// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2007 - 2016 Realtek Corporation. All rights reserved. */ /* The purpose of rtw_io.c a. provides the API b. provides the protocol engine c. provides the software interface between caller and the hardware interface Compiler Flag Option: 2. CONFIG_USB_HCI: a. USE_ASYNC_IRP: Both sync/async operations are provided. Only sync read/rtw_write_mem operations are provided. jackson@realtek.com.tw */ #define _RTW_IO_C_ #include #include #define rtw_le16_to_cpu(val) le16_to_cpu(val) #define rtw_le32_to_cpu(val) le32_to_cpu(val) #define rtw_cpu_to_le16(val) cpu_to_le16(val) #define rtw_cpu_to_le32(val) cpu_to_le32(val) u8 _rtw_read8(_adapter *adapter, u32 addr) { u8 r_val; /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u8(*_read8)(struct intf_hdl *pintfhdl, u32 addr); _read8 = pintfhdl->io_ops._read8; r_val = _read8(pintfhdl, addr); return r_val; } u16 _rtw_read16(_adapter *adapter, u32 addr) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u16(*_read16)(struct intf_hdl *pintfhdl, u32 addr); _read16 = pintfhdl->io_ops._read16; return _read16(pintfhdl, addr); } u32 _rtw_read32(_adapter *adapter, u32 addr) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u32(*_read32)(struct intf_hdl *pintfhdl, u32 addr); _read32 = pintfhdl->io_ops._read32; return _read32(pintfhdl, addr); } int _rtw_write8(_adapter *adapter, u32 addr, u8 val) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write8)(struct intf_hdl *pintfhdl, u32 addr, u8 val); int ret; _write8 = pintfhdl->io_ops._write8; ret = _write8(pintfhdl, addr, val); return RTW_STATUS_CODE(ret); } int _rtw_write16(_adapter *adapter, u32 addr, u16 val) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write16)(struct intf_hdl *pintfhdl, u32 addr, __le16 val); int ret; __le16 outval; _write16 = pintfhdl->io_ops._write16; outval = rtw_cpu_to_le16(val); ret = _write16(pintfhdl, addr, outval); return RTW_STATUS_CODE(ret); } int _rtw_write32(_adapter *adapter, u32 addr, u32 val) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write32)(struct intf_hdl *pintfhdl, u32 addr, __le32 val); int ret; __le32 outval; _write32 = pintfhdl->io_ops._write32; outval = rtw_cpu_to_le32(val); ret = _write32(pintfhdl, addr, outval); return RTW_STATUS_CODE(ret); } int _rtw_writeN(_adapter *adapter, u32 addr , u32 length , u8 *pdata) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = (struct intf_hdl *)(&(pio_priv->intf)); int (*_writeN)(struct intf_hdl *pintfhdl, u32 addr, u32 length, u8 *pdata); int ret; _writeN = pintfhdl->io_ops._writeN; ret = _writeN(pintfhdl, addr, length, pdata); return RTW_STATUS_CODE(ret); } int _rtw_write8_async(_adapter *adapter, u32 addr, u8 val) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write8_async)(struct intf_hdl *pintfhdl, u32 addr, u8 val); int ret; _write8_async = pintfhdl->io_ops._write8_async; ret = _write8_async(pintfhdl, addr, val); return RTW_STATUS_CODE(ret); } int _rtw_write16_async(_adapter *adapter, u32 addr, u16 val) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write16_async)(struct intf_hdl *pintfhdl, u32 addr, __le16 val); int ret; __le16 outval; _write16_async = pintfhdl->io_ops._write16_async; outval = rtw_cpu_to_le16(val); ret = _write16_async(pintfhdl, addr, outval); return RTW_STATUS_CODE(ret); } int _rtw_write32_async(_adapter *adapter, u32 addr, u32 val) { /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write32_async)(struct intf_hdl *pintfhdl, u32 addr, __le32 val); int ret; __le32 outval; _write32_async = pintfhdl->io_ops._write32_async; outval = rtw_cpu_to_le32(val); ret = _write32_async(pintfhdl, addr, outval); return RTW_STATUS_CODE(ret); } void _rtw_read_mem(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem) { void (*_read_mem)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem); /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); if (RTW_CANNOT_RUN(adapter)) { return; } _read_mem = pintfhdl->io_ops._read_mem; _read_mem(pintfhdl, addr, cnt, pmem); } void _rtw_write_mem(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem) { void (*_write_mem)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem); /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); _write_mem = pintfhdl->io_ops._write_mem; _write_mem(pintfhdl, addr, cnt, pmem); } void _rtw_read_port(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem) { u32(*_read_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem); /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); if (RTW_CANNOT_RUN(adapter)) { return; } _read_port = pintfhdl->io_ops._read_port; _read_port(pintfhdl, addr, cnt, pmem); } void _rtw_read_port_cancel(_adapter *adapter) { void (*_read_port_cancel)(struct intf_hdl *pintfhdl); struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); _read_port_cancel = pintfhdl->io_ops._read_port_cancel; RTW_DISABLE_FUNC(adapter, DF_RX_BIT); if (_read_port_cancel) _read_port_cancel(pintfhdl); } u32 _rtw_write_port(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem) { u32(*_write_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem); /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */ struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u32 ret = _SUCCESS; _write_port = pintfhdl->io_ops._write_port; ret = _write_port(pintfhdl, addr, cnt, pmem); return ret; } u32 _rtw_write_port_and_wait(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem, int timeout_ms) { int ret = _SUCCESS; struct xmit_buf *pxmitbuf = (struct xmit_buf *)pmem; struct submit_ctx sctx; rtw_sctx_init(&sctx, timeout_ms); pxmitbuf->sctx = &sctx; ret = _rtw_write_port(adapter, addr, cnt, pmem); if (ret == _SUCCESS) ret = rtw_sctx_wait(&sctx, __func__); return ret; } void _rtw_write_port_cancel(_adapter *adapter) { void (*_write_port_cancel)(struct intf_hdl *pintfhdl); struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); _write_port_cancel = pintfhdl->io_ops._write_port_cancel; RTW_DISABLE_FUNC(adapter, DF_TX_BIT); if (_write_port_cancel) _write_port_cancel(pintfhdl); } int rtw_init_io_priv(_adapter *padapter, void (*set_intf_ops)(_adapter *padapter, struct _io_ops *pops)) { struct io_priv *piopriv = &padapter->iopriv; struct intf_hdl *pintf = &piopriv->intf; if (set_intf_ops == NULL) return _FAIL; piopriv->padapter = padapter; pintf->padapter = padapter; pintf->pintf_dev = adapter_to_dvobj(padapter); set_intf_ops(padapter, &pintf->io_ops); return _SUCCESS; } /* * Increase and check if the continual_io_error of this @param dvobjprive is larger than MAX_CONTINUAL_IO_ERR * @return true: * @return false: */ int rtw_inc_and_chk_continual_io_error(struct dvobj_priv *dvobj) { int ret = false; int value; value = ATOMIC_INC_RETURN(&dvobj->continual_io_error); if (value > MAX_CONTINUAL_IO_ERR) { RTW_INFO("[dvobj:%p][ERROR] continual_io_error:%d > %d\n", dvobj, value, MAX_CONTINUAL_IO_ERR); ret = true; } else { /* RTW_INFO("[dvobj:%p] continual_io_error:%d\n", dvobj, value); */ } return ret; } /* * Set the continual_io_error of this @param dvobjprive to 0 */ void rtw_reset_continual_io_error(struct dvobj_priv *dvobj) { ATOMIC_SET(&dvobj->continual_io_error, 0); } #ifdef DBG_IO u32 read_sniff_ranges[][2] = { /* {0x520, 0x523}, */ }; u32 write_sniff_ranges[][2] = { /* {0x520, 0x523}, */ /* {0x4c, 0x4c}, */ }; int read_sniff_num = sizeof(read_sniff_ranges) / sizeof(u32) / 2; int write_sniff_num = sizeof(write_sniff_ranges) / sizeof(u32) / 2; bool match_read_sniff_ranges(u32 addr, u16 len) { int i; for (i = 0; i < read_sniff_num; i++) { if (addr + len > read_sniff_ranges[i][0] && addr <= read_sniff_ranges[i][1]) return true; } return false; } bool match_write_sniff_ranges(u32 addr, u16 len) { int i; for (i = 0; i < write_sniff_num; i++) { if (addr + len > write_sniff_ranges[i][0] && addr <= write_sniff_ranges[i][1]) return true; } return false; } struct rf_sniff_ent { u8 path; u16 reg; u32 mask; }; struct rf_sniff_ent rf_read_sniff_ranges[] = { /* example for all path addr 0x55 with all RF Reg mask */ /* {MAX_RF_PATH, 0x55, bRFRegOffsetMask}, */ }; struct rf_sniff_ent rf_write_sniff_ranges[] = { /* example for all path addr 0x55 with all RF Reg mask */ /* {MAX_RF_PATH, 0x55, bRFRegOffsetMask}, */ }; int rf_read_sniff_num = sizeof(rf_read_sniff_ranges) / sizeof(struct rf_sniff_ent); int rf_write_sniff_num = sizeof(rf_write_sniff_ranges) / sizeof(struct rf_sniff_ent); bool match_rf_read_sniff_ranges(u8 path, u32 addr, u32 mask) { int i; for (i = 0; i < rf_read_sniff_num; i++) { if (rf_read_sniff_ranges[i].path == MAX_RF_PATH || rf_read_sniff_ranges[i].path == path) if (addr == rf_read_sniff_ranges[i].reg && (mask & rf_read_sniff_ranges[i].mask)) return true; } return false; } bool match_rf_write_sniff_ranges(u8 path, u32 addr, u32 mask) { int i; for (i = 0; i < rf_write_sniff_num; i++) { if (rf_write_sniff_ranges[i].path == MAX_RF_PATH || rf_write_sniff_ranges[i].path == path) if (addr == rf_write_sniff_ranges[i].reg && (mask & rf_write_sniff_ranges[i].mask)) return true; } return false; } u8 dbg_rtw_read8(_adapter *adapter, u32 addr, const char *caller, const int line) { u8 val = _rtw_read8(adapter, addr); if (match_read_sniff_ranges(addr, 1)) RTW_INFO("DBG_IO %s:%d rtw_read8(0x%04x) return 0x%02x\n", caller, line, addr, val); return val; } u16 dbg_rtw_read16(_adapter *adapter, u32 addr, const char *caller, const int line) { u16 val = _rtw_read16(adapter, addr); if (match_read_sniff_ranges(addr, 2)) RTW_INFO("DBG_IO %s:%d rtw_read16(0x%04x) return 0x%04x\n", caller, line, addr, val); return val; } u32 dbg_rtw_read32(_adapter *adapter, u32 addr, const char *caller, const int line) { u32 val = _rtw_read32(adapter, addr); if (match_read_sniff_ranges(addr, 4)) RTW_INFO("DBG_IO %s:%d rtw_read32(0x%04x) return 0x%08x\n", caller, line, addr, val); return val; } int dbg_rtw_write8(_adapter *adapter, u32 addr, u8 val, const char *caller, const int line) { if (match_write_sniff_ranges(addr, 1)) RTW_INFO("DBG_IO %s:%d rtw_write8(0x%04x, 0x%02x)\n", caller, line, addr, val); return _rtw_write8(adapter, addr, val); } int dbg_rtw_write16(_adapter *adapter, u32 addr, u16 val, const char *caller, const int line) { if (match_write_sniff_ranges(addr, 2)) RTW_INFO("DBG_IO %s:%d rtw_write16(0x%04x, 0x%04x)\n", caller, line, addr, val); return _rtw_write16(adapter, addr, val); } int dbg_rtw_write32(_adapter *adapter, u32 addr, u32 val, const char *caller, const int line) { if (match_write_sniff_ranges(addr, 4)) RTW_INFO("DBG_IO %s:%d rtw_write32(0x%04x, 0x%08x)\n", caller, line, addr, val); return _rtw_write32(adapter, addr, val); } int dbg_rtw_writeN(_adapter *adapter, u32 addr , u32 length , u8 *data, const char *caller, const int line) { if (match_write_sniff_ranges(addr, length)) RTW_INFO("DBG_IO %s:%d rtw_writeN(0x%04x, %u)\n", caller, line, addr, length); return _rtw_writeN(adapter, addr, length, data); } #endif