CurrentChannelBW)
{
/* 20 MHz channel*/
case HT_CHANNEL_WIDTH_20:
PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x0);
PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x0);
/* PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 1); */
break;
/* 40 MHz channel*/
case HT_CHANNEL_WIDTH_40:
PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x1);
PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x1);
/* Set Control channel to upper or lower. These settings are required only for 40MHz */
PHY_SetBBReg(Adapter, rCCK0_System, bCCKSideBand, (pHalData->nCur40MhzPrimeSC>>1));
PHY_SetBBReg(Adapter, rOFDM1_LSTF, 0xC00, pHalData->nCur40MhzPrimeSC);
PHY_SetBBReg(Adapter, 0x818, (BIT26|BIT27), (pHalData->nCur40MhzPrimeSC==HAL_PRIME_CHNL_OFFSET_LOWER)?2:1);
break;
default:
break;
}
/* Skip over setting of J-mode in BB register here. Default value is "None J mode". Emily 20070315 */
/* 3<3>Set RF related register */
switch (pHalData->rf_chip)
{
case RF_8225:
break;
case RF_8256:
/* Please implement this function in Hal8190PciPhy8256.c */
break;
case RF_8258:
/* Please implement this function in Hal8190PciPhy8258.c */
break;
case RF_PSEUDO_11N:
break;
case RF_6052:
rtl8188e_PHY_RF6052SetBandwidth(Adapter, pHalData->CurrentChannelBW);
break;
default:
break;
}
}
/*-----------------------------------------------------------------------------
* Function: SetBWMode8190Pci()
*
* Overview: This function is export to "HalCommon" moudule
*
* Input: PADAPTER Adapter
* enum ht_channel_width Bandwidth 20M or 40M
*
* Output: NONE
*
* Return: NONE
*
* Note: We do not take j mode into consideration now
*---------------------------------------------------------------------------*/
void
PHY_SetBWMode8188E(
PADAPTER Adapter,
enum ht_channel_width Bandwidth, /* 20M or 40M */
unsigned char Offset /* Upper, Lower, or Don't care */
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
enum ht_channel_width tmpBW= pHalData->CurrentChannelBW;
pHalData->CurrentChannelBW = Bandwidth;
pHalData->nCur40MhzPrimeSC = Offset;
if ((!Adapter->bDriverStopped) && (!Adapter->bSurpriseRemoved))
_PHY_SetBWMode92C(Adapter);
else
pHalData->CurrentChannelBW = tmpBW;
}
static void _PHY_SwChnl8192C(PADAPTER Adapter, u8 channel)
{
u8 eRFPath;
u32 param1, param2;
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
if ( Adapter->bNotifyChannelChange )
{
DBG_88E( "[%s] ch = %d\n", __func__, channel );
}
/* s1. pre common command - CmdID_SetTxPowerLevel */
PHY_SetTxPowerLevel8188E(Adapter, channel);
/* s2. RF dependent command - CmdID_RF_WriteReg, param1=RF_CHNLBW, param2=channel */
param1 = RF_CHNLBW;
param2 = channel;
for (eRFPath = 0; eRFPath <pHalData->NumTotalRFPath; eRFPath++) {
pHalData->RfRegChnlVal[eRFPath] = ((pHalData->RfRegChnlVal[eRFPath] & 0xfffffc00) | param2);
PHY_SetRFReg(Adapter, (enum rf_radio_path)eRFPath, param1, bRFRegOffsetMask, pHalData->RfRegChnlVal[eRFPath]);
}
}
void
PHY_SwChnl8188E( /* Call after initialization */
PADAPTER Adapter,
u8 channel
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u8 tmpchannel = pHalData->CurrentChannel;
bool bResult = true;
if (pHalData->rf_chip == RF_PSEUDO_11N)
return; /* return immediately if it is peudo-phy */
/* */
switch (pHalData->CurrentWirelessMode) {
case WIRELESS_MODE_A:
case WIRELESS_MODE_N_5G:
break;
case WIRELESS_MODE_B:
break;
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
break;
default:
break;
}
/* */
if (channel == 0)
channel = 1;
pHalData->CurrentChannel=channel;
if ((!Adapter->bDriverStopped) && (!Adapter->bSurpriseRemoved)) {
_PHY_SwChnl8192C(Adapter, channel);
if (bResult) {
;
} else {
pHalData->CurrentChannel = tmpchannel;
}
}
else
{
pHalData->CurrentChannel = tmpchannel;
}
}
static bool
phy_SwChnlStepByStep(
PADAPTER Adapter,
u8 channel,
u8 *stage,
u8 *step,
u32 *delay
)
{
return true;
}
static bool
phy_SetSwChnlCmdArray(
struct sw_chnl_cmd *CmdTable,
u32 CmdTableIdx,
u32 CmdTableSz,
enum sw_chnl_cmd_id CmdID,
u32 Para1,
u32 Para2,
u32 msDelay
)
{
struct sw_chnl_cmd *pCmd;
if (CmdTable == NULL)
return false;
if (CmdTableIdx >= CmdTableSz)
return false;
pCmd = CmdTable + CmdTableIdx;
pCmd->CmdID = CmdID;
pCmd->Para1 = Para1;
pCmd->Para2 = Para2;
pCmd->msDelay = msDelay;
return true;
}
static void
phy_FinishSwChnlNow( /* We should not call this function directly */
PADAPTER Adapter,
u8 channel
)
{
}
/* */
/* Description: */
/* Switch channel synchronously. Called by SwChnlByDelayHandler. */
/* */
/* Implemented by Bruce, 2008-02-14. */
/* The following procedure is operted according to SwChanlCallback8190Pci(). */
/* However, this procedure is performed synchronously which should be running under */
/* passive level. */
/* */
void
PHY_SwChnlPhy8192C( /* Only called during initialize */
PADAPTER Adapter,
u8 channel
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
/* return immediately if it is peudo-phy */
if (pHalData->rf_chip == RF_PSEUDO_11N)
return;
if ( channel == 0)
channel = 1;
pHalData->CurrentChannel=channel;
phy_FinishSwChnlNow(Adapter,channel);
}
/* */
/* Description: */
/* Configure H/W functionality to enable/disable Monitor mode. */
/* Note, because we possibly need to configure BB and RF in this function, */
/* so caller should in PASSIVE_LEVEL. 080118, by rcnjko. */
/* */
void
PHY_SetMonitorMode8192C(
PADAPTER pAdapter,
bool bEnableMonitorMode
)
{
}
/*-----------------------------------------------------------------------------
* Function: PHYCheckIsLegalRfPath8190Pci()
*
* Overview: Check different RF type to execute legal judgement. If RF Path is illegal
* We will return false.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/15/2007 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
bool PHY_CheckIsLegalRfPath8192C(PADAPTER pAdapter, u32 eRFPath)
{
return true;
} /* PHY_CheckIsLegalRfPath8192C */
static void _PHY_SetRFPathSwitch(PADAPTER pAdapter, bool bMain, bool is2T)
{
u8 u1bTmp;
if (!pAdapter->hw_init_completed) {
u1bTmp = rtw_read8(pAdapter, REG_LEDCFG2) | BIT7;
rtw_write8(pAdapter, REG_LEDCFG2, u1bTmp);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT13, 0x01);
}
if (is2T) {
if (bMain)
PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6, 0x1); /* 92C_Path_A */
else
PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6, 0x2); /* BT */
} else {
if (bMain)
PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300, 0x2); /* Main */
else
PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300, 0x1); /* Aux */
}
}
static bool _PHY_QueryRFPathSwitch(PADAPTER pAdapter, bool is2T)
{
if (!pAdapter->hw_init_completed) {
PHY_SetBBReg(pAdapter, REG_LEDCFG0, BIT23, 0x01);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT13, 0x01);
}
if (is2T) {
if (PHY_QueryBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6) == 0x01)
return true;
else
return false;
} else {
if (PHY_QueryBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300) == 0x02)
return true;
else
return false;
}
}
static void _PHY_DumpRFReg(PADAPTER pAdapter)
{
}