// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2007 - 2016 Realtek Corporation. All rights reserved. */ #define _RTW_MP_C_ #include #include "../hal/phydm/phydm_precomp.h" #ifdef CONFIG_MP_VHT_HW_TX_MODE #define CEILING_POS(X) ((X - (int)(X)) > 0 ? (int)(X + 1) : (int)(X)) #define CEILING_NEG(X) ((X - (int)(X)) < 0 ? (int)(X - 1) : (int)(X)) #define ceil(X) (((X) > 0) ? CEILING_POS(X) : CEILING_NEG(X)) int rtfloor(float x) { int i = x - 2; while (++i <= x - 1) ; return i; } #endif #ifdef CONFIG_MP_INCLUDED u32 read_macreg(_adapter *padapter, u32 addr, u32 sz) { u32 val = 0; switch (sz) { case 1: val = rtw_read8(padapter, addr); break; case 2: val = rtw_read16(padapter, addr); break; case 4: val = rtw_read32(padapter, addr); break; default: val = 0xffffffff; break; } return val; } void write_macreg(_adapter *padapter, u32 addr, u32 val, u32 sz) { switch (sz) { case 1: rtw_write8(padapter, addr, (u8)val); break; case 2: rtw_write16(padapter, addr, (u16)val); break; case 4: rtw_write32(padapter, addr, val); break; default: break; } } u32 read_bbreg(_adapter *padapter, u32 addr, u32 bitmask) { return rtw_hal_read_bbreg(padapter, addr, bitmask); } void write_bbreg(_adapter *padapter, u32 addr, u32 bitmask, u32 val) { rtw_hal_write_bbreg(padapter, addr, bitmask, val); } u32 _read_rfreg(PADAPTER padapter, u8 rfpath, u32 addr, u32 bitmask) { return rtw_hal_read_rfreg(padapter, rfpath, addr, bitmask); } void _write_rfreg(PADAPTER padapter, u8 rfpath, u32 addr, u32 bitmask, u32 val) { rtw_hal_write_rfreg(padapter, rfpath, addr, bitmask, val); } u32 read_rfreg(PADAPTER padapter, u8 rfpath, u32 addr) { return _read_rfreg(padapter, rfpath, addr, bRFRegOffsetMask); } void write_rfreg(PADAPTER padapter, u8 rfpath, u32 addr, u32 val) { _write_rfreg(padapter, rfpath, addr, bRFRegOffsetMask, val); } static void _init_mp_priv_(struct mp_priv *pmp_priv) { WLAN_BSSID_EX *pnetwork; memset(pmp_priv, 0, sizeof(struct mp_priv)); pmp_priv->mode = MP_OFF; pmp_priv->channel = 1; pmp_priv->bandwidth = CHANNEL_WIDTH_20; pmp_priv->prime_channel_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE; pmp_priv->rateidx = RATE_1M; pmp_priv->txpoweridx = 0x2A; pmp_priv->antenna_tx = ANTENNA_A; pmp_priv->antenna_rx = ANTENNA_AB; pmp_priv->check_mp_pkt = 0; pmp_priv->tx_pktcount = 0; pmp_priv->rx_bssidpktcount = 0; pmp_priv->rx_pktcount = 0; pmp_priv->rx_crcerrpktcount = 0; pmp_priv->network_macaddr[0] = 0x00; pmp_priv->network_macaddr[1] = 0xE0; pmp_priv->network_macaddr[2] = 0x4C; pmp_priv->network_macaddr[3] = 0x87; pmp_priv->network_macaddr[4] = 0x66; pmp_priv->network_macaddr[5] = 0x55; pmp_priv->bSetRxBssid = false; pmp_priv->bRTWSmbCfg = false; pmp_priv->bloopback = false; pmp_priv->bloadefusemap = false; pnetwork = &pmp_priv->mp_network.network; memcpy(pnetwork->MacAddress, pmp_priv->network_macaddr, ETH_ALEN); pnetwork->Ssid.SsidLength = 8; memcpy(pnetwork->Ssid.Ssid, "mp_871x", pnetwork->Ssid.SsidLength); pmp_priv->tx.payload = 2; pmp_priv->tx.attrib.ht_en = 1; } static int init_mp_priv_by_os(struct mp_priv *pmp_priv) { int i, res; struct mp_xmit_frame *pmp_xmitframe; if (pmp_priv == NULL) return _FAIL; _rtw_init_queue(&pmp_priv->free_mp_xmitqueue); pmp_priv->pallocated_mp_xmitframe_buf = NULL; pmp_priv->pallocated_mp_xmitframe_buf = rtw_zmalloc(NR_MP_XMITFRAME * sizeof(struct mp_xmit_frame) + 4); if (pmp_priv->pallocated_mp_xmitframe_buf == NULL) { res = _FAIL; goto _exit_init_mp_priv; } pmp_priv->pmp_xmtframe_buf = pmp_priv->pallocated_mp_xmitframe_buf + 4 - ((SIZE_PTR)(pmp_priv->pallocated_mp_xmitframe_buf) & 3); pmp_xmitframe = (struct mp_xmit_frame *)pmp_priv->pmp_xmtframe_buf; for (i = 0; i < NR_MP_XMITFRAME; i++) { INIT_LIST_HEAD(&pmp_xmitframe->list); list_add_tail(&pmp_xmitframe->list, &pmp_priv->free_mp_xmitqueue.queue); pmp_xmitframe->pkt = NULL; pmp_xmitframe->frame_tag = MP_FRAMETAG; pmp_xmitframe->padapter = pmp_priv->papdater; pmp_xmitframe++; } pmp_priv->free_mp_xmitframe_cnt = NR_MP_XMITFRAME; res = _SUCCESS; _exit_init_mp_priv: return res; } static void mp_init_xmit_attrib(struct mp_tx *pmptx, PADAPTER padapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct pkt_attrib *pattrib; /* init xmitframe attribute */ pattrib = &pmptx->attrib; memset(pattrib, 0, sizeof(struct pkt_attrib)); memset(pmptx->desc, 0, TXDESC_SIZE); pattrib->ether_type = 0x8712; memset(pattrib->dst, 0xFF, ETH_ALEN); pattrib->ack_policy = 0; pattrib->hdrlen = WLAN_HDR_A3_LEN; pattrib->subtype = WIFI_DATA; pattrib->priority = 0; pattrib->qsel = pattrib->priority; pattrib->nr_frags = 1; pattrib->encrypt = 0; pattrib->bswenc = false; pattrib->qos_en = false; pattrib->pktlen = 1500; } s32 init_mp_priv(PADAPTER padapter) { struct mp_priv *pmppriv = &padapter->mppriv; PHAL_DATA_TYPE pHalData; pHalData = GET_HAL_DATA(padapter); _init_mp_priv_(pmppriv); pmppriv->papdater = padapter; pmppriv->mp_dm = 0; pmppriv->tx.stop = 1; pmppriv->bSetTxPower = 0; /*for manually set tx power*/ pmppriv->bTxBufCkFail = false; pmppriv->pktInterval = 0; pmppriv->pktLength = 1000; mp_init_xmit_attrib(&pmppriv->tx, padapter); switch (padapter->registrypriv.rf_config) { case RF_1T1R: pmppriv->antenna_tx = ANTENNA_A; pmppriv->antenna_rx = ANTENNA_A; break; case RF_1T2R: default: pmppriv->antenna_tx = ANTENNA_A; pmppriv->antenna_rx = ANTENNA_AB; break; case RF_2T2R: case RF_2T2R_GREEN: pmppriv->antenna_tx = ANTENNA_AB; pmppriv->antenna_rx = ANTENNA_AB; break; case RF_2T4R: pmppriv->antenna_tx = ANTENNA_BC; pmppriv->antenna_rx = ANTENNA_ABCD; break; } pHalData->AntennaRxPath = pmppriv->antenna_rx; pHalData->antenna_tx_path = pmppriv->antenna_tx; return _SUCCESS; } void free_mp_priv(struct mp_priv *pmp_priv) { if (pmp_priv->pallocated_mp_xmitframe_buf) { rtw_mfree(pmp_priv->pallocated_mp_xmitframe_buf, 0); pmp_priv->pallocated_mp_xmitframe_buf = NULL; } pmp_priv->pmp_xmtframe_buf = NULL; } static void PHY_IQCalibrate_default( PADAPTER pAdapter, bool bReCovery ) { RTW_INFO("%s\n", __func__); } static void PHY_LCCalibrate_default( PADAPTER pAdapter ) { RTW_INFO("%s\n", __func__); } static void PHY_SetRFPathSwitch_default( PADAPTER pAdapter, bool bMain ) { RTW_INFO("%s\n", __func__); } static void mpt_InitHWConfig(PADAPTER Adapter) { } static void PHY_IQCalibrate(PADAPTER padapter, u8 bReCovery) { PHAL_DATA_TYPE pHalData; u8 b2ant; /* false:1ant, true:2-ant */ u8 RF_Path; /* 0:S1, 1:S0 */ if (IS_HARDWARE_TYPE_8188E(padapter)) phy_iq_calibrate_8188e(padapter, bReCovery); } static void PHY_LCCalibrate(PADAPTER padapter) { if (IS_HARDWARE_TYPE_8188E(padapter)) phy_lc_calibrate_8188e(&(GET_HAL_DATA(padapter)->odmpriv)); } static u8 PHY_QueryRFPathSwitch(PADAPTER padapter) { return 0; } static void PHY_SetRFPathSwitch(PADAPTER padapter , bool bMain) { if (IS_HARDWARE_TYPE_8188E(padapter)) phy_set_rf_path_switch_8188e(padapter, bMain); } s32 MPT_InitializeAdapter( PADAPTER pAdapter, u8 Channel ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); s32 rtStatus = _SUCCESS; PMPT_CONTEXT pMptCtx = &pAdapter->mppriv.mpt_ctx; u32 ledsetting; struct mlme_priv *pmlmepriv = &pAdapter->mlmepriv; pMptCtx->bMptDrvUnload = false; pMptCtx->bMassProdTest = false; pMptCtx->bMptIndexEven = true; /* default gain index is -6.0db */ pMptCtx->h2cReqNum = 0x0; /* init for BT MP */ mpt_InitHWConfig(pAdapter); pMptCtx->bMptWorkItemInProgress = false; pMptCtx->CurrMptAct = NULL; pMptCtx->mpt_rf_path = ODM_RF_PATH_A; /* ------------------------------------------------------------------------- */ /* Don't accept any packets */ rtw_write32(pAdapter, REG_RCR, 0); ledsetting = rtw_read32(pAdapter, REG_LEDCFG0); PHY_LCCalibrate(pAdapter); PHY_IQCalibrate(pAdapter, false); PHY_SetRFPathSwitch(pAdapter, 1/*pHalData->bDefaultAntenna*/); /* default use Main */ pMptCtx->backup0xc50 = (u8)phy_query_bb_reg(pAdapter, rOFDM0_XAAGCCore1, bMaskByte0); pMptCtx->backup0xc58 = (u8)phy_query_bb_reg(pAdapter, rOFDM0_XBAGCCore1, bMaskByte0); pMptCtx->backup0xc30 = (u8)phy_query_bb_reg(pAdapter, rOFDM0_RxDetector1, bMaskByte0); pMptCtx->backup0x52_RF_A = (u8)phy_query_rf_reg(pAdapter, RF_PATH_A, RF_0x52, 0x000F0); pMptCtx->backup0x52_RF_B = (u8)phy_query_rf_reg(pAdapter, RF_PATH_B, RF_0x52, 0x000F0); rtw_write32(pAdapter, REG_MACID_NO_LINK_0, 0x0); rtw_write32(pAdapter, REG_MACID_NO_LINK_1, 0x0); return rtStatus; } /*----------------------------------------------------------------------------- * Function: MPT_DeInitAdapter() * * Overview: Extra DeInitialization for Mass Production Test. * * Input: PADAPTER pAdapter * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 05/08/2007 MHC Create Version 0. * 05/18/2007 MHC Add normal driver MPHalt code. * *---------------------------------------------------------------------------*/ void MPT_DeInitAdapter( PADAPTER pAdapter ) { PMPT_CONTEXT pMptCtx = &pAdapter->mppriv.mpt_ctx; pMptCtx->bMptDrvUnload = true; } static u8 mpt_ProStartTest(PADAPTER padapter) { PMPT_CONTEXT pMptCtx = &padapter->mppriv.mpt_ctx; pMptCtx->bMassProdTest = true; pMptCtx->is_start_cont_tx = false; pMptCtx->bCckContTx = false; pMptCtx->bOfdmContTx = false; pMptCtx->bSingleCarrier = false; pMptCtx->is_carrier_suppression = false; pMptCtx->is_single_tone = false; pMptCtx->HWTxmode = PACKETS_TX; return _SUCCESS; } /* * General use */ s32 SetPowerTracking(PADAPTER padapter, u8 enable) { hal_mpt_SetPowerTracking(padapter, enable); return 0; } void GetPowerTracking(PADAPTER padapter, u8 *enable) { hal_mpt_GetPowerTracking(padapter, enable); } void rtw_mp_trigger_iqk(PADAPTER padapter) { PHY_IQCalibrate(padapter, false); } void rtw_mp_trigger_lck(PADAPTER padapter) { PHY_LCCalibrate(padapter); } static void disable_dm(PADAPTER padapter) { u8 v8; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct PHY_DM_STRUCT *pDM_Odm = &pHalData->odmpriv; /* 3 1. disable firmware dynamic mechanism */ /* disable Power Training, Rate Adaptive */ v8 = rtw_read8(padapter, REG_BCN_CTRL); v8 &= ~EN_BCN_FUNCTION; rtw_write8(padapter, REG_BCN_CTRL, v8); /* 3 2. disable driver dynamic mechanism */ rtw_phydm_func_disable_all(padapter); /* enable APK, LCK and IQK but disable power tracking */ pDM_Odm->rf_calibrate_info.txpowertrack_control = false; rtw_phydm_func_set(padapter, ODM_RF_CALIBRATION); /* #ifdef CONFIG_BT_COEXIST */ /* rtw_btcoex_Switch(padapter, 0); */ /* remove for BT MP Down. */ /* #endif */ } void MPT_PwrCtlDM(PADAPTER padapter, u32 bstart) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct PHY_DM_STRUCT *pDM_Odm = &pHalData->odmpriv; if (bstart == 1) { RTW_INFO("in MPT_PwrCtlDM start\n"); rtw_phydm_func_set(padapter, ODM_RF_TX_PWR_TRACK | ODM_RF_CALIBRATION); pDM_Odm->rf_calibrate_info.txpowertrack_control = true; padapter->mppriv.mp_dm = 1; } else { RTW_INFO("in MPT_PwrCtlDM stop\n"); disable_dm(padapter); pDM_Odm->rf_calibrate_info.txpowertrack_control = false; padapter->mppriv.mp_dm = 0; { struct _TXPWRTRACK_CFG c; u8 chnl = 0 ; memset(&c, 0, sizeof(struct _TXPWRTRACK_CFG)); configure_txpower_track(pDM_Odm, &c); odm_clear_txpowertracking_state(pDM_Odm); if (*c.odm_tx_pwr_track_set_pwr) { if (pDM_Odm->support_ic_type == ODM_RTL8188F) (*c.odm_tx_pwr_track_set_pwr)(pDM_Odm, MIX_MODE, ODM_RF_PATH_A, chnl); else if (pDM_Odm->support_ic_type == ODM_RTL8723D) { (*c.odm_tx_pwr_track_set_pwr)(pDM_Odm, BBSWING, ODM_RF_PATH_A, chnl); SetTxPower(padapter); } else { (*c.odm_tx_pwr_track_set_pwr)(pDM_Odm, BBSWING, ODM_RF_PATH_A, chnl); (*c.odm_tx_pwr_track_set_pwr)(pDM_Odm, BBSWING, ODM_RF_PATH_B, chnl); } } } } } u32 mp_join(PADAPTER padapter, u8 mode) { WLAN_BSSID_EX bssid; struct sta_info *psta; u32 length; u8 val8, join_type; unsigned long irqL; s32 res = _SUCCESS; struct mp_priv *pmppriv = &padapter->mppriv; struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct wlan_network *tgt_network = &pmlmepriv->cur_network; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); WLAN_BSSID_EX *pnetwork = (WLAN_BSSID_EX *)(&(pmlmeinfo->network)); #ifdef CONFIG_IOCTL_CFG80211 struct wireless_dev *pwdev = padapter->rtw_wdev; #endif /* #ifdef CONFIG_IOCTL_CFG80211 */ /* 1. initialize a new WLAN_BSSID_EX */ memset(&bssid, 0, sizeof(WLAN_BSSID_EX)); RTW_INFO("%s ,pmppriv->network_macaddr=%x %x %x %x %x %x\n", __func__, pmppriv->network_macaddr[0], pmppriv->network_macaddr[1], pmppriv->network_macaddr[2], pmppriv->network_macaddr[3], pmppriv->network_macaddr[4], pmppriv->network_macaddr[5]); memcpy(bssid.MacAddress, pmppriv->network_macaddr, ETH_ALEN); if (mode == WIFI_FW_ADHOC_STATE) { bssid.Ssid.SsidLength = strlen("mp_pseudo_adhoc"); memcpy(bssid.Ssid.Ssid, (u8 *)"mp_pseudo_adhoc", bssid.Ssid.SsidLength); bssid.InfrastructureMode = Ndis802_11IBSS; bssid.NetworkTypeInUse = Ndis802_11DS; bssid.IELength = 0; bssid.Configuration.DSConfig = pmppriv->channel; } else if (mode == WIFI_FW_STATION_STATE) { bssid.Ssid.SsidLength = strlen("mp_pseudo_STATION"); memcpy(bssid.Ssid.Ssid, (u8 *)"mp_pseudo_STATION", bssid.Ssid.SsidLength); bssid.InfrastructureMode = Ndis802_11Infrastructure; bssid.NetworkTypeInUse = Ndis802_11DS; bssid.IELength = 0; } length = get_WLAN_BSSID_EX_sz(&bssid); if (length % 4) bssid.Length = ((length >> 2) + 1) << 2; /* round up to multiple of 4 bytes. */ else bssid.Length = length; _enter_critical_bh(&pmlmepriv->lock, &irqL); if (check_fwstate(pmlmepriv, WIFI_MP_STATE) == true) goto end_of_mp_start_test; /* init mp_start_test status */ if (check_fwstate(pmlmepriv, _FW_LINKED) == true) { rtw_disassoc_cmd(padapter, 500, true); rtw_indicate_disconnect(padapter, 0, false); rtw_free_assoc_resources(padapter, 1); } pmppriv->prev_fw_state = get_fwstate(pmlmepriv); /*pmlmepriv->fw_state = WIFI_MP_STATE;*/ init_fwstate(pmlmepriv, WIFI_MP_STATE); set_fwstate(pmlmepriv, _FW_UNDER_LINKING); /* 3 2. create a new psta for mp driver */ /* clear psta in the cur_network, if any */ psta = rtw_get_stainfo(&padapter->stapriv, tgt_network->network.MacAddress); if (psta) rtw_free_stainfo(padapter, psta); psta = rtw_alloc_stainfo(&padapter->stapriv, bssid.MacAddress); if (psta == NULL) { /*pmlmepriv->fw_state = pmppriv->prev_fw_state;*/ init_fwstate(pmlmepriv, pmppriv->prev_fw_state); res = _FAIL; goto end_of_mp_start_test; } if (mode == WIFI_FW_ADHOC_STATE) set_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE); else set_fwstate(pmlmepriv, WIFI_STATION_STATE); /* 3 3. join psudo AdHoc */ tgt_network->join_res = 1; tgt_network->aid = psta->aid = 1; memcpy(&padapter->registrypriv.dev_network, &bssid, length); rtw_update_registrypriv_dev_network(padapter); memcpy(&tgt_network->network, &padapter->registrypriv.dev_network, padapter->registrypriv.dev_network.Length); memcpy(pnetwork, &padapter->registrypriv.dev_network, padapter->registrypriv.dev_network.Length); rtw_indicate_connect(padapter); _clr_fwstate_(pmlmepriv, _FW_UNDER_LINKING); set_fwstate(pmlmepriv, _FW_LINKED); end_of_mp_start_test: _exit_critical_bh(&pmlmepriv->lock, &irqL); if (1) { /* (res == _SUCCESS) */ /* set MSR to WIFI_FW_ADHOC_STATE */ if (mode == WIFI_FW_ADHOC_STATE) { /* set msr to WIFI_FW_ADHOC_STATE */ pmlmeinfo->state = WIFI_FW_ADHOC_STATE; Set_MSR(padapter, (pmlmeinfo->state & 0x3)); rtw_hal_set_hwreg(padapter, HW_VAR_BSSID, padapter->registrypriv.dev_network.MacAddress); join_type = 0; rtw_hal_set_hwreg(padapter, HW_VAR_MLME_JOIN, (u8 *)(&join_type)); report_join_res(padapter, 1); pmlmeinfo->state |= WIFI_FW_ASSOC_SUCCESS; } else { Set_MSR(padapter, WIFI_FW_STATION_STATE); RTW_INFO("%s , pmppriv->network_macaddr =%x %x %x %x %x %x\n", __func__, pmppriv->network_macaddr[0], pmppriv->network_macaddr[1], pmppriv->network_macaddr[2], pmppriv->network_macaddr[3], pmppriv->network_macaddr[4], pmppriv->network_macaddr[5]); rtw_hal_set_hwreg(padapter, HW_VAR_BSSID, pmppriv->network_macaddr); } } return res; } /* This function initializes the DUT to the MP test mode */ s32 mp_start_test(PADAPTER padapter) { struct mp_priv *pmppriv = &padapter->mppriv; s32 res = _SUCCESS; padapter->registrypriv.mp_mode = 1; /* 3 disable dynamic mechanism */ disable_dm(padapter); rtl8188e_InitHalDm(padapter); /* 3 0. update mp_priv */ if (!RF_TYPE_VALID(padapter->registrypriv.rf_config)) { /* switch (phal->rf_type) { */ switch (GET_RF_TYPE(padapter)) { case RF_1T1R: pmppriv->antenna_tx = ANTENNA_A; pmppriv->antenna_rx = ANTENNA_A; break; case RF_1T2R: default: pmppriv->antenna_tx = ANTENNA_A; pmppriv->antenna_rx = ANTENNA_AB; break; case RF_2T2R: case RF_2T2R_GREEN: pmppriv->antenna_tx = ANTENNA_AB; pmppriv->antenna_rx = ANTENNA_AB; break; case RF_2T4R: pmppriv->antenna_tx = ANTENNA_AB; pmppriv->antenna_rx = ANTENNA_ABCD; break; } } mpt_ProStartTest(padapter); mp_join(padapter, WIFI_FW_ADHOC_STATE); return res; } /* ------------------------------------------------------------------------------ * This function change the DUT from the MP test mode into normal mode */ void mp_stop_test(PADAPTER padapter) { struct mp_priv *pmppriv = &padapter->mppriv; struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct wlan_network *tgt_network = &pmlmepriv->cur_network; struct sta_info *psta; unsigned long irqL; if (pmppriv->mode == MP_ON) { pmppriv->bSetTxPower = 0; _enter_critical_bh(&pmlmepriv->lock, &irqL); if (check_fwstate(pmlmepriv, WIFI_MP_STATE) == false) goto end_of_mp_stop_test; /* 3 1. disconnect psudo AdHoc */ rtw_indicate_disconnect(padapter, 0, false); /* 3 2. clear psta used in mp test mode. * rtw_free_assoc_resources(padapter, 1); */ psta = rtw_get_stainfo(&padapter->stapriv, tgt_network->network.MacAddress); if (psta) rtw_free_stainfo(padapter, psta); /* 3 3. return to normal state (default:station mode) */ /*pmlmepriv->fw_state = pmppriv->prev_fw_state; */ /* WIFI_STATION_STATE;*/ init_fwstate(pmlmepriv, pmppriv->prev_fw_state); /* flush the cur_network */ memset(tgt_network, 0, sizeof(struct wlan_network)); _clr_fwstate_(pmlmepriv, WIFI_MP_STATE); end_of_mp_stop_test: _exit_critical_bh(&pmlmepriv->lock, &irqL); } } /*---------------------------hal\rtl8192c\MPT_Phy.c---------------------------*/ /*----------------------------------------------------------------------------- * Function: mpt_SwitchRfSetting * * Overview: Change RF Setting when we siwthc channel/rate/BW for MP. * * Input: PADAPTER pAdapter * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 01/08/2009 MHC Suggestion from SD3 Willis for 92S series. * 01/09/2009 MHC Add CCK modification for 40MHZ. Suggestion from SD3. * *---------------------------------------------------------------------------*/ static void mpt_SwitchRfSetting(PADAPTER pAdapter) { hal_mpt_SwitchRfSetting(pAdapter); } /*---------------------------hal\rtl8192c\MPT_Phy.c---------------------------*/ /*---------------------------hal\rtl8192c\MPT_HelperFunc.c---------------------------*/ static void MPT_CCKTxPowerAdjust(PADAPTER Adapter, bool bInCH14) { hal_mpt_CCKTxPowerAdjust(Adapter, bInCH14); } /*---------------------------hal\rtl8192c\MPT_HelperFunc.c---------------------------*/ /* * SetChannel * Description * Use H2C command to change channel, * not only modify rf register, but also other setting need to be done. */ void SetChannel(PADAPTER pAdapter) { hal_mpt_SetChannel(pAdapter); } /* * Notice * Switch bandwitdth may change center frequency(channel) */ void SetBandwidth(PADAPTER pAdapter) { hal_mpt_SetBandwidth(pAdapter); } void SetAntenna(PADAPTER pAdapter) { hal_mpt_SetAntenna(pAdapter); } int SetTxPower(PADAPTER pAdapter) { hal_mpt_SetTxPower(pAdapter); return true; } static void SetTxAGCOffset(PADAPTER pAdapter, u32 ulTxAGCOffset) { u32 TxAGCOffset_B, TxAGCOffset_C, TxAGCOffset_D, tmpAGC; TxAGCOffset_B = (ulTxAGCOffset & 0x000000ff); TxAGCOffset_C = ((ulTxAGCOffset & 0x0000ff00) >> 8); TxAGCOffset_D = ((ulTxAGCOffset & 0x00ff0000) >> 16); tmpAGC = (TxAGCOffset_D << 8 | TxAGCOffset_C << 4 | TxAGCOffset_B); write_bbreg(pAdapter, rFPGA0_TxGainStage, (bXBTxAGC | bXCTxAGC | bXDTxAGC), tmpAGC); } void SetDataRate(PADAPTER pAdapter) { hal_mpt_SetDataRate(pAdapter); } void MP_PHY_SetRFPathSwitch(PADAPTER pAdapter , bool bMain) { PHY_SetRFPathSwitch(pAdapter, bMain); } u8 MP_PHY_QueryRFPathSwitch(PADAPTER pAdapter) { return PHY_QueryRFPathSwitch(pAdapter); } s32 SetThermalMeter(PADAPTER pAdapter, u8 target_ther) { return hal_mpt_SetThermalMeter(pAdapter, target_ther); } static void TriggerRFThermalMeter(PADAPTER pAdapter) { hal_mpt_TriggerRFThermalMeter(pAdapter); } static u8 ReadRFThermalMeter(PADAPTER pAdapter) { return hal_mpt_ReadRFThermalMeter(pAdapter); } void GetThermalMeter(PADAPTER pAdapter, u8 *value) { hal_mpt_GetThermalMeter(pAdapter, value); } void SetSingleCarrierTx(PADAPTER pAdapter, u8 bStart) { PhySetTxPowerLevel(pAdapter); hal_mpt_SetSingleCarrierTx(pAdapter, bStart); } void SetSingleToneTx(PADAPTER pAdapter, u8 bStart) { PhySetTxPowerLevel(pAdapter); hal_mpt_SetSingleToneTx(pAdapter, bStart); } void SetCarrierSuppressionTx(PADAPTER pAdapter, u8 bStart) { PhySetTxPowerLevel(pAdapter); hal_mpt_SetCarrierSuppressionTx(pAdapter, bStart); } void SetContinuousTx(PADAPTER pAdapter, u8 bStart) { PhySetTxPowerLevel(pAdapter); hal_mpt_SetContinuousTx(pAdapter, bStart); } void PhySetTxPowerLevel(PADAPTER pAdapter) { struct mp_priv *pmp_priv = &pAdapter->mppriv; if (pmp_priv->bSetTxPower == 0) /* for NO manually set power index */ rtw_hal_set_tx_power_level(pAdapter, pmp_priv->channel); } /* ------------------------------------------------------------------------------ */ static void dump_mpframe(PADAPTER padapter, struct xmit_frame *pmpframe) { rtw_hal_mgnt_xmit(padapter, pmpframe); } static struct xmit_frame *alloc_mp_xmitframe(struct xmit_priv *pxmitpriv) { struct xmit_frame *pmpframe; struct xmit_buf *pxmitbuf; pmpframe = rtw_alloc_xmitframe(pxmitpriv); if (pmpframe == NULL) return NULL; pxmitbuf = rtw_alloc_xmitbuf(pxmitpriv); if (pxmitbuf == NULL) { rtw_free_xmitframe(pxmitpriv, pmpframe); return NULL; } pmpframe->frame_tag = MP_FRAMETAG; pmpframe->pxmitbuf = pxmitbuf; pmpframe->buf_addr = pxmitbuf->pbuf; pxmitbuf->priv_data = pmpframe; return pmpframe; } static thread_return mp_xmit_packet_thread(thread_context context) { struct xmit_frame *pxmitframe; struct mp_tx *pmptx; struct mp_priv *pmp_priv; struct xmit_priv *pxmitpriv; PADAPTER padapter; pmp_priv = (struct mp_priv *)context; pmptx = &pmp_priv->tx; padapter = pmp_priv->papdater; pxmitpriv = &(padapter->xmitpriv); thread_enter("RTW_MP_THREAD"); RTW_INFO("%s:pkTx Start\n", __func__); while (1) { pxmitframe = alloc_mp_xmitframe(pxmitpriv); if (pxmitframe == NULL) { if (pmptx->stop || RTW_CANNOT_RUN(padapter)) goto exit; else { rtw_usleep_os(10); continue; } } memcpy((u8 *)(pxmitframe->buf_addr + TXDESC_OFFSET), pmptx->buf, pmptx->write_size); memcpy(&(pxmitframe->attrib), &(pmptx->attrib), sizeof(struct pkt_attrib)); rtw_usleep_os(padapter->mppriv.pktInterval); dump_mpframe(padapter, pxmitframe); pmptx->sended++; pmp_priv->tx_pktcount++; if (pmptx->stop || RTW_CANNOT_RUN(padapter)) goto exit; if ((pmptx->count != 0) && (pmptx->count == pmptx->sended)) goto exit; flush_signals_thread(); } exit: /* RTW_INFO("%s:pkTx Exit\n", __func__); */ rtw_mfree(pmptx->pallocated_buf, pmptx->buf_size); pmptx->pallocated_buf = NULL; pmptx->stop = 1; thread_exit(); } void fill_txdesc_for_mp(PADAPTER padapter, u8 *ptxdesc) { struct mp_priv *pmp_priv = &padapter->mppriv; memcpy(ptxdesc, pmp_priv->tx.desc, TXDESC_SIZE); } static void fill_tx_desc_8188e(PADAPTER padapter) { struct mp_priv *pmp_priv = &padapter->mppriv; struct tx_desc *desc = (struct tx_desc *)&(pmp_priv->tx.desc); struct pkt_attrib *pattrib = &(pmp_priv->tx.attrib); u32 pkt_size = pattrib->last_txcmdsz; s32 bmcast = IS_MCAST(pattrib->ra); /* offset 0 */ desc->txdw0 |= cpu_to_le32(OWN | FSG | LSG); desc->txdw0 |= cpu_to_le32(pkt_size & 0x0000FFFF); /* packet size */ desc->txdw0 |= cpu_to_le32(((TXDESC_SIZE + OFFSET_SZ) << OFFSET_SHT) & 0x00FF0000); /* 32 bytes for TX Desc */ if (bmcast) desc->txdw0 |= cpu_to_le32(BMC); /* broadcast packet */ desc->txdw1 |= cpu_to_le32((0x01 << 26) & 0xff000000); desc->txdw1 |= cpu_to_le32((pattrib->mac_id) & 0x3F); /* CAM_ID(MAC_ID) */ desc->txdw1 |= cpu_to_le32((pattrib->qsel << QSEL_SHT) & 0x00001F00); /* Queue Select, TID */ desc->txdw1 |= cpu_to_le32((pattrib->raid << RATE_ID_SHT) & 0x000F0000); /* Rate Adaptive ID */ /* offset 8 */ /* desc->txdw2 |= cpu_to_le32(AGG_BK); */ /* AGG BK */ desc->txdw3 |= cpu_to_le32((pattrib->seqnum << 16) & 0x0fff0000); desc->txdw4 |= cpu_to_le32(HW_SSN); desc->txdw4 |= cpu_to_le32(USERATE); desc->txdw4 |= cpu_to_le32(DISDATAFB); if (pmp_priv->preamble) { if (HwRateToMPTRate(pmp_priv->rateidx) <= MPT_RATE_54M) desc->txdw4 |= cpu_to_le32(DATA_SHORT); /* CCK Short Preamble */ } if (pmp_priv->bandwidth == CHANNEL_WIDTH_40) desc->txdw4 |= cpu_to_le32(DATA_BW); /* offset 20 */ desc->txdw5 |= cpu_to_le32(pmp_priv->rateidx & 0x0000001F); if (pmp_priv->preamble) { if (HwRateToMPTRate(pmp_priv->rateidx) > MPT_RATE_54M) desc->txdw5 |= cpu_to_le32(SGI); /* MCS Short Guard Interval */ } desc->txdw5 |= cpu_to_le32(RTY_LMT_EN); /* retry limit enable */ desc->txdw5 |= cpu_to_le32(0x00180000); /* DATA/RTS Rate Fallback Limit */ } static void Rtw_MPSetMacTxEDCA(PADAPTER padapter) { rtw_write32(padapter, 0x508 , 0x00a422); /* Disable EDCA BE Txop for MP pkt tx adjust Packet interval */ phy_set_mac_reg(padapter, 0x458 , bMaskDWord , 0x0); phy_set_mac_reg(padapter, 0x460 , bMaskLWord , 0x0); /* fast EDCA queue packet interval & time out value*/ RTW_INFO("%s()!!!!! 0x460 = 0x%x\n" , __func__, phy_query_bb_reg(padapter, 0x460, bMaskDWord)); } void SetPacketTx(PADAPTER padapter) { u8 *ptr, *pkt_start, *pkt_end, *fctrl; u32 pkt_size, offset, startPlace, i; struct rtw_ieee80211_hdr *hdr; u8 payload; s32 bmcast; struct pkt_attrib *pattrib; struct mp_priv *pmp_priv; pmp_priv = &padapter->mppriv; if (pmp_priv->tx.stop) return; pmp_priv->tx.sended = 0; pmp_priv->tx.stop = 0; pmp_priv->tx_pktcount = 0; /* 3 1. update_attrib() */ pattrib = &pmp_priv->tx.attrib; memcpy(pattrib->src, adapter_mac_addr(padapter), ETH_ALEN); memcpy(pattrib->ta, pattrib->src, ETH_ALEN); memcpy(pattrib->ra, pattrib->dst, ETH_ALEN); bmcast = IS_MCAST(pattrib->ra); if (bmcast) { pattrib->mac_id = 1; pattrib->psta = rtw_get_bcmc_stainfo(padapter); } else { pattrib->mac_id = 0; pattrib->psta = rtw_get_stainfo(&padapter->stapriv, get_bssid(&padapter->mlmepriv)); } pattrib->mbssid = 0; pattrib->last_txcmdsz = pattrib->hdrlen + pattrib->pktlen; /* 3 2. allocate xmit buffer */ pkt_size = pattrib->last_txcmdsz; if (pmp_priv->tx.pallocated_buf) rtw_mfree(pmp_priv->tx.pallocated_buf, pmp_priv->tx.buf_size); pmp_priv->tx.write_size = pkt_size; pmp_priv->tx.buf_size = pkt_size + XMITBUF_ALIGN_SZ; pmp_priv->tx.pallocated_buf = rtw_zmalloc(pmp_priv->tx.buf_size); if (pmp_priv->tx.pallocated_buf == NULL) { RTW_INFO("%s: malloc(%d) fail!!\n", __func__, pmp_priv->tx.buf_size); return; } pmp_priv->tx.buf = (u8 *)N_BYTE_ALIGMENT((SIZE_PTR)(pmp_priv->tx.pallocated_buf), XMITBUF_ALIGN_SZ); ptr = pmp_priv->tx.buf; memset(pmp_priv->tx.desc, 0, TXDESC_SIZE); pkt_start = ptr; pkt_end = pkt_start + pkt_size; /* 3 3. init TX descriptor */ if (IS_HARDWARE_TYPE_8188E(padapter)) fill_tx_desc_8188e(padapter); /* 3 4. make wlan header, make_wlanhdr() */ hdr = (struct rtw_ieee80211_hdr *)pkt_start; set_frame_sub_type(&hdr->frame_ctl, pattrib->subtype); memcpy(hdr->addr1, pattrib->dst, ETH_ALEN); /* DA */ memcpy(hdr->addr2, pattrib->src, ETH_ALEN); /* SA */ memcpy(hdr->addr3, get_bssid(&padapter->mlmepriv), ETH_ALEN); /* RA, BSSID */ /* 3 5. make payload */ ptr = pkt_start + pattrib->hdrlen; switch (pmp_priv->tx.payload) { case 0: payload = 0x00; break; case 1: payload = 0x5a; break; case 2: payload = 0xa5; break; case 3: payload = 0xff; break; default: payload = 0x00; break; } pmp_priv->TXradomBuffer = rtw_zmalloc(4096); if (pmp_priv->TXradomBuffer == NULL) { RTW_INFO("mp create random buffer fail!\n"); goto exit; } for (i = 0; i < 4096; i++) pmp_priv->TXradomBuffer[i] = rtw_random32() % 0xFF; /* startPlace = (u32)(rtw_random32() % 3450); */ memcpy(ptr, pmp_priv->TXradomBuffer, pkt_end - ptr); /* memset(ptr, payload, pkt_end - ptr); */ rtw_mfree(pmp_priv->TXradomBuffer, 4096); /* 3 6. start thread */ pmp_priv->tx.PktTxThread = kthread_run(mp_xmit_packet_thread, pmp_priv, "RTW_MP_THREAD"); if (IS_ERR(pmp_priv->tx.PktTxThread)) RTW_INFO("Create PktTx Thread Fail !!!!!\n"); Rtw_MPSetMacTxEDCA(padapter); exit: return; } void SetPacketRx(PADAPTER pAdapter, u8 bStartRx, u8 bAB) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); struct mp_priv *pmppriv = &pAdapter->mppriv; if (bStartRx) { pHalData->ReceiveConfig = RCR_AAP | RCR_APM | RCR_AM | RCR_AMF | RCR_HTC_LOC_CTRL; pHalData->ReceiveConfig |= RCR_ACRC32; pHalData->ReceiveConfig |= RCR_APP_PHYST_RXFF | RCR_APP_ICV | RCR_APP_MIC; if (pmppriv->bSetRxBssid == true) { RTW_INFO("%s: pmppriv->network_macaddr=" MAC_FMT "\n", __func__, MAC_ARG(pmppriv->network_macaddr)); pHalData->ReceiveConfig = 0; pHalData->ReceiveConfig |= RCR_CBSSID_DATA | RCR_CBSSID_BCN |RCR_APM | RCR_AM | RCR_AB |RCR_AMF; rtw_write16(pAdapter, REG_RXFLTMAP0, 0xFFEF); /* REG_RXFLTMAP0 (RX Filter Map Group 0) */ } else { pHalData->ReceiveConfig |= RCR_ADF; /* Accept all data frames */ rtw_write16(pAdapter, REG_RXFLTMAP2, 0xFFFF); } if (bAB) pHalData->ReceiveConfig |= RCR_AB; } else { pHalData->ReceiveConfig = 0; rtw_write16(pAdapter, REG_RXFLTMAP0, 0xFFFF); /* REG_RXFLTMAP0 (RX Filter Map Group 0) */ } rtw_write32(pAdapter, REG_RCR, pHalData->ReceiveConfig); } void ResetPhyRxPktCount(PADAPTER pAdapter) { u32 i, phyrx_set = 0; for (i = 0; i <= 0xF; i++) { phyrx_set = 0; phyrx_set |= _RXERR_RPT_SEL(i); /* select */ phyrx_set |= RXERR_RPT_RST; /* set counter to zero */ rtw_write32(pAdapter, REG_RXERR_RPT, phyrx_set); } } static u32 GetPhyRxPktCounts(PADAPTER pAdapter, u32 selbit) { /* selection */ u32 phyrx_set = 0, count = 0; phyrx_set = _RXERR_RPT_SEL(selbit & 0xF); rtw_write32(pAdapter, REG_RXERR_RPT, phyrx_set); /* Read packet count */ count = rtw_read32(pAdapter, REG_RXERR_RPT) & RXERR_COUNTER_MASK; return count; } u32 GetPhyRxPktReceived(PADAPTER pAdapter) { u32 OFDM_cnt = 0, CCK_cnt = 0, HT_cnt = 0; OFDM_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_OFDM_MPDU_OK); CCK_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_CCK_MPDU_OK); HT_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_HT_MPDU_OK); return OFDM_cnt + CCK_cnt + HT_cnt; } u32 GetPhyRxPktCRC32Error(PADAPTER pAdapter) { u32 OFDM_cnt = 0, CCK_cnt = 0, HT_cnt = 0; OFDM_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_OFDM_MPDU_FAIL); CCK_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_CCK_MPDU_FAIL); HT_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_HT_MPDU_FAIL); return OFDM_cnt + CCK_cnt + HT_cnt; } /* reg 0x808[9:0]: FFT data x * reg 0x808[22]: 0 --> 1 to get 1 FFT data y * reg 0x8B4[15:0]: FFT data y report */ static u32 rtw_GetPSDData(PADAPTER pAdapter, u32 point) { u32 psd_val = 0; u16 psd_reg = 0x808; u16 psd_regL = 0x8B4; psd_val = rtw_read32(pAdapter, psd_reg); psd_val &= 0xFFBFFC00; psd_val |= point; rtw_write32(pAdapter, psd_reg, psd_val); rtw_mdelay_os(1); psd_val |= 0x00400000; rtw_write32(pAdapter, psd_reg, psd_val); rtw_mdelay_os(1); psd_val = rtw_read32(pAdapter, psd_regL); psd_val &= 0x0000FFFF; return psd_val; } /* * pts start_point_min stop_point_max * 128 64 64 + 128 = 192 * 256 128 128 + 256 = 384 * 512 256 256 + 512 = 768 * 1024 512 512 + 1024 = 1536 * */ u32 mp_query_psd(PADAPTER pAdapter, u8 *data) { u32 i, psd_pts = 0, psd_start = 0, psd_stop = 0; u32 psd_data = 0; if (!netif_running(pAdapter->pnetdev)) { return 0; } if (check_fwstate(&pAdapter->mlmepriv, WIFI_MP_STATE) == false) { return 0; } if (strlen(data) == 0) { /* default value */ psd_pts = 128; psd_start = 64; psd_stop = 128; } else sscanf(data, "pts=%d,start=%d,stop=%d", &psd_pts, &psd_start, &psd_stop); data[0] = '\0'; i = psd_start; while (i < psd_stop) { if (i >= psd_pts) psd_data = rtw_GetPSDData(pAdapter, i - psd_pts); else psd_data = rtw_GetPSDData(pAdapter, i); sprintf(data + strlen(data), "%x ", psd_data); i++; } #ifdef CONFIG_LONG_DELAY_ISSUE rtw_msleep_os(100); #else rtw_mdelay_os(100); #endif return strlen(data) + 1; } u8 mpt_to_mgnt_rate( u32 MptRateIdx ) { /* Mapped to MGN_XXX defined in MgntGen.h */ switch (MptRateIdx) { /* CCK rate. */ case MPT_RATE_1M: return MGN_1M; case MPT_RATE_2M: return MGN_2M; case MPT_RATE_55M: return MGN_5_5M; case MPT_RATE_11M: return MGN_11M; /* OFDM rate. */ case MPT_RATE_6M: return MGN_6M; case MPT_RATE_9M: return MGN_9M; case MPT_RATE_12M: return MGN_12M; case MPT_RATE_18M: return MGN_18M; case MPT_RATE_24M: return MGN_24M; case MPT_RATE_36M: return MGN_36M; case MPT_RATE_48M: return MGN_48M; case MPT_RATE_54M: return MGN_54M; /* HT rate. */ case MPT_RATE_MCS0: return MGN_MCS0; case MPT_RATE_MCS1: return MGN_MCS1; case MPT_RATE_MCS2: return MGN_MCS2; case MPT_RATE_MCS3: return MGN_MCS3; case MPT_RATE_MCS4: return MGN_MCS4; case MPT_RATE_MCS5: return MGN_MCS5; case MPT_RATE_MCS6: return MGN_MCS6; case MPT_RATE_MCS7: return MGN_MCS7; case MPT_RATE_MCS8: return MGN_MCS8; case MPT_RATE_MCS9: return MGN_MCS9; case MPT_RATE_MCS10: return MGN_MCS10; case MPT_RATE_MCS11: return MGN_MCS11; case MPT_RATE_MCS12: return MGN_MCS12; case MPT_RATE_MCS13: return MGN_MCS13; case MPT_RATE_MCS14: return MGN_MCS14; case MPT_RATE_MCS15: return MGN_MCS15; case MPT_RATE_MCS16: return MGN_MCS16; case MPT_RATE_MCS17: return MGN_MCS17; case MPT_RATE_MCS18: return MGN_MCS18; case MPT_RATE_MCS19: return MGN_MCS19; case MPT_RATE_MCS20: return MGN_MCS20; case MPT_RATE_MCS21: return MGN_MCS21; case MPT_RATE_MCS22: return MGN_MCS22; case MPT_RATE_MCS23: return MGN_MCS23; case MPT_RATE_MCS24: return MGN_MCS24; case MPT_RATE_MCS25: return MGN_MCS25; case MPT_RATE_MCS26: return MGN_MCS26; case MPT_RATE_MCS27: return MGN_MCS27; case MPT_RATE_MCS28: return MGN_MCS28; case MPT_RATE_MCS29: return MGN_MCS29; case MPT_RATE_MCS30: return MGN_MCS30; case MPT_RATE_MCS31: return MGN_MCS31; /* VHT rate. */ case MPT_RATE_VHT1SS_MCS0: return MGN_VHT1SS_MCS0; case MPT_RATE_VHT1SS_MCS1: return MGN_VHT1SS_MCS1; case MPT_RATE_VHT1SS_MCS2: return MGN_VHT1SS_MCS2; case MPT_RATE_VHT1SS_MCS3: return MGN_VHT1SS_MCS3; case MPT_RATE_VHT1SS_MCS4: return MGN_VHT1SS_MCS4; case MPT_RATE_VHT1SS_MCS5: return MGN_VHT1SS_MCS5; case MPT_RATE_VHT1SS_MCS6: return MGN_VHT1SS_MCS6; case MPT_RATE_VHT1SS_MCS7: return MGN_VHT1SS_MCS7; case MPT_RATE_VHT1SS_MCS8: return MGN_VHT1SS_MCS8; case MPT_RATE_VHT1SS_MCS9: return MGN_VHT1SS_MCS9; case MPT_RATE_VHT2SS_MCS0: return MGN_VHT2SS_MCS0; case MPT_RATE_VHT2SS_MCS1: return MGN_VHT2SS_MCS1; case MPT_RATE_VHT2SS_MCS2: return MGN_VHT2SS_MCS2; case MPT_RATE_VHT2SS_MCS3: return MGN_VHT2SS_MCS3; case MPT_RATE_VHT2SS_MCS4: return MGN_VHT2SS_MCS4; case MPT_RATE_VHT2SS_MCS5: return MGN_VHT2SS_MCS5; case MPT_RATE_VHT2SS_MCS6: return MGN_VHT2SS_MCS6; case MPT_RATE_VHT2SS_MCS7: return MGN_VHT2SS_MCS7; case MPT_RATE_VHT2SS_MCS8: return MGN_VHT2SS_MCS8; case MPT_RATE_VHT2SS_MCS9: return MGN_VHT2SS_MCS9; case MPT_RATE_VHT3SS_MCS0: return MGN_VHT3SS_MCS0; case MPT_RATE_VHT3SS_MCS1: return MGN_VHT3SS_MCS1; case MPT_RATE_VHT3SS_MCS2: return MGN_VHT3SS_MCS2; case MPT_RATE_VHT3SS_MCS3: return MGN_VHT3SS_MCS3; case MPT_RATE_VHT3SS_MCS4: return MGN_VHT3SS_MCS4; case MPT_RATE_VHT3SS_MCS5: return MGN_VHT3SS_MCS5; case MPT_RATE_VHT3SS_MCS6: return MGN_VHT3SS_MCS6; case MPT_RATE_VHT3SS_MCS7: return MGN_VHT3SS_MCS7; case MPT_RATE_VHT3SS_MCS8: return MGN_VHT3SS_MCS8; case MPT_RATE_VHT3SS_MCS9: return MGN_VHT3SS_MCS9; case MPT_RATE_VHT4SS_MCS0: return MGN_VHT4SS_MCS0; case MPT_RATE_VHT4SS_MCS1: return MGN_VHT4SS_MCS1; case MPT_RATE_VHT4SS_MCS2: return MGN_VHT4SS_MCS2; case MPT_RATE_VHT4SS_MCS3: return MGN_VHT4SS_MCS3; case MPT_RATE_VHT4SS_MCS4: return MGN_VHT4SS_MCS4; case MPT_RATE_VHT4SS_MCS5: return MGN_VHT4SS_MCS5; case MPT_RATE_VHT4SS_MCS6: return MGN_VHT4SS_MCS6; case MPT_RATE_VHT4SS_MCS7: return MGN_VHT4SS_MCS7; case MPT_RATE_VHT4SS_MCS8: return MGN_VHT4SS_MCS8; case MPT_RATE_VHT4SS_MCS9: return MGN_VHT4SS_MCS9; case MPT_RATE_LAST: /* fully automatiMGN_VHT2SS_MCS1; */ default: RTW_INFO("<===mpt_to_mgnt_rate(), Invalid Rate: %d!!\n", MptRateIdx); return 0x0; } } u8 HwRateToMPTRate(u8 rate) { u8 ret_rate = MGN_1M; switch (rate) { case DESC_RATE1M: ret_rate = MPT_RATE_1M; break; case DESC_RATE2M: ret_rate = MPT_RATE_2M; break; case DESC_RATE5_5M: ret_rate = MPT_RATE_55M; break; case DESC_RATE11M: ret_rate = MPT_RATE_11M; break; case DESC_RATE6M: ret_rate = MPT_RATE_6M; break; case DESC_RATE9M: ret_rate = MPT_RATE_9M; break; case DESC_RATE12M: ret_rate = MPT_RATE_12M; break; case DESC_RATE18M: ret_rate = MPT_RATE_18M; break; case DESC_RATE24M: ret_rate = MPT_RATE_24M; break; case DESC_RATE36M: ret_rate = MPT_RATE_36M; break; case DESC_RATE48M: ret_rate = MPT_RATE_48M; break; case DESC_RATE54M: ret_rate = MPT_RATE_54M; break; case DESC_RATEMCS0: ret_rate = MPT_RATE_MCS0; break; case DESC_RATEMCS1: ret_rate = MPT_RATE_MCS1; break; case DESC_RATEMCS2: ret_rate = MPT_RATE_MCS2; break; case DESC_RATEMCS3: ret_rate = MPT_RATE_MCS3; break; case DESC_RATEMCS4: ret_rate = MPT_RATE_MCS4; break; case DESC_RATEMCS5: ret_rate = MPT_RATE_MCS5; break; case DESC_RATEMCS6: ret_rate = MPT_RATE_MCS6; break; case DESC_RATEMCS7: ret_rate = MPT_RATE_MCS7; break; case DESC_RATEMCS8: ret_rate = MPT_RATE_MCS8; break; case DESC_RATEMCS9: ret_rate = MPT_RATE_MCS9; break; case DESC_RATEMCS10: ret_rate = MPT_RATE_MCS10; break; case DESC_RATEMCS11: ret_rate = MPT_RATE_MCS11; break; case DESC_RATEMCS12: ret_rate = MPT_RATE_MCS12; break; case DESC_RATEMCS13: ret_rate = MPT_RATE_MCS13; break; case DESC_RATEMCS14: ret_rate = MPT_RATE_MCS14; break; case DESC_RATEMCS15: ret_rate = MPT_RATE_MCS15; break; case DESC_RATEMCS16: ret_rate = MPT_RATE_MCS16; break; case DESC_RATEMCS17: ret_rate = MPT_RATE_MCS17; break; case DESC_RATEMCS18: ret_rate = MPT_RATE_MCS18; break; case DESC_RATEMCS19: ret_rate = MPT_RATE_MCS19; break; case DESC_RATEMCS20: ret_rate = MPT_RATE_MCS20; break; case DESC_RATEMCS21: ret_rate = MPT_RATE_MCS21; break; case DESC_RATEMCS22: ret_rate = MPT_RATE_MCS22; break; case DESC_RATEMCS23: ret_rate = MPT_RATE_MCS23; break; case DESC_RATEMCS24: ret_rate = MPT_RATE_MCS24; break; case DESC_RATEMCS25: ret_rate = MPT_RATE_MCS25; break; case DESC_RATEMCS26: ret_rate = MPT_RATE_MCS26; break; case DESC_RATEMCS27: ret_rate = MPT_RATE_MCS27; break; case DESC_RATEMCS28: ret_rate = MPT_RATE_MCS28; break; case DESC_RATEMCS29: ret_rate = MPT_RATE_MCS29; break; case DESC_RATEMCS30: ret_rate = MPT_RATE_MCS30; break; case DESC_RATEMCS31: ret_rate = MPT_RATE_MCS31; break; case DESC_RATEVHTSS1MCS0: ret_rate = MPT_RATE_VHT1SS_MCS0; break; case DESC_RATEVHTSS1MCS1: ret_rate = MPT_RATE_VHT1SS_MCS1; break; case DESC_RATEVHTSS1MCS2: ret_rate = MPT_RATE_VHT1SS_MCS2; break; case DESC_RATEVHTSS1MCS3: ret_rate = MPT_RATE_VHT1SS_MCS3; break; case DESC_RATEVHTSS1MCS4: ret_rate = MPT_RATE_VHT1SS_MCS4; break; case DESC_RATEVHTSS1MCS5: ret_rate = MPT_RATE_VHT1SS_MCS5; break; case DESC_RATEVHTSS1MCS6: ret_rate = MPT_RATE_VHT1SS_MCS6; break; case DESC_RATEVHTSS1MCS7: ret_rate = MPT_RATE_VHT1SS_MCS7; break; case DESC_RATEVHTSS1MCS8: ret_rate = MPT_RATE_VHT1SS_MCS8; break; case DESC_RATEVHTSS1MCS9: ret_rate = MPT_RATE_VHT1SS_MCS9; break; case DESC_RATEVHTSS2MCS0: ret_rate = MPT_RATE_VHT2SS_MCS0; break; case DESC_RATEVHTSS2MCS1: ret_rate = MPT_RATE_VHT2SS_MCS1; break; case DESC_RATEVHTSS2MCS2: ret_rate = MPT_RATE_VHT2SS_MCS2; break; case DESC_RATEVHTSS2MCS3: ret_rate = MPT_RATE_VHT2SS_MCS3; break; case DESC_RATEVHTSS2MCS4: ret_rate = MPT_RATE_VHT2SS_MCS4; break; case DESC_RATEVHTSS2MCS5: ret_rate = MPT_RATE_VHT2SS_MCS5; break; case DESC_RATEVHTSS2MCS6: ret_rate = MPT_RATE_VHT2SS_MCS6; break; case DESC_RATEVHTSS2MCS7: ret_rate = MPT_RATE_VHT2SS_MCS7; break; case DESC_RATEVHTSS2MCS8: ret_rate = MPT_RATE_VHT2SS_MCS8; break; case DESC_RATEVHTSS2MCS9: ret_rate = MPT_RATE_VHT2SS_MCS9; break; case DESC_RATEVHTSS3MCS0: ret_rate = MPT_RATE_VHT3SS_MCS0; break; case DESC_RATEVHTSS3MCS1: ret_rate = MPT_RATE_VHT3SS_MCS1; break; case DESC_RATEVHTSS3MCS2: ret_rate = MPT_RATE_VHT3SS_MCS2; break; case DESC_RATEVHTSS3MCS3: ret_rate = MPT_RATE_VHT3SS_MCS3; break; case DESC_RATEVHTSS3MCS4: ret_rate = MPT_RATE_VHT3SS_MCS4; break; case DESC_RATEVHTSS3MCS5: ret_rate = MPT_RATE_VHT3SS_MCS5; break; case DESC_RATEVHTSS3MCS6: ret_rate = MPT_RATE_VHT3SS_MCS6; break; case DESC_RATEVHTSS3MCS7: ret_rate = MPT_RATE_VHT3SS_MCS7; break; case DESC_RATEVHTSS3MCS8: ret_rate = MPT_RATE_VHT3SS_MCS8; break; case DESC_RATEVHTSS3MCS9: ret_rate = MPT_RATE_VHT3SS_MCS9; break; case DESC_RATEVHTSS4MCS0: ret_rate = MPT_RATE_VHT4SS_MCS0; break; case DESC_RATEVHTSS4MCS1: ret_rate = MPT_RATE_VHT4SS_MCS1; break; case DESC_RATEVHTSS4MCS2: ret_rate = MPT_RATE_VHT4SS_MCS2; break; case DESC_RATEVHTSS4MCS3: ret_rate = MPT_RATE_VHT4SS_MCS3; break; case DESC_RATEVHTSS4MCS4: ret_rate = MPT_RATE_VHT4SS_MCS4; break; case DESC_RATEVHTSS4MCS5: ret_rate = MPT_RATE_VHT4SS_MCS5; break; case DESC_RATEVHTSS4MCS6: ret_rate = MPT_RATE_VHT4SS_MCS6; break; case DESC_RATEVHTSS4MCS7: ret_rate = MPT_RATE_VHT4SS_MCS7; break; case DESC_RATEVHTSS4MCS8: ret_rate = MPT_RATE_VHT4SS_MCS8; break; case DESC_RATEVHTSS4MCS9: ret_rate = MPT_RATE_VHT4SS_MCS9; break; default: RTW_INFO("hw_rate_to_m_rate(): Non supported Rate [%x]!!!\n", rate); break; } return ret_rate; } u8 rtw_mpRateParseFunc(PADAPTER pAdapter, u8 *targetStr) { u16 i = 0; u8 *rateindex_Array[] = { "1M", "2M", "5.5M", "11M", "6M", "9M", "12M", "18M", "24M", "36M", "48M", "54M", "HTMCS0", "HTMCS1", "HTMCS2", "HTMCS3", "HTMCS4", "HTMCS5", "HTMCS6", "HTMCS7", "HTMCS8", "HTMCS9", "HTMCS10", "HTMCS11", "HTMCS12", "HTMCS13", "HTMCS14", "HTMCS15", "HTMCS16", "HTMCS17", "HTMCS18", "HTMCS19", "HTMCS20", "HTMCS21", "HTMCS22", "HTMCS23", "HTMCS24", "HTMCS25", "HTMCS26", "HTMCS27", "HTMCS28", "HTMCS29", "HTMCS30", "HTMCS31", "VHT1MCS0", "VHT1MCS1", "VHT1MCS2", "VHT1MCS3", "VHT1MCS4", "VHT1MCS5", "VHT1MCS6", "VHT1MCS7", "VHT1MCS8", "VHT1MCS9", "VHT2MCS0", "VHT2MCS1", "VHT2MCS2", "VHT2MCS3", "VHT2MCS4", "VHT2MCS5", "VHT2MCS6", "VHT2MCS7", "VHT2MCS8", "VHT2MCS9", "VHT3MCS0", "VHT3MCS1", "VHT3MCS2", "VHT3MCS3", "VHT3MCS4", "VHT3MCS5", "VHT3MCS6", "VHT3MCS7", "VHT3MCS8", "VHT3MCS9", "VHT4MCS0", "VHT4MCS1", "VHT4MCS2", "VHT4MCS3", "VHT4MCS4", "VHT4MCS5", "VHT4MCS6", "VHT4MCS7", "VHT4MCS8", "VHT4MCS9" }; for (i = 0; i <= 83; i++) { if (strcmp(targetStr, rateindex_Array[i]) == 0) { RTW_INFO("%s , index = %d\n", __func__ , i); return i; } } RTW_INFO("%s ,please input a Data RATE String as:", __func__); for (i = 0; i <= 83; i++) { RTW_INFO("%s ", rateindex_Array[i]); if (i % 10 == 0) RTW_INFO("\n"); } return _FAIL; } u32 mpt_ProQueryCalTxPower( PADAPTER pAdapter, u8 RfPath ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.mpt_ctx); u32 TxPower = 1; u8 rate = 0; struct txpwr_idx_comp tic; u8 mgn_rate = mpt_to_mgnt_rate(pMptCtx->mpt_rate_index); TxPower = rtw_hal_get_tx_power_index(pAdapter, RfPath, mgn_rate, pHalData->current_channel_bw, pHalData->current_channel, &tic); RTW_INFO("bw=%d, ch=%d, rate=%d, txPower:%u = %u + (%d=%d:%d) + (%d) + (%d)\n", pHalData->current_channel_bw, pHalData->current_channel, mgn_rate , TxPower, tic.base, (tic.by_rate > tic.limit ? tic.limit : tic.by_rate), tic.by_rate, tic.limit, tic.tpt, tic.ebias); pAdapter->mppriv.txpoweridx = (u8)TxPower; pMptCtx->TxPwrLevel[ODM_RF_PATH_A] = (u8)TxPower; pMptCtx->TxPwrLevel[ODM_RF_PATH_B] = (u8)TxPower; pMptCtx->TxPwrLevel[ODM_RF_PATH_C] = (u8)TxPower; pMptCtx->TxPwrLevel[ODM_RF_PATH_D] = (u8)TxPower; hal_mpt_SetTxPower(pAdapter); return TxPower; } #ifdef CONFIG_MP_VHT_HW_TX_MODE static inline void dump_buf(u8 *buf, u32 len) { u32 i; RTW_INFO("-----------------Len %d----------------\n", len); for (i = 0; i < len; i++) RTW_INFO("%2.2x-", *(buf + i)); RTW_INFO("\n"); } void ByteToBit( u8 *out, bool *in, u8 in_size) { u8 i = 0, j = 0; for (i = 0; i < in_size; i++) { for (j = 0; j < 8; j++) { if (in[8 * i + j]) out[i] |= (1 << j); } } } void CRC16_generator( bool *out, bool *in, u8 in_size ) { u8 i = 0; bool temp = 0, reg[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; for (i = 0; i < in_size; i++) {/* take one's complement and bit reverse*/ temp = in[i] ^ reg[15]; reg[15] = reg[14]; reg[14] = reg[13]; reg[13] = reg[12]; reg[12] = reg[11]; reg[11] = reg[10]; reg[10] = reg[9]; reg[9] = reg[8]; reg[8] = reg[7]; reg[7] = reg[6]; reg[6] = reg[5]; reg[5] = reg[4]; reg[4] = reg[3]; reg[3] = reg[2]; reg[2] = reg[1]; reg[1] = reg[0]; reg[12] = reg[12] ^ temp; reg[5] = reg[5] ^ temp; reg[0] = temp; } for (i = 0; i < 16; i++) /* take one's complement and bit reverse*/ out[i] = 1 - reg[15 - i]; } /*======================================== SFD SIGNAL SERVICE LENGTH CRC 16 bit 8 bit 8 bit 16 bit 16 bit ========================================*/ void CCK_generator( PRT_PMAC_TX_INFO pPMacTxInfo, PRT_PMAC_PKT_INFO pPMacPktInfo ) { double ratio = 0; bool crc16_in[32] = {0}, crc16_out[16] = {0}; bool LengthExtBit; double LengthExact; double LengthPSDU; u8 i; u32 PacketLength = pPMacTxInfo->PacketLength; if (pPMacTxInfo->bSPreamble) pPMacTxInfo->SFD = 0x05CF; else pPMacTxInfo->SFD = 0xF3A0; switch (pPMacPktInfo->MCS) { case 0: pPMacTxInfo->SignalField = 0xA; ratio = 8; /*CRC16_in(1,0:7)=[0 1 0 1 0 0 0 0]*/ crc16_in[1] = crc16_in[3] = 1; break; case 1: pPMacTxInfo->SignalField = 0x14; ratio = 4; /*CRC16_in(1,0:7)=[0 0 1 0 1 0 0 0];*/ crc16_in[2] = crc16_in[4] = 1; break; case 2: pPMacTxInfo->SignalField = 0x37; ratio = 8.0 / 5.5; /*CRC16_in(1,0:7)=[1 1 1 0 1 1 0 0];*/ crc16_in[0] = crc16_in[1] = crc16_in[2] = crc16_in[4] = crc16_in[5] = 1; break; case 3: pPMacTxInfo->SignalField = 0x6E; ratio = 8.0 / 11.0; /*CRC16_in(1,0:7)=[0 1 1 1 0 1 1 0];*/ crc16_in[1] = crc16_in[2] = crc16_in[3] = crc16_in[5] = crc16_in[6] = 1; break; } LengthExact = PacketLength * ratio; LengthPSDU = ceil(LengthExact); if ((pPMacPktInfo->MCS == 3) && ((LengthPSDU - LengthExact) >= 0.727 || (LengthPSDU - LengthExact) <= -0.727)) LengthExtBit = 1; else LengthExtBit = 0; pPMacTxInfo->LENGTH = (u32)LengthPSDU; /* CRC16_in(1,16:31) = LengthPSDU[0:15]*/ for (i = 0; i < 16; i++) crc16_in[i + 16] = (pPMacTxInfo->LENGTH >> i) & 0x1; if (LengthExtBit == 0) { pPMacTxInfo->ServiceField = 0x0; /* CRC16_in(1,8:15) = [0 0 0 0 0 0 0 0];*/ } else { pPMacTxInfo->ServiceField = 0x80; /*CRC16_in(1,8:15)=[0 0 0 0 0 0 0 1];*/ crc16_in[15] = 1; } CRC16_generator(crc16_out, crc16_in, 32); memset(pPMacTxInfo->CRC16, 0, 2); ByteToBit(pPMacTxInfo->CRC16, crc16_out, 2); } void PMAC_Get_Pkt_Param( PRT_PMAC_TX_INFO pPMacTxInfo, PRT_PMAC_PKT_INFO pPMacPktInfo) { u8 TX_RATE_HEX = 0, MCS = 0; u8 TX_RATE = pPMacTxInfo->TX_RATE; /* TX_RATE & Nss */ if (MPT_IS_2SS_RATE(TX_RATE)) pPMacPktInfo->Nss = 2; else if (MPT_IS_3SS_RATE(TX_RATE)) pPMacPktInfo->Nss = 3; else if (MPT_IS_4SS_RATE(TX_RATE)) pPMacPktInfo->Nss = 4; else pPMacPktInfo->Nss = 1; RTW_INFO("PMacTxInfo.Nss =%d\n", pPMacPktInfo->Nss); /* MCS & TX_RATE_HEX*/ if (MPT_IS_CCK_RATE(TX_RATE)) { switch (TX_RATE) { case MPT_RATE_1M: TX_RATE_HEX = MCS = 0; break; case MPT_RATE_2M: TX_RATE_HEX = MCS = 1; break; case MPT_RATE_55M: TX_RATE_HEX = MCS = 2; break; case MPT_RATE_11M: TX_RATE_HEX = MCS = 3; break; } } else if (MPT_IS_OFDM_RATE(TX_RATE)) { MCS = TX_RATE - MPT_RATE_6M; TX_RATE_HEX = MCS + 4; } else if (MPT_IS_HT_RATE(TX_RATE)) { MCS = TX_RATE - MPT_RATE_MCS0; TX_RATE_HEX = MCS + 12; } else if (MPT_IS_VHT_RATE(TX_RATE)) { TX_RATE_HEX = TX_RATE - MPT_RATE_VHT1SS_MCS0 + 44; if (MPT_IS_VHT_2S_RATE(TX_RATE)) MCS = TX_RATE - MPT_RATE_VHT2SS_MCS0; else if (MPT_IS_VHT_3S_RATE(TX_RATE)) MCS = TX_RATE - MPT_RATE_VHT3SS_MCS0; else if (MPT_IS_VHT_4S_RATE(TX_RATE)) MCS = TX_RATE - MPT_RATE_VHT4SS_MCS0; else MCS = TX_RATE - MPT_RATE_VHT1SS_MCS0; } pPMacPktInfo->MCS = MCS; pPMacTxInfo->TX_RATE_HEX = TX_RATE_HEX; RTW_INFO(" MCS=%d, TX_RATE_HEX =0x%x\n", MCS, pPMacTxInfo->TX_RATE_HEX); /* mSTBC & Nsts*/ pPMacPktInfo->Nsts = pPMacPktInfo->Nss; if (pPMacTxInfo->bSTBC) { if (pPMacPktInfo->Nss == 1) { pPMacTxInfo->m_STBC = 2; pPMacPktInfo->Nsts = pPMacPktInfo->Nss * 2; } else pPMacTxInfo->m_STBC = 1; } else pPMacTxInfo->m_STBC = 1; } u32 LDPC_parameter_generator( u32 N_pld_int, u32 N_CBPSS, u32 N_SS, u32 R, u32 m_STBC, u32 N_TCB_int ) { double CR = 0.; double N_pld = (double)N_pld_int; double N_TCB = (double)N_TCB_int; double N_CW = 0., N_shrt = 0., N_spcw = 0., N_fshrt = 0.; double L_LDPC = 0., K_LDPC = 0., L_LDPC_info = 0.; double N_punc = 0., N_ppcw = 0., N_fpunc = 0., N_rep = 0., N_rpcw = 0., N_frep = 0.; double R_eff = 0.; u32 VHTSIGA2B3 = 0;/* extra symbol from VHT-SIG-A2 Bit 3*/ if (R == 0) CR = 0.5; else if (R == 1) CR = 2. / 3.; else if (R == 2) CR = 3. / 4.; else if (R == 3) CR = 5. / 6.; if (N_TCB <= 648.) { N_CW = 1.; if (N_TCB >= N_pld + 912.*(1. - CR)) L_LDPC = 1296.; else L_LDPC = 648.; } else if (N_TCB <= 1296.) { N_CW = 1.; if (N_TCB >= (double)N_pld + 1464.*(1. - CR)) L_LDPC = 1944.; else L_LDPC = 1296.; } else if (N_TCB <= 1944.) { N_CW = 1.; L_LDPC = 1944.; } else if (N_TCB <= 2592.) { N_CW = 2.; if (N_TCB >= N_pld + 2916.*(1. - CR)) L_LDPC = 1944.; else L_LDPC = 1296.; } else { N_CW = ceil(N_pld / 1944. / CR); L_LDPC = 1944.; } /* Number of information bits per CW*/ K_LDPC = L_LDPC * CR; /* Number of shortening bits max(0, (N_CW * L_LDPC * R) - N_pld)*/ N_shrt = (N_CW * K_LDPC - N_pld) > 0. ? (N_CW * K_LDPC - N_pld) : 0.; /* Number of shortening bits per CW N_spcw = rtfloor(N_shrt/N_CW)*/ N_spcw = rtfloor(N_shrt / N_CW); /* The first N_fshrt CWs shorten 1 bit more*/ N_fshrt = (double)((int)N_shrt % (int)N_CW); /* Number of data bits for the last N_CW-N_fshrt CWs*/ L_LDPC_info = K_LDPC - N_spcw; /* Number of puncturing bits*/ N_punc = (N_CW * L_LDPC - N_TCB - N_shrt) > 0. ? (N_CW * L_LDPC - N_TCB - N_shrt) : 0.; if (((N_punc > .1 * N_CW * L_LDPC * (1. - CR)) && (N_shrt < 1.2 * N_punc * CR / (1. - CR))) || (N_punc > 0.3 * N_CW * L_LDPC * (1. - CR))) { /*cout << "*** N_TCB and N_punc are Recomputed ***" << endl;*/ VHTSIGA2B3 = 1; N_TCB += (double)N_CBPSS * N_SS * m_STBC; N_punc = (N_CW * L_LDPC - N_TCB - N_shrt) > 0. ? (N_CW * L_LDPC - N_TCB - N_shrt) : 0.; } else VHTSIGA2B3 = 0; return VHTSIGA2B3; } /* function end of LDPC_parameter_generator */ /*======================================== Data field of PPDU Get N_sym and SIGA2BB3 ========================================*/ void PMAC_Nsym_generator( PRT_PMAC_TX_INFO pPMacTxInfo, PRT_PMAC_PKT_INFO pPMacPktInfo) { u32 SIGA2B3 = 0; u8 TX_RATE = pPMacTxInfo->TX_RATE; u32 R, R_list[10] = {0, 0, 2, 0, 2, 1, 2, 3, 2, 3}; double CR = 0; u32 N_SD, N_BPSC_list[10] = {1, 2, 2, 4, 4, 6, 6, 6, 8, 8}; u32 N_BPSC = 0, N_CBPS = 0, N_DBPS = 0, N_ES = 0, N_SYM = 0, N_pld = 0, N_TCB = 0; int D_R = 0; RTW_INFO("TX_RATE = %d\n", TX_RATE); /* N_SD*/ if (pPMacTxInfo->BandWidth == 0) N_SD = 52; else if (pPMacTxInfo->BandWidth == 1) N_SD = 108; else N_SD = 234; if (MPT_IS_HT_RATE(TX_RATE)) { u8 MCS_temp; if (pPMacPktInfo->MCS > 23) MCS_temp = pPMacPktInfo->MCS - 24; else if (pPMacPktInfo->MCS > 15) MCS_temp = pPMacPktInfo->MCS - 16; else if (pPMacPktInfo->MCS > 7) MCS_temp = pPMacPktInfo->MCS - 8; else MCS_temp = pPMacPktInfo->MCS; R = R_list[MCS_temp]; switch (R) { case 0: CR = .5; break; case 1: CR = 2. / 3.; break; case 2: CR = 3. / 4.; break; case 3: CR = 5. / 6.; break; } N_BPSC = N_BPSC_list[MCS_temp]; N_CBPS = N_BPSC * N_SD * pPMacPktInfo->Nss; N_DBPS = (u32)((double)N_CBPS * CR); if (pPMacTxInfo->bLDPC == false) { N_ES = (u32)ceil((double)(N_DBPS * pPMacPktInfo->Nss) / 4. / 300.); RTW_INFO("N_ES = %d\n", N_ES); /* N_SYM = m_STBC* (8*length+16+6*N_ES) / (m_STBC*N_DBPS)*/ N_SYM = pPMacTxInfo->m_STBC * (u32)ceil((double)(pPMacTxInfo->PacketLength * 8 + 16 + N_ES * 6) / (double)(N_DBPS * pPMacTxInfo->m_STBC)); } else { N_ES = 1; /* N_pld = length * 8 + 16*/ N_pld = pPMacTxInfo->PacketLength * 8 + 16; RTW_INFO("N_pld = %d\n", N_pld); N_SYM = pPMacTxInfo->m_STBC * (u32)ceil((double)(N_pld) / (double)(N_DBPS * pPMacTxInfo->m_STBC)); RTW_INFO("N_SYM = %d\n", N_SYM); /* N_avbits = N_CBPS *m_STBC *(N_pld/N_CBPS*R*m_STBC)*/ N_TCB = N_CBPS * N_SYM; RTW_INFO("N_TCB = %d\n", N_TCB); SIGA2B3 = LDPC_parameter_generator(N_pld, N_CBPS, pPMacPktInfo->Nss, R, pPMacTxInfo->m_STBC, N_TCB); RTW_INFO("SIGA2B3 = %d\n", SIGA2B3); N_SYM = N_SYM + SIGA2B3 * pPMacTxInfo->m_STBC; RTW_INFO("N_SYM = %d\n", N_SYM); } } else if (MPT_IS_VHT_RATE(TX_RATE)) { R = R_list[pPMacPktInfo->MCS]; switch (R) { case 0: CR = .5; break; case 1: CR = 2. / 3.; break; case 2: CR = 3. / 4.; break; case 3: CR = 5. / 6.; break; } N_BPSC = N_BPSC_list[pPMacPktInfo->MCS]; N_CBPS = N_BPSC * N_SD * pPMacPktInfo->Nss; N_DBPS = (u32)((double)N_CBPS * CR); if (pPMacTxInfo->bLDPC == false) { if (pPMacTxInfo->bSGI) N_ES = (u32)ceil((double)(N_DBPS) / 3.6 / 600.); else N_ES = (u32)ceil((double)(N_DBPS) / 4. / 600.); /* N_SYM = m_STBC* (8*length+16+6*N_ES) / (m_STBC*N_DBPS)*/ N_SYM = pPMacTxInfo->m_STBC * (u32)ceil((double)(pPMacTxInfo->PacketLength * 8 + 16 + N_ES * 6) / (double)(N_DBPS * pPMacTxInfo->m_STBC)); SIGA2B3 = 0; } else { N_ES = 1; /* N_SYM = m_STBC* (8*length+N_service) / (m_STBC*N_DBPS)*/ N_SYM = pPMacTxInfo->m_STBC * (u32)ceil((double)(pPMacTxInfo->PacketLength * 8 + 16) / (double)(N_DBPS * pPMacTxInfo->m_STBC)); /* N_avbits = N_sys_init * N_CBPS*/ N_TCB = N_CBPS * N_SYM; /* N_pld = N_sys_init * N_DBPS*/ N_pld = N_SYM * N_DBPS; SIGA2B3 = LDPC_parameter_generator(N_pld, N_CBPS, pPMacPktInfo->Nss, R, pPMacTxInfo->m_STBC, N_TCB); N_SYM = N_SYM + SIGA2B3 * pPMacTxInfo->m_STBC; } switch (R) { case 0: D_R = 2; break; case 1: D_R = 3; break; case 2: D_R = 4; break; case 3: D_R = 6; break; } if (((N_CBPS / N_ES) % D_R) != 0) { RTW_INFO("MCS= %d is not supported when Nss=%d and BW= %d !!\n", pPMacPktInfo->MCS, pPMacPktInfo->Nss, pPMacTxInfo->BandWidth); return; } RTW_INFO("MCS= %d Nss=%d and BW= %d !!\n", pPMacPktInfo->MCS, pPMacPktInfo->Nss, pPMacTxInfo->BandWidth); } pPMacPktInfo->N_sym = N_SYM; pPMacPktInfo->SIGA2B3 = SIGA2B3; } /*======================================== L-SIG Rate R Length P Tail 4b 1b 12b 1b 6b ========================================*/ void L_SIG_generator( u32 N_SYM, /* Max: 750*/ PRT_PMAC_TX_INFO pPMacTxInfo, PRT_PMAC_PKT_INFO pPMacPktInfo) { u8 sig_bi[24] = {0}; /* 24 BIT*/ u32 mode, LENGTH; int i; if (MPT_IS_OFDM_RATE(pPMacTxInfo->TX_RATE)) { mode = pPMacPktInfo->MCS; LENGTH = pPMacTxInfo->PacketLength; } else { u8 N_LTF; double T_data; u32 OFDM_symbol; mode = 0; /* Table 20-13 Num of HT-DLTFs request*/ if (pPMacPktInfo->Nsts <= 2) N_LTF = pPMacPktInfo->Nsts; else N_LTF = 4; if (pPMacTxInfo->bSGI) T_data = 3.6; else T_data = 4.0; /*(L-SIG, HT-SIG, HT-STF, HT-LTF....HT-LTF, Data)*/ if (MPT_IS_VHT_RATE(pPMacTxInfo->TX_RATE)) OFDM_symbol = (u32)ceil((double)(8 + 4 + N_LTF * 4 + N_SYM * T_data + 4) / 4.); else OFDM_symbol = (u32)ceil((double)(8 + 4 + N_LTF * 4 + N_SYM * T_data) / 4.); RTW_INFO("%s , OFDM_symbol =%d\n", __func__, OFDM_symbol); LENGTH = OFDM_symbol * 3 - 3; RTW_INFO("%s , LENGTH =%d\n", __func__, LENGTH); } /* Rate Field*/ switch (mode) { case 0: sig_bi[0] = 1; sig_bi[1] = 1; sig_bi[2] = 0; sig_bi[3] = 1; break; case 1: sig_bi[0] = 1; sig_bi[1] = 1; sig_bi[2] = 1; sig_bi[3] = 1; break; case 2: sig_bi[0] = 0; sig_bi[1] = 1; sig_bi[2] = 0; sig_bi[3] = 1; break; case 3: sig_bi[0] = 0; sig_bi[1] = 1; sig_bi[2] = 1; sig_bi[3] = 1; break; case 4: sig_bi[0] = 1; sig_bi[1] = 0; sig_bi[2] = 0; sig_bi[3] = 1; break; case 5: sig_bi[0] = 1; sig_bi[1] = 0; sig_bi[2] = 1; sig_bi[3] = 1; break; case 6: sig_bi[0] = 0; sig_bi[1] = 0; sig_bi[2] = 0; sig_bi[3] = 1; break; case 7: sig_bi[0] = 0; sig_bi[1] = 0; sig_bi[2] = 1; sig_bi[3] = 1; break; } /*Reserved bit*/ sig_bi[4] = 0; /* Length Field*/ for (i = 0; i < 12; i++) sig_bi[i + 5] = (LENGTH >> i) & 1; /* Parity Bit*/ sig_bi[17] = 0; for (i = 0; i < 17; i++) sig_bi[17] = sig_bi[17] + sig_bi[i]; sig_bi[17] %= 2; /* Tail Field*/ for (i = 18; i < 24; i++) sig_bi[i] = 0; /* dump_buf(sig_bi,24);*/ memset(pPMacTxInfo->LSIG, 0, 3); ByteToBit(pPMacTxInfo->LSIG, (bool *)sig_bi, 3); } void CRC8_generator( bool *out, bool *in, u8 in_size ) { u8 i = 0; bool temp = 0, reg[] = {1, 1, 1, 1, 1, 1, 1, 1}; for (i = 0; i < in_size; i++) { /* take one's complement and bit reverse*/ temp = in[i] ^ reg[7]; reg[7] = reg[6]; reg[6] = reg[5]; reg[5] = reg[4]; reg[4] = reg[3]; reg[3] = reg[2]; reg[2] = reg[1] ^ temp; reg[1] = reg[0] ^ temp; reg[0] = temp; } for (i = 0; i < 8; i++)/* take one's complement and bit reverse*/ out[i] = reg[7 - i] ^ 1; } /*/================================================================================ HT-SIG1 MCS CW Length 24BIT + 24BIT 7b 1b 16b HT-SIG2 Smoothing Not sounding Rsvd AGG STBC FEC SGI N_ELTF CRC Tail 1b 1b 1b 1b 2b 1b 1b 2b 8b 6b ================================================================================*/ void HT_SIG_generator( PRT_PMAC_TX_INFO pPMacTxInfo, PRT_PMAC_PKT_INFO pPMacPktInfo ) { u32 i; bool sig_bi[48] = {0}, crc8[8] = {0}; /* MCS Field*/ for (i = 0; i < 7; i++) sig_bi[i] = (pPMacPktInfo->MCS >> i) & 0x1; /* Packet BW Setting*/ sig_bi[7] = pPMacTxInfo->BandWidth; /* HT-Length Field*/ for (i = 0; i < 16; i++) sig_bi[i + 8] = (pPMacTxInfo->PacketLength >> i) & 0x1; /* Smoothing; 1->allow smoothing*/ sig_bi[24] = 1; /*Not Sounding*/ sig_bi[25] = 1 - pPMacTxInfo->NDP_sound; /*Reserved bit*/ sig_bi[26] = 1; /*/Aggregate*/ sig_bi[27] = 0; /*STBC Field*/ if (pPMacTxInfo->bSTBC) { sig_bi[28] = 1; sig_bi[29] = 0; } else { sig_bi[28] = 0; sig_bi[29] = 0; } /*Advance Coding, 0: BCC, 1: LDPC*/ sig_bi[30] = pPMacTxInfo->bLDPC; /* Short GI*/ sig_bi[31] = pPMacTxInfo->bSGI; /* N_ELTFs*/ if (pPMacTxInfo->NDP_sound == false) { sig_bi[32] = 0; sig_bi[33] = 0; } else { int N_ELTF = pPMacTxInfo->Ntx - pPMacPktInfo->Nss; for (i = 0; i < 2; i++) sig_bi[32 + i] = (N_ELTF >> i) % 2; } /* CRC-8*/ CRC8_generator(crc8, sig_bi, 34); for (i = 0; i < 8; i++) sig_bi[34 + i] = crc8[i]; /*Tail*/ for (i = 42; i < 48; i++) sig_bi[i] = 0; memset(pPMacTxInfo->HT_SIG, 0, 6); ByteToBit(pPMacTxInfo->HT_SIG, sig_bi, 6); } /*====================================================================================== VHT-SIG-A1 BW Reserved STBC G_ID SU_Nsts P_AID TXOP_PS_NOT_ALLOW Reserved 2b 1b 1b 6b 3b 9b 1b 2b 1b VHT-SIG-A2 SGI SGI_Nsym SU/MU coding LDPC_Extra SU_NCS Beamformed Reserved CRC Tail 1b 1b 1b 1b 4b 1b 1b 8b 6b ======================================================================================*/ void VHT_SIG_A_generator( PRT_PMAC_TX_INFO pPMacTxInfo, PRT_PMAC_PKT_INFO pPMacPktInfo) { u32 i; bool sig_bi[48], crc8[8]; memset(sig_bi, 0, 48); memset(crc8, 0, 8); /* BW Setting*/ for (i = 0; i < 2; i++) sig_bi[i] = (pPMacTxInfo->BandWidth >> i) & 0x1; /* Reserved Bit*/ sig_bi[2] = 1; /*STBC Field*/ sig_bi[3] = pPMacTxInfo->bSTBC; /*Group ID: Single User->A value of 0 or 63 indicates an SU PPDU. */ for (i = 0; i < 6; i++) sig_bi[4 + i] = 0; /* N_STS/Partial AID*/ for (i = 0; i < 12; i++) { if (i < 3) sig_bi[10 + i] = ((pPMacPktInfo->Nsts - 1) >> i) & 0x1; else sig_bi[10 + i] = 0; } /*TXOP_PS_NOT_ALLPWED*/ sig_bi[22] = 0; /*Reserved Bits*/ sig_bi[23] = 1; /*Short GI*/ sig_bi[24] = pPMacTxInfo->bSGI; if (pPMacTxInfo->bSGI > 0 && (pPMacPktInfo->N_sym % 10) == 9) sig_bi[25] = 1; else sig_bi[25] = 0; /* SU/MU[0] Coding*/ sig_bi[26] = pPMacTxInfo->bLDPC; /* 0:BCC, 1:LDPC */ sig_bi[27] = pPMacPktInfo->SIGA2B3; /*/ Record Extra OFDM Symols is added or not when LDPC is used*/ /*SU MCS/MU[1-3] Coding*/ for (i = 0; i < 4; i++) sig_bi[28 + i] = (pPMacPktInfo->MCS >> i) & 0x1; /*SU Beamform */ sig_bi[32] = 0; /*packet.TXBF_en;*/ /*Reserved Bit*/ sig_bi[33] = 1; /*CRC-8*/ CRC8_generator(crc8, sig_bi, 34); for (i = 0; i < 8; i++) sig_bi[34 + i] = crc8[i]; /*Tail*/ for (i = 42; i < 48; i++) sig_bi[i] = 0; memset(pPMacTxInfo->VHT_SIG_A, 0, 6); ByteToBit(pPMacTxInfo->VHT_SIG_A, sig_bi, 6); } /*====================================================================================== VHT-SIG-B Length Resesrved Trail 17/19/21 BIT 3/2/2 BIT 6b ======================================================================================*/ void VHT_SIG_B_generator( PRT_PMAC_TX_INFO pPMacTxInfo) { bool sig_bi[32], crc8_bi[8]; u32 i, len, res, tail = 6, total_len, crc8_in_len; u32 sigb_len; memset(sig_bi, 0, 32); memset(crc8_bi, 0, 8); /*Sounding Packet*/ if (pPMacTxInfo->NDP_sound == 1) { if (pPMacTxInfo->BandWidth == 0) { bool sigb_temp[26] = {0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}; memcpy(sig_bi, sigb_temp, 26); } else if (pPMacTxInfo->BandWidth == 1) { bool sigb_temp[27] = {1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0}; memcpy(sig_bi, sigb_temp, 27); } else if (pPMacTxInfo->BandWidth == 2) { bool sigb_temp[29] = {0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}; memcpy(sig_bi, sigb_temp, 29); } } else { /* Not NDP Sounding*/ bool *sigb_temp[29] = {0}; if (pPMacTxInfo->BandWidth == 0) { len = 17; res = 3; } else if (pPMacTxInfo->BandWidth == 1) { len = 19; res = 2; } else if (pPMacTxInfo->BandWidth == 2) { len = 21; res = 2; } else { len = 21; res = 2; } total_len = len + res + tail; crc8_in_len = len + res; /*Length Field*/ sigb_len = (pPMacTxInfo->PacketLength + 3) >> 2; for (i = 0; i < len; i++) sig_bi[i] = (sigb_len >> i) & 0x1; /*Reserved Field*/ for (i = 0; i < res; i++) sig_bi[len + i] = 1; /* CRC-8*/ CRC8_generator(crc8_bi, sig_bi, crc8_in_len); /* Tail */ for (i = 0; i < tail; i++) sig_bi[len + res + i] = 0; } memset(pPMacTxInfo->VHT_SIG_B, 0, 4); ByteToBit(pPMacTxInfo->VHT_SIG_B, sig_bi, 4); pPMacTxInfo->VHT_SIG_B_CRC = 0; ByteToBit(&(pPMacTxInfo->VHT_SIG_B_CRC), crc8_bi, 1); } /*======================= VHT Delimiter =======================*/ void VHT_Delimiter_generator( PRT_PMAC_TX_INFO pPMacTxInfo ) { bool sig_bi[32] = {0}, crc8[8] = {0}; u32 crc8_in_len = 16; u32 PacketLength = pPMacTxInfo->PacketLength; int j; /* Delimiter[0]: EOF*/ sig_bi[0] = 1; /* Delimiter[1]: Reserved*/ sig_bi[1] = 0; /* Delimiter[3:2]: MPDU Length High*/ sig_bi[2] = ((PacketLength - 4) >> 12) % 2; sig_bi[3] = ((PacketLength - 4) >> 13) % 2; /* Delimiter[15:4]: MPDU Length Low*/ for (j = 4; j < 16; j++) sig_bi[j] = ((PacketLength - 4) >> (j - 4)) % 2; CRC8_generator(crc8, sig_bi, crc8_in_len); for (j = 16; j < 24; j++) /* Delimiter[23:16]: CRC 8*/ sig_bi[j] = crc8[j - 16]; for (j = 24; j < 32; j++) /* Delimiter[31:24]: Signature ('4E' in Hex, 78 in Dec)*/ sig_bi[j] = (78 >> (j - 24)) % 2; memset(pPMacTxInfo->VHT_Delimiter, 0, 4); ByteToBit(pPMacTxInfo->VHT_Delimiter, sig_bi, 4); } #endif #endif