rtl8188eu/core/rtw_mp.c

1449 lines
36 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _RTW_MP_C_
#include <drv_types.h>
#ifdef PLATFORM_FREEBSD
#include <sys/unistd.h> /* for RFHIGHPID */
#endif
#ifdef CONFIG_RTL8712
#include <rtw_mp_phy_regdef.h>
#endif
#ifdef CONFIG_RTL8192C
#include <rtl8192c_hal.h>
#endif
#ifdef CONFIG_RTL8192D
#include <rtl8192d_hal.h>
#endif
#ifdef CONFIG_RTL8723A
#include <rtl8723a_hal.h>
#include "rtw_bt_mp.h"
#endif
#ifdef CONFIG_RTL8188E
#include "odm_precomp.h"
#include "rtl8188e_hal.h"
#endif
#ifdef CONFIG_MP_INCLUDED
u32 read_macreg(_adapter *padapter, u32 addr, u32 sz)
{
u32 val = 0;
switch (sz)
{
case 1:
val = rtw_read8(padapter, addr);
break;
case 2:
val = rtw_read16(padapter, addr);
break;
case 4:
val = rtw_read32(padapter, addr);
break;
default:
val = 0xffffffff;
break;
}
return val;
}
void write_macreg(_adapter *padapter, u32 addr, u32 val, u32 sz)
{
switch (sz)
{
case 1:
rtw_write8(padapter, addr, (u8)val);
break;
case 2:
rtw_write16(padapter, addr, (u16)val);
break;
case 4:
rtw_write32(padapter, addr, val);
break;
default:
break;
}
}
u32 read_bbreg(_adapter *padapter, u32 addr, u32 bitmask)
{
return rtw_hal_read_bbreg(padapter, addr, bitmask);
}
void write_bbreg(_adapter *padapter, u32 addr, u32 bitmask, u32 val)
{
rtw_hal_write_bbreg(padapter, addr, bitmask, val);
}
u32 _read_rfreg(PADAPTER padapter, u8 rfpath, u32 addr, u32 bitmask)
{
return rtw_hal_read_rfreg(padapter, (RF_RADIO_PATH_E)rfpath, addr, bitmask);
}
void _write_rfreg(PADAPTER padapter, u8 rfpath, u32 addr, u32 bitmask, u32 val)
{
rtw_hal_write_rfreg(padapter, (RF_RADIO_PATH_E)rfpath, addr, bitmask, val);
}
u32 read_rfreg(PADAPTER padapter, u8 rfpath, u32 addr)
{
return _read_rfreg(padapter, (RF_RADIO_PATH_E)rfpath, addr, bRFRegOffsetMask);
}
void write_rfreg(PADAPTER padapter, u8 rfpath, u32 addr, u32 val)
{
_write_rfreg(padapter, (RF_RADIO_PATH_E)rfpath, addr, bRFRegOffsetMask, val);
}
static void _init_mp_priv_(struct mp_priv *pmp_priv)
{
WLAN_BSSID_EX *pnetwork;
_rtw_memset(pmp_priv, 0, sizeof(struct mp_priv));
pmp_priv->mode = MP_OFF;
pmp_priv->channel = 1;
pmp_priv->bandwidth = HT_CHANNEL_WIDTH_20;
pmp_priv->prime_channel_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
pmp_priv->rateidx = MPT_RATE_1M;
pmp_priv->txpoweridx = 0x2A;
pmp_priv->antenna_tx = ANTENNA_A;
pmp_priv->antenna_rx = ANTENNA_AB;
pmp_priv->check_mp_pkt = 0;
pmp_priv->tx_pktcount = 0;
pmp_priv->rx_pktcount = 0;
pmp_priv->rx_crcerrpktcount = 0;
pmp_priv->network_macaddr[0] = 0x00;
pmp_priv->network_macaddr[1] = 0xE0;
pmp_priv->network_macaddr[2] = 0x4C;
pmp_priv->network_macaddr[3] = 0x87;
pmp_priv->network_macaddr[4] = 0x66;
pmp_priv->network_macaddr[5] = 0x55;
pnetwork = &pmp_priv->mp_network.network;
_rtw_memcpy(pnetwork->MacAddress, pmp_priv->network_macaddr, ETH_ALEN);
pnetwork->Ssid.SsidLength = 8;
_rtw_memcpy(pnetwork->Ssid.Ssid, "mp_871x", pnetwork->Ssid.SsidLength);
}
#ifdef PLATFORM_WINDOWS
/*
void mp_wi_callback(
IN NDIS_WORK_ITEM* pwk_item,
IN void * cntx
)
{
_adapter* padapter =(_adapter *)cntx;
struct mp_priv *pmppriv=&padapter->mppriv;
struct mp_wi_cntx *pmp_wi_cntx=&pmppriv->wi_cntx;
// Execute specified action.
if (pmp_wi_cntx->curractfunc != NULL)
{
LARGE_INTEGER cur_time;
ULONGLONG start_time, end_time;
NdisGetCurrentSystemTime(&cur_time); // driver version
start_time = cur_time.QuadPart/10; // The return value is in microsecond
pmp_wi_cntx->curractfunc(padapter);
NdisGetCurrentSystemTime(&cur_time); // driver version
end_time = cur_time.QuadPart/10; // The return value is in microsecond
RT_TRACE(_module_mp_, _drv_info_,
("WorkItemActType: %d, time spent: %I64d us\n",
pmp_wi_cntx->param.act_type, (end_time-start_time)));
}
NdisAcquireSpinLock(&(pmp_wi_cntx->mp_wi_lock));
pmp_wi_cntx->bmp_wi_progress= _FALSE;
NdisReleaseSpinLock(&(pmp_wi_cntx->mp_wi_lock));
if (pmp_wi_cntx->bmpdrv_unload)
{
NdisSetEvent(&(pmp_wi_cntx->mp_wi_evt));
}
}
*/
static int init_mp_priv_by_os(struct mp_priv *pmp_priv)
{
struct mp_wi_cntx *pmp_wi_cntx;
if (pmp_priv == NULL) return _FAIL;
pmp_priv->rx_testcnt = 0;
pmp_priv->rx_testcnt1 = 0;
pmp_priv->rx_testcnt2 = 0;
pmp_priv->tx_testcnt = 0;
pmp_priv->tx_testcnt1 = 0;
pmp_wi_cntx = &pmp_priv->wi_cntx
pmp_wi_cntx->bmpdrv_unload = _FALSE;
pmp_wi_cntx->bmp_wi_progress = _FALSE;
pmp_wi_cntx->curractfunc = NULL;
return _SUCCESS;
}
#endif
#ifdef PLATFORM_LINUX
static int init_mp_priv_by_os(struct mp_priv *pmp_priv)
{
int i, res;
struct mp_xmit_frame *pmp_xmitframe;
if (pmp_priv == NULL) return _FAIL;
_rtw_init_queue(&pmp_priv->free_mp_xmitqueue);
pmp_priv->pallocated_mp_xmitframe_buf = NULL;
pmp_priv->pallocated_mp_xmitframe_buf = rtw_zmalloc(NR_MP_XMITFRAME * sizeof(struct mp_xmit_frame) + 4);
if (pmp_priv->pallocated_mp_xmitframe_buf == NULL) {
res = _FAIL;
goto _exit_init_mp_priv;
}
pmp_priv->pmp_xmtframe_buf = pmp_priv->pallocated_mp_xmitframe_buf + 4 - ((SIZE_PTR) (pmp_priv->pallocated_mp_xmitframe_buf) & 3);
pmp_xmitframe = (struct mp_xmit_frame*)pmp_priv->pmp_xmtframe_buf;
for (i = 0; i < NR_MP_XMITFRAME; i++)
{
_rtw_init_listhead(&pmp_xmitframe->list);
rtw_list_insert_tail(&pmp_xmitframe->list, &pmp_priv->free_mp_xmitqueue.queue);
pmp_xmitframe->pkt = NULL;
pmp_xmitframe->frame_tag = MP_FRAMETAG;
pmp_xmitframe->padapter = pmp_priv->papdater;
pmp_xmitframe++;
}
pmp_priv->free_mp_xmitframe_cnt = NR_MP_XMITFRAME;
res = _SUCCESS;
_exit_init_mp_priv:
return res;
}
#endif
static void mp_init_xmit_attrib(struct mp_tx *pmptx, PADAPTER padapter)
{
struct pkt_attrib *pattrib;
struct tx_desc *desc;
// init xmitframe attribute
pattrib = &pmptx->attrib;
_rtw_memset(pattrib, 0, sizeof(struct pkt_attrib));
desc = &pmptx->desc;
_rtw_memset(desc, 0, TXDESC_SIZE);
pattrib->ether_type = 0x8712;
//_rtw_memcpy(pattrib->src, padapter->eeprompriv.mac_addr, ETH_ALEN);
// _rtw_memcpy(pattrib->ta, pattrib->src, ETH_ALEN);
_rtw_memset(pattrib->dst, 0xFF, ETH_ALEN);
// pattrib->pctrl = 0;
// pattrib->dhcp_pkt = 0;
// pattrib->pktlen = 0;
pattrib->ack_policy = 0;
// pattrib->pkt_hdrlen = ETH_HLEN;
pattrib->hdrlen = WLAN_HDR_A3_LEN;
pattrib->subtype = WIFI_DATA;
pattrib->priority = 0;
pattrib->qsel = pattrib->priority;
// do_queue_select(padapter, pattrib);
pattrib->nr_frags = 1;
pattrib->encrypt = 0;
pattrib->bswenc = _FALSE;
pattrib->qos_en = _FALSE;
}
s32 init_mp_priv(PADAPTER padapter)
{
struct mp_priv *pmppriv = &padapter->mppriv;
_init_mp_priv_(pmppriv);
pmppriv->papdater = padapter;
pmppriv->tx.stop = 1;
mp_init_xmit_attrib(&pmppriv->tx, padapter);
switch (padapter->registrypriv.rf_config) {
case RF_1T1R:
pmppriv->antenna_tx = ANTENNA_A;
pmppriv->antenna_rx = ANTENNA_A;
break;
case RF_1T2R:
default:
pmppriv->antenna_tx = ANTENNA_A;
pmppriv->antenna_rx = ANTENNA_AB;
break;
case RF_2T2R:
case RF_2T2R_GREEN:
pmppriv->antenna_tx = ANTENNA_AB;
pmppriv->antenna_rx = ANTENNA_AB;
break;
case RF_2T4R:
pmppriv->antenna_tx = ANTENNA_AB;
pmppriv->antenna_rx = ANTENNA_ABCD;
break;
}
return _SUCCESS;
}
void free_mp_priv(struct mp_priv *pmp_priv)
{
if (pmp_priv->pallocated_mp_xmitframe_buf) {
rtw_mfree(pmp_priv->pallocated_mp_xmitframe_buf, 0);
pmp_priv->pallocated_mp_xmitframe_buf = NULL;
}
pmp_priv->pmp_xmtframe_buf = NULL;
}
#if defined (CONFIG_RTL8192C) || defined (CONFIG_RTL8723A)
#define PHY_IQCalibrate(a,b) rtl8192c_PHY_IQCalibrate(a,b)
#define PHY_LCCalibrate(a) rtl8192c_PHY_LCCalibrate(a)
//#define dm_CheckTXPowerTracking(a) rtl8192c_odm_CheckTXPowerTracking(a)
#define PHY_SetRFPathSwitch(a,b) rtl8192c_PHY_SetRFPathSwitch(a,b)
#endif
#ifdef CONFIG_RTL8192D
#define PHY_IQCalibrate(a,b) rtl8192d_PHY_IQCalibrate(a)
#define PHY_LCCalibrate(a) rtl8192d_PHY_LCCalibrate(a)
//#define dm_CheckTXPowerTracking(a) rtl8192d_odm_CheckTXPowerTracking(a)
#define PHY_SetRFPathSwitch(a,b) rtl8192d_PHY_SetRFPathSwitch(a,b)
#endif
#ifdef CONFIG_RTL8188E
#define PHY_IQCalibrate(a,b) PHY_IQCalibrate_8188E(a,b)
#define PHY_LCCalibrate(a) PHY_LCCalibrate_8188E(a)
#define PHY_SetRFPathSwitch(a,b) PHY_SetRFPathSwitch_8188E(a,b)
#endif
s32
MPT_InitializeAdapter(
PADAPTER pAdapter,
u8 Channel
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
s32 rtStatus = _SUCCESS;
PMPT_CONTEXT pMptCtx = &pAdapter->mppriv.MptCtx;
u32 ledsetting;
struct mlme_priv *pmlmepriv = &pAdapter->mlmepriv;
//-------------------------------------------------------------------------
// HW Initialization for 8190 MPT.
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// SW Initialization for 8190 MP.
//-------------------------------------------------------------------------
pMptCtx->bMptDrvUnload = _FALSE;
pMptCtx->bMassProdTest = _FALSE;
pMptCtx->bMptIndexEven = _TRUE; //default gain index is -6.0db
pMptCtx->h2cReqNum = 0x0;
/* Init mpt event. */
//init for BT MP
#ifdef CONFIG_RTL8723A
pMptCtx->bMPh2c_timeout = _FALSE;
pMptCtx->MptH2cRspEvent = _FALSE;
pMptCtx->MptBtC2hEvent = _FALSE;
_rtw_init_sema(&pMptCtx->MPh2c_Sema, 0);
_init_timer( &pMptCtx->MPh2c_timeout_timer, pAdapter->pnetdev, MPh2c_timeout_handle, pAdapter );
#endif
pMptCtx->bMptWorkItemInProgress = _FALSE;
pMptCtx->CurrMptAct = NULL;
//-------------------------------------------------------------------------
#if 1
// Don't accept any packets
rtw_write32(pAdapter, REG_RCR, 0);
#else
// Accept CRC error and destination address
//pHalData->ReceiveConfig |= (RCR_ACRC32|RCR_AAP);
//rtw_write32(pAdapter, REG_RCR, pHalData->ReceiveConfig);
rtw_write32(pAdapter, REG_RCR, 0x70000101);
#endif
if (IS_HARDWARE_TYPE_8192DU(pAdapter))
{
rtw_write32(pAdapter, REG_LEDCFG0, 0x8888);
}
else
{
//rtw_write32(pAdapter, REG_LEDCFG0, 0x08080);
ledsetting = rtw_read32(pAdapter, REG_LEDCFG0);
#if defined (CONFIG_RTL8192C) || defined( CONFIG_RTL8192D )
rtw_write32(pAdapter, REG_LEDCFG0, ledsetting & ~LED0DIS);
#endif
}
PHY_IQCalibrate(pAdapter, _FALSE);
dm_CheckTXPowerTracking(&pHalData->odmpriv); //trigger thermal meter
PHY_LCCalibrate(pAdapter);
#ifdef CONFIG_PCI_HCI
PHY_SetRFPathSwitch(pAdapter, 1/*pHalData->bDefaultAntenna*/); //Wifi default use Main
#else
#ifdef CONFIG_RTL8192C
if (pHalData->BoardType == BOARD_MINICARD)
PHY_SetRFPathSwitch(pAdapter, 1/*pHalData->bDefaultAntenna*/); //default use Main
#endif
#endif
pMptCtx->backup0xc50 = (u1Byte)PHY_QueryBBReg(pAdapter, rOFDM0_XAAGCCore1, bMaskByte0);
pMptCtx->backup0xc58 = (u1Byte)PHY_QueryBBReg(pAdapter, rOFDM0_XBAGCCore1, bMaskByte0);
pMptCtx->backup0xc30 = (u1Byte)PHY_QueryBBReg(pAdapter, rOFDM0_RxDetector1, bMaskByte0);
#ifdef CONFIG_RTL8188E
pMptCtx->backup0x52_RF_A = (u1Byte)PHY_QueryRFReg(pAdapter, RF_PATH_A, RF_0x52, 0x000F0);
pMptCtx->backup0x52_RF_B = (u1Byte)PHY_QueryRFReg(pAdapter, RF_PATH_A, RF_0x52, 0x000F0);
#endif
//set ant to wifi side in mp mode
rtw_write16(pAdapter, 0x870, 0x300);
rtw_write16(pAdapter, 0x860, 0x110);
if (pAdapter->registrypriv.mp_mode == 1)
pmlmepriv->fw_state = WIFI_MP_STATE;
return rtStatus;
}
/*-----------------------------------------------------------------------------
* Function: MPT_DeInitAdapter()
*
* Overview: Extra DeInitialization for Mass Production Test.
*
* Input: PADAPTER pAdapter
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 05/08/2007 MHC Create Version 0.
* 05/18/2007 MHC Add normal driver MPHalt code.
*
*---------------------------------------------------------------------------*/
void
MPT_DeInitAdapter(
PADAPTER pAdapter
)
{
PMPT_CONTEXT pMptCtx = &pAdapter->mppriv.MptCtx;
pMptCtx->bMptDrvUnload = _TRUE;
#ifdef CONFIG_RTL8723A
_rtw_free_sema(&(pMptCtx->MPh2c_Sema));
_cancel_timer_ex( &pMptCtx->MPh2c_timeout_timer);
#endif
}
static u8 mpt_ProStartTest(PADAPTER padapter)
{
PMPT_CONTEXT pMptCtx = &padapter->mppriv.MptCtx;
pMptCtx->bMassProdTest = _TRUE;
pMptCtx->bStartContTx = _FALSE;
pMptCtx->bCckContTx = _FALSE;
pMptCtx->bOfdmContTx = _FALSE;
pMptCtx->bSingleCarrier = _FALSE;
pMptCtx->bCarrierSuppression = _FALSE;
pMptCtx->bSingleTone = _FALSE;
return _SUCCESS;
}
/*
* General use
*/
s32 SetPowerTracking(PADAPTER padapter, u8 enable)
{
Hal_SetPowerTracking( padapter, enable );
return 0;
}
void GetPowerTracking(PADAPTER padapter, u8 *enable)
{
Hal_GetPowerTracking( padapter, enable );
}
static void disable_dm(PADAPTER padapter)
{
#ifndef CONFIG_RTL8723A
u8 v8;
#endif
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct dm_priv *pdmpriv = &pHalData->dmpriv;
//3 1. disable firmware dynamic mechanism
// disable Power Training, Rate Adaptive
#ifdef CONFIG_RTL8723A
SetBcnCtrlReg(padapter, 0, EN_BCN_FUNCTION);
#else
v8 = rtw_read8(padapter, REG_BCN_CTRL);
v8 &= ~EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL, v8);
#endif
//3 2. disable driver dynamic mechanism
// disable Dynamic Initial Gain
// disable High Power
// disable Power Tracking
Switch_DM_Func(padapter, DYNAMIC_FUNC_DISABLE, _FALSE);
// enable APK, LCK and IQK but disable power tracking
#ifndef CONFIG_RTL8188E
pdmpriv->TxPowerTrackControl = _FALSE;
#endif
Switch_DM_Func(padapter, DYNAMIC_RF_CALIBRATION, _TRUE);
}
//This function initializes the DUT to the MP test mode
s32 mp_start_test(PADAPTER padapter)
{
WLAN_BSSID_EX bssid;
struct sta_info *psta;
u32 length;
u8 val8;
_irqL irqL;
s32 res = _SUCCESS;
struct mp_priv *pmppriv = &padapter->mppriv;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct wlan_network *tgt_network = &pmlmepriv->cur_network;
padapter->registrypriv.mp_mode = 1;
pmppriv->bSetTxPower=0; //for manually set tx power
//3 disable dynamic mechanism
disable_dm(padapter);
//3 0. update mp_priv
if (padapter->registrypriv.rf_config == RF_819X_MAX_TYPE) {
// switch (phal->rf_type) {
switch (GET_RF_TYPE(padapter)) {
case RF_1T1R:
pmppriv->antenna_tx = ANTENNA_A;
pmppriv->antenna_rx = ANTENNA_A;
break;
case RF_1T2R:
default:
pmppriv->antenna_tx = ANTENNA_A;
pmppriv->antenna_rx = ANTENNA_AB;
break;
case RF_2T2R:
case RF_2T2R_GREEN:
pmppriv->antenna_tx = ANTENNA_AB;
pmppriv->antenna_rx = ANTENNA_AB;
break;
case RF_2T4R:
pmppriv->antenna_tx = ANTENNA_AB;
pmppriv->antenna_rx = ANTENNA_ABCD;
break;
}
}
mpt_ProStartTest(padapter);
//3 1. initialize a new WLAN_BSSID_EX
// _rtw_memset(&bssid, 0, sizeof(WLAN_BSSID_EX));
_rtw_memcpy(bssid.MacAddress, pmppriv->network_macaddr, ETH_ALEN);
bssid.Ssid.SsidLength = strlen("mp_pseudo_adhoc");
_rtw_memcpy(bssid.Ssid.Ssid, (u8*)"mp_pseudo_adhoc", bssid.Ssid.SsidLength);
bssid.InfrastructureMode = Ndis802_11IBSS;
bssid.NetworkTypeInUse = Ndis802_11DS;
bssid.IELength = 0;
length = get_WLAN_BSSID_EX_sz(&bssid);
if (length % 4)
bssid.Length = ((length >> 2) + 1) << 2; //round up to multiple of 4 bytes.
else
bssid.Length = length;
_enter_critical_bh(&pmlmepriv->lock, &irqL);
if (check_fwstate(pmlmepriv, WIFI_MP_STATE) == _TRUE)
goto end_of_mp_start_test;
//init mp_start_test status
if (check_fwstate(pmlmepriv, _FW_LINKED) == _TRUE) {
rtw_disassoc_cmd(padapter, 500, _TRUE);
rtw_indicate_disconnect(padapter);
rtw_free_assoc_resources(padapter, 1);
}
pmppriv->prev_fw_state = get_fwstate(pmlmepriv);
if (padapter->registrypriv.mp_mode == 1)
pmlmepriv->fw_state = WIFI_MP_STATE;
set_fwstate(pmlmepriv, _FW_UNDER_LINKING);
//3 2. create a new psta for mp driver
//clear psta in the cur_network, if any
psta = rtw_get_stainfo(&padapter->stapriv, tgt_network->network.MacAddress);
if (psta) rtw_free_stainfo(padapter, psta);
psta = rtw_alloc_stainfo(&padapter->stapriv, bssid.MacAddress);
if (psta == NULL) {
RT_TRACE(_module_mp_, _drv_err_, ("mp_start_test: Can't alloc sta_info!\n"));
pmlmepriv->fw_state = pmppriv->prev_fw_state;
res = _FAIL;
goto end_of_mp_start_test;
}
//3 3. join psudo AdHoc
tgt_network->join_res = 1;
tgt_network->aid = psta->aid = 1;
_rtw_memcpy(&tgt_network->network, &bssid, length);
rtw_indicate_connect(padapter);
_clr_fwstate_(pmlmepriv, _FW_UNDER_LINKING);
end_of_mp_start_test:
_exit_critical_bh(&pmlmepriv->lock, &irqL);
if (res == _SUCCESS)
{
// set MSR to WIFI_FW_ADHOC_STATE
#if !defined (CONFIG_RTL8712)
val8 = rtw_read8(padapter, MSR) & 0xFC; // 0x0102
val8 |= WIFI_FW_ADHOC_STATE;
rtw_write8(padapter, MSR, val8); // Link in ad hoc network
#endif
#if defined (CONFIG_RTL8712)
rtw_write8(padapter, MSR, 1); // Link in ad hoc network
rtw_write8(padapter, RCR, 0); // RCR : disable all pkt, 0x10250048
rtw_write8(padapter, RCR+2, 0x57); // RCR disable Check BSSID, 0x1025004a
// disable RX filter map , mgt frames will put in RX FIFO 0
rtw_write16(padapter, RXFLTMAP0, 0x0); // 0x10250116
val8 = rtw_read8(padapter, EE_9346CR); // 0x1025000A
if (!(val8 & _9356SEL))//boot from EFUSE
efuse_change_max_size(padapter);
#endif
}
return res;
}
//------------------------------------------------------------------------------
//This function change the DUT from the MP test mode into normal mode
void mp_stop_test(PADAPTER padapter)
{
struct mp_priv *pmppriv = &padapter->mppriv;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct wlan_network *tgt_network = &pmlmepriv->cur_network;
struct sta_info *psta;
_irqL irqL;
if (pmppriv->mode==MP_ON)
{
pmppriv->bSetTxPower=0;
_enter_critical_bh(&pmlmepriv->lock, &irqL);
if (check_fwstate(pmlmepriv, WIFI_MP_STATE) == _FALSE)
goto end_of_mp_stop_test;
//3 1. disconnect psudo AdHoc
rtw_indicate_disconnect(padapter);
//3 2. clear psta used in mp test mode.
// rtw_free_assoc_resources(padapter, 1);
psta = rtw_get_stainfo(&padapter->stapriv, tgt_network->network.MacAddress);
if (psta) rtw_free_stainfo(padapter, psta);
//3 3. return to normal state (default:station mode)
pmlmepriv->fw_state = pmppriv->prev_fw_state; // WIFI_STATION_STATE;
//flush the cur_network
_rtw_memset(tgt_network, 0, sizeof(struct wlan_network));
_clr_fwstate_(pmlmepriv, WIFI_MP_STATE);
end_of_mp_stop_test:
_exit_critical_bh(&pmlmepriv->lock, &irqL);
}
}
/*---------------------------hal\rtl8192c\MPT_Phy.c---------------------------*/
/*-----------------------------------------------------------------------------
* Function: mpt_SwitchRfSetting
*
* Overview: Change RF Setting when we siwthc channel/rate/BW for MP.
*
* Input: PADAPTER pAdapter
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 01/08/2009 MHC Suggestion from SD3 Willis for 92S series.
* 01/09/2009 MHC Add CCK modification for 40MHZ. Suggestion from SD3.
*
*---------------------------------------------------------------------------*/
static void mpt_SwitchRfSetting(PADAPTER pAdapter)
{
Hal_mpt_SwitchRfSetting(pAdapter);
}
/*---------------------------hal\rtl8192c\MPT_Phy.c---------------------------*/
/*---------------------------hal\rtl8192c\MPT_HelperFunc.c---------------------------*/
static void MPT_CCKTxPowerAdjust(PADAPTER Adapter, bool bInCH14)
{
Hal_MPT_CCKTxPowerAdjust(Adapter,bInCH14);
}
static void MPT_CCKTxPowerAdjustbyIndex(PADAPTER pAdapter, bool beven)
{
Hal_MPT_CCKTxPowerAdjustbyIndex(pAdapter,beven);
}
/*---------------------------hal\rtl8192c\MPT_HelperFunc.c---------------------------*/
/*
* SetChannel
* Description
* Use H2C command to change channel,
* not only modify rf register, but also other setting need to be done.
*/
void SetChannel(PADAPTER pAdapter)
{
Hal_SetChannel(pAdapter);
}
/*
* Notice
* Switch bandwitdth may change center frequency(channel)
*/
void SetBandwidth(PADAPTER pAdapter)
{
Hal_SetBandwidth(pAdapter);
}
static void SetCCKTxPower(PADAPTER pAdapter, u8 *TxPower)
{
Hal_SetCCKTxPower(pAdapter,TxPower);
}
static void SetOFDMTxPower(PADAPTER pAdapter, u8 *TxPower)
{
Hal_SetOFDMTxPower(pAdapter,TxPower);
}
void SetAntenna(PADAPTER pAdapter)
{
Hal_SetAntenna(pAdapter);
}
void SetAntennaPathPower(PADAPTER pAdapter)
{
Hal_SetAntennaPathPower(pAdapter);
}
void SetTxPower(PADAPTER pAdapter)
{
Hal_SetTxPower(pAdapter);
}
static void SetTxAGCOffset(PADAPTER pAdapter, u32 ulTxAGCOffset)
{
u32 TxAGCOffset_B, TxAGCOffset_C, TxAGCOffset_D,tmpAGC;
TxAGCOffset_B = (ulTxAGCOffset&0x000000ff);
TxAGCOffset_C = ((ulTxAGCOffset&0x0000ff00)>>8);
TxAGCOffset_D = ((ulTxAGCOffset&0x00ff0000)>>16);
tmpAGC = (TxAGCOffset_D<<8 | TxAGCOffset_C<<4 | TxAGCOffset_B);
write_bbreg(pAdapter, rFPGA0_TxGainStage,
(bXBTxAGC|bXCTxAGC|bXDTxAGC), tmpAGC);
}
void SetDataRate(PADAPTER pAdapter)
{
Hal_SetDataRate(pAdapter);
}
void MP_PHY_SetRFPathSwitch(PADAPTER pAdapter ,bool bMain)
{
PHY_SetRFPathSwitch(pAdapter,bMain);
}
#if defined (CONFIG_RTL8712)
/*------------------------------Define structure----------------------------*/
typedef struct _R_ANTENNA_SELECT_OFDM {
u32 r_tx_antenna:4;
u32 r_ant_l:4;
u32 r_ant_non_ht:4;
u32 r_ant_ht1:4;
u32 r_ant_ht2:4;
u32 r_ant_ht_s1:4;
u32 r_ant_non_ht_s1:4;
u32 OFDM_TXSC:2;
u32 Reserved:2;
}R_ANTENNA_SELECT_OFDM;
typedef struct _R_ANTENNA_SELECT_CCK {
u8 r_cckrx_enable_2:2;
u8 r_cckrx_enable:2;
u8 r_ccktx_enable:4;
}R_ANTENNA_SELECT_CCK;
#endif
s32 SetThermalMeter(PADAPTER pAdapter, u8 target_ther)
{
return Hal_SetThermalMeter( pAdapter, target_ther);
}
static void TriggerRFThermalMeter(PADAPTER pAdapter)
{
Hal_TriggerRFThermalMeter(pAdapter);
}
static u8 ReadRFThermalMeter(PADAPTER pAdapter)
{
return Hal_ReadRFThermalMeter(pAdapter);
}
void GetThermalMeter(PADAPTER pAdapter, u8 *value)
{
Hal_GetThermalMeter(pAdapter,value);
}
void SetSingleCarrierTx(PADAPTER pAdapter, u8 bStart)
{
PhySetTxPowerLevel(pAdapter);
Hal_SetSingleCarrierTx(pAdapter,bStart);
}
void SetSingleToneTx(PADAPTER pAdapter, u8 bStart)
{
PhySetTxPowerLevel(pAdapter);
Hal_SetSingleToneTx(pAdapter,bStart);
}
void SetCarrierSuppressionTx(PADAPTER pAdapter, u8 bStart)
{
PhySetTxPowerLevel(pAdapter);
Hal_SetCarrierSuppressionTx(pAdapter, bStart);
}
static void SetCCKContinuousTx(PADAPTER pAdapter, u8 bStart)
{
PhySetTxPowerLevel(pAdapter);
Hal_SetCCKContinuousTx(pAdapter,bStart);
}
static void SetOFDMContinuousTx(PADAPTER pAdapter, u8 bStart)
{
PhySetTxPowerLevel(pAdapter);
Hal_SetOFDMContinuousTx( pAdapter, bStart);
}/* mpt_StartOfdmContTx */
void SetContinuousTx(PADAPTER pAdapter, u8 bStart)
{
PhySetTxPowerLevel(pAdapter);
Hal_SetContinuousTx(pAdapter,bStart);
}
void PhySetTxPowerLevel(PADAPTER pAdapter)
{
struct mp_priv *pmp_priv = &pAdapter->mppriv;
if (pmp_priv->bSetTxPower==0) // for NO manually set power index
{
#ifdef CONFIG_RTL8188E
PHY_SetTxPowerLevel8188E(pAdapter,pmp_priv->channel);
#elif defined(CONFIG_RTL8192D)
PHY_SetTxPowerLevel8192D(pAdapter,pmp_priv->channel);
#else
PHY_SetTxPowerLevel8192C(pAdapter,pmp_priv->channel);
#endif
}
}
//------------------------------------------------------------------------------
static void dump_mpframe(PADAPTER padapter, struct xmit_frame *pmpframe)
{
rtw_hal_mgnt_xmit(padapter, pmpframe);
}
static struct xmit_frame *alloc_mp_xmitframe(struct xmit_priv *pxmitpriv)
{
struct xmit_frame *pmpframe;
struct xmit_buf *pxmitbuf;
if ((pmpframe = rtw_alloc_xmitframe(pxmitpriv)) == NULL)
{
return NULL;
}
if ((pxmitbuf = rtw_alloc_xmitbuf(pxmitpriv)) == NULL)
{
rtw_free_xmitframe(pxmitpriv, pmpframe);
return NULL;
}
pmpframe->frame_tag = MP_FRAMETAG;
pmpframe->pxmitbuf = pxmitbuf;
pmpframe->buf_addr = pxmitbuf->pbuf;
pxmitbuf->priv_data = pmpframe;
return pmpframe;
}
static thread_return mp_xmit_packet_thread(thread_context context)
{
struct xmit_frame *pxmitframe;
struct mp_tx *pmptx;
struct mp_priv *pmp_priv;
struct xmit_priv *pxmitpriv;
PADAPTER padapter;
pmp_priv = (struct mp_priv *)context;
pmptx = &pmp_priv->tx;
padapter = pmp_priv->papdater;
pxmitpriv = &(padapter->xmitpriv);
thread_enter("RTW_MP_THREAD");
//DBG_871X("%s:pkTx Start\n", __func__);
while (1) {
pxmitframe = alloc_mp_xmitframe(pxmitpriv);
if (pxmitframe == NULL) {
if (pmptx->stop ||
padapter->bSurpriseRemoved ||
padapter->bDriverStopped) {
goto exit;
}
else {
rtw_msleep_os(1);
continue;
}
}
_rtw_memcpy((u8 *)(pxmitframe->buf_addr+TXDESC_OFFSET), pmptx->buf, pmptx->write_size);
_rtw_memcpy(&(pxmitframe->attrib), &(pmptx->attrib), sizeof(struct pkt_attrib));
dump_mpframe(padapter, pxmitframe);
pmptx->sended++;
pmp_priv->tx_pktcount++;
if (pmptx->stop ||
padapter->bSurpriseRemoved ||
padapter->bDriverStopped)
goto exit;
if ((pmptx->count != 0) &&
(pmptx->count == pmptx->sended))
goto exit;
flush_signals_thread();
}
exit:
//DBG_871X("%s:pkTx Exit\n", __func__);
rtw_mfree(pmptx->pallocated_buf, pmptx->buf_size);
pmptx->pallocated_buf = NULL;
pmptx->stop = 1;
thread_exit();
}
void fill_txdesc_for_mp(PADAPTER padapter, struct tx_desc *ptxdesc)
{
struct mp_priv *pmp_priv = &padapter->mppriv;
_rtw_memcpy(ptxdesc, &(pmp_priv->tx.desc), TXDESC_SIZE);
}
void SetPacketTx(PADAPTER padapter)
{
u8 *ptr, *pkt_start, *pkt_end;
u32 pkt_size,offset;
struct tx_desc *desc;
struct rtw_ieee80211_hdr *hdr;
u8 payload;
s32 bmcast;
struct pkt_attrib *pattrib;
struct mp_priv *pmp_priv;
pmp_priv = &padapter->mppriv;
if (pmp_priv->tx.stop) return;
pmp_priv->tx.sended = 0;
pmp_priv->tx.stop = 0;
pmp_priv->tx_pktcount = 0;
//3 1. update_attrib()
pattrib = &pmp_priv->tx.attrib;
_rtw_memcpy(pattrib->src, padapter->eeprompriv.mac_addr, ETH_ALEN);
_rtw_memcpy(pattrib->ta, pattrib->src, ETH_ALEN);
_rtw_memcpy(pattrib->ra, pattrib->dst, ETH_ALEN);
bmcast = IS_MCAST(pattrib->ra);
if (bmcast) {
pattrib->mac_id = 1;
pattrib->psta = rtw_get_bcmc_stainfo(padapter);
} else {
pattrib->mac_id = 0;
pattrib->psta = rtw_get_stainfo(&padapter->stapriv, get_bssid(&padapter->mlmepriv));
}
pattrib->last_txcmdsz = pattrib->hdrlen + pattrib->pktlen;
//3 2. allocate xmit buffer
pkt_size = pattrib->last_txcmdsz;
if (pmp_priv->tx.pallocated_buf)
rtw_mfree(pmp_priv->tx.pallocated_buf, pmp_priv->tx.buf_size);
pmp_priv->tx.write_size = pkt_size;
pmp_priv->tx.buf_size = pkt_size + XMITBUF_ALIGN_SZ;
pmp_priv->tx.pallocated_buf = rtw_zmalloc(pmp_priv->tx.buf_size);
if (pmp_priv->tx.pallocated_buf == NULL) {
DBG_871X("%s: malloc(%d) fail!!\n", __func__, pmp_priv->tx.buf_size);
return;
}
pmp_priv->tx.buf = (u8 *)N_BYTE_ALIGMENT((SIZE_PTR)(pmp_priv->tx.pallocated_buf), XMITBUF_ALIGN_SZ);
ptr = pmp_priv->tx.buf;
desc = &(pmp_priv->tx.desc);
_rtw_memset(desc, 0, TXDESC_SIZE);
pkt_start = ptr;
pkt_end = pkt_start + pkt_size;
//3 3. init TX descriptor
// offset 0
#if defined(CONFIG_RTL8188E) && !defined(CONFIG_RTL8188E_SDIO)
desc->txdw0 |= cpu_to_le32(OWN | FSG | LSG);
desc->txdw0 |= cpu_to_le32(pkt_size & 0x0000FFFF); // packet size
desc->txdw0 |= cpu_to_le32(((TXDESC_SIZE + OFFSET_SZ) << OFFSET_SHT) & 0x00FF0000); //32 bytes for TX Desc
if (bmcast) desc->txdw0 |= cpu_to_le32(BMC); // broadcast packet
desc->txdw1 |= cpu_to_le32((0x01 << 26) & 0xff000000);
#endif
// offset 4
#ifndef CONFIG_RTL8188E
desc->txdw1 |= cpu_to_le32(BK); // don't aggregate(AMPDU)
desc->txdw1 |= cpu_to_le32((pattrib->mac_id) & 0x1F); //CAM_ID(MAC_ID)
#else
desc->txdw1 |= cpu_to_le32((pattrib->mac_id) & 0x3F); //CAM_ID(MAC_ID)
#endif
desc->txdw1 |= cpu_to_le32((pattrib->qsel << QSEL_SHT) & 0x00001F00); // Queue Select, TID
#ifdef CONFIG_RTL8188E
desc->txdw1 |= cpu_to_le32((pattrib->raid << RATE_ID_SHT) & 0x000F0000); // Rate Adaptive ID
#else
desc->txdw1 |= cpu_to_le32((pattrib->raid << Rate_ID_SHT) & 0x000F0000); // Rate Adaptive ID
#endif
// offset 8
// desc->txdw2 |= cpu_to_le32(AGG_BK);//AGG BK
// offset 12
desc->txdw3 |= cpu_to_le32((pattrib->seqnum<<16)&0x0fff0000);
// desc->txdw3 |= cpu_to_le32((pattrib->seqnum & 0xFFF) << SEQ_SHT);
//desc->txdw3 |= cpu_to_le32((pattrib->seqnum << SEQ_SHT) & 0xffff0000);
// offset 16
//desc->txdw4 |= cpu_to_le32(QoS)
#ifdef CONFIG_RTL8188E
desc->txdw4 |= cpu_to_le32(HW_SSN);
#else
desc->txdw4 |= cpu_to_le32(HW_SEQ_EN);
#endif
desc->txdw4 |= cpu_to_le32(USERATE);
desc->txdw4 |= cpu_to_le32(DISDATAFB);
if ( pmp_priv->preamble ){
if (pmp_priv->rateidx <= MPT_RATE_54M)
desc->txdw4 |= cpu_to_le32(DATA_SHORT); // CCK Short Preamble
}
if (pmp_priv->bandwidth == HT_CHANNEL_WIDTH_40)
desc->txdw4 |= cpu_to_le32(DATA_BW);
// offset 20
desc->txdw5 |= cpu_to_le32(pmp_priv->rateidx & 0x0000001F);
if ( pmp_priv->preamble ){
if (pmp_priv->rateidx > MPT_RATE_54M)
desc->txdw5 |= cpu_to_le32(SGI); // MCS Short Guard Interval
}
#ifdef CONFIG_RTL8188E
desc->txdw5 |= cpu_to_le32(RTY_LMT_EN); // retry limit enable
desc->txdw5 |= cpu_to_le32(0x00180000); // DATA/RTS Rate Fallback Limit
#else
desc->txdw5 |= cpu_to_le32(0x0001FF00); // DATA/RTS Rate Fallback Limit
#endif
//3 4. make wlan header, make_wlanhdr()
hdr = (struct rtw_ieee80211_hdr *)pkt_start;
SetFrameSubType(&hdr->frame_ctl, pattrib->subtype);
_rtw_memcpy(hdr->addr1, pattrib->dst, ETH_ALEN); // DA
_rtw_memcpy(hdr->addr2, pattrib->src, ETH_ALEN); // SA
_rtw_memcpy(hdr->addr3, get_bssid(&padapter->mlmepriv), ETH_ALEN); // RA, BSSID
//3 5. make payload
ptr = pkt_start + pattrib->hdrlen;
switch (pmp_priv->tx.payload) {
case 0:
payload = 0x00;
break;
case 1:
payload = 0x5a;
break;
case 2:
payload = 0xa5;
break;
case 3:
payload = 0xff;
break;
default:
payload = 0x00;
break;
}
_rtw_memset(ptr, payload, pkt_end - ptr);
//3 6. start thread
#ifdef PLATFORM_LINUX
pmp_priv->tx.PktTxThread = kthread_run(mp_xmit_packet_thread, pmp_priv, "RTW_MP_THREAD");
if (IS_ERR(pmp_priv->tx.PktTxThread))
DBG_871X("Create PktTx Thread Fail !!!!!\n");
#endif
#ifdef PLATFORM_FREEBSD
{
struct proc *p;
struct thread *td;
pmp_priv->tx.PktTxThread = kproc_kthread_add(mp_xmit_packet_thread, pmp_priv,
&p, &td, RFHIGHPID, 0, "MPXmitThread", "MPXmitThread");
if (pmp_priv->tx.PktTxThread < 0)
DBG_871X("Create PktTx Thread Fail !!!!!\n");
}
#endif
}
void SetPacketRx(PADAPTER pAdapter, u8 bStartRx)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if (bStartRx)
{
// Accept CRC error and destination address
#if 1
//ndef CONFIG_RTL8723A
pHalData->ReceiveConfig = AAP | APM | AM | AB | APP_ICV | ADF | AMF | HTC_LOC_CTRL | APP_MIC | APP_PHYSTS;
pHalData->ReceiveConfig |= ACRC32;
rtw_write32(pAdapter, REG_RCR, pHalData->ReceiveConfig);
// Accept all data frames
rtw_write16(pAdapter, REG_RXFLTMAP2, 0xFFFF);
#else
rtw_write32(pAdapter, REG_RCR, 0x70000101);
#endif
}
else
{
rtw_write32(pAdapter, REG_RCR, 0);
}
}
void ResetPhyRxPktCount(PADAPTER pAdapter)
{
u32 i, phyrx_set = 0;
for (i = 0; i <= 0xF; i++) {
phyrx_set = 0;
phyrx_set |= _RXERR_RPT_SEL(i); //select
phyrx_set |= RXERR_RPT_RST; // set counter to zero
rtw_write32(pAdapter, REG_RXERR_RPT, phyrx_set);
}
}
static u32 GetPhyRxPktCounts(PADAPTER pAdapter, u32 selbit)
{
//selection
u32 phyrx_set = 0, count = 0;
phyrx_set = _RXERR_RPT_SEL(selbit & 0xF);
rtw_write32(pAdapter, REG_RXERR_RPT, phyrx_set);
//Read packet count
count = rtw_read32(pAdapter, REG_RXERR_RPT) & RXERR_COUNTER_MASK;
return count;
}
u32 GetPhyRxPktReceived(PADAPTER pAdapter)
{
u32 OFDM_cnt = 0, CCK_cnt = 0, HT_cnt = 0;
OFDM_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_OFDM_MPDU_OK);
CCK_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_CCK_MPDU_OK);
HT_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_HT_MPDU_OK);
return OFDM_cnt + CCK_cnt + HT_cnt;
}
u32 GetPhyRxPktCRC32Error(PADAPTER pAdapter)
{
u32 OFDM_cnt = 0, CCK_cnt = 0, HT_cnt = 0;
OFDM_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_OFDM_MPDU_FAIL);
CCK_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_CCK_MPDU_FAIL);
HT_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_HT_MPDU_FAIL);
return OFDM_cnt + CCK_cnt + HT_cnt;
}
//reg 0x808[9:0]: FFT data x
//reg 0x808[22]: 0 --> 1 to get 1 FFT data y
//reg 0x8B4[15:0]: FFT data y report
static u32 rtw_GetPSDData(PADAPTER pAdapter, u32 point)
{
int psd_val;
psd_val = rtw_read32(pAdapter, 0x808);
psd_val &= 0xFFBFFC00;
psd_val |= point;
rtw_write32(pAdapter, 0x808, psd_val);
rtw_mdelay_os(1);
psd_val |= 0x00400000;
rtw_write32(pAdapter, 0x808, psd_val);
rtw_mdelay_os(1);
psd_val = rtw_read32(pAdapter, 0x8B4);
psd_val &= 0x0000FFFF;
return psd_val;
}
/*
* pts start_point_min stop_point_max
* 128 64 64 + 128 = 192
* 256 128 128 + 256 = 384
* 512 256 256 + 512 = 768
* 1024 512 512 + 1024 = 1536
*
*/
u32 mp_query_psd(PADAPTER pAdapter, u8 *data)
{
u32 i, psd_pts=0, psd_start=0, psd_stop=0;
u32 psd_data=0;
#ifdef PLATFORM_LINUX
if (!netif_running(pAdapter->pnetdev)) {
RT_TRACE(_module_mp_, _drv_warning_, ("mp_query_psd: Fail! interface not opened!\n"));
return 0;
}
#endif
if (check_fwstate(&pAdapter->mlmepriv, WIFI_MP_STATE) == _FALSE) {
RT_TRACE(_module_mp_, _drv_warning_, ("mp_query_psd: Fail! not in MP mode!\n"));
return 0;
}
if (strlen(data) == 0) { //default value
psd_pts = 128;
psd_start = 64;
psd_stop = 128;
} else {
sscanf(data, "pts=%d,start=%d,stop=%d", &psd_pts, &psd_start, &psd_stop);
}
_rtw_memset(data, '\0', sizeof(data));
i = psd_start;
while (i < psd_stop)
{
if (i >= psd_pts) {
psd_data = rtw_GetPSDData(pAdapter, i-psd_pts);
} else {
psd_data = rtw_GetPSDData(pAdapter, i);
}
sprintf(data, "%s%x ", data, psd_data);
i++;
}
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(100);
#else
rtw_mdelay_os(100);
#endif
return strlen(data)+1;
}
void _rtw_mp_xmit_priv (struct xmit_priv *pxmitpriv)
{
int i,res;
_adapter *padapter = pxmitpriv->adapter;
struct xmit_frame *pxmitframe = (struct xmit_frame*) pxmitpriv->pxmit_frame_buf;
struct xmit_buf *pxmitbuf = (struct xmit_buf *)pxmitpriv->pxmitbuf;
u32 max_xmit_extbuf_size = MAX_XMIT_EXTBUF_SZ;
u32 num_xmit_extbuf = NR_XMIT_EXTBUFF;
if (padapter->registrypriv.mp_mode ==0)
{
max_xmit_extbuf_size = MAX_XMIT_EXTBUF_SZ;
num_xmit_extbuf = NR_XMIT_EXTBUFF;
}
else
{
max_xmit_extbuf_size = 20000;
num_xmit_extbuf = 1;
}
pxmitbuf = (struct xmit_buf *)pxmitpriv->pxmit_extbuf;
for (i=0; i<num_xmit_extbuf; i++)
{
rtw_os_xmit_resource_free(padapter, pxmitbuf,(max_xmit_extbuf_size + XMITBUF_ALIGN_SZ));
pxmitbuf++;
}
if (pxmitpriv->pallocated_xmit_extbuf) {
rtw_vmfree(pxmitpriv->pallocated_xmit_extbuf, num_xmit_extbuf * sizeof(struct xmit_buf) + 4);
}
if (padapter->registrypriv.mp_mode ==0)
{
max_xmit_extbuf_size = 20000;
num_xmit_extbuf = 1;
}
else
{
max_xmit_extbuf_size = MAX_XMIT_EXTBUF_SZ;
num_xmit_extbuf = NR_XMIT_EXTBUFF;
}
// Init xmit extension buff
_rtw_init_queue(&pxmitpriv->free_xmit_extbuf_queue);
pxmitpriv->pallocated_xmit_extbuf = rtw_zvmalloc(num_xmit_extbuf * sizeof(struct xmit_buf) + 4);
if (pxmitpriv->pallocated_xmit_extbuf == NULL){
RT_TRACE(_module_rtl871x_xmit_c_,_drv_err_,("alloc xmit_extbuf fail!\n"));
res= _FAIL;
goto exit;
}
pxmitpriv->pxmit_extbuf = (u8 *)N_BYTE_ALIGMENT((SIZE_PTR)(pxmitpriv->pallocated_xmit_extbuf), 4);
pxmitbuf = (struct xmit_buf *)pxmitpriv->pxmit_extbuf;
for (i = 0; i < num_xmit_extbuf; i++)
{
_rtw_init_listhead(&pxmitbuf->list);
pxmitbuf->priv_data = NULL;
pxmitbuf->padapter = padapter;
pxmitbuf->ext_tag = _TRUE;
/*
pxmitbuf->pallocated_buf = rtw_zmalloc(max_xmit_extbuf_size);
if (pxmitbuf->pallocated_buf == NULL)
{
res = _FAIL;
goto exit;
}
pxmitbuf->pbuf = (u8 *)N_BYTE_ALIGMENT((SIZE_PTR)(pxmitbuf->pallocated_buf), 4);
*/
if ((res=rtw_os_xmit_resource_alloc(padapter, pxmitbuf,max_xmit_extbuf_size + XMITBUF_ALIGN_SZ)) == _FAIL) {
res= _FAIL;
goto exit;
}
#if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
pxmitbuf->phead = pxmitbuf->pbuf;
pxmitbuf->pend = pxmitbuf->pbuf + max_xmit_extbuf_size;
pxmitbuf->len = 0;
pxmitbuf->pdata = pxmitbuf->ptail = pxmitbuf->phead;
#endif
rtw_list_insert_tail(&pxmitbuf->list, &(pxmitpriv->free_xmit_extbuf_queue.queue));
#ifdef DBG_XMIT_BUF_EXT
pxmitbuf->no=i;
#endif
pxmitbuf++;
}
pxmitpriv->free_xmit_extbuf_cnt = num_xmit_extbuf;
exit:
;
}
#endif