/****************************************************************************** * * Copyright(c) 2007 - 2012 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _OSDEP_SERVICE_C_ #include #define RT_TAG '1178' /* * Translate the OS dependent @param error_code to OS independent RTW_STATUS_CODE * @return: one of RTW_STATUS_CODE */ inline int RTW_STATUS_CODE(int error_code) { if (error_code >= 0) return _SUCCESS; switch (error_code) { /* case -ETIMEDOUT: */ /* return RTW_STATUS_TIMEDOUT; */ default: return _FAIL; } } u32 rtw_atoi(u8 *s) { int num = 0, flag = 0; int i; for (i = 0; i <= strlen(s); i++) { if (s[i] >= '0' && s[i] <= '9') num = num * 10 + s[i] - '0'; else if (s[0] == '-' && i == 0) flag = 1; else break; } if (flag == 1) num = num * -1; return num; } inline u8 *_rtw_vmalloc(u32 sz) { return vmalloc(sz); } inline u8 *_rtw_zvmalloc(u32 sz) { u8 *pbuf; pbuf = _rtw_vmalloc(sz); if (pbuf != NULL) memset(pbuf, 0, sz); return pbuf; } inline void _rtw_vmfree(u8 *pbuf, u32 sz) { vfree(pbuf); } u8 *_rtw_malloc(u32 sz) { u8 *pbuf = NULL; #ifdef RTK_DMP_PLATFORM if (sz > 0x4000) pbuf = (u8 *)dvr_malloc(sz); else #endif pbuf = kmalloc(sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); return pbuf; } u8 *_rtw_zmalloc(u32 sz) { u8 *pbuf = _rtw_malloc(sz); if (pbuf != NULL) memset(pbuf, 0, sz); return pbuf; } void _rtw_mfree(u8 *pbuf, u32 sz) { #ifdef RTK_DMP_PLATFORM if (sz > 0x4000) dvr_free(pbuf); else #endif kfree(pbuf); } inline struct sk_buff *_rtw_skb_alloc(u32 sz) { return __dev_alloc_skb(sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); } inline void _rtw_skb_free(struct sk_buff *skb) { dev_kfree_skb_any(skb); } inline struct sk_buff *_rtw_skb_copy(const struct sk_buff *skb) { return skb_copy(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); } inline struct sk_buff *_rtw_skb_clone(struct sk_buff *skb) { return skb_clone(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); } inline struct sk_buff *_rtw_pskb_copy(struct sk_buff *skb) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)) return pskb_copy(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); #else return skb_clone(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); #endif } inline int _rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb) { skb->dev = ndev; return netif_rx(skb); } #ifdef CONFIG_RTW_NAPI inline int _rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb) { skb->dev = ndev; return netif_receive_skb(skb); } #ifdef CONFIG_RTW_GRO inline gro_result_t _rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) { return napi_gro_receive(napi, skb); } #endif /* CONFIG_RTW_GRO */ #endif /* CONFIG_RTW_NAPI */ void _rtw_skb_queue_purge(struct sk_buff_head *list) { struct sk_buff *skb; while ((skb = skb_dequeue(list)) != NULL) _rtw_skb_free(skb); } inline void *_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)) return usb_alloc_coherent(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma); #else return usb_buffer_alloc(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma); #endif } inline void _rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)) usb_free_coherent(dev, size, addr, dma); #else usb_buffer_free(dev, size, addr, dma); #endif } #if defined(DBG_MEM_ALLOC) struct rtw_mem_stat { ATOMIC_T alloc; /* the memory bytes we allocate currently */ ATOMIC_T peak; /* the peak memory bytes we allocate */ ATOMIC_T alloc_cnt; /* the alloc count for alloc currently */ ATOMIC_T alloc_err_cnt; /* the error times we fail to allocate memory */ }; struct rtw_mem_stat rtw_mem_type_stat[mstat_tf_idx(MSTAT_TYPE_MAX)]; #ifdef RTW_MEM_FUNC_STAT struct rtw_mem_stat rtw_mem_func_stat[mstat_ff_idx(MSTAT_FUNC_MAX)]; #endif char *MSTAT_TYPE_str[] = { "VIR", "PHY", "SKB", "USB", }; #ifdef RTW_MEM_FUNC_STAT char *MSTAT_FUNC_str[] = { "UNSP", "IO", "TXIO", "RXIO", "TX", "RX", }; #endif void rtw_mstat_dump(void *sel) { int i; int value_t[4][mstat_tf_idx(MSTAT_TYPE_MAX)]; #ifdef RTW_MEM_FUNC_STAT int value_f[4][mstat_ff_idx(MSTAT_FUNC_MAX)]; #endif int vir_alloc, vir_peak, vir_alloc_err, phy_alloc, phy_peak, phy_alloc_err; int tx_alloc, tx_peak, tx_alloc_err, rx_alloc, rx_peak, rx_alloc_err; for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++) { value_t[0][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc)); value_t[1][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].peak)); value_t[2][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc_cnt)); value_t[3][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc_err_cnt)); } #ifdef RTW_MEM_FUNC_STAT for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++) { value_f[0][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc)); value_f[1][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].peak)); value_f[2][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc_cnt)); value_f[3][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc_err_cnt)); } #endif RTW_PRINT_SEL(sel, "===================== MSTAT =====================\n"); RTW_PRINT_SEL(sel, "%4s %10s %10s %10s %10s\n", "TAG", "alloc", "peak", "aloc_cnt", "err_cnt"); RTW_PRINT_SEL(sel, "-------------------------------------------------\n"); for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++) RTW_PRINT_SEL(sel, "%4s %10d %10d %10d %10d\n", MSTAT_TYPE_str[i], value_t[0][i], value_t[1][i], value_t[2][i], value_t[3][i]); #ifdef RTW_MEM_FUNC_STAT RTW_PRINT_SEL(sel, "-------------------------------------------------\n"); for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++) RTW_PRINT_SEL(sel, "%4s %10d %10d %10d %10d\n", MSTAT_FUNC_str[i], value_f[0][i], value_f[1][i], value_f[2][i], value_f[3][i]); #endif } void rtw_mstat_update(const enum mstat_f flags, const MSTAT_STATUS status, u32 sz) { static u32 update_time = 0; int peak, alloc; int i; /* initialization */ if (!update_time) { for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++) { ATOMIC_SET(&(rtw_mem_type_stat[i].alloc), 0); ATOMIC_SET(&(rtw_mem_type_stat[i].peak), 0); ATOMIC_SET(&(rtw_mem_type_stat[i].alloc_cnt), 0); ATOMIC_SET(&(rtw_mem_type_stat[i].alloc_err_cnt), 0); } #ifdef RTW_MEM_FUNC_STAT for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++) { ATOMIC_SET(&(rtw_mem_func_stat[i].alloc), 0); ATOMIC_SET(&(rtw_mem_func_stat[i].peak), 0); ATOMIC_SET(&(rtw_mem_func_stat[i].alloc_cnt), 0); ATOMIC_SET(&(rtw_mem_func_stat[i].alloc_err_cnt), 0); } #endif } switch (status) { case MSTAT_ALLOC_SUCCESS: ATOMIC_INC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_cnt)); alloc = ATOMIC_ADD_RETURN(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc), sz); peak = ATOMIC_READ(&(rtw_mem_type_stat[mstat_tf_idx(flags)].peak)); if (peak < alloc) ATOMIC_SET(&(rtw_mem_type_stat[mstat_tf_idx(flags)].peak), alloc); #ifdef RTW_MEM_FUNC_STAT ATOMIC_INC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_cnt)); alloc = ATOMIC_ADD_RETURN(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc), sz); peak = ATOMIC_READ(&(rtw_mem_func_stat[mstat_ff_idx(flags)].peak)); if (peak < alloc) ATOMIC_SET(&(rtw_mem_func_stat[mstat_ff_idx(flags)].peak), alloc); #endif break; case MSTAT_ALLOC_FAIL: ATOMIC_INC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_err_cnt)); #ifdef RTW_MEM_FUNC_STAT ATOMIC_INC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_err_cnt)); #endif break; case MSTAT_FREE: ATOMIC_DEC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_cnt)); ATOMIC_SUB(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc), sz); #ifdef RTW_MEM_FUNC_STAT ATOMIC_DEC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_cnt)); ATOMIC_SUB(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc), sz); #endif break; }; /* if (rtw_get_passing_time_ms(update_time) > 5000) { */ /* rtw_mstat_dump(RTW_DBGDUMP); */ update_time = jiffies; /* } */ } #ifndef SIZE_MAX #define SIZE_MAX (~(size_t)0) #endif struct mstat_sniff_rule { enum mstat_f flags; size_t lb; size_t hb; }; struct mstat_sniff_rule mstat_sniff_rules[] = { {MSTAT_TYPE_PHY, 4097, SIZE_MAX}, }; int mstat_sniff_rule_num = sizeof(mstat_sniff_rules) / sizeof(struct mstat_sniff_rule); bool match_mstat_sniff_rules(const enum mstat_f flags, const size_t size) { int i; for (i = 0; i < mstat_sniff_rule_num; i++) { if (mstat_sniff_rules[i].flags == flags && mstat_sniff_rules[i].lb <= size && mstat_sniff_rules[i].hb >= size) return true; } return false; } inline u8 *dbg_rtw_vmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line) { u8 *p; if (match_mstat_sniff_rules(flags, sz)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __func__, (sz)); p = _rtw_vmalloc((sz)); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , sz ); return p; } inline u8 *dbg_rtw_zvmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line) { u8 *p; if (match_mstat_sniff_rules(flags, sz)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __func__, (sz)); p = _rtw_zvmalloc((sz)); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , sz ); return p; } inline void dbg_rtw_vmfree(u8 *pbuf, u32 sz, const enum mstat_f flags, const char *func, const int line) { if (match_mstat_sniff_rules(flags, sz)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __func__, (sz)); _rtw_vmfree((pbuf), (sz)); rtw_mstat_update( flags , MSTAT_FREE , sz ); } inline u8 *dbg_rtw_malloc(u32 sz, const enum mstat_f flags, const char *func, const int line) { u8 *p; if (match_mstat_sniff_rules(flags, sz)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __func__, (sz)); p = _rtw_malloc((sz)); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , sz ); return p; } inline u8 *dbg_rtw_zmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line) { u8 *p; if (match_mstat_sniff_rules(flags, sz)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __func__, (sz)); p = _rtw_zmalloc((sz)); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , sz ); return p; } inline void dbg_rtw_mfree(u8 *pbuf, u32 sz, const enum mstat_f flags, const char *func, const int line) { if (match_mstat_sniff_rules(flags, sz)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __func__, (sz)); _rtw_mfree((pbuf), (sz)); rtw_mstat_update( flags , MSTAT_FREE , sz ); } inline struct sk_buff *dbg_rtw_skb_alloc(unsigned int size, const enum mstat_f flags, const char *func, int line) { struct sk_buff *skb; unsigned int truesize = 0; skb = _rtw_skb_alloc(size); if (skb) truesize = skb->truesize; if (!skb || truesize < size || match_mstat_sniff_rules(flags, truesize)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d), skb:%p, truesize=%u\n", func, line, __func__, size, skb, truesize); rtw_mstat_update( flags , skb ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , truesize ); return skb; } inline void dbg_rtw_skb_free(struct sk_buff *skb, const enum mstat_f flags, const char *func, int line) { unsigned int truesize = skb->truesize; if (match_mstat_sniff_rules(flags, truesize)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __func__, truesize); _rtw_skb_free(skb); rtw_mstat_update( flags , MSTAT_FREE , truesize ); } inline struct sk_buff *dbg_rtw_skb_copy(const struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line) { struct sk_buff *skb_cp; unsigned int truesize = skb->truesize; unsigned int cp_truesize = 0; skb_cp = _rtw_skb_copy(skb); if (skb_cp) cp_truesize = skb_cp->truesize; if (!skb_cp || cp_truesize < truesize || match_mstat_sniff_rules(flags, cp_truesize)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%u), skb_cp:%p, cp_truesize=%u\n", func, line, __func__, truesize, skb_cp, cp_truesize); rtw_mstat_update( flags , skb_cp ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , truesize ); return skb_cp; } inline struct sk_buff *dbg_rtw_skb_clone(struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line) { struct sk_buff *skb_cl; unsigned int truesize = skb->truesize; unsigned int cl_truesize = 0; skb_cl = _rtw_skb_clone(skb); if (skb_cl) cl_truesize = skb_cl->truesize; if (!skb_cl || cl_truesize < truesize || match_mstat_sniff_rules(flags, cl_truesize)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%u), skb_cl:%p, cl_truesize=%u\n", func, line, __func__, truesize, skb_cl, cl_truesize); rtw_mstat_update( flags , skb_cl ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , truesize ); return skb_cl; } inline int dbg_rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line) { int ret; unsigned int truesize = skb->truesize; if (match_mstat_sniff_rules(flags, truesize)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __func__, truesize); ret = _rtw_netif_rx(ndev, skb); rtw_mstat_update( flags , MSTAT_FREE , truesize ); return ret; } #ifdef CONFIG_RTW_NAPI inline int dbg_rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line) { int ret; unsigned int truesize = skb->truesize; if (match_mstat_sniff_rules(flags, truesize)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __func__, truesize); ret = _rtw_netif_receive_skb(ndev, skb); rtw_mstat_update( flags , MSTAT_FREE , truesize ); return ret; } #ifdef CONFIG_RTW_GRO inline gro_result_t dbg_rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line) { int ret; unsigned int truesize = skb->truesize; if (match_mstat_sniff_rules(flags, truesize)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __func__, truesize); ret = _rtw_napi_gro_receive(napi, skb); rtw_mstat_update( flags , MSTAT_FREE , truesize ); return ret; } #endif /* CONFIG_RTW_GRO */ #endif /* CONFIG_RTW_NAPI */ inline void dbg_rtw_skb_queue_purge(struct sk_buff_head *list, enum mstat_f flags, const char *func, int line) { struct sk_buff *skb; while ((skb = skb_dequeue(list)) != NULL) dbg_rtw_skb_free(skb, flags, func, line); } inline void *dbg_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma, const enum mstat_f flags, const char *func, int line) { void *p; if (match_mstat_sniff_rules(flags, size)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%zu)\n", func, line, __func__, size); p = _rtw_usb_buffer_alloc(dev, size, dma); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , size ); return p; } inline void dbg_rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma, const enum mstat_f flags, const char *func, int line) { if (match_mstat_sniff_rules(flags, size)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%zu)\n", func, line, __func__, size); _rtw_usb_buffer_free(dev, size, addr, dma); rtw_mstat_update( flags , MSTAT_FREE , size ); } #endif /* defined(DBG_MEM_ALLOC) */ void *rtw_malloc2d(int h, int w, size_t size) { int j; void **a = (void **) rtw_zmalloc(h * sizeof(void *) + h * w * size); if (a == NULL) { RTW_INFO("%s: alloc memory fail!\n", __func__); return NULL; } for (j = 0; j < h; j++) a[j] = ((char *)(a + h)) + j * w * size; return a; } void rtw_mfree2d(void *pbuf, int h, int w, int size) { rtw_mfree((u8 *)pbuf, h * sizeof(void *) + w * h * size); } u32 _rtw_down_sema(_sema *sema) { if (down_interruptible(sema)) return _FAIL; return _SUCCESS; } void _rtw_mutex_init(_mutex *pmutex) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) mutex_init(pmutex); #else init_MUTEX(pmutex); #endif } void _rtw_mutex_free(_mutex *pmutex) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) mutex_destroy(pmutex); #endif } void _rtw_init_queue(_queue *pqueue) { INIT_LIST_HEAD(&(pqueue->queue)); spin_lock_init(&(pqueue->lock)); } u32 _rtw_queue_empty(_queue *pqueue) { return list_empty(&(pqueue->queue)); } u32 rtw_end_of_queue_search(_list *head, _list *plist) { if (head == plist) return true; else return false; } inline u32 rtw_systime_to_ms(u32 systime) { return systime * 1000 / HZ; } inline u32 rtw_ms_to_systime(u32 ms) { return ms * HZ / 1000; } /* the input parameter start use the same unit as returned by rtw_get_current_time */ inline s32 rtw_get_passing_time_ms(u32 start) { return rtw_systime_to_ms(jiffies - start); } inline s32 rtw_get_time_interval_ms(u32 start, u32 end) { return rtw_systime_to_ms(end - start); } void rtw_sleep_schedulable(int ms) { u32 delta; delta = (ms * HZ) / 1000; /* (ms) */ if (delta == 0) { delta = 1;/* 1 ms */ } set_current_state(TASK_INTERRUPTIBLE); if (schedule_timeout(delta) != 0) return ; return; } void rtw_msleep_os(int ms) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)) if (ms < 20) { unsigned long us = ms * 1000UL; usleep_range(us, us + 1000UL); } else #endif msleep((unsigned int)ms); } void rtw_usleep_os(int us) { /* msleep((unsigned int)us); */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)) usleep_range(us, us + 1); #else if (1 < (us / 1000)) msleep(1); else msleep((us / 1000) + 1); #endif } #ifdef DBG_DELAY_OS void _rtw_mdelay_os(int ms, const char *func, const int line) { RTW_INFO("%s:%d %s(%d)\n", func, line, __func__, ms); mdelay((unsigned long)ms); } void _rtw_udelay_os(int us, const char *func, const int line) { RTW_INFO("%s:%d %s(%d)\n", func, line, __func__, us); udelay((unsigned long)us); } #else void rtw_mdelay_os(int ms) { mdelay((unsigned long)ms); } void rtw_udelay_os(int us) { udelay((unsigned long)us); } #endif void rtw_yield_os(void) { yield(); } #define RTW_SUSPEND_LOCK_NAME "rtw_wifi" #define RTW_SUSPEND_EXT_LOCK_NAME "rtw_wifi_ext" #define RTW_SUSPEND_RX_LOCK_NAME "rtw_wifi_rx" #define RTW_SUSPEND_TRAFFIC_LOCK_NAME "rtw_wifi_traffic" #define RTW_SUSPEND_RESUME_LOCK_NAME "rtw_wifi_resume" #define RTW_RESUME_SCAN_LOCK_NAME "rtw_wifi_scan" #ifdef CONFIG_WAKELOCK static struct wake_lock rtw_suspend_lock; static struct wake_lock rtw_suspend_ext_lock; static struct wake_lock rtw_suspend_rx_lock; static struct wake_lock rtw_suspend_traffic_lock; static struct wake_lock rtw_suspend_resume_lock; static struct wake_lock rtw_resume_scan_lock; #elif defined(CONFIG_ANDROID_POWER) static android_suspend_lock_t rtw_suspend_lock = { .name = RTW_SUSPEND_LOCK_NAME }; static android_suspend_lock_t rtw_suspend_ext_lock = { .name = RTW_SUSPEND_EXT_LOCK_NAME }; static android_suspend_lock_t rtw_suspend_rx_lock = { .name = RTW_SUSPEND_RX_LOCK_NAME }; static android_suspend_lock_t rtw_suspend_traffic_lock = { .name = RTW_SUSPEND_TRAFFIC_LOCK_NAME }; static android_suspend_lock_t rtw_suspend_resume_lock = { .name = RTW_SUSPEND_RESUME_LOCK_NAME }; static android_suspend_lock_t rtw_resume_scan_lock = { .name = RTW_RESUME_SCAN_LOCK_NAME }; #endif inline void rtw_suspend_lock_init(void) { #ifdef CONFIG_WAKELOCK wake_lock_init(&rtw_suspend_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_LOCK_NAME); wake_lock_init(&rtw_suspend_ext_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_EXT_LOCK_NAME); wake_lock_init(&rtw_suspend_rx_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_RX_LOCK_NAME); wake_lock_init(&rtw_suspend_traffic_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_TRAFFIC_LOCK_NAME); wake_lock_init(&rtw_suspend_resume_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_RESUME_LOCK_NAME); wake_lock_init(&rtw_resume_scan_lock, WAKE_LOCK_SUSPEND, RTW_RESUME_SCAN_LOCK_NAME); #elif defined(CONFIG_ANDROID_POWER) android_init_suspend_lock(&rtw_suspend_lock); android_init_suspend_lock(&rtw_suspend_ext_lock); android_init_suspend_lock(&rtw_suspend_rx_lock); android_init_suspend_lock(&rtw_suspend_traffic_lock); android_init_suspend_lock(&rtw_suspend_resume_lock); android_init_suspend_lock(&rtw_resume_scan_lock); #endif } inline void rtw_suspend_lock_uninit(void) { #ifdef CONFIG_WAKELOCK wake_lock_destroy(&rtw_suspend_lock); wake_lock_destroy(&rtw_suspend_ext_lock); wake_lock_destroy(&rtw_suspend_rx_lock); wake_lock_destroy(&rtw_suspend_traffic_lock); wake_lock_destroy(&rtw_suspend_resume_lock); wake_lock_destroy(&rtw_resume_scan_lock); #elif defined(CONFIG_ANDROID_POWER) android_uninit_suspend_lock(&rtw_suspend_lock); android_uninit_suspend_lock(&rtw_suspend_ext_lock); android_uninit_suspend_lock(&rtw_suspend_rx_lock); android_uninit_suspend_lock(&rtw_suspend_traffic_lock); android_uninit_suspend_lock(&rtw_suspend_resume_lock); android_uninit_suspend_lock(&rtw_resume_scan_lock); #endif } inline void rtw_lock_suspend(void) { #ifdef CONFIG_WAKELOCK wake_lock(&rtw_suspend_lock); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend(&rtw_suspend_lock); #endif #if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER) /* RTW_INFO("####%s: suspend_lock_count:%d####\n", __func__, rtw_suspend_lock.stat.count); */ #endif } inline void rtw_unlock_suspend(void) { #ifdef CONFIG_WAKELOCK wake_unlock(&rtw_suspend_lock); #elif defined(CONFIG_ANDROID_POWER) android_unlock_suspend(&rtw_suspend_lock); #endif #if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER) /* RTW_INFO("####%s: suspend_lock_count:%d####\n", __func__, rtw_suspend_lock.stat.count); */ #endif } inline void rtw_resume_lock_suspend(void) { #ifdef CONFIG_WAKELOCK wake_lock(&rtw_suspend_resume_lock); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend(&rtw_suspend_resume_lock); #endif #if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER) /* RTW_INFO("####%s: suspend_lock_count:%d####\n", __func__, rtw_suspend_lock.stat.count); */ #endif } inline void rtw_resume_unlock_suspend(void) { #ifdef CONFIG_WAKELOCK wake_unlock(&rtw_suspend_resume_lock); #elif defined(CONFIG_ANDROID_POWER) android_unlock_suspend(&rtw_suspend_resume_lock); #endif #if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER) /* RTW_INFO("####%s: suspend_lock_count:%d####\n", __func__, rtw_suspend_lock.stat.count); */ #endif } inline void rtw_lock_suspend_timeout(u32 timeout_ms) { #ifdef CONFIG_WAKELOCK wake_lock_timeout(&rtw_suspend_lock, rtw_ms_to_systime(timeout_ms)); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend_auto_expire(&rtw_suspend_lock, rtw_ms_to_systime(timeout_ms)); #endif } inline void rtw_lock_ext_suspend_timeout(u32 timeout_ms) { #ifdef CONFIG_WAKELOCK wake_lock_timeout(&rtw_suspend_ext_lock, rtw_ms_to_systime(timeout_ms)); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend_auto_expire(&rtw_suspend_ext_lock, rtw_ms_to_systime(timeout_ms)); #endif /* RTW_INFO("EXT lock timeout:%d\n", timeout_ms); */ } inline void rtw_lock_rx_suspend_timeout(u32 timeout_ms) { #ifdef CONFIG_WAKELOCK wake_lock_timeout(&rtw_suspend_rx_lock, rtw_ms_to_systime(timeout_ms)); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend_auto_expire(&rtw_suspend_rx_lock, rtw_ms_to_systime(timeout_ms)); #endif /* RTW_INFO("RX lock timeout:%d\n", timeout_ms); */ } inline void rtw_lock_traffic_suspend_timeout(u32 timeout_ms) { #ifdef CONFIG_WAKELOCK wake_lock_timeout(&rtw_suspend_traffic_lock, rtw_ms_to_systime(timeout_ms)); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend_auto_expire(&rtw_suspend_traffic_lock, rtw_ms_to_systime(timeout_ms)); #endif /* RTW_INFO("traffic lock timeout:%d\n", timeout_ms); */ } inline void rtw_lock_resume_scan_timeout(u32 timeout_ms) { #ifdef CONFIG_WAKELOCK wake_lock_timeout(&rtw_resume_scan_lock, rtw_ms_to_systime(timeout_ms)); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend_auto_expire(&rtw_resume_scan_lock, rtw_ms_to_systime(timeout_ms)); #endif /* RTW_INFO("resume scan lock:%d\n", timeout_ms); */ } inline void ATOMIC_SET(ATOMIC_T *v, int i) { atomic_set(v, i); } inline int ATOMIC_READ(ATOMIC_T *v) { return atomic_read(v); } inline void ATOMIC_ADD(ATOMIC_T *v, int i) { atomic_add(i, v); } inline void ATOMIC_SUB(ATOMIC_T *v, int i) { atomic_sub(i, v); } inline void ATOMIC_INC(ATOMIC_T *v) { atomic_inc(v); } inline void ATOMIC_DEC(ATOMIC_T *v) { atomic_dec(v); } inline int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i) { return atomic_add_return(i, v); } inline int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i) { return atomic_sub_return(i, v); } inline int ATOMIC_INC_RETURN(ATOMIC_T *v) { return atomic_inc_return(v); } inline int ATOMIC_DEC_RETURN(ATOMIC_T *v) { return atomic_dec_return(v); } /* * Open a file with the specific @param path, @param flag, @param mode * @param fpp the pointer of struct file pointer to get struct file pointer while file opening is success * @param path the path of the file to open * @param flag file operation flags, please refer to linux document * @param mode please refer to linux document * @return Linux specific error code */ static int openFile(struct file **fpp, const char *path, int flag, int mode) { struct file *fp; fp = filp_open(path, flag, mode); if (IS_ERR(fp)) { *fpp = NULL; return PTR_ERR(fp); } else { *fpp = fp; return 0; } } /* * Close the file with the specific @param fp * @param fp the pointer of struct file to close * @return always 0 */ static int closeFile(struct file *fp) { filp_close(fp, NULL); return 0; } static int readFile(struct file *fp, char *buf, int len) { int rlen = 0, sum = 0; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)) if (!(fp->f_mode & FMODE_CAN_READ)) #else if (!fp->f_op || !fp->f_op->read) #endif return -EPERM; while (sum < len) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)) #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0)) rlen = kernel_read(fp, buf + sum, len - sum, &fp->f_pos); #else rlen = __vfs_read(fp, buf + sum, len - sum, &fp->f_pos); #endif #else rlen = fp->f_op->read(fp, buf + sum, len - sum, &fp->f_pos); #endif if (rlen > 0) sum += rlen; else if (0 != rlen) return rlen; else break; } return sum; } static int writeFile(struct file *fp, char *buf, int len) { int wlen = 0, sum = 0; if (!fp->f_op || !fp->f_op->write) return -EPERM; while (sum < len) { wlen = fp->f_op->write(fp, buf + sum, len - sum, &fp->f_pos); if (wlen > 0) sum += wlen; else if (0 != wlen) return wlen; else break; } return sum; } /* * Test if the specifi @param path is a file and readable * If readable, @param sz is got * @param path the path of the file to test * @return Linux specific error code */ static int isFileReadable(const char *path, u32 *sz) { struct file *fp; int ret = 0; mm_segment_t oldfs; char buf; fp = filp_open(path, O_RDONLY, 0); if (IS_ERR(fp)) ret = PTR_ERR(fp); else { oldfs = get_fs(); set_fs(get_ds()); if (1 != readFile(fp, &buf, 1)) ret = PTR_ERR(fp); if (ret == 0 && sz) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0)) *sz = i_size_read(fp->f_path.dentry->d_inode); #else *sz = i_size_read(fp->f_dentry->d_inode); #endif } set_fs(oldfs); filp_close(fp, NULL); } return ret; } /* * Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most * @param path the path of the file to open and read * @param buf the starting address of the buffer to store file content * @param sz how many bytes to read at most * @return the byte we've read, or Linux specific error code */ static int retriveFromFile(const char *path, u8 *buf, u32 sz) { int ret = -1; mm_segment_t oldfs; struct file *fp; if (path && buf) { ret = openFile(&fp, path, O_RDONLY, 0); if (0 == ret) { RTW_INFO("%s openFile path:%s fp=%p\n", __func__, path , fp); oldfs = get_fs(); set_fs(get_ds()); ret = readFile(fp, buf, sz); set_fs(oldfs); closeFile(fp); RTW_INFO("%s readFile, ret:%d\n", __func__, ret); } else RTW_INFO("%s openFile path:%s Fail, ret:%d\n", __func__, path, ret); } else { RTW_INFO("%s NULL pointer\n", __func__); ret = -EINVAL; } return ret; } /* * Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file * @param path the path of the file to open and write * @param buf the starting address of the data to write into file * @param sz how many bytes to write at most * @return the byte we've written, or Linux specific error code */ static int storeToFile(const char *path, u8 *buf, u32 sz) { int ret = 0; mm_segment_t oldfs; struct file *fp; if (path && buf) { ret = openFile(&fp, path, O_CREAT | O_WRONLY, 0666); if (0 == ret) { RTW_INFO("%s openFile path:%s fp=%p\n", __func__, path , fp); oldfs = get_fs(); set_fs(get_ds()); ret = writeFile(fp, buf, sz); set_fs(oldfs); closeFile(fp); RTW_INFO("%s writeFile, ret:%d\n", __func__, ret); } else RTW_INFO("%s openFile path:%s Fail, ret:%d\n", __func__, path, ret); } else { RTW_INFO("%s NULL pointer\n", __func__); ret = -EINVAL; } return ret; } /* * Test if the specifi @param path is a file and readable * @param path the path of the file to test * @return true or false */ int rtw_is_file_readable(const char *path) { if (isFileReadable(path, NULL) == 0) return true; else return false; } /* * Test if the specifi @param path is a file and readable. * If readable, @param sz is got * @param path the path of the file to test * @return true or false */ int rtw_is_file_readable_with_size(const char *path, u32 *sz) { if (isFileReadable(path, sz) == 0) return true; else return false; } /* * Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most * @param path the path of the file to open and read * @param buf the starting address of the buffer to store file content * @param sz how many bytes to read at most * @return the byte we've read */ int rtw_retrieve_from_file(const char *path, u8 *buf, u32 sz) { int ret = retriveFromFile(path, buf, sz); return ret >= 0 ? ret : 0; } /* * Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file * @param path the path of the file to open and write * @param buf the starting address of the data to write into file * @param sz how many bytes to write at most * @return the byte we've written */ int rtw_store_to_file(const char *path, u8 *buf, u32 sz) { int ret = storeToFile(path, buf, sz); return ret >= 0 ? ret : 0; } struct net_device *rtw_alloc_etherdev_with_old_priv(int sizeof_priv, void *old_priv) { struct net_device *pnetdev; struct rtw_netdev_priv_indicator *pnpi; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)) pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4); #else pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator)); #endif if (!pnetdev) goto RETURN; pnpi = netdev_priv(pnetdev); pnpi->priv = old_priv; pnpi->sizeof_priv = sizeof_priv; RETURN: return pnetdev; } struct net_device *rtw_alloc_etherdev(int sizeof_priv) { struct net_device *pnetdev; struct rtw_netdev_priv_indicator *pnpi; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)) pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4); #else pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator)); #endif if (!pnetdev) goto RETURN; pnpi = netdev_priv(pnetdev); pnpi->priv = rtw_zvmalloc(sizeof_priv); if (!pnpi->priv) { free_netdev(pnetdev); pnetdev = NULL; goto RETURN; } pnpi->sizeof_priv = sizeof_priv; RETURN: return pnetdev; } void rtw_free_netdev(struct net_device *netdev) { struct rtw_netdev_priv_indicator *pnpi; if (!netdev) goto RETURN; pnpi = netdev_priv(netdev); if (!pnpi->priv) goto RETURN; free_netdev(netdev); RETURN: return; } int rtw_change_ifname(_adapter *padapter, const char *ifname) { struct dvobj_priv *dvobj; struct net_device *pnetdev; struct net_device *cur_pnetdev; struct rereg_nd_name_data *rereg_priv; int ret; u8 rtnl_lock_needed; if (!padapter) goto error; dvobj = adapter_to_dvobj(padapter); cur_pnetdev = padapter->pnetdev; rereg_priv = &padapter->rereg_nd_name_priv; /* free the old_pnetdev */ if (rereg_priv->old_pnetdev) { free_netdev(rereg_priv->old_pnetdev); rereg_priv->old_pnetdev = NULL; } rtnl_lock_needed = rtw_rtnl_lock_needed(dvobj); if (rtnl_lock_needed) unregister_netdev(cur_pnetdev); else unregister_netdevice(cur_pnetdev); rereg_priv->old_pnetdev = cur_pnetdev; pnetdev = rtw_init_netdev(padapter); if (!pnetdev) { ret = -1; goto error; } SET_NETDEV_DEV(pnetdev, dvobj_to_dev(adapter_to_dvobj(padapter))); rtw_init_netdev_name(pnetdev, ifname); memcpy(pnetdev->dev_addr, adapter_mac_addr(padapter), ETH_ALEN); if (rtnl_lock_needed) ret = register_netdev(pnetdev); else ret = register_netdevice(pnetdev); if (ret != 0) { goto error; } return 0; error: return -1; } #ifdef CONFIG_PLATFORM_SPRD #ifdef do_div #undef do_div #endif #include #endif u64 rtw_modular64(u64 x, u64 y) { return do_div(x, y); } u64 rtw_division64(u64 x, u64 y) { do_div(x, y); return x; } inline u32 rtw_random32(void) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0)) return prandom_u32(); #elif (LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 18)) u32 random_int; get_random_bytes(&random_int , 4); return random_int; #else return random32(); #endif } void rtw_buf_free(u8 **buf, u32 *buf_len) { u32 ori_len; if (!buf || !buf_len) return; ori_len = *buf_len; if (*buf) { u32 tmp_buf_len = *buf_len; *buf_len = 0; rtw_mfree(*buf, tmp_buf_len); *buf = NULL; } } void rtw_buf_update(u8 **buf, u32 *buf_len, u8 *src, u32 src_len) { u32 ori_len = 0, dup_len = 0; u8 *ori = NULL; u8 *dup = NULL; if (!buf || !buf_len) return; if (!src || !src_len) goto keep_ori; /* duplicate src */ dup = rtw_malloc(src_len); if (dup) { dup_len = src_len; memcpy(dup, src, dup_len); } keep_ori: ori = *buf; ori_len = *buf_len; /* replace buf with dup */ *buf_len = 0; *buf = dup; *buf_len = dup_len; /* free ori */ if (ori && ori_len > 0) rtw_mfree(ori, ori_len); } /** * rtw_cbuf_full - test if cbuf is full * @cbuf: pointer of struct rtw_cbuf * * Returns: true if cbuf is full */ inline bool rtw_cbuf_full(struct rtw_cbuf *cbuf) { return (cbuf->write == cbuf->read - 1) ? true : false; } /** * rtw_cbuf_empty - test if cbuf is empty * @cbuf: pointer of struct rtw_cbuf * * Returns: true if cbuf is empty */ inline bool rtw_cbuf_empty(struct rtw_cbuf *cbuf) { return (cbuf->write == cbuf->read) ? true : false; } /** * rtw_cbuf_push - push a pointer into cbuf * @cbuf: pointer of struct rtw_cbuf * @buf: pointer to push in * * Lock free operation, be careful of the use scheme * Returns: true push success */ bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf) { if (rtw_cbuf_full(cbuf)) return _FAIL; if (0) RTW_INFO("%s on %u\n", __func__, cbuf->write); cbuf->bufs[cbuf->write] = buf; cbuf->write = (cbuf->write + 1) % cbuf->size; return _SUCCESS; } /** * rtw_cbuf_pop - pop a pointer from cbuf * @cbuf: pointer of struct rtw_cbuf * * Lock free operation, be careful of the use scheme * Returns: pointer popped out */ void *rtw_cbuf_pop(struct rtw_cbuf *cbuf) { void *buf; if (rtw_cbuf_empty(cbuf)) return NULL; if (0) RTW_INFO("%s on %u\n", __func__, cbuf->read); buf = cbuf->bufs[cbuf->read]; cbuf->read = (cbuf->read + 1) % cbuf->size; return buf; } /** * rtw_cbuf_alloc - allocte a rtw_cbuf with given size and do initialization * @size: size of pointer * * Returns: pointer of srtuct rtw_cbuf, NULL for allocation failure */ struct rtw_cbuf *rtw_cbuf_alloc(u32 size) { struct rtw_cbuf *cbuf; cbuf = (struct rtw_cbuf *)rtw_malloc(sizeof(*cbuf) + sizeof(void *) * size); if (cbuf) { cbuf->write = cbuf->read = 0; cbuf->size = size; } return cbuf; } /** * rtw_cbuf_free - free the given rtw_cbuf * @cbuf: pointer of struct rtw_cbuf to free */ void rtw_cbuf_free(struct rtw_cbuf *cbuf) { rtw_mfree((u8 *)cbuf, sizeof(*cbuf) + sizeof(void *) * cbuf->size); } /** * map_readN - read a range of map data * @map: map to read * @offset: start address to read * @len: length to read * @buf: pointer of buffer to store data read * * Returns: _SUCCESS or _FAIL */ int map_readN(const struct map_t *map, u16 offset, u16 len, u8 *buf) { const struct map_seg_t *seg; int ret = _FAIL; int i; if (len == 0) { rtw_warn_on(1); goto exit; } if (offset + len > map->len) { rtw_warn_on(1); goto exit; } memset(buf, map->init_value, len); for (i = 0; i < map->seg_num; i++) { u8 *c_dst, *c_src; u16 c_len; seg = map->segs + i; if (seg->sa + seg->len <= offset || seg->sa >= offset + len) continue; if (seg->sa >= offset) { c_dst = buf + (seg->sa - offset); c_src = seg->c; if (seg->sa + seg->len <= offset + len) c_len = seg->len; else c_len = offset + len - seg->sa; } else { c_dst = buf; c_src = seg->c + (offset - seg->sa); if (seg->sa + seg->len >= offset + len) c_len = len; else c_len = seg->sa + seg->len - offset; } memcpy(c_dst, c_src, c_len); } exit: return ret; } /** * map_read8 - read 1 byte of map data * @map: map to read * @offset: address to read * * Returns: value of data of specified offset. map.init_value if offset is out of range */ u8 map_read8(const struct map_t *map, u16 offset) { const struct map_seg_t *seg; u8 val = map->init_value; int i; if (offset + 1 > map->len) { rtw_warn_on(1); goto exit; } for (i = 0; i < map->seg_num; i++) { seg = map->segs + i; if (seg->sa + seg->len <= offset || seg->sa >= offset + 1) continue; val = *(seg->c + offset - seg->sa); break; } exit: return val; } /** * is_null - * * Return true if c is null character * false otherwise. */ inline bool is_null(char c) { if (c == '\0') return true; else return false; } /** * is_eol - * * Return true if c is represent for EOL (end of line) * false otherwise. */ inline bool is_eol(char c) { if (c == '\r' || c == '\n') return true; else return false; } /** * is_space - * * Return true if c is represent for space * false otherwise. */ inline bool is_space(char c) { if (c == ' ' || c == '\t') return true; else return false; } /** * IsHexDigit - * * Return true if chTmp is represent for hex digit * false otherwise. */ inline bool IsHexDigit(char chTmp) { if ((chTmp >= '0' && chTmp <= '9') || (chTmp >= 'a' && chTmp <= 'f') || (chTmp >= 'A' && chTmp <= 'F')) return true; else return false; } /** * is_alpha - * * Return true if chTmp is represent for alphabet * false otherwise. */ inline bool is_alpha(char chTmp) { if ((chTmp >= 'a' && chTmp <= 'z') || (chTmp >= 'A' && chTmp <= 'Z')) return true; else return false; } inline char alpha_to_upper(char c) { if ((c >= 'a' && c <= 'z')) c = 'A' + (c - 'a'); return c; }