// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2007 - 2016 Realtek Corporation. All rights reserved. */ #include #include /* set ODM_CMNINFO_IC_TYPE based on chip_type */ void rtw_odm_init_ic_type(_adapter *adapter) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); struct PHY_DM_STRUCT *odm = &hal_data->odmpriv; u32 ic_type = chip_type_to_odm_ic_type(rtw_get_chip_type(adapter)); rtw_warn_on(!ic_type); odm_cmn_info_init(odm, ODM_CMNINFO_IC_TYPE, ic_type); } inline void rtw_odm_set_force_igi_lb(_adapter *adapter, u8 lb) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); hal_data->u1ForcedIgiLb = lb; } inline u8 rtw_odm_get_force_igi_lb(_adapter *adapter) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); return hal_data->u1ForcedIgiLb; } static void rtw_odm_adaptivity_ver_msg(void *sel, _adapter *adapter) { RTW_PRINT_SEL(sel, "ADAPTIVITY_VERSION "ADAPTIVITY_VERSION"\n"); } #define RTW_ADAPTIVITY_EN_DISABLE 0 #define RTW_ADAPTIVITY_EN_ENABLE 1 static void rtw_odm_adaptivity_en_msg(void *sel, _adapter *adapter) { struct registry_priv *regsty = &adapter->registrypriv; struct mlme_priv *mlme = &adapter->mlmepriv; HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); struct PHY_DM_STRUCT *odm = &hal_data->odmpriv; RTW_PRINT_SEL(sel, "RTW_ADAPTIVITY_EN_"); if (regsty->adaptivity_en == RTW_ADAPTIVITY_EN_DISABLE) _RTW_PRINT_SEL(sel, "DISABLE\n"); else if (regsty->adaptivity_en == RTW_ADAPTIVITY_EN_ENABLE) _RTW_PRINT_SEL(sel, "ENABLE\n"); else _RTW_PRINT_SEL(sel, "INVALID\n"); } #define RTW_ADAPTIVITY_MODE_NORMAL 0 #define RTW_ADAPTIVITY_MODE_CARRIER_SENSE 1 static void rtw_odm_adaptivity_mode_msg(void *sel, _adapter *adapter) { struct registry_priv *regsty = &adapter->registrypriv; RTW_PRINT_SEL(sel, "RTW_ADAPTIVITY_MODE_"); if (regsty->adaptivity_mode == RTW_ADAPTIVITY_MODE_NORMAL) _RTW_PRINT_SEL(sel, "NORMAL\n"); else if (regsty->adaptivity_mode == RTW_ADAPTIVITY_MODE_CARRIER_SENSE) _RTW_PRINT_SEL(sel, "CARRIER_SENSE\n"); else _RTW_PRINT_SEL(sel, "INVALID\n"); } #define RTW_ADAPTIVITY_DML_DISABLE 0 #define RTW_ADAPTIVITY_DML_ENABLE 1 static void rtw_odm_adaptivity_dml_msg(void *sel, _adapter *adapter) { struct registry_priv *regsty = &adapter->registrypriv; RTW_PRINT_SEL(sel, "RTW_ADAPTIVITY_DML_"); if (regsty->adaptivity_dml == RTW_ADAPTIVITY_DML_DISABLE) _RTW_PRINT_SEL(sel, "DISABLE\n"); else if (regsty->adaptivity_dml == RTW_ADAPTIVITY_DML_ENABLE) _RTW_PRINT_SEL(sel, "ENABLE\n"); else _RTW_PRINT_SEL(sel, "INVALID\n"); } static void rtw_odm_adaptivity_dc_backoff_msg(void *sel, _adapter *adapter) { struct registry_priv *regsty = &adapter->registrypriv; RTW_PRINT_SEL(sel, "RTW_ADAPTIVITY_DC_BACKOFF:%u\n", regsty->adaptivity_dc_backoff); } void rtw_odm_adaptivity_config_msg(void *sel, _adapter *adapter) { rtw_odm_adaptivity_ver_msg(sel, adapter); rtw_odm_adaptivity_en_msg(sel, adapter); rtw_odm_adaptivity_mode_msg(sel, adapter); rtw_odm_adaptivity_dml_msg(sel, adapter); rtw_odm_adaptivity_dc_backoff_msg(sel, adapter); } bool rtw_odm_adaptivity_needed(_adapter *adapter) { struct registry_priv *regsty = &adapter->registrypriv; struct mlme_priv *mlme = &adapter->mlmepriv; bool ret = false; if (regsty->adaptivity_en == RTW_ADAPTIVITY_EN_ENABLE) ret = true; return ret; } void rtw_odm_adaptivity_parm_msg(void *sel, _adapter *adapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter); struct PHY_DM_STRUCT *odm = &pHalData->odmpriv; rtw_odm_adaptivity_config_msg(sel, adapter); RTW_PRINT_SEL(sel, "%10s %16s %16s %22s %12s\n" , "th_l2h_ini", "th_edcca_hl_diff", "th_l2h_ini_mode2", "th_edcca_hl_diff_mode2", "edcca_enable"); RTW_PRINT_SEL(sel, "0x%-8x %-16d 0x%-14x %-22d %-12d\n" , (u8)odm->th_l2h_ini , odm->th_edcca_hl_diff , (u8)odm->th_l2h_ini_mode2 , odm->th_edcca_hl_diff_mode2 , odm->edcca_enable ); RTW_PRINT_SEL(sel, "%15s %9s\n", "AdapEnableState", "Adap_Flag"); RTW_PRINT_SEL(sel, "%-15x %-9x\n" , odm->adaptivity_enable , odm->adaptivity_flag ); } void rtw_odm_adaptivity_parm_set(_adapter *adapter, s8 th_l2h_ini, s8 th_edcca_hl_diff, s8 th_l2h_ini_mode2, s8 th_edcca_hl_diff_mode2, u8 edcca_enable) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter); struct PHY_DM_STRUCT *odm = &pHalData->odmpriv; odm->th_l2h_ini = th_l2h_ini; odm->th_edcca_hl_diff = th_edcca_hl_diff; odm->th_l2h_ini_mode2 = th_l2h_ini_mode2; odm->th_edcca_hl_diff_mode2 = th_edcca_hl_diff_mode2; odm->edcca_enable = edcca_enable; } void rtw_odm_get_perpkt_rssi(void *sel, _adapter *adapter) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); struct PHY_DM_STRUCT *odm = &(hal_data->odmpriv); RTW_PRINT_SEL(sel, "rx_rate = %s, RSSI_A = %d(%%), RSSI_B = %d(%%)\n", HDATA_RATE(odm->rx_rate), odm->RSSI_A, odm->RSSI_B); } void rtw_odm_acquirespinlock(_adapter *adapter, enum rt_spinlock_type type) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(adapter); unsigned long irqL; switch (type) { case RT_IQK_SPINLOCK: _enter_critical_bh(&pHalData->IQKSpinLock, &irqL); default: break; } } void rtw_odm_releasespinlock(_adapter *adapter, enum rt_spinlock_type type) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(adapter); unsigned long irqL; switch (type) { case RT_IQK_SPINLOCK: _exit_critical_bh(&pHalData->IQKSpinLock, &irqL); default: break; } } inline u8 rtw_odm_get_dfs_domain(_adapter *adapter) { #ifdef CONFIG_DFS_MASTER HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); struct PHY_DM_STRUCT *pDM_Odm = &(hal_data->odmpriv); return pDM_Odm->dfs_region_domain; #else return PHYDM_DFS_DOMAIN_UNKNOWN; #endif } inline u8 rtw_odm_dfs_domain_unknown(_adapter *adapter) { #ifdef CONFIG_DFS_MASTER return rtw_odm_get_dfs_domain(adapter) == PHYDM_DFS_DOMAIN_UNKNOWN; #else return 1; #endif } #ifdef CONFIG_DFS_MASTER inline void rtw_odm_radar_detect_reset(_adapter *adapter) { phydm_radar_detect_reset(GET_ODM(adapter)); } inline void rtw_odm_radar_detect_disable(_adapter *adapter) { phydm_radar_detect_disable(GET_ODM(adapter)); } /* called after ch, bw is set */ inline void rtw_odm_radar_detect_enable(_adapter *adapter) { phydm_radar_detect_enable(GET_ODM(adapter)); } inline bool rtw_odm_radar_detect(_adapter *adapter) { return phydm_radar_detect(GET_ODM(adapter)); } #endif /* CONFIG_DFS_MASTER */ void rtw_odm_parse_rx_phy_status_chinfo(union recv_frame *rframe, u8 *phys) { #ifndef DBG_RX_PHYSTATUS_CHINFO #define DBG_RX_PHYSTATUS_CHINFO 0 #endif #if (ODM_PHY_STATUS_NEW_TYPE_SUPPORT == 1) _adapter *adapter = rframe->u.hdr.adapter; struct PHY_DM_STRUCT *phydm = GET_ODM(adapter); struct rx_pkt_attrib *attrib = &rframe->u.hdr.attrib; u8 *wlanhdr = get_recvframe_data(rframe); if (phydm->support_ic_type & ODM_IC_PHY_STATUE_NEW_TYPE) { /* * 8723D: * type_0(CCK) * l_rxsc * is filled with primary channel SC, not real rxsc. * 0:LSC, 1:USC * type_1(OFDM) * rf_mode * RF bandwidth when RX * l_rxsc(legacy), ht_rxsc * see below RXSC N-series * type_2(Not used) */ /* * 8821C, 8822B: * type_0(CCK) * l_rxsc * is filled with primary channel SC, not real rxsc. * 0:LSC, 1:USC * type_1(OFDM) * rf_mode * RF bandwidth when RX * l_rxsc(legacy), ht_rxsc * see below RXSC AC-series * type_2(Not used) */ if ((*phys & 0xf) == 0) { struct _phy_status_rpt_jaguar2_type0 *phys_t0 = (struct _phy_status_rpt_jaguar2_type0 *)phys; if (DBG_RX_PHYSTATUS_CHINFO) { RTW_PRINT("phys_t%u ta="MAC_FMT" %s, %s(band:%u, ch:%u, l_rxsc:%u)\n" , *phys & 0xf , MAC_ARG(get_ta(wlanhdr)) , is_broadcast_mac_addr(wifi_get_ra(wlanhdr)) ? "BC" : is_multicast_mac_addr(wifi_get_ra(wlanhdr)) ? "MC" : "UC" , HDATA_RATE(attrib->data_rate) , phys_t0->band, phys_t0->channel, phys_t0->rxsc ); } } else if ((*phys & 0xf) == 1) { struct _phy_status_rpt_jaguar2_type1 *phys_t1 = (struct _phy_status_rpt_jaguar2_type1 *)phys; u8 rxsc = (attrib->data_rate > DESC_RATE11M && attrib->data_rate < DESC_RATEMCS0) ? phys_t1->l_rxsc : phys_t1->ht_rxsc; u8 pkt_cch = 0; u8 pkt_bw = CHANNEL_WIDTH_20; #if ODM_IC_11N_SERIES_SUPPORT if (phydm->support_ic_type & ODM_IC_11N_SERIES) { /* RXSC N-series */ #define RXSC_DUP 0 #define RXSC_LSC 1 #define RXSC_USC 2 #define RXSC_40M 3 static const s8 cch_offset_by_rxsc[4] = {0, -2, 2, 0}; if (phys_t1->rf_mode == 0) { pkt_cch = phys_t1->channel; pkt_bw = CHANNEL_WIDTH_20; } else if (phys_t1->rf_mode == 1) { if (rxsc == RXSC_LSC || rxsc == RXSC_USC) { pkt_cch = phys_t1->channel + cch_offset_by_rxsc[rxsc]; pkt_bw = CHANNEL_WIDTH_20; } else if (rxsc == RXSC_40M) { pkt_cch = phys_t1->channel; pkt_bw = CHANNEL_WIDTH_40; } } else rtw_warn_on(1); goto type1_end; } #endif /* ODM_IC_11N_SERIES_SUPPORT */ #if ODM_IC_11AC_SERIES_SUPPORT if (phydm->support_ic_type & ODM_IC_11AC_SERIES) { /* RXSC AC-series */ #define RXSC_DUP 0 /* 0: RX from all SC of current rf_mode */ #define RXSC_LL20M_OF_160M 8 /* 1~8: RX from 20MHz SC */ #define RXSC_L20M_OF_160M 6 #define RXSC_L20M_OF_80M 4 #define RXSC_L20M_OF_40M 2 #define RXSC_U20M_OF_40M 1 #define RXSC_U20M_OF_80M 3 #define RXSC_U20M_OF_160M 5 #define RXSC_UU20M_OF_160M 7 #define RXSC_L40M_OF_160M 12 /* 9~12: RX from 40MHz SC */ #define RXSC_L40M_OF_80M 10 #define RXSC_U40M_OF_80M 9 #define RXSC_U40M_OF_160M 11 #define RXSC_L80M_OF_160M 14 /* 13~14: RX from 80MHz SC */ #define RXSC_U80M_OF_160M 13 static const s8 cch_offset_by_rxsc[15] = {0, 2, -2, 6, -6, 10, -10, 14, -14, 4, -4, 12, -12, 8, -8}; if (phys_t1->rf_mode > 3) { /* invalid rf_mode */ rtw_warn_on(1); goto type1_end; } if (phys_t1->rf_mode == 0) { /* RF 20MHz */ pkt_cch = phys_t1->channel; pkt_bw = CHANNEL_WIDTH_20; goto type1_end; } if (rxsc == 0) { /* RF and RX with same BW */ if (attrib->data_rate >= DESC_RATEMCS0) { pkt_cch = phys_t1->channel; pkt_bw = phys_t1->rf_mode; } goto type1_end; } if ((phys_t1->rf_mode == 1 && rxsc >= 1 && rxsc <= 2) /* RF 40MHz, RX 20MHz */ || (phys_t1->rf_mode == 2 && rxsc >= 1 && rxsc <= 4) /* RF 80MHz, RX 20MHz */ || (phys_t1->rf_mode == 3 && rxsc >= 1 && rxsc <= 8) /* RF 160MHz, RX 20MHz */ ) { pkt_cch = phys_t1->channel + cch_offset_by_rxsc[rxsc]; pkt_bw = CHANNEL_WIDTH_20; } else if ((phys_t1->rf_mode == 2 && rxsc >= 9 && rxsc <= 10) /* RF 80MHz, RX 40MHz */ || (phys_t1->rf_mode == 3 && rxsc >= 9 && rxsc <= 12) /* RF 160MHz, RX 40MHz */ ) { if (attrib->data_rate >= DESC_RATEMCS0) { pkt_cch = phys_t1->channel + cch_offset_by_rxsc[rxsc]; pkt_bw = CHANNEL_WIDTH_40; } } else if ((phys_t1->rf_mode == 3 && rxsc >= 13 && rxsc <= 14) /* RF 160MHz, RX 80MHz */ ) { if (attrib->data_rate >= DESC_RATEMCS0) { pkt_cch = phys_t1->channel + cch_offset_by_rxsc[rxsc]; pkt_bw = CHANNEL_WIDTH_80; } } else rtw_warn_on(1); } #endif /* ODM_IC_11AC_SERIES_SUPPORT */ type1_end: if (DBG_RX_PHYSTATUS_CHINFO) { RTW_PRINT("phys_t%u ta="MAC_FMT" %s, %s(band:%u, ch:%u, rf_mode:%u, l_rxsc:%u, ht_rxsc:%u) => %u,%u\n" , *phys & 0xf , MAC_ARG(get_ta(wlanhdr)) , is_broadcast_mac_addr(wifi_get_ra(wlanhdr)) ? "BC" : is_multicast_mac_addr(wifi_get_ra(wlanhdr)) ? "MC" : "UC" , HDATA_RATE(attrib->data_rate) , phys_t1->band, phys_t1->channel, phys_t1->rf_mode, phys_t1->l_rxsc, phys_t1->ht_rxsc , pkt_cch, pkt_bw ); } /* for now, only return cneter channel of 20MHz packet */ if (pkt_cch && pkt_bw == CHANNEL_WIDTH_20) attrib->ch = pkt_cch; } else { struct _phy_status_rpt_jaguar2_type2 *phys_t2 = (struct _phy_status_rpt_jaguar2_type2 *)phys; if (DBG_RX_PHYSTATUS_CHINFO) { RTW_PRINT("phys_t%u ta="MAC_FMT" %s, %s(band:%u, ch:%u, l_rxsc:%u, ht_rxsc:%u)\n" , *phys & 0xf , MAC_ARG(get_ta(wlanhdr)) , is_broadcast_mac_addr(wifi_get_ra(wlanhdr)) ? "BC" : is_multicast_mac_addr(wifi_get_ra(wlanhdr)) ? "MC" : "UC" , HDATA_RATE(attrib->data_rate) , phys_t2->band, phys_t2->channel, phys_t2->l_rxsc, phys_t2->ht_rxsc ); } } } #endif /* (ODM_PHY_STATUS_NEW_TYPE_SUPPORT == 1) */ }