/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _RTL8188E_MP_C_ #ifdef CONFIG_MP_INCLUDED #include #include #include #include s32 Hal_SetPowerTracking(PADAPTER padapter, u8 enable) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct dm_priv *pdmpriv = &pHalData->dmpriv; PDM_ODM_T pDM_Odm = &(pHalData->odmpriv); if (!netif_running(padapter->pnetdev)) { RT_TRACE(_module_mp_, _drv_warning_, ("SetPowerTracking! Fail: interface not opened!\n")); return _FAIL; } if (check_fwstate(&padapter->mlmepriv, WIFI_MP_STATE) == _FALSE) { RT_TRACE(_module_mp_, _drv_warning_, ("SetPowerTracking! Fail: not in MP mode!\n")); return _FAIL; } if (enable) { pDM_Odm->RFCalibrateInfo.bTXPowerTracking = _TRUE; } else pDM_Odm->RFCalibrateInfo.bTXPowerTrackingInit= _FALSE; return _SUCCESS; } void Hal_GetPowerTracking(PADAPTER padapter, u8 *enable) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct dm_priv *pdmpriv = &pHalData->dmpriv; PDM_ODM_T pDM_Odm = &(pHalData->odmpriv); *enable = pDM_Odm->RFCalibrateInfo.TxPowerTrackControl; } static void Hal_disable_dm(PADAPTER padapter) { u8 v8; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct dm_priv *pdmpriv = &pHalData->dmpriv; PDM_ODM_T pDM_Odm = &(pHalData->odmpriv); //3 1. disable firmware dynamic mechanism // disable Power Training, Rate Adaptive v8 = rtw_read8(padapter, REG_BCN_CTRL); v8 &= ~EN_BCN_FUNCTION; rtw_write8(padapter, REG_BCN_CTRL, v8); //3 2. disable driver dynamic mechanism // disable Dynamic Initial Gain // disable High Power // disable Power Tracking Switch_DM_Func(padapter, DYNAMIC_FUNC_DISABLE, _FALSE); // enable APK, LCK and IQK but disable power tracking pDM_Odm->RFCalibrateInfo.TxPowerTrackControl = _FALSE; Switch_DM_Func(padapter, DYNAMIC_FUNC_DISABLE, _TRUE); } /*----------------------------------------------------------------------------- * Function: mpt_SwitchRfSetting * * Overview: Change RF Setting when we siwthc channel/rate/BW for MP. * * Input: IN PADAPTER pAdapter * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 01/08/2009 MHC Suggestion from SD3 Willis for 92S series. * 01/09/2009 MHC Add CCK modification for 40MHZ. Suggestion from SD3. * *---------------------------------------------------------------------------*/ void Hal_mpt_SwitchRfSetting(PADAPTER pAdapter) { //HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); struct mp_priv *pmp = &pAdapter->mppriv; u1Byte ChannelToSw = pmp->channel; ULONG ulRateIdx = pmp->rateidx; ULONG ulbandwidth = pmp->bandwidth; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); // <20120525, Kordan> Dynamic mechanism for APK, asked by Dennis. pmp->MptCtx.backup0x52_RF_A = (u1Byte)PHY_QueryRFReg(pAdapter, RF_PATH_A, RF_0x52, 0x000F0); pmp->MptCtx.backup0x52_RF_B = (u1Byte)PHY_QueryRFReg(pAdapter, RF_PATH_B, RF_0x52, 0x000F0); PHY_SetRFReg(pAdapter, RF_PATH_A, RF_0x52, 0x000F0, 0xD); PHY_SetRFReg(pAdapter, RF_PATH_B, RF_0x52, 0x000F0, 0xD); return ; } /*---------------------------hal\rtl8192c\MPT_Phy.c---------------------------*/ /*---------------------------hal\rtl8192c\MPT_HelperFunc.c---------------------------*/ void Hal_MPT_CCKTxPowerAdjust(PADAPTER Adapter, BOOLEAN bInCH14) { u32 TempVal = 0, TempVal2 = 0, TempVal3 = 0; u32 CurrCCKSwingVal = 0, CCKSwingIndex = 12; u8 i; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); // get current cck swing value and check 0xa22 & 0xa23 later to match the table. CurrCCKSwingVal = read_bbreg(Adapter, rCCK0_TxFilter1, bMaskHWord); if (!bInCH14) { // Readback the current bb cck swing value and compare with the table to // get the current swing index for (i = 0; i < CCK_TABLE_SIZE; i++) { if (((CurrCCKSwingVal&0xff) == (u32)CCKSwingTable_Ch1_Ch13[i][0]) && (((CurrCCKSwingVal&0xff00)>>8) == (u32)CCKSwingTable_Ch1_Ch13[i][1])) { CCKSwingIndex = i; // RT_TRACE(COMP_INIT, DBG_LOUD,("Ch1~13, Current reg0x%x = 0x%lx, CCKSwingIndex=0x%x\n", // (rCCK0_TxFilter1+2), CurrCCKSwingVal, CCKSwingIndex)); break; } } //Write 0xa22 0xa23 TempVal = CCKSwingTable_Ch1_Ch13[CCKSwingIndex][0] + (CCKSwingTable_Ch1_Ch13[CCKSwingIndex][1]<<8) ; //Write 0xa24 ~ 0xa27 TempVal2 = 0; TempVal2 = CCKSwingTable_Ch1_Ch13[CCKSwingIndex][2] + (CCKSwingTable_Ch1_Ch13[CCKSwingIndex][3]<<8) + (CCKSwingTable_Ch1_Ch13[CCKSwingIndex][4]<<16 )+ (CCKSwingTable_Ch1_Ch13[CCKSwingIndex][5]<<24); //Write 0xa28 0xa29 TempVal3 = 0; TempVal3 = CCKSwingTable_Ch1_Ch13[CCKSwingIndex][6] + (CCKSwingTable_Ch1_Ch13[CCKSwingIndex][7]<<8) ; } else { for (i = 0; i < CCK_TABLE_SIZE; i++) { if (((CurrCCKSwingVal&0xff) == (u32)CCKSwingTable_Ch14[i][0]) && (((CurrCCKSwingVal&0xff00)>>8) == (u32)CCKSwingTable_Ch14[i][1])) { CCKSwingIndex = i; // RT_TRACE(COMP_INIT, DBG_LOUD,("Ch14, Current reg0x%x = 0x%lx, CCKSwingIndex=0x%x\n", // (rCCK0_TxFilter1+2), CurrCCKSwingVal, CCKSwingIndex)); break; } } //Write 0xa22 0xa23 TempVal = CCKSwingTable_Ch14[CCKSwingIndex][0] + (CCKSwingTable_Ch14[CCKSwingIndex][1]<<8) ; //Write 0xa24 ~ 0xa27 TempVal2 = 0; TempVal2 = CCKSwingTable_Ch14[CCKSwingIndex][2] + (CCKSwingTable_Ch14[CCKSwingIndex][3]<<8) + (CCKSwingTable_Ch14[CCKSwingIndex][4]<<16 )+ (CCKSwingTable_Ch14[CCKSwingIndex][5]<<24); //Write 0xa28 0xa29 TempVal3 = 0; TempVal3 = CCKSwingTable_Ch14[CCKSwingIndex][6] + (CCKSwingTable_Ch14[CCKSwingIndex][7]<<8) ; } write_bbreg(Adapter, rCCK0_TxFilter1, bMaskHWord, TempVal); write_bbreg(Adapter, rCCK0_TxFilter2, bMaskDWord, TempVal2); write_bbreg(Adapter, rCCK0_DebugPort, bMaskLWord, TempVal3); } void Hal_MPT_CCKTxPowerAdjustbyIndex(PADAPTER pAdapter, BOOLEAN beven) { s32 TempCCk; u8 CCK_index, CCK_index_old; u8 Action = 0; //0: no action, 1: even->odd, 2:odd->even u8 TimeOut = 100; s32 i = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PMPT_CONTEXT pMptCtx = &pAdapter->mppriv.MptCtx; struct dm_priv *pdmpriv = &pHalData->dmpriv; PDM_ODM_T pDM_Odm = &(pHalData->odmpriv); if (!IS_92C_SERIAL(pHalData->VersionID)) return; if (beven && !pMptCtx->bMptIndexEven) //odd->even { Action = 2; pMptCtx->bMptIndexEven = _TRUE; } else if (!beven && pMptCtx->bMptIndexEven) //even->odd { Action = 1; pMptCtx->bMptIndexEven = _FALSE; } if (Action != 0) { //Query CCK default setting From 0xa24 TempCCk = read_bbreg(pAdapter, rCCK0_TxFilter2, bMaskDWord) & bMaskCCK; for (i = 0; i < CCK_TABLE_SIZE; i++) { if (pDM_Odm->RFCalibrateInfo.bCCKinCH14) { if (_rtw_memcmp((void*)&TempCCk, (void*)&CCKSwingTable_Ch14[i][2], 4) == _TRUE) { CCK_index_old = (u8) i; // RTPRINT(FINIT, INIT_TxPower,("MPT_CCKTxPowerAdjustbyIndex: Initial reg0x%x = 0x%lx, CCK_index=0x%x, ch 14 %d\n", // rCCK0_TxFilter2, TempCCk, CCK_index_old, pHalData->bCCKinCH14)); break; } } else { if (_rtw_memcmp((void*)&TempCCk, (void*)&CCKSwingTable_Ch1_Ch13[i][2], 4) == _TRUE) { CCK_index_old = (u8) i; // RTPRINT(FINIT, INIT_TxPower,("MPT_CCKTxPowerAdjustbyIndex: Initial reg0x%x = 0x%lx, CCK_index=0x%x, ch14 %d\n", // rCCK0_TxFilter2, TempCCk, CCK_index_old, pHalData->bCCKinCH14)); break; } } } if (Action == 1) CCK_index = CCK_index_old - 1; else CCK_index = CCK_index_old + 1; // RTPRINT(FINIT, INIT_TxPower,("MPT_CCKTxPowerAdjustbyIndex: new CCK_index=0x%x\n", // CCK_index)); //Adjust CCK according to gain index if (!pDM_Odm->RFCalibrateInfo.bCCKinCH14) { rtw_write8(pAdapter, 0xa22, CCKSwingTable_Ch1_Ch13[CCK_index][0]); rtw_write8(pAdapter, 0xa23, CCKSwingTable_Ch1_Ch13[CCK_index][1]); rtw_write8(pAdapter, 0xa24, CCKSwingTable_Ch1_Ch13[CCK_index][2]); rtw_write8(pAdapter, 0xa25, CCKSwingTable_Ch1_Ch13[CCK_index][3]); rtw_write8(pAdapter, 0xa26, CCKSwingTable_Ch1_Ch13[CCK_index][4]); rtw_write8(pAdapter, 0xa27, CCKSwingTable_Ch1_Ch13[CCK_index][5]); rtw_write8(pAdapter, 0xa28, CCKSwingTable_Ch1_Ch13[CCK_index][6]); rtw_write8(pAdapter, 0xa29, CCKSwingTable_Ch1_Ch13[CCK_index][7]); } else { rtw_write8(pAdapter, 0xa22, CCKSwingTable_Ch14[CCK_index][0]); rtw_write8(pAdapter, 0xa23, CCKSwingTable_Ch14[CCK_index][1]); rtw_write8(pAdapter, 0xa24, CCKSwingTable_Ch14[CCK_index][2]); rtw_write8(pAdapter, 0xa25, CCKSwingTable_Ch14[CCK_index][3]); rtw_write8(pAdapter, 0xa26, CCKSwingTable_Ch14[CCK_index][4]); rtw_write8(pAdapter, 0xa27, CCKSwingTable_Ch14[CCK_index][5]); rtw_write8(pAdapter, 0xa28, CCKSwingTable_Ch14[CCK_index][6]); rtw_write8(pAdapter, 0xa29, CCKSwingTable_Ch14[CCK_index][7]); } } } /*---------------------------hal\rtl8192c\MPT_HelperFunc.c---------------------------*/ /* * SetChannel * Description * Use H2C command to change channel, * not only modify rf register, but also other setting need to be done. */ void Hal_SetChannel(PADAPTER pAdapter) { u8 eRFPath; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); struct mp_priv *pmp = &pAdapter->mppriv; struct dm_priv *pdmpriv = &pHalData->dmpriv; PDM_ODM_T pDM_Odm = &(pHalData->odmpriv); u8 channel = pmp->channel; u8 bandwidth = pmp->bandwidth; u8 rate = pmp->rateidx; // set RF channel register for (eRFPath = 0; eRFPath < pHalData->NumTotalRFPath; eRFPath++) { if (IS_HARDWARE_TYPE_8192D(pAdapter)) _write_rfreg(pAdapter, (RF_RADIO_PATH_E)eRFPath, ODM_CHANNEL, 0xFF, channel); else _write_rfreg(pAdapter, eRFPath, ODM_CHANNEL, 0x3FF, channel); } Hal_mpt_SwitchRfSetting(pAdapter); SelectChannel(pAdapter, channel); if (pHalData->CurrentChannel == 14 && !pDM_Odm->RFCalibrateInfo.bCCKinCH14) { pDM_Odm->RFCalibrateInfo.bCCKinCH14 = _TRUE; Hal_MPT_CCKTxPowerAdjust(pAdapter, pDM_Odm->RFCalibrateInfo.bCCKinCH14); } else if (pHalData->CurrentChannel != 14 && pDM_Odm->RFCalibrateInfo.bCCKinCH14) { pDM_Odm->RFCalibrateInfo.bCCKinCH14 = _FALSE; Hal_MPT_CCKTxPowerAdjust(pAdapter, pDM_Odm->RFCalibrateInfo.bCCKinCH14); } } /* * Notice * Switch bandwitdth may change center frequency(channel) */ void Hal_SetBandwidth(PADAPTER pAdapter) { struct mp_priv *pmp = &pAdapter->mppriv; SetBWMode(pAdapter, pmp->bandwidth, pmp->prime_channel_offset); Hal_mpt_SwitchRfSetting(pAdapter); } void Hal_SetCCKTxPower(PADAPTER pAdapter, u8 *TxPower) { u32 tmpval = 0; // rf-A cck tx power write_bbreg(pAdapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, TxPower[RF_PATH_A]); tmpval = (TxPower[RF_PATH_A]<<16) | (TxPower[RF_PATH_A]<<8) | TxPower[RF_PATH_A]; write_bbreg(pAdapter, rTxAGC_B_CCK11_A_CCK2_11, 0xffffff00, tmpval); // rf-B cck tx power write_bbreg(pAdapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte0, TxPower[RF_PATH_B]); tmpval = (TxPower[RF_PATH_B]<<16) | (TxPower[RF_PATH_B]<<8) | TxPower[RF_PATH_B]; write_bbreg(pAdapter, rTxAGC_B_CCK1_55_Mcs32, 0xffffff00, tmpval); RT_TRACE(_module_mp_, _drv_notice_, ("-SetCCKTxPower: A[0x%02x] B[0x%02x]\n", TxPower[RF_PATH_A], TxPower[RF_PATH_B])); } void Hal_SetOFDMTxPower(PADAPTER pAdapter, u8 *TxPower) { u32 TxAGC = 0; u8 tmpval = 0; PMPT_CONTEXT pMptCtx = &pAdapter->mppriv.MptCtx; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); // HT Tx-rf(A) tmpval = TxPower[RF_PATH_A]; TxAGC = (tmpval<<24) | (tmpval<<16) | (tmpval<<8) | tmpval; write_bbreg(pAdapter, rTxAGC_A_Rate18_06, bMaskDWord, TxAGC); write_bbreg(pAdapter, rTxAGC_A_Rate54_24, bMaskDWord, TxAGC); write_bbreg(pAdapter, rTxAGC_A_Mcs03_Mcs00, bMaskDWord, TxAGC); write_bbreg(pAdapter, rTxAGC_A_Mcs07_Mcs04, bMaskDWord, TxAGC); write_bbreg(pAdapter, rTxAGC_A_Mcs11_Mcs08, bMaskDWord, TxAGC); write_bbreg(pAdapter, rTxAGC_A_Mcs15_Mcs12, bMaskDWord, TxAGC); // HT Tx-rf(B) tmpval = TxPower[RF_PATH_B]; TxAGC = (tmpval<<24) | (tmpval<<16) | (tmpval<<8) | tmpval; write_bbreg(pAdapter, rTxAGC_B_Rate18_06, bMaskDWord, TxAGC); write_bbreg(pAdapter, rTxAGC_B_Rate54_24, bMaskDWord, TxAGC); write_bbreg(pAdapter, rTxAGC_B_Mcs03_Mcs00, bMaskDWord, TxAGC); write_bbreg(pAdapter, rTxAGC_B_Mcs07_Mcs04, bMaskDWord, TxAGC); write_bbreg(pAdapter, rTxAGC_B_Mcs11_Mcs08, bMaskDWord, TxAGC); write_bbreg(pAdapter, rTxAGC_B_Mcs15_Mcs12, bMaskDWord, TxAGC); } void Hal_SetAntennaPathPower(PADAPTER pAdapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u8 TxPowerLevel[MAX_RF_PATH_NUMS]; u8 rfPath; TxPowerLevel[RF_PATH_A] = pAdapter->mppriv.txpoweridx; TxPowerLevel[RF_PATH_B] = pAdapter->mppriv.txpoweridx_b; switch (pAdapter->mppriv.antenna_tx) { case ANTENNA_A: default: rfPath = RF_PATH_A; break; case ANTENNA_B: rfPath = RF_PATH_B; break; case ANTENNA_C: rfPath = RF_PATH_C; break; } switch (pHalData->rf_chip) { case RF_8225: case RF_8256: case RF_6052: Hal_SetCCKTxPower(pAdapter, TxPowerLevel); if (pAdapter->mppriv.rateidx < MPT_RATE_6M) // CCK rate Hal_MPT_CCKTxPowerAdjustbyIndex(pAdapter, TxPowerLevel[rfPath]%2 == 0); Hal_SetOFDMTxPower(pAdapter, TxPowerLevel); break; default: break; } } void Hal_SetTxPower(PADAPTER pAdapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u8 TxPower = pAdapter->mppriv.txpoweridx; u8 TxPowerLevel[MAX_RF_PATH_NUMS]; u8 rf, rfPath; for (rf = 0; rf < MAX_RF_PATH_NUMS; rf++) { TxPowerLevel[rf] = TxPower; } switch (pAdapter->mppriv.antenna_tx) { case ANTENNA_A: default: rfPath = RF_PATH_A; break; case ANTENNA_B: rfPath = RF_PATH_B; break; case ANTENNA_C: rfPath = RF_PATH_C; break; } switch (pHalData->rf_chip) { // 2008/09/12 MH Test only !! We enable the TX power tracking for MP!!!!! // We should call normal driver API later!! case RF_8225: case RF_8256: case RF_6052: Hal_SetCCKTxPower(pAdapter, TxPowerLevel); if (pAdapter->mppriv.rateidx < MPT_RATE_6M) // CCK rate Hal_MPT_CCKTxPowerAdjustbyIndex(pAdapter, TxPowerLevel[rfPath]%2 == 0); Hal_SetOFDMTxPower(pAdapter, TxPowerLevel); break; default: break; } // SetCCKTxPower(pAdapter, TxPower); // SetOFDMTxPower(pAdapter, TxPower); } void Hal_SetTxAGCOffset(PADAPTER pAdapter, u32 ulTxAGCOffset) { u32 TxAGCOffset_B, TxAGCOffset_C, TxAGCOffset_D,tmpAGC; TxAGCOffset_B = (ulTxAGCOffset&0x000000ff); TxAGCOffset_C = ((ulTxAGCOffset&0x0000ff00)>>8); TxAGCOffset_D = ((ulTxAGCOffset&0x00ff0000)>>16); tmpAGC = (TxAGCOffset_D<<8 | TxAGCOffset_C<<4 | TxAGCOffset_B); write_bbreg(pAdapter, rFPGA0_TxGainStage, (bXBTxAGC|bXCTxAGC|bXDTxAGC), tmpAGC); } void Hal_SetDataRate(PADAPTER pAdapter) { Hal_mpt_SwitchRfSetting(pAdapter); } void Hal_SetAntenna(PADAPTER pAdapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); R_ANTENNA_SELECT_OFDM *p_ofdm_tx; /* OFDM Tx register */ R_ANTENNA_SELECT_CCK *p_cck_txrx; u8 r_rx_antenna_ofdm = 0, r_ant_select_cck_val = 0; u8 chgTx = 0, chgRx = 0; u32 r_ant_sel_cck_val = 0, r_ant_select_ofdm_val = 0, r_ofdm_tx_en_val = 0; p_ofdm_tx = (R_ANTENNA_SELECT_OFDM *)&r_ant_select_ofdm_val; p_cck_txrx = (R_ANTENNA_SELECT_CCK *)&r_ant_select_cck_val; p_ofdm_tx->r_ant_ht1 = 0x1; p_ofdm_tx->r_ant_ht2 = 0x2; // Second TX RF path is A p_ofdm_tx->r_ant_non_ht = 0x3; // 0x1+0x2=0x3 switch (pAdapter->mppriv.antenna_tx) { case ANTENNA_A: p_ofdm_tx->r_tx_antenna = 0x1; r_ofdm_tx_en_val = 0x1; p_ofdm_tx->r_ant_l = 0x1; p_ofdm_tx->r_ant_ht_s1 = 0x1; p_ofdm_tx->r_ant_non_ht_s1 = 0x1; p_cck_txrx->r_ccktx_enable = 0x8; chgTx = 1; // From SD3 Willis suggestion !!! Set RF A=TX and B as standby // if (IS_HARDWARE_TYPE_8192S(pAdapter)) { write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 2); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 1); r_ofdm_tx_en_val = 0x3; // Power save //cosa r_ant_select_ofdm_val = 0x11111111; // We need to close RFB by SW control if (pHalData->rf_type == RF_2T2R) { PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT10, 0); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT26, 1); PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT10, 0); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT1, 1); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT17, 0); } } break; case ANTENNA_B: p_ofdm_tx->r_tx_antenna = 0x2; r_ofdm_tx_en_val = 0x2; p_ofdm_tx->r_ant_l = 0x2; p_ofdm_tx->r_ant_ht_s1 = 0x2; p_ofdm_tx->r_ant_non_ht_s1 = 0x2; p_cck_txrx->r_ccktx_enable = 0x4; chgTx = 1; // From SD3 Willis suggestion !!! Set RF A as standby //if (IS_HARDWARE_TYPE_8192S(pAdapter)) { PHY_SetBBReg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 1); PHY_SetBBReg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 2); // r_ofdm_tx_en_val = 0x3; // Power save //cosa r_ant_select_ofdm_val = 0x22222222; // 2008/10/31 MH From SD3 Willi's suggestion. We must read RF 1T table. // 2009/01/08 MH From Sd3 Willis. We need to close RFA by SW control if (pHalData->rf_type == RF_2T2R || pHalData->rf_type == RF_1T2R) { PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT10, 1); PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, BIT10, 0); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT26, 0); // PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT10, 0); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT1, 0); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT17, 1); } } break; case ANTENNA_AB: // For 8192S p_ofdm_tx->r_tx_antenna = 0x3; r_ofdm_tx_en_val = 0x3; p_ofdm_tx->r_ant_l = 0x3; p_ofdm_tx->r_ant_ht_s1 = 0x3; p_ofdm_tx->r_ant_non_ht_s1 = 0x3; p_cck_txrx->r_ccktx_enable = 0xC; chgTx = 1; // From SD3 Willis suggestion !!! Set RF B as standby //if (IS_HARDWARE_TYPE_8192S(pAdapter)) { PHY_SetBBReg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 2); PHY_SetBBReg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 2); // Disable Power save //cosa r_ant_select_ofdm_val = 0x3321333; // 2009/01/08 MH From Sd3 Willis. We need to enable RFA/B by SW control if (pHalData->rf_type == RF_2T2R) { PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT10, 0); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT26, 0); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT1, 1); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT17, 1); } } break; default: break; } // // r_rx_antenna_ofdm, bit0=A, bit1=B, bit2=C, bit3=D // r_cckrx_enable : CCK default, 0=A, 1=B, 2=C, 3=D // r_cckrx_enable_2 : CCK option, 0=A, 1=B, 2=C, 3=D // switch (pAdapter->mppriv.antenna_rx) { case ANTENNA_A: r_rx_antenna_ofdm = 0x1; // A p_cck_txrx->r_cckrx_enable = 0x0; // default: A p_cck_txrx->r_cckrx_enable_2 = 0x0; // option: A chgRx = 1; break; case ANTENNA_B: r_rx_antenna_ofdm = 0x2; // B p_cck_txrx->r_cckrx_enable = 0x1; // default: B p_cck_txrx->r_cckrx_enable_2 = 0x1; // option: B chgRx = 1; break; case ANTENNA_AB: r_rx_antenna_ofdm = 0x3; // AB p_cck_txrx->r_cckrx_enable = 0x0; // default:A p_cck_txrx->r_cckrx_enable_2 = 0x1; // option:B chgRx = 1; break; default: break; } if (chgTx && chgRx) { switch (pHalData->rf_chip) { case RF_8225: case RF_8256: case RF_6052: //r_ant_sel_cck_val = r_ant_select_cck_val; PHY_SetBBReg(pAdapter, rFPGA1_TxInfo, 0x7fffffff, r_ant_select_ofdm_val); //OFDM Tx PHY_SetBBReg(pAdapter, rFPGA0_TxInfo, 0x0000000f, r_ofdm_tx_en_val); //OFDM Tx PHY_SetBBReg(pAdapter, rOFDM0_TRxPathEnable, 0x0000000f, r_rx_antenna_ofdm); //OFDM Rx PHY_SetBBReg(pAdapter, rOFDM1_TRxPathEnable, 0x0000000f, r_rx_antenna_ofdm); //OFDM Rx PHY_SetBBReg(pAdapter, rCCK0_AFESetting, bMaskByte3, r_ant_select_cck_val);//r_ant_sel_cck_val); //CCK TxRx break; default: break; } } RT_TRACE(_module_mp_, _drv_notice_, ("-SwitchAntenna: finished\n")); } s32 Hal_SetThermalMeter(PADAPTER pAdapter, u8 target_ther) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); if (!netif_running(pAdapter->pnetdev)) { RT_TRACE(_module_mp_, _drv_warning_, ("SetThermalMeter! Fail: interface not opened!\n")); return _FAIL; } if (check_fwstate(&pAdapter->mlmepriv, WIFI_MP_STATE) == _FALSE) { RT_TRACE(_module_mp_, _drv_warning_, ("SetThermalMeter: Fail! not in MP mode!\n")); return _FAIL; } target_ther &= 0xff; if (target_ther < 0x07) target_ther = 0x07; else if (target_ther > 0x1d) target_ther = 0x1d; pHalData->EEPROMThermalMeter = target_ther; return _SUCCESS; } void Hal_TriggerRFThermalMeter(PADAPTER pAdapter) { _write_rfreg( pAdapter, RF_PATH_A , RF_T_METER_88E , BIT17 |BIT16 , 0x03 ); // RT_TRACE(_module_mp_,_drv_alert_, ("TriggerRFThermalMeter() finished.\n" )); } u8 Hal_ReadRFThermalMeter(PADAPTER pAdapter) { u32 ThermalValue = 0; //ThermalValue = _read_rfreg(pAdapter, RF_PATH_A, RF_T_METER, 0x1F); // 0x24: RF Reg[4:0] ThermalValue = _read_rfreg(pAdapter, RF_PATH_A, RF_T_METER_88E, 0xfc00); // RT_TRACE(_module_mp_, _drv_alert_, ("ThermalValue = 0x%x\n", ThermalValue)); return (u8)ThermalValue; } void Hal_GetThermalMeter(PADAPTER pAdapter, u8 *value) { Hal_TriggerRFThermalMeter(pAdapter); rtw_msleep_os(1000); *value = Hal_ReadRFThermalMeter(pAdapter); } void Hal_SetSingleCarrierTx(PADAPTER pAdapter, u8 bStart) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); pAdapter->mppriv.MptCtx.bSingleCarrier = bStart; if (bStart)// Start Single Carrier. { RT_TRACE(_module_mp_,_drv_alert_, ("SetSingleCarrierTx: test start\n")); // 1. if OFDM block on? if (!read_bbreg(pAdapter, rFPGA0_RFMOD, bOFDMEn)) write_bbreg(pAdapter, rFPGA0_RFMOD, bOFDMEn, bEnable);//set OFDM block on { // 2. set CCK test mode off, set to CCK normal mode write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, bDisable); // 3. turn on scramble setting write_bbreg(pAdapter, rCCK0_System, bCCKScramble, bEnable); } // 4. Turn On Single Carrier Tx and turn off the other test modes. write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable); write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bEnable); write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable); #ifdef CONFIG_RTL8192C // 5. Disable TX power saving at STF & LLTF write_bbreg(pAdapter, rOFDM1_LSTF, BIT22, 1); #endif //for dynamic set Power index. write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500); } else// Stop Single Carrier. { RT_TRACE(_module_mp_,_drv_alert_, ("SetSingleCarrierTx: test stop\n")); // Turn off all test modes. write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable); write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable); write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable); #ifdef CONFIG_RTL8192C // Cancel disable TX power saving at STF&LLTF write_bbreg(pAdapter, rOFDM1_LSTF, BIT22, 0); #endif //Delay 10 ms //delay_ms(10); rtw_msleep_os(10); //BB Reset write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x0); write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x1); //Stop for dynamic set Power index. write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100); } } void Hal_SetSingleToneTx(PADAPTER pAdapter, u8 bStart) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); BOOLEAN is92C = IS_92C_SERIAL(pHalData->VersionID); u8 rfPath; u32 reg58 = 0x0; switch (pAdapter->mppriv.antenna_tx) { case ANTENNA_A: default: rfPath = RF_PATH_A; break; case ANTENNA_B: rfPath = RF_PATH_B; break; case ANTENNA_C: rfPath = RF_PATH_C; break; } pAdapter->mppriv.MptCtx.bSingleTone = bStart; if (bStart)// Start Single Tone. { RT_TRACE(_module_mp_,_drv_alert_, ("SetSingleToneTx: test start\n")); { // <20120326, Kordan> To amplify the power of tone for Xtal calibration. (asked by Edlu) if (IS_HARDWARE_TYPE_8188E(pAdapter)) { reg58 = PHY_QueryRFReg(pAdapter, RF_PATH_A, LNA_Low_Gain_3, bRFRegOffsetMask); reg58 &= 0xFFFFFFF0; reg58 += 2; PHY_SetRFReg(pAdapter, RF_PATH_A, LNA_Low_Gain_3, bRFRegOffsetMask, reg58); } PHY_SetBBReg(pAdapter, rFPGA0_RFMOD, bCCKEn, 0x0); PHY_SetBBReg(pAdapter, rFPGA0_RFMOD, bOFDMEn, 0x0); } if (is92C) { _write_rfreg(pAdapter, RF_PATH_A, 0x21, BIT19, 0x01); rtw_usleep_os(100); if (rfPath == RF_PATH_A) write_rfreg(pAdapter, RF_PATH_B, 0x00, 0x10000); // PAD all on. else if (rfPath == RF_PATH_B) write_rfreg(pAdapter, RF_PATH_A, 0x00, 0x10000); // PAD all on. write_rfreg(pAdapter, rfPath, 0x00, 0x2001f); // PAD all on. rtw_usleep_os(100); } else { write_rfreg(pAdapter, rfPath, 0x21, 0xd4000); rtw_usleep_os(100); write_rfreg(pAdapter, rfPath, 0x00, 0x2001f); // PAD all on. rtw_usleep_os(100); } //for dynamic set Power index. write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500); } else// Stop Single Tone. { RT_TRACE(_module_mp_,_drv_alert_, ("SetSingleToneTx: test stop\n")); { // <20120326, Kordan> To amplify the power of tone for Xtal calibration. (asked by Edlu) // <20120326, Kordan> Only in single tone mode. (asked by Edlu) if (IS_HARDWARE_TYPE_8188E(pAdapter)) { reg58 = PHY_QueryRFReg(pAdapter, RF_PATH_A, LNA_Low_Gain_3, bRFRegOffsetMask); reg58 &= 0xFFFFFFF0; PHY_SetRFReg(pAdapter, RF_PATH_A, LNA_Low_Gain_3, bRFRegOffsetMask, reg58); } write_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn, 0x1); write_bbreg(pAdapter, rFPGA0_RFMOD, bOFDMEn, 0x1); } if (is92C) { _write_rfreg(pAdapter, RF_PATH_A, 0x21, BIT19, 0x00); rtw_usleep_os(100); write_rfreg(pAdapter, RF_PATH_A, 0x00, 0x32d75); // PAD all on. write_rfreg(pAdapter, RF_PATH_B, 0x00, 0x32d75); // PAD all on. rtw_usleep_os(100); } else { write_rfreg(pAdapter, rfPath, 0x21, 0x54000); rtw_usleep_os(100); write_rfreg(pAdapter, rfPath, 0x00, 0x30000); // PAD all on. rtw_usleep_os(100); } //Stop for dynamic set Power index. write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100); } } void Hal_SetCarrierSuppressionTx(PADAPTER pAdapter, u8 bStart) { pAdapter->mppriv.MptCtx.bCarrierSuppression = bStart; if (bStart) // Start Carrier Suppression. { RT_TRACE(_module_mp_,_drv_alert_, ("SetCarrierSuppressionTx: test start\n")); //if (pMgntInfo->dot11CurrentWirelessMode == WIRELESS_MODE_B) if (pAdapter->mppriv.rateidx <= MPT_RATE_11M) { // 1. if CCK block on? if (!read_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn)) write_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn, bEnable);//set CCK block on //Turn Off All Test Mode write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable); write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable); write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable); write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, 0x2); //transmit mode write_bbreg(pAdapter, rCCK0_System, bCCKScramble, 0x0); //turn off scramble setting //Set CCK Tx Test Rate //PHY_SetBBReg(pAdapter, rCCK0_System, bCCKTxRate, pMgntInfo->ForcedDataRate); write_bbreg(pAdapter, rCCK0_System, bCCKTxRate, 0x0); //Set FTxRate to 1Mbps } //for dynamic set Power index. write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500); } else// Stop Carrier Suppression. { RT_TRACE(_module_mp_,_drv_alert_, ("SetCarrierSuppressionTx: test stop\n")); //if (pMgntInfo->dot11CurrentWirelessMode == WIRELESS_MODE_B) if (pAdapter->mppriv.rateidx <= MPT_RATE_11M ) { write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, 0x0); //normal mode write_bbreg(pAdapter, rCCK0_System, bCCKScramble, 0x1); //turn on scramble setting //BB Reset write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x0); write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x1); } //Stop for dynamic set Power index. write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100); } //DbgPrint("\n MPT_ProSetCarrierSupp() is finished.\n"); } void Hal_SetCCKContinuousTx(PADAPTER pAdapter, u8 bStart) { u32 cckrate; if (bStart) { RT_TRACE(_module_mp_, _drv_alert_, ("SetCCKContinuousTx: test start\n")); // 1. if CCK block on? if (!read_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn)) write_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn, bEnable);//set CCK block on //Turn Off All Test Mode write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable); write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable); write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable); //Set CCK Tx Test Rate cckrate = pAdapter->mppriv.rateidx; write_bbreg(pAdapter, rCCK0_System, bCCKTxRate, cckrate); write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, 0x2); //transmit mode write_bbreg(pAdapter, rCCK0_System, bCCKScramble, bEnable); //turn on scramble setting #ifdef CONFIG_RTL8192C // Patch for CCK 11M waveform if (cckrate == MPT_RATE_1M) write_bbreg(pAdapter, 0xA71, BIT(6), bDisable); else write_bbreg(pAdapter, 0xA71, BIT(6), bEnable); #endif //for dynamic set Power index. write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500); } else { RT_TRACE(_module_mp_, _drv_info_, ("SetCCKContinuousTx: test stop\n")); write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, 0x0); //normal mode write_bbreg(pAdapter, rCCK0_System, bCCKScramble, bEnable); //turn on scramble setting //BB Reset write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x0); write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x1); //Stop for dynamic set Power index. write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100); } pAdapter->mppriv.MptCtx.bCckContTx = bStart; pAdapter->mppriv.MptCtx.bOfdmContTx = _FALSE; }/* mpt_StartCckContTx */ void Hal_SetOFDMContinuousTx(PADAPTER pAdapter, u8 bStart) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); if (bStart) { RT_TRACE(_module_mp_, _drv_info_, ("SetOFDMContinuousTx: test start\n")); // 1. if OFDM block on? if (!read_bbreg(pAdapter, rFPGA0_RFMOD, bOFDMEn)) write_bbreg(pAdapter, rFPGA0_RFMOD, bOFDMEn, bEnable);//set OFDM block on { // 2. set CCK test mode off, set to CCK normal mode write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, bDisable); // 3. turn on scramble setting write_bbreg(pAdapter, rCCK0_System, bCCKScramble, bEnable); } // 4. Turn On Continue Tx and turn off the other test modes. write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bEnable); write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable); write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable); //for dynamic set Power index. write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500); } else { RT_TRACE(_module_mp_,_drv_info_, ("SetOFDMContinuousTx: test stop\n")); write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable); write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable); write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable); //Delay 10 ms rtw_msleep_os(10); //BB Reset write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x0); write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x1); //Stop for dynamic set Power index. write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100); } pAdapter->mppriv.MptCtx.bCckContTx = _FALSE; pAdapter->mppriv.MptCtx.bOfdmContTx = bStart; }/* mpt_StartOfdmContTx */ void Hal_SetContinuousTx(PADAPTER pAdapter, u8 bStart) { RT_TRACE(_module_mp_, _drv_info_, ("SetContinuousTx: rate:%d\n", pAdapter->mppriv.rateidx)); pAdapter->mppriv.MptCtx.bStartContTx = bStart; if (pAdapter->mppriv.rateidx <= MPT_RATE_11M) { Hal_SetCCKContinuousTx(pAdapter, bStart); } else if ((pAdapter->mppriv.rateidx >= MPT_RATE_6M) && (pAdapter->mppriv.rateidx <= MPT_RATE_MCS15)) { Hal_SetOFDMContinuousTx(pAdapter, bStart); } } #endif // CONFIG_MP_INCLUDE