/****************************************************************************** * * Copyright(c) 2007 - 2012 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _OSDEP_SERVICE_C_ #include #include #include #include #include #ifdef RTK_DMP_PLATFORM #if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,12)) #include #endif #endif #define RT_TAG '1178' /* * Translate the OS dependent @param error_code to OS independent RTW_STATUS_CODE * @return: one of RTW_STATUS_CODE */ inline int RTW_STATUS_CODE(int error_code){ if (error_code >=0) return _SUCCESS; switch (error_code) { //case -ETIMEDOUT: // return RTW_STATUS_TIMEDOUT; default: return _FAIL; } } u32 rtw_atoi(u8* s) { int num = 0, flag = 0; int i; for (i = 0; i <= strlen(s); i++) { if (s[i] >= '0' && s[i] <= '9') num = num * 10 + s[i] -'0'; else if (s[0] == '-' && i == 0) flag =1; else break; } if (flag == 1) num = num * -1; return(num); } inline u8 *_rtw_vmalloc(u32 sz) { u8 *pbuf; pbuf = vmalloc(sz); return pbuf; } inline u8* _rtw_zvmalloc(u32 sz) { u8 *pbuf; pbuf = _rtw_vmalloc(sz); if (pbuf != NULL) memset(pbuf, 0, sz); return pbuf; } inline void _rtw_vmfree(u8 *pbuf, u32 sz) { vfree(pbuf); } u8* _rtw_malloc(u32 sz) { u8 *pbuf=NULL; #ifdef RTK_DMP_PLATFORM if (sz > 0x4000) pbuf = (u8 *)dvr_malloc(sz); else #endif pbuf = kmalloc(sz,in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); return pbuf; } u8* _rtw_zmalloc(u32 sz) { u8 *pbuf = _rtw_malloc(sz); if (pbuf != NULL) memset(pbuf, 0, sz); return pbuf; } void _rtw_mfree(u8 *pbuf, u32 sz) { #ifdef RTK_DMP_PLATFORM if (sz > 0x4000) dvr_free(pbuf); else #endif kfree(pbuf); } void* rtw_malloc2d(int h, int w, int size) { int j; void **a = (void **) rtw_zmalloc( h*sizeof(void *) + h*w*size ); if (a == NULL) { pr_info("%s: alloc memory fail!\n", __func__); return NULL; } for ( j=0; j < h; j++ ) a[j] = ((char *)(a+h)) + j*w*size; return a; } void rtw_mfree2d(void *pbuf, int h, int w, int size) { rtw_mfree((u8 *)pbuf, h*sizeof(void*) + w*h*size); } void _rtw_memcpy(void* dst, void* src, u32 sz) { memcpy(dst, src, sz); } int _rtw_memcmp(void *dst, void *src, u32 sz) { //under Linux/GNU/GLibc, the return value of memcmp for two same mem. chunk is 0 if (!(memcmp(dst, src, sz))) return true; else return false; } void _rtw_memset(void *pbuf, int c, u32 sz) { memset(pbuf, c, sz); } void _rtw_init_listhead(_list *list) { INIT_LIST_HEAD(list); } /* For the following list_xxx operations, caller must guarantee the atomic context. Otherwise, there will be racing condition. */ u32 rtw_is_list_empty(_list *phead) { if (list_empty(phead)) return true; else return false; } void rtw_list_insert_head(_list *plist, _list *phead) { list_add(plist, phead); } void rtw_list_insert_tail(_list *plist, _list *phead) { list_add_tail(plist, phead); } /* Caller must check if the list is empty before calling rtw_list_delete */ void _rtw_init_sema(_sema *sema, int init_val) { sema_init(sema, init_val); } void _rtw_free_sema(_sema *sema) { } void _rtw_up_sema(_sema *sema) { up(sema); } u32 _rtw_down_sema(_sema *sema) { if (down_interruptible(sema)) return _FAIL; else return _SUCCESS; } void _rtw_mutex_init(_mutex *pmutex) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37)) mutex_init(pmutex); #else init_MUTEX(pmutex); #endif } void _rtw_mutex_free(_mutex *pmutex) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37)) mutex_destroy(pmutex); #endif } void _rtw_spinlock_init(_lock *plock) { spin_lock_init(plock); } void _rtw_spinlock_free(_lock *plock) { } void _rtw_spinlock(_lock *plock) { spin_lock(plock); } void _rtw_spinunlock(_lock *plock) { spin_unlock(plock); } void _rtw_spinlock_ex(_lock *plock) { spin_lock(plock); } void _rtw_spinunlock_ex(_lock *plock) { spin_unlock(plock); } void _rtw_init_queue(_queue *pqueue) { _rtw_init_listhead(&(pqueue->queue)); _rtw_spinlock_init(&(pqueue->lock)); } u32 _rtw_queue_empty(_queue *pqueue) { return rtw_is_list_empty(&(pqueue->queue)); } u32 rtw_end_of_queue_search(_list *head, _list *plist) { if (head == plist) return true; else return false; } u32 rtw_get_current_time(void) { return jiffies; } inline u32 rtw_systime_to_ms(u32 systime) { return systime * 1000 / HZ; } inline u32 rtw_ms_to_systime(u32 ms) { return ms * HZ / 1000; } // the input parameter start use the same unit as returned by rtw_get_current_time inline s32 rtw_get_passing_time_ms(u32 start) { return rtw_systime_to_ms(jiffies-start); } inline s32 rtw_get_time_interval_ms(u32 start, u32 end) { return rtw_systime_to_ms(end-start); } void rtw_sleep_schedulable(int ms) { u32 delta; delta = (ms * HZ)/1000;//(ms) if (delta == 0) { delta = 1;// 1 ms } set_current_state(TASK_INTERRUPTIBLE); if (schedule_timeout(delta) != 0) { return ; } } void rtw_msleep_os(int ms) { msleep((unsigned int)ms); } void rtw_usleep_os(int us) { if ( 1 < (us/1000) ) msleep(1); else msleep( (us/1000) + 1); } #ifdef DBG_DELAY_OS void _rtw_mdelay_os(int ms, const char *func, const int line) { DBG_88E("%s:%d %s(%d)\n", func, line, __func__, ms); mdelay((unsigned long)ms); } void _rtw_udelay_os(int us, const char *func, const int line) { DBG_88E("%s:%d %s(%d)\n", func, line, __func__, us); udelay((unsigned long)us); } #else void rtw_mdelay_os(int ms) { mdelay((unsigned long)ms); } void rtw_udelay_os(int us) { udelay((unsigned long)us); } #endif void rtw_yield_os() { yield(); } #define RTW_SUSPEND_LOCK_NAME "rtw_wifi" #ifdef CONFIG_WAKELOCK static struct wake_lock rtw_suspend_lock; #elif defined(CONFIG_ANDROID_POWER) static android_suspend_lock_t rtw_suspend_lock ={ .name = RTW_SUSPEND_LOCK_NAME }; #endif inline void rtw_suspend_lock_init() { #ifdef CONFIG_WAKELOCK wake_lock_init(&rtw_suspend_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_LOCK_NAME); #elif defined(CONFIG_ANDROID_POWER) android_init_suspend_lock(&rtw_suspend_lock); #endif } inline void rtw_suspend_lock_uninit() { #ifdef CONFIG_WAKELOCK wake_lock_destroy(&rtw_suspend_lock); #elif defined(CONFIG_ANDROID_POWER) android_uninit_suspend_lock(&rtw_suspend_lock); #endif } inline void rtw_lock_suspend() { #ifdef CONFIG_WAKELOCK wake_lock(&rtw_suspend_lock); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend(&rtw_suspend_lock); #endif #if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER) //DBG_88E("####%s: suspend_lock_count:%d####\n", __func__, rtw_suspend_lock.stat.count); #endif } inline void rtw_unlock_suspend() { #ifdef CONFIG_WAKELOCK wake_unlock(&rtw_suspend_lock); #elif defined(CONFIG_ANDROID_POWER) android_unlock_suspend(&rtw_suspend_lock); #endif } #ifdef CONFIG_WOWLAN inline void rtw_lock_suspend_timeout(long timeout) { #ifdef CONFIG_WAKELOCK wake_lock_timeout(&rtw_suspend_lock, timeout); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend_auto_expire(&rtw_suspend_lock, timeout); #endif } #endif //CONFIG_WOWLAN inline void ATOMIC_SET(ATOMIC_T *v, int i) { atomic_set(v,i); } inline int ATOMIC_READ(ATOMIC_T *v) { return atomic_read(v); } inline void ATOMIC_ADD(ATOMIC_T *v, int i) { atomic_add(i,v); } inline void ATOMIC_SUB(ATOMIC_T *v, int i) { atomic_sub(i,v); } inline void ATOMIC_INC(ATOMIC_T *v) { atomic_inc(v); } inline void ATOMIC_DEC(ATOMIC_T *v) { atomic_dec(v); } inline int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i) { return atomic_add_return(i,v); } inline int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i) { return atomic_sub_return(i,v); } inline int ATOMIC_INC_RETURN(ATOMIC_T *v) { return atomic_inc_return(v); } inline int ATOMIC_DEC_RETURN(ATOMIC_T *v) { return atomic_dec_return(v); } /* * Open a file with the specific @param path, @param flag, @param mode * @param fpp the pointer of struct file pointer to get struct file pointer while file opening is success * @param path the path of the file to open * @param flag file operation flags, please refer to linux document * @param mode please refer to linux document * @return Linux specific error code */ static int openFile(struct file **fpp, char *path, int flag, int mode) { struct file *fp; fp=filp_open(path, flag, mode); if (IS_ERR(fp)) { *fpp=NULL; return PTR_ERR(fp); } else { *fpp=fp; return 0; } } /* * Close the file with the specific @param fp * @param fp the pointer of struct file to close * @return always 0 */ static int closeFile(struct file *fp) { filp_close(fp,NULL); return 0; } static int readFile(struct file *fp,char *buf,int len) { int rlen=0, sum=0; if (!fp->f_op || !fp->f_op->read) return -EPERM; while (sumf_op->read(fp,buf+sum,len-sum, &fp->f_pos); if (rlen>0) sum+=rlen; else if (0 != rlen) return rlen; else break; } return sum; } static int writeFile(struct file *fp,char *buf,int len) { int wlen=0, sum=0; if (!fp->f_op || !fp->f_op->write) return -EPERM; while (sumf_op->write(fp,buf+sum,len-sum, &fp->f_pos); if (wlen>0) sum+=wlen; else if (0 != wlen) return wlen; else break; } return sum; } /* * Test if the specifi @param path is a file and readable * @param path the path of the file to test * @return Linux specific error code */ static int isFileReadable(char *path) { struct file *fp; int ret = 0; mm_segment_t oldfs; char buf; fp=filp_open(path, O_RDONLY, 0); if (IS_ERR(fp)) { ret = PTR_ERR(fp); } else { oldfs = get_fs(); set_fs(get_ds()); if (1!=readFile(fp, &buf, 1)) ret = PTR_ERR(fp); set_fs(oldfs); filp_close(fp,NULL); } return ret; } /* * Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most * @param path the path of the file to open and read * @param buf the starting address of the buffer to store file content * @param sz how many bytes to read at most * @return the byte we've read, or Linux specific error code */ static int retriveFromFile(char *path, u8* buf, u32 sz) { int ret =-1; mm_segment_t oldfs; struct file *fp; if (path && buf) { if ( 0 == (ret=openFile(&fp,path, O_RDONLY, 0)) ){ DBG_88E("%s openFile path:%s fp=%p\n",__func__, path ,fp); oldfs = get_fs(); set_fs(get_ds()); ret=readFile(fp, buf, sz); set_fs(oldfs); closeFile(fp); DBG_88E("%s readFile, ret:%d\n",__func__, ret); } else { DBG_88E("%s openFile path:%s Fail, ret:%d\n",__func__, path, ret); } } else { DBG_88E("%s NULL pointer\n",__func__); ret = -EINVAL; } return ret; } /* * Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file * @param path the path of the file to open and write * @param buf the starting address of the data to write into file * @param sz how many bytes to write at most * @return the byte we've written, or Linux specific error code */ static int storeToFile(char *path, u8* buf, u32 sz) { int ret =0; mm_segment_t oldfs; struct file *fp; if (path && buf) { if ( 0 == (ret=openFile(&fp, path, O_CREAT|O_WRONLY, 0666)) ) { DBG_88E("%s openFile path:%s fp=%p\n",__func__, path ,fp); oldfs = get_fs(); set_fs(get_ds()); ret=writeFile(fp, buf, sz); set_fs(oldfs); closeFile(fp); DBG_88E("%s writeFile, ret:%d\n",__func__, ret); } else { DBG_88E("%s openFile path:%s Fail, ret:%d\n",__func__, path, ret); } } else { DBG_88E("%s NULL pointer\n",__func__); ret = -EINVAL; } return ret; } /* * Test if the specifi @param path is a file and readable * @param path the path of the file to test * @return true or false */ int rtw_is_file_readable(char *path) { if (isFileReadable(path) == 0) return true; else return false; } /* * Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most * @param path the path of the file to open and read * @param buf the starting address of the buffer to store file content * @param sz how many bytes to read at most * @return the byte we've read */ int rtw_retrive_from_file(char *path, u8* buf, u32 sz) { int ret =retriveFromFile(path, buf, sz); return ret>=0?ret:0; } /* * Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file * @param path the path of the file to open and write * @param buf the starting address of the data to write into file * @param sz how many bytes to write at most * @return the byte we've written */ int rtw_store_to_file(char *path, u8* buf, u32 sz) { int ret =storeToFile(path, buf, sz); return ret>=0?ret:0; } struct net_device *rtw_alloc_etherdev_with_old_priv(int sizeof_priv, void *old_priv) { struct net_device *pnetdev; struct rtw_netdev_priv_indicator *pnpi; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35)) pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4); #else pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator)); #endif if (!pnetdev) goto RETURN; pnpi = netdev_priv(pnetdev); pnpi->priv=old_priv; pnpi->sizeof_priv=sizeof_priv; RETURN: return pnetdev; } struct net_device *rtw_alloc_etherdev(int sizeof_priv) { struct net_device *pnetdev; struct rtw_netdev_priv_indicator *pnpi; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35)) pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4); #else pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator)); #endif if (!pnetdev) goto RETURN; pnpi = netdev_priv(pnetdev); pnpi->priv = rtw_zvmalloc(sizeof_priv); if (!pnpi->priv) { free_netdev(pnetdev); pnetdev = NULL; goto RETURN; } pnpi->sizeof_priv=sizeof_priv; RETURN: return pnetdev; } void rtw_free_netdev(struct net_device * netdev) { struct rtw_netdev_priv_indicator *pnpi; if (!netdev) goto RETURN; pnpi = netdev_priv(netdev); if (!pnpi->priv) goto RETURN; rtw_vmfree(pnpi->priv, pnpi->sizeof_priv); free_netdev(netdev); RETURN: return; } /* * Jeff: this function should be called under ioctl (rtnl_lock is accquired) while * LINUX_VERSION_CODE < KERNEL_VERSION(2,6,26) */ int rtw_change_ifname(_adapter *padapter, const char *ifname) { struct net_device *pnetdev; struct net_device *cur_pnetdev = padapter->pnetdev; struct rereg_nd_name_data *rereg_priv; int ret; if (!padapter) goto error; rereg_priv = &padapter->rereg_nd_name_priv; //free the old_pnetdev if (rereg_priv->old_pnetdev) { free_netdev(rereg_priv->old_pnetdev); rereg_priv->old_pnetdev = NULL; } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)) if (!rtnl_is_locked()) unregister_netdev(cur_pnetdev); else #endif unregister_netdevice(cur_pnetdev); rtw_proc_remove_one(cur_pnetdev); rereg_priv->old_pnetdev=cur_pnetdev; pnetdev = rtw_init_netdev(padapter); if (!pnetdev) { ret = -1; goto error; } SET_NETDEV_DEV(pnetdev, dvobj_to_dev(adapter_to_dvobj(padapter))); rtw_init_netdev_name(pnetdev, ifname); _rtw_memcpy(pnetdev->dev_addr, padapter->eeprompriv.mac_addr, ETH_ALEN); #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)) if (!rtnl_is_locked()) ret = register_netdev(pnetdev); else #endif ret = register_netdevice(pnetdev); if ( ret != 0) { RT_TRACE(_module_hci_intfs_c_,_drv_err_,("register_netdev() failed\n")); goto error; } rtw_proc_init_one(pnetdev); return 0; error: return -1; } #ifdef CONFIG_PLATFORM_SPRD #ifdef do_div #undef do_div #endif #include #endif u64 rtw_modular64(u64 x, u64 y) { return do_div(x, y); } u64 rtw_division64(u64 x, u64 y) { do_div(x, y); return x; } void rtw_buf_free(u8 **buf, u32 *buf_len) { u32 ori_len; if (!buf || !buf_len) return; ori_len = *buf_len; if (*buf) { *buf_len = 0; _rtw_mfree(*buf, *buf_len); *buf = NULL; } } void rtw_buf_update(u8 **buf, u32 *buf_len, u8 *src, u32 src_len) { u32 ori_len = 0, dup_len = 0; u8 *ori = NULL; u8 *dup = NULL; if (!buf || !buf_len) return; if (!src || !src_len) goto keep_ori; /* duplicate src */ dup = rtw_malloc(src_len); if (dup) { dup_len = src_len; _rtw_memcpy(dup, src, dup_len); } keep_ori: ori = *buf; ori_len = *buf_len; /* replace buf with dup */ *buf_len = 0; *buf = dup; *buf_len = dup_len; /* free ori */ if (ori && ori_len > 0) _rtw_mfree(ori, ori_len); } /** * rtw_cbuf_full - test if cbuf is full * @cbuf: pointer of struct rtw_cbuf * * Returns: true if cbuf is full */ inline bool rtw_cbuf_full(struct rtw_cbuf *cbuf) { return (cbuf->write == cbuf->read-1)? true : false; } /** * rtw_cbuf_empty - test if cbuf is empty * @cbuf: pointer of struct rtw_cbuf * * Returns: true if cbuf is empty */ inline bool rtw_cbuf_empty(struct rtw_cbuf *cbuf) { return (cbuf->write == cbuf->read)? true : false; } /** * rtw_cbuf_push - push a pointer into cbuf * @cbuf: pointer of struct rtw_cbuf * @buf: pointer to push in * * Lock free operation, be careful of the use scheme * Returns: true push success */ bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf) { if (rtw_cbuf_full(cbuf)) return _FAIL; if (0) DBG_88E("%s on %u\n", __func__, cbuf->write); cbuf->bufs[cbuf->write] = buf; cbuf->write = (cbuf->write+1)%cbuf->size; return _SUCCESS; } /** * rtw_cbuf_pop - pop a pointer from cbuf * @cbuf: pointer of struct rtw_cbuf * * Lock free operation, be careful of the use scheme * Returns: pointer popped out */ void *rtw_cbuf_pop(struct rtw_cbuf *cbuf) { void *buf; if (rtw_cbuf_empty(cbuf)) return NULL; if (0) DBG_88E("%s on %u\n", __func__, cbuf->read); buf = cbuf->bufs[cbuf->read]; cbuf->read = (cbuf->read+1)%cbuf->size; return buf; } /** * rtw_cbuf_alloc - allocte a rtw_cbuf with given size and do initialization * @size: size of pointer * * Returns: pointer of srtuct rtw_cbuf, NULL for allocation failure */ struct rtw_cbuf *rtw_cbuf_alloc(u32 size) { struct rtw_cbuf *cbuf; cbuf = (struct rtw_cbuf *)rtw_malloc(sizeof(*cbuf) + sizeof(void*)*size); if (cbuf) { cbuf->write = cbuf->read = 0; cbuf->size = size; } return cbuf; } /** * rtw_cbuf_free - free the given rtw_cbuf * @cbuf: pointer of struct rtw_cbuf to free */ void rtw_cbuf_free(struct rtw_cbuf *cbuf) { rtw_mfree((u8*)cbuf, sizeof(*cbuf) + sizeof(void*)*cbuf->size); }