/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _OS_INTFS_C_ #include #include #include #include #include #include #include #include #include #include MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Realtek Wireless Lan Driver"); MODULE_AUTHOR("Realtek Semiconductor Corp."); MODULE_VERSION(DRIVERVERSION); /* module param defaults */ static int rtw_chip_version = 0x00; static int rtw_rfintfs = HWPI; static int rtw_lbkmode;/* RTL8712_AIR_TRX; */ static int rtw_network_mode = Ndis802_11IBSS;/* Ndis802_11Infrastructure; infra, ad-hoc, auto */ static int rtw_channel = 1;/* ad-hoc support requirement */ static int rtw_wireless_mode = WIRELESS_11BG_24N; static int rtw_vrtl_carrier_sense = AUTO_VCS; static int rtw_vcs_type = RTS_CTS;/* */ static int rtw_rts_thresh = 2347;/* */ static int rtw_frag_thresh = 2346;/* */ static int rtw_preamble = PREAMBLE_LONG;/* long, short, auto */ static int rtw_scan_mode = 1;/* active, passive */ static int rtw_adhoc_tx_pwr = 1; static int rtw_soft_ap; static int rtw_power_mgnt = 1; static int rtw_ips_mode = IPS_NORMAL; static int rtw_smart_ps = 2; module_param(rtw_ips_mode, int, 0644); MODULE_PARM_DESC(rtw_ips_mode, "The default IPS mode"); static int rtw_debug = 1; static int rtw_radio_enable = 1; static int rtw_long_retry_lmt = 7; static int rtw_short_retry_lmt = 7; static int rtw_busy_thresh = 40; static int rtw_ack_policy = NORMAL_ACK; static int rtw_mp_mode; static int rtw_software_encrypt; static int rtw_software_decrypt; static int rtw_acm_method;/* 0:By SW 1:By HW. */ static int rtw_wmm_enable = 1;/* default is set to enable the wmm. */ static int rtw_uapsd_enable; static int rtw_uapsd_max_sp = NO_LIMIT; static int rtw_uapsd_acbk_en; static int rtw_uapsd_acbe_en; static int rtw_uapsd_acvi_en; static int rtw_uapsd_acvo_en; int rtw_ht_enable = 1; int rtw_cbw40_enable = 3; /* 0 :diable, bit(0): enable 2.4g, bit(1): enable 5g */ int rtw_ampdu_enable = 1;/* for enable tx_ampdu */ static int rtw_rx_stbc = 1;/* 0: disable, bit(0):enable 2.4g, bit(1):enable 5g, default is set to enable 2.4GHZ for IOT issue with bufflao's AP at 5GHZ */ static int rtw_ampdu_amsdu;/* 0: disabled, 1:enabled, 2:auto */ static int rtw_lowrate_two_xmit = 1;/* Use 2 path Tx to transmit MCS0~7 and legacy mode */ static int rtw_rf_config = RF_819X_MAX_TYPE; /* auto */ static int rtw_low_power; static int rtw_wifi_spec; static int rtw_channel_plan = RT_CHANNEL_DOMAIN_MAX; #ifdef CONFIG_BT_COEXIST int rtw_btcoex_enable = 1; int rtw_bt_iso = 2;/* 0:Low, 1:High, 2:From Efuse */ int rtw_bt_sco = 3;/* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter, 4.Busy, 5.OtherBusy */ int rtw_bt_ampdu = 1 ;/* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */ #endif static int rtw_AcceptAddbaReq = true;/* 0:Reject AP's Add BA req, 1:Accept AP's Add BA req. */ static int rtw_antdiv_cfg = 2; /* 0:OFF , 1:ON, 2:decide by Efuse config */ static int rtw_antdiv_type; /* 0:decide by efuse 1: for 88EE, 1Tx and 1RxCG are diversity.(2 Ant with SPDT), 2: for 88EE, 1Tx and 2Rx are diversity.(2 Ant, Tx and RxCG are both on aux port, RxCS is on main port), 3: for 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port) */ static int rtw_enusbss;/* 0:disable, 1:enable */ static int rtw_hwpdn_mode = 2;/* 0:disable, 1:enable, 2: by EFUSE config */ static int rtw_hwpwrp_detect; /* HW power ping detect 0:disable , 1:enable */ static int rtw_hw_wps_pbc = 1; int rtw_mc2u_disable; static int rtw_80211d; static char *ifname = "wlan%d"; module_param(ifname, charp, 0644); MODULE_PARM_DESC(ifname, "The default name to allocate for first interface"); static char *if2name = "wlan%d"; module_param(if2name, charp, 0644); MODULE_PARM_DESC(if2name, "The default name to allocate for second interface"); char *rtw_initmac; /* temp mac address if users want to use instead of the mac address in Efuse */ module_param(rtw_initmac, charp, 0644); module_param(rtw_channel_plan, int, 0644); module_param(rtw_chip_version, int, 0644); module_param(rtw_rfintfs, int, 0644); module_param(rtw_lbkmode, int, 0644); module_param(rtw_network_mode, int, 0644); module_param(rtw_channel, int, 0644); module_param(rtw_mp_mode, int, 0644); module_param(rtw_wmm_enable, int, 0644); module_param(rtw_vrtl_carrier_sense, int, 0644); module_param(rtw_vcs_type, int, 0644); module_param(rtw_busy_thresh, int, 0644); module_param(rtw_ht_enable, int, 0644); module_param(rtw_cbw40_enable, int, 0644); module_param(rtw_ampdu_enable, int, 0644); module_param(rtw_rx_stbc, int, 0644); module_param(rtw_ampdu_amsdu, int, 0644); module_param(rtw_lowrate_two_xmit, int, 0644); module_param(rtw_rf_config, int, 0644); module_param(rtw_power_mgnt, int, 0644); module_param(rtw_smart_ps, int, 0644); module_param(rtw_low_power, int, 0644); module_param(rtw_wifi_spec, int, 0644); module_param(rtw_antdiv_cfg, int, 0644); module_param(rtw_antdiv_type, int, 0644); module_param(rtw_enusbss, int, 0644); module_param(rtw_hwpdn_mode, int, 0644); module_param(rtw_hwpwrp_detect, int, 0644); module_param(rtw_hw_wps_pbc, int, 0644); static uint rtw_max_roaming_times = 2; module_param(rtw_max_roaming_times, uint, 0644); MODULE_PARM_DESC(rtw_max_roaming_times, "The max roaming times to try"); static int rtw_fw_iol = 1;/* 0:Disable, 1:enable, 2:by usb speed */ module_param(rtw_fw_iol, int, 0644); MODULE_PARM_DESC(rtw_fw_iol, "FW IOL"); module_param(rtw_mc2u_disable, int, 0644); module_param(rtw_80211d, int, 0644); MODULE_PARM_DESC(rtw_80211d, "Enable 802.11d mechanism"); #ifdef CONFIG_BT_COEXIST module_param(rtw_btcoex_enable, int, 0644); MODULE_PARM_DESC(rtw_btcoex_enable, "Enable BT co-existence mechanism"); #endif static uint rtw_notch_filter = RTW_NOTCH_FILTER; module_param(rtw_notch_filter, uint, 0644); MODULE_PARM_DESC(rtw_notch_filter, "0:Disable, 1:Enable, 2:Enable only for P2P"); module_param_named(debug, rtw_debug, int, 0444); MODULE_PARM_DESC(debug, "Set debug level (1-9) (default 1)"); static char rtw_proc_name[IFNAMSIZ]; static struct proc_dir_entry *rtw_proc; static int rtw_proc_cnt; #define RTW_PROC_NAME DRV_NAME #ifndef create_proc_entry /* dummy routines */ void rtw_proc_remove_one(struct net_device *dev) { } void rtw_proc_init_one(struct net_device *dev) { } #else /* create_proc_entry not defined */ void rtw_proc_init_one(struct net_device *dev) { struct proc_dir_entry *dir_dev = NULL; struct proc_dir_entry *entry = NULL; struct adapter *padapter = rtw_netdev_priv(dev); u8 rf_type; if (rtw_proc == NULL) { _rtw_memcpy(rtw_proc_name, RTW_PROC_NAME, sizeof(RTW_PROC_NAME)); #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)) rtw_proc = create_proc_entry(rtw_proc_name, S_IFDIR, proc_net); #else rtw_proc = create_proc_entry(rtw_proc_name, S_IFDIR, init_net.proc_net); #endif if (rtw_proc == NULL) { DBG_88E(KERN_ERR "Unable to create rtw_proc directory\n"); return; } entry = create_proc_read_entry("ver_info", S_IFREG | S_IRUGO, rtw_proc, proc_get_drv_version, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } } if (padapter->dir_dev == NULL) { padapter->dir_dev = create_proc_entry(dev->name, S_IFDIR | S_IRUGO | S_IXUGO, rtw_proc); dir_dev = padapter->dir_dev; if (dir_dev == NULL) { if (rtw_proc_cnt == 0) { if (rtw_proc) { #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)) remove_proc_entry(rtw_proc_name, proc_net); #else remove_proc_entry(rtw_proc_name, init_net.proc_net); #endif rtw_proc = NULL; } } pr_info("Unable to create dir_dev directory\n"); return; } } else { return; } rtw_proc_cnt++; entry = create_proc_read_entry("write_reg", S_IFREG | S_IRUGO, dir_dev, proc_get_write_reg, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry->write_proc = proc_set_write_reg; entry = create_proc_read_entry("read_reg", S_IFREG | S_IRUGO, dir_dev, proc_get_read_reg, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry->write_proc = proc_set_read_reg; entry = create_proc_read_entry("fwstate", S_IFREG | S_IRUGO, dir_dev, proc_get_fwstate, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("sec_info", S_IFREG | S_IRUGO, dir_dev, proc_get_sec_info, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("mlmext_state", S_IFREG | S_IRUGO, dir_dev, proc_get_mlmext_state, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("qos_option", S_IFREG | S_IRUGO, dir_dev, proc_get_qos_option, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("ht_option", S_IFREG | S_IRUGO, dir_dev, proc_get_ht_option, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("rf_info", S_IFREG | S_IRUGO, dir_dev, proc_get_rf_info, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("ap_info", S_IFREG | S_IRUGO, dir_dev, proc_get_ap_info, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("adapter_state", S_IFREG | S_IRUGO, dir_dev, proc_getstruct adapter_state, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("trx_info", S_IFREG | S_IRUGO, dir_dev, proc_get_trx_info, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("mac_reg_dump1", S_IFREG | S_IRUGO, dir_dev, proc_get_mac_reg_dump1, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("mac_reg_dump2", S_IFREG | S_IRUGO, dir_dev, proc_get_mac_reg_dump2, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("mac_reg_dump3", S_IFREG | S_IRUGO, dir_dev, proc_get_mac_reg_dump3, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("bb_reg_dump1", S_IFREG | S_IRUGO, dir_dev, proc_get_bb_reg_dump1, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("bb_reg_dump2", S_IFREG | S_IRUGO, dir_dev, proc_get_bb_reg_dump2, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("bb_reg_dump3", S_IFREG | S_IRUGO, dir_dev, proc_get_bb_reg_dump3, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("rf_reg_dump1", S_IFREG | S_IRUGO, dir_dev, proc_get_rf_reg_dump1, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("rf_reg_dump2", S_IFREG | S_IRUGO, dir_dev, proc_get_rf_reg_dump2, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } rtw_hal_get_hwreg(padapter, HW_VAR_RF_TYPE, (u8 *)(&rf_type)); if ((RF_1T2R == rf_type) || (RF_1T1R == rf_type)) { entry = create_proc_read_entry("rf_reg_dump3", S_IFREG | S_IRUGO, dir_dev, proc_get_rf_reg_dump3, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("rf_reg_dump4", S_IFREG | S_IRUGO, dir_dev, proc_get_rf_reg_dump4, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } } #ifdef CONFIG_AP_MODE entry = create_proc_read_entry("all_sta_info", S_IFREG | S_IRUGO, dir_dev, proc_get_all_sta_info, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } #endif entry = create_proc_read_entry("best_channel", S_IFREG | S_IRUGO, dir_dev, proc_get_best_channel, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("rx_signal", S_IFREG | S_IRUGO, dir_dev, proc_get_rx_signal, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry->write_proc = proc_set_rx_signal; entry = create_proc_read_entry("ht_enable", S_IFREG | S_IRUGO, dir_dev, proc_get_ht_enable, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry->write_proc = proc_set_ht_enable; entry = create_proc_read_entry("cbw40_enable", S_IFREG | S_IRUGO, dir_dev, proc_get_cbw40_enable, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry->write_proc = proc_set_cbw40_enable; entry = create_proc_read_entry("ampdu_enable", S_IFREG | S_IRUGO, dir_dev, proc_get_ampdu_enable, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry->write_proc = proc_set_ampdu_enable; entry = create_proc_read_entry("rx_stbc", S_IFREG | S_IRUGO, dir_dev, proc_get_rx_stbc, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry->write_proc = proc_set_rx_stbc; entry = create_proc_read_entry("path_rssi", S_IFREG | S_IRUGO, dir_dev, proc_get_two_path_rssi, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry = create_proc_read_entry("rssi_disp", S_IFREG | S_IRUGO, dir_dev, proc_get_rssi_disp, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry->write_proc = proc_set_rssi_disp; #ifdef CONFIG_BT_COEXIST entry = create_proc_read_entry("btcoex_dbg", S_IFREG | S_IRUGO, dir_dev, proc_get_btcoex_dbg, dev); if (!entry) { pr_info("Unable to create_proc_read_entry!\n"); return; } entry->write_proc = proc_set_btcoex_dbg; #endif /*CONFIG_BT_COEXIST*/ } void rtw_proc_remove_one(struct net_device *dev) { struct proc_dir_entry *dir_dev = NULL; struct adapter *padapter = rtw_netdev_priv(dev); u8 rf_type; dir_dev = padapter->dir_dev; padapter->dir_dev = NULL; if (dir_dev) { remove_proc_entry("write_reg", dir_dev); remove_proc_entry("read_reg", dir_dev); remove_proc_entry("fwstate", dir_dev); remove_proc_entry("sec_info", dir_dev); remove_proc_entry("mlmext_state", dir_dev); remove_proc_entry("qos_option", dir_dev); remove_proc_entry("ht_option", dir_dev); remove_proc_entry("rf_info", dir_dev); remove_proc_entry("ap_info", dir_dev); remove_proc_entry("adapter_state", dir_dev); remove_proc_entry("trx_info", dir_dev); remove_proc_entry("mac_reg_dump1", dir_dev); remove_proc_entry("mac_reg_dump2", dir_dev); remove_proc_entry("mac_reg_dump3", dir_dev); remove_proc_entry("bb_reg_dump1", dir_dev); remove_proc_entry("bb_reg_dump2", dir_dev); remove_proc_entry("bb_reg_dump3", dir_dev); remove_proc_entry("rf_reg_dump1", dir_dev); remove_proc_entry("rf_reg_dump2", dir_dev); rtw_hal_get_hwreg(padapter, HW_VAR_RF_TYPE, (u8 *)(&rf_type)); if ((RF_1T2R == rf_type) || (RF_1T1R == rf_type)) { remove_proc_entry("rf_reg_dump3", dir_dev); remove_proc_entry("rf_reg_dump4", dir_dev); } #ifdef CONFIG_AP_MODE remove_proc_entry("all_sta_info", dir_dev); #endif remove_proc_entry("best_channel", dir_dev); remove_proc_entry("rx_signal", dir_dev); remove_proc_entry("cbw40_enable", dir_dev); remove_proc_entry("ht_enable", dir_dev); remove_proc_entry("ampdu_enable", dir_dev); remove_proc_entry("rx_stbc", dir_dev); remove_proc_entry("path_rssi", dir_dev); remove_proc_entry("rssi_disp", dir_dev); #ifdef CONFIG_BT_COEXIST remove_proc_entry("btcoex_dbg", dir_dev); #endif /* CONFIG_BT_COEXIST */ remove_proc_entry(dev->name, rtw_proc); dir_dev = NULL; } else { return; } rtw_proc_cnt--; if (rtw_proc_cnt == 0) { if (rtw_proc) { remove_proc_entry("ver_info", rtw_proc); #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)) remove_proc_entry(rtw_proc_name, proc_net); #else remove_proc_entry(rtw_proc_name, init_net.proc_net); #endif rtw_proc = NULL; } } } #endif static uint loadparam(struct adapter *padapter, struct net_device *pnetdev) { uint status = _SUCCESS; struct registry_priv *registry_par = &padapter->registrypriv; _func_enter_; GlobalDebugLevel = rtw_debug; registry_par->chip_version = (u8)rtw_chip_version; registry_par->rfintfs = (u8)rtw_rfintfs; registry_par->lbkmode = (u8)rtw_lbkmode; registry_par->network_mode = (u8)rtw_network_mode; _rtw_memcpy(registry_par->ssid.Ssid, "ANY", 3); registry_par->ssid.SsidLength = 3; registry_par->channel = (u8)rtw_channel; registry_par->wireless_mode = (u8)rtw_wireless_mode; registry_par->vrtl_carrier_sense = (u8)rtw_vrtl_carrier_sense ; registry_par->vcs_type = (u8)rtw_vcs_type; registry_par->rts_thresh = (u16)rtw_rts_thresh; registry_par->frag_thresh = (u16)rtw_frag_thresh; registry_par->preamble = (u8)rtw_preamble; registry_par->scan_mode = (u8)rtw_scan_mode; registry_par->adhoc_tx_pwr = (u8)rtw_adhoc_tx_pwr; registry_par->soft_ap = (u8)rtw_soft_ap; registry_par->smart_ps = (u8)rtw_smart_ps; registry_par->power_mgnt = (u8)rtw_power_mgnt; registry_par->ips_mode = (u8)rtw_ips_mode; registry_par->radio_enable = (u8)rtw_radio_enable; registry_par->long_retry_lmt = (u8)rtw_long_retry_lmt; registry_par->short_retry_lmt = (u8)rtw_short_retry_lmt; registry_par->busy_thresh = (u16)rtw_busy_thresh; registry_par->ack_policy = (u8)rtw_ack_policy; registry_par->mp_mode = (u8)rtw_mp_mode; registry_par->software_encrypt = (u8)rtw_software_encrypt; registry_par->software_decrypt = (u8)rtw_software_decrypt; registry_par->acm_method = (u8)rtw_acm_method; /* UAPSD */ registry_par->wmm_enable = (u8)rtw_wmm_enable; registry_par->uapsd_enable = (u8)rtw_uapsd_enable; registry_par->uapsd_max_sp = (u8)rtw_uapsd_max_sp; registry_par->uapsd_acbk_en = (u8)rtw_uapsd_acbk_en; registry_par->uapsd_acbe_en = (u8)rtw_uapsd_acbe_en; registry_par->uapsd_acvi_en = (u8)rtw_uapsd_acvi_en; registry_par->uapsd_acvo_en = (u8)rtw_uapsd_acvo_en; registry_par->ht_enable = (u8)rtw_ht_enable; registry_par->cbw40_enable = (u8)rtw_cbw40_enable; registry_par->ampdu_enable = (u8)rtw_ampdu_enable; registry_par->rx_stbc = (u8)rtw_rx_stbc; registry_par->ampdu_amsdu = (u8)rtw_ampdu_amsdu; registry_par->lowrate_two_xmit = (u8)rtw_lowrate_two_xmit; registry_par->rf_config = (u8)rtw_rf_config; registry_par->low_power = (u8)rtw_low_power; registry_par->wifi_spec = (u8)rtw_wifi_spec; registry_par->channel_plan = (u8)rtw_channel_plan; #ifdef CONFIG_BT_COEXIST registry_par->btcoex = (u8)rtw_btcoex_enable; registry_par->bt_iso = (u8)rtw_bt_iso; registry_par->bt_sco = (u8)rtw_bt_sco; registry_par->bt_ampdu = (u8)rtw_bt_ampdu; #endif registry_par->bAcceptAddbaReq = (u8)rtw_AcceptAddbaReq; registry_par->antdiv_cfg = (u8)rtw_antdiv_cfg; registry_par->antdiv_type = (u8)rtw_antdiv_type; registry_par->hwpdn_mode = (u8)rtw_hwpdn_mode;/* 0:disable, 1:enable, 2:by EFUSE config */ registry_par->hwpwrp_detect = (u8)rtw_hwpwrp_detect;/* 0:disable, 1:enable */ registry_par->hw_wps_pbc = (u8)rtw_hw_wps_pbc; registry_par->max_roaming_times = (u8)rtw_max_roaming_times; registry_par->fw_iol = rtw_fw_iol; registry_par->enable80211d = (u8)rtw_80211d; snprintf(registry_par->ifname, 16, "%s", ifname); snprintf(registry_par->if2name, 16, "%s", if2name); registry_par->notch_filter = (u8)rtw_notch_filter; _func_exit_; return status; } static int rtw_net_set_mac_address(struct net_device *pnetdev, void *p) { struct adapter *padapter = (struct adapter *)rtw_netdev_priv(pnetdev); struct sockaddr *addr = p; if (!padapter->bup) _rtw_memcpy(padapter->eeprompriv.mac_addr, addr->sa_data, ETH_ALEN); return 0; } static struct net_device_stats *rtw_net_get_stats(struct net_device *pnetdev) { struct adapter *padapter = (struct adapter *)rtw_netdev_priv(pnetdev); struct xmit_priv *pxmitpriv = &(padapter->xmitpriv); struct recv_priv *precvpriv = &(padapter->recvpriv); padapter->stats.tx_packets = pxmitpriv->tx_pkts;/* pxmitpriv->tx_pkts++; */ padapter->stats.rx_packets = precvpriv->rx_pkts;/* precvpriv->rx_pkts++; */ padapter->stats.tx_dropped = pxmitpriv->tx_drop; padapter->stats.rx_dropped = precvpriv->rx_drop; padapter->stats.tx_bytes = pxmitpriv->tx_bytes; padapter->stats.rx_bytes = precvpriv->rx_bytes; return &padapter->stats; } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)) /* * AC to queue mapping * * AC_VO -> queue 0 * AC_VI -> queue 1 * AC_BE -> queue 2 * AC_BK -> queue 3 */ static const u16 rtw_1d_to_queue[8] = { 2, 3, 3, 2, 1, 1, 0, 0 }; /* Given a data frame determine the 802.1p/1d tag to use. */ static unsigned int rtw_classify8021d(struct sk_buff *skb) { unsigned int dscp; /* skb->priority values from 256->263 are magic values to * directly indicate a specific 802.1d priority. This is used * to allow 802.1d priority to be passed directly in from VLAN * tags, etc. */ if (skb->priority >= 256 && skb->priority <= 263) return skb->priority - 256; switch (skb->protocol) { case htons(ETH_P_IP): dscp = ip_hdr(skb)->tos & 0xfc; break; default: return 0; } return dscp >> 5; } static u16 rtw_select_queue(struct net_device *dev, struct sk_buff *skb) { struct adapter *padapter = rtw_netdev_priv(dev); struct mlme_priv *pmlmepriv = &padapter->mlmepriv; skb->priority = rtw_classify8021d(skb); if (pmlmepriv->acm_mask != 0) skb->priority = qos_acm(pmlmepriv->acm_mask, skb->priority); return rtw_1d_to_queue[skb->priority]; } u16 rtw_recv_select_queue(struct sk_buff *skb) { struct iphdr *piphdr; unsigned int dscp; __be16 eth_type; u32 priority; u8 *pdata = skb->data; _rtw_memcpy(ð_type, pdata+(ETH_ALEN<<1), 2); switch (eth_type) { case htons(ETH_P_IP): piphdr = (struct iphdr *)(pdata+ETH_HLEN); dscp = piphdr->tos & 0xfc; priority = dscp >> 5; break; default: priority = 0; } return rtw_1d_to_queue[priority]; } #endif #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29)) static const struct net_device_ops rtw_netdev_ops = { .ndo_open = netdev_open, .ndo_stop = netdev_close, .ndo_start_xmit = rtw_xmit_entry, #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)) .ndo_select_queue = rtw_select_queue, #endif .ndo_set_mac_address = rtw_net_set_mac_address, .ndo_get_stats = rtw_net_get_stats, .ndo_do_ioctl = rtw_ioctl, }; #endif int rtw_init_netdev_name(struct net_device *pnetdev, const char *ifname) { struct adapter *padapter = rtw_netdev_priv(pnetdev); if (dev_alloc_name(pnetdev, ifname) < 0) RT_TRACE(_module_os_intfs_c_, _drv_err_, ("dev_alloc_name, fail!\n")); netif_carrier_off(pnetdev); return 0; } struct net_device *rtw_init_netdev(struct adapter *old_padapter) { struct adapter *padapter; struct net_device *pnetdev; RT_TRACE(_module_os_intfs_c_, _drv_info_, ("+init_net_dev\n")); if (old_padapter != NULL) pnetdev = rtw_alloc_etherdev_with_old_priv(sizeof(struct adapter), (void *)old_padapter); else pnetdev = rtw_alloc_etherdev(sizeof(struct adapter)); if (!pnetdev) return NULL; padapter = rtw_netdev_priv(pnetdev); padapter->pnetdev = pnetdev; #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24) SET_MODULE_OWNER(pnetdev); #endif #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29)) DBG_88E("register rtw_netdev_ops to netdev_ops\n"); pnetdev->netdev_ops = &rtw_netdev_ops; #else pnetdev->open = netdev_open; pnetdev->stop = netdev_close; pnetdev->hard_start_xmit = rtw_xmit_entry; pnetdev->set_mac_address = rtw_net_set_mac_address; pnetdev->get_stats = rtw_net_get_stats; pnetdev->do_ioctl = rtw_ioctl; #endif pnetdev->watchdog_timeo = HZ*3; /* 3 second timeout */ #ifdef CONFIG_WIRELESS_EXT pnetdev->wireless_handlers = (struct iw_handler_def *)&rtw_handlers_def; #endif /* step 2. */ loadparam(padapter, pnetdev); return pnetdev; } u32 rtw_start_drv_threads(struct adapter *padapter) { u32 _status = _SUCCESS; RT_TRACE(_module_os_intfs_c_, _drv_info_, ("+rtw_start_drv_threads\n")); padapter->cmdThread = kthread_run(rtw_cmd_thread, padapter, "RTW_CMD_THREAD"); if (IS_ERR(padapter->cmdThread)) _status = _FAIL; else _rtw_down_sema(&padapter->cmdpriv.terminate_cmdthread_sema); /* wait for cmd_thread to run */ rtw_hal_start_thread(padapter); return _status; } void rtw_stop_drv_threads(struct adapter *padapter) { RT_TRACE(_module_os_intfs_c_, _drv_info_, ("+rtw_stop_drv_threads\n")); /* Below is to termindate rtw_cmd_thread & event_thread... */ _rtw_up_sema(&padapter->cmdpriv.cmd_queue_sema); if (padapter->cmdThread) _rtw_down_sema(&padapter->cmdpriv.terminate_cmdthread_sema); rtw_hal_stop_thread(padapter); } static u8 rtw_init_default_value(struct adapter *padapter) { u8 ret = _SUCCESS; struct registry_priv *pregistrypriv = &padapter->registrypriv; struct xmit_priv *pxmitpriv = &padapter->xmitpriv; struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct security_priv *psecuritypriv = &padapter->securitypriv; /* xmit_priv */ pxmitpriv->vcs_setting = pregistrypriv->vrtl_carrier_sense; pxmitpriv->vcs = pregistrypriv->vcs_type; pxmitpriv->vcs_type = pregistrypriv->vcs_type; pxmitpriv->frag_len = pregistrypriv->frag_thresh; /* mlme_priv */ pmlmepriv->scan_interval = SCAN_INTERVAL;/* 30*2 sec = 60sec */ pmlmepriv->scan_mode = SCAN_ACTIVE; /* ht_priv */ pmlmepriv->htpriv.ampdu_enable = false;/* set to disabled */ /* security_priv */ psecuritypriv->binstallGrpkey = _FAIL; psecuritypriv->sw_encrypt = pregistrypriv->software_encrypt; psecuritypriv->sw_decrypt = pregistrypriv->software_decrypt; psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_Open; /* open system */ psecuritypriv->dot11PrivacyAlgrthm = _NO_PRIVACY_; psecuritypriv->dot11PrivacyKeyIndex = 0; psecuritypriv->dot118021XGrpPrivacy = _NO_PRIVACY_; psecuritypriv->dot118021XGrpKeyid = 1; psecuritypriv->ndisauthtype = Ndis802_11AuthModeOpen; psecuritypriv->ndisencryptstatus = Ndis802_11WEPDisabled; /* registry_priv */ rtw_init_registrypriv_dev_network(padapter); rtw_update_registrypriv_dev_network(padapter); /* hal_priv */ rtw_hal_def_value_init(padapter); /* misc. */ padapter->bReadPortCancel = false; padapter->bWritePortCancel = false; padapter->bRxRSSIDisplay = 0; padapter->bNotifyChannelChange = 0; #ifdef CONFIG_P2P padapter->bShowGetP2PState = 1; #endif return ret; } u8 rtw_reset_drv_sw(struct adapter *padapter) { u8 ret8 = _SUCCESS; struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct pwrctrl_priv *pwrctrlpriv = &padapter->pwrctrlpriv; /* hal_priv */ rtw_hal_def_value_init(padapter); padapter->bReadPortCancel = false; padapter->bWritePortCancel = false; padapter->bRxRSSIDisplay = 0; pmlmepriv->scan_interval = SCAN_INTERVAL;/* 30*2 sec = 60sec */ padapter->xmitpriv.tx_pkts = 0; padapter->recvpriv.rx_pkts = 0; pmlmepriv->LinkDetectInfo.bBusyTraffic = false; _clr_fwstate_(pmlmepriv, _FW_UNDER_SURVEY | _FW_UNDER_LINKING); rtw_hal_sreset_reset_value(padapter); pwrctrlpriv->pwr_state_check_cnts = 0; /* mlmeextpriv */ padapter->mlmeextpriv.sitesurvey_res.state = SCAN_DISABLE; rtw_set_signal_stat_timer(&padapter->recvpriv); return ret8; } u8 rtw_init_drv_sw(struct adapter *padapter) { u8 ret8 = _SUCCESS; _func_enter_; RT_TRACE(_module_os_intfs_c_, _drv_info_, ("+rtw_init_drv_sw\n")); if ((rtw_init_cmd_priv(&padapter->cmdpriv)) == _FAIL) { RT_TRACE(_module_os_intfs_c_, _drv_err_, ("\n Can't init cmd_priv\n")); ret8 = _FAIL; goto exit; } padapter->cmdpriv.padapter = padapter; if ((rtw_init_evt_priv(&padapter->evtpriv)) == _FAIL) { RT_TRACE(_module_os_intfs_c_, _drv_err_, ("\n Can't init evt_priv\n")); ret8 = _FAIL; goto exit; } if (rtw_init_mlme_priv(padapter) == _FAIL) { RT_TRACE(_module_os_intfs_c_, _drv_err_, ("\n Can't init mlme_priv\n")); ret8 = _FAIL; goto exit; } #ifdef CONFIG_P2P rtw_init_wifidirect_timers(padapter); init_wifidirect_info(padapter, P2P_ROLE_DISABLE); reset_global_wifidirect_info(padapter); #endif /* CONFIG_P2P */ if (init_mlme_ext_priv(padapter) == _FAIL) { RT_TRACE(_module_os_intfs_c_, _drv_err_, ("\n Can't init mlme_ext_priv\n")); ret8 = _FAIL; goto exit; } if (_rtw_init_xmit_priv(&padapter->xmitpriv, padapter) == _FAIL) { DBG_88E("Can't _rtw_init_xmit_priv\n"); ret8 = _FAIL; goto exit; } if (_rtw_init_recv_priv(&padapter->recvpriv, padapter) == _FAIL) { DBG_88E("Can't _rtw_init_recv_priv\n"); ret8 = _FAIL; goto exit; } if (_rtw_init_sta_priv(&padapter->stapriv) == _FAIL) { DBG_88E("Can't _rtw_init_sta_priv\n"); ret8 = _FAIL; goto exit; } padapter->stapriv.padapter = padapter; rtw_init_bcmc_stainfo(padapter); rtw_init_pwrctrl_priv(padapter); if (init_mp_priv(padapter) == _FAIL) DBG_88E("%s: initialize MP private data Fail!\n", __func__); ret8 = rtw_init_default_value(padapter); rtw_hal_dm_init(padapter); rtw_hal_sw_led_init(padapter); rtw_hal_sreset_init(padapter); _rtw_spinlock_init(&padapter->br_ext_lock); exit: RT_TRACE(_module_os_intfs_c_, _drv_info_, ("-rtw_init_drv_sw\n")); _func_exit_; return ret8; } #ifdef CONFIG_WOWLAN void rtw_cancel_dynamic_chk_timer(struct adapter *padapter) { _cancel_timer_ex(&padapter->mlmepriv.dynamic_chk_timer); RT_TRACE(_module_os_intfs_c_, _drv_info_, ("rtw_cancel_all_timer:cancel dynamic_chk_timer!\n")); } #endif void rtw_cancel_all_timer(struct adapter *padapter) { RT_TRACE(_module_os_intfs_c_, _drv_info_, ("+rtw_cancel_all_timer\n")); _cancel_timer_ex(&padapter->mlmepriv.assoc_timer); RT_TRACE(_module_os_intfs_c_, _drv_info_, ("rtw_cancel_all_timer:cancel association timer complete!\n")); _cancel_timer_ex(&padapter->mlmepriv.scan_to_timer); RT_TRACE(_module_os_intfs_c_, _drv_info_, ("rtw_cancel_all_timer:cancel scan_to_timer!\n")); _cancel_timer_ex(&padapter->mlmepriv.dynamic_chk_timer); RT_TRACE(_module_os_intfs_c_, _drv_info_, ("rtw_cancel_all_timer:cancel dynamic_chk_timer!\n")); /* cancel sw led timer */ rtw_hal_sw_led_deinit(padapter); RT_TRACE(_module_os_intfs_c_, _drv_info_, ("rtw_cancel_all_timer:cancel DeInitSwLeds!\n")); _cancel_timer_ex(&padapter->pwrctrlpriv.pwr_state_check_timer); _cancel_timer_ex(&padapter->recvpriv.signal_stat_timer); /* cancel dm timer */ rtw_hal_dm_deinit(padapter); } u8 rtw_free_drv_sw(struct adapter *padapter) { struct net_device *pnetdev = (struct net_device *)padapter->pnetdev; RT_TRACE(_module_os_intfs_c_, _drv_info_, ("==>rtw_free_drv_sw")); /* we can call rtw_p2p_enable here, but: */ /* 1. rtw_p2p_enable may have IO operation */ /* 2. rtw_p2p_enable is bundled with wext interface */ #ifdef CONFIG_P2P { struct wifidirect_info *pwdinfo = &padapter->wdinfo; if (!rtw_p2p_chk_state(pwdinfo, P2P_STATE_NONE)) { _cancel_timer_ex(&pwdinfo->find_phase_timer); _cancel_timer_ex(&pwdinfo->restore_p2p_state_timer); _cancel_timer_ex(&pwdinfo->pre_tx_scan_timer); rtw_p2p_set_state(pwdinfo, P2P_STATE_NONE); } } #endif _rtw_spinlock_free(&padapter->br_ext_lock); free_mlme_ext_priv(&padapter->mlmeextpriv); rtw_free_cmd_priv(&padapter->cmdpriv); rtw_free_evt_priv(&padapter->evtpriv); rtw_free_mlme_priv(&padapter->mlmepriv); _rtw_free_xmit_priv(&padapter->xmitpriv); _rtw_free_sta_priv(&padapter->stapriv); /* will free bcmc_stainfo here */ _rtw_free_recv_priv(&padapter->recvpriv); rtw_free_pwrctrl_priv(padapter); rtw_hal_free_data(padapter); RT_TRACE(_module_os_intfs_c_, _drv_info_, ("<== rtw_free_drv_sw\n")); /* free the old_pnetdev */ if (padapter->rereg_nd_name_priv.old_pnetdev) { free_netdev(padapter->rereg_nd_name_priv.old_pnetdev); padapter->rereg_nd_name_priv.old_pnetdev = NULL; } /* clear pbuddystruct adapter to avoid access wrong pointer. */ if (padapter->pbuddy_adapter != NULL) padapter->pbuddy_adapter->pbuddy_adapter = NULL; RT_TRACE(_module_os_intfs_c_, _drv_info_, ("-rtw_free_drv_sw\n")); return _SUCCESS; } void netdev_br_init(struct net_device *netdev) { struct adapter *adapter = (struct adapter *)rtw_netdev_priv(netdev); #if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 35)) rcu_read_lock(); #endif /* (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 35)) */ { #if (LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 35)) if (netdev->br_port) #else /* (LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 35)) */ if (rcu_dereference(adapter->pnetdev->rx_handler_data)) #endif /* (LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 35)) */ { struct net_device *br_netdev; #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)) br_netdev = dev_get_by_name(CONFIG_BR_EXT_BRNAME); #else /* (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)) */ struct net *devnet = NULL; #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 26)) devnet = netdev->nd_net; #else /* (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 26)) */ devnet = dev_net(netdev); #endif /* (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 26)) */ br_netdev = dev_get_by_name(devnet, CONFIG_BR_EXT_BRNAME); #endif /* (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)) */ if (br_netdev) { memcpy(adapter->br_mac, br_netdev->dev_addr, ETH_ALEN); dev_put(br_netdev); } else { pr_info("%s()-%d: dev_get_by_name(%s) failed!", __func__, __LINE__, CONFIG_BR_EXT_BRNAME); } } adapter->ethBrExtInfo.addPPPoETag = 1; } #if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 35)) rcu_read_unlock(); #endif /* (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 35)) */ } int _netdev_open(struct net_device *pnetdev) { uint status; struct adapter *padapter = (struct adapter *)rtw_netdev_priv(pnetdev); struct pwrctrl_priv *pwrctrlpriv = &padapter->pwrctrlpriv; RT_TRACE(_module_os_intfs_c_, _drv_info_, ("+88eu_drv - dev_open\n")); DBG_88E("+88eu_drv - drv_open, bup =%d\n", padapter->bup); if (pwrctrlpriv->ps_flag) { padapter->net_closed = false; goto netdev_open_normal_process; } if (!padapter->bup) { padapter->bDriverStopped = false; padapter->bSurpriseRemoved = false; padapter->bCardDisableWOHSM = false; status = rtw_hal_init(padapter); if (status == _FAIL) { RT_TRACE(_module_os_intfs_c_, _drv_err_, ("rtl88eu_hal_init(): Can't init h/w!\n")); goto netdev_open_error; } pr_info("MAC Address = %pM\n", pnetdev->dev_addr); status = rtw_start_drv_threads(padapter); if (status == _FAIL) { pr_info("Initialize driver software resource Failed!\n"); goto netdev_open_error; } if (init_hw_mlme_ext(padapter) == _FAIL) { pr_info("can't init mlme_ext_priv\n"); goto netdev_open_error; } if (padapter->intf_start) padapter->intf_start(padapter); rtw_proc_init_one(pnetdev); rtw_led_control(padapter, LED_CTL_NO_LINK); padapter->bup = true; } padapter->net_closed = false; _set_timer(&padapter->mlmepriv.dynamic_chk_timer, 2000); padapter->pwrctrlpriv.bips_processing = false; rtw_set_pwr_state_check_timer(&padapter->pwrctrlpriv); if (!rtw_netif_queue_stopped(pnetdev)) rtw_netif_start_queue(pnetdev); else rtw_netif_wake_queue(pnetdev); netdev_br_init(pnetdev); netdev_open_normal_process: RT_TRACE(_module_os_intfs_c_, _drv_info_, ("-88eu_drv - dev_open\n")); DBG_88E("-88eu_drv - drv_open, bup =%d\n", padapter->bup); return 0; netdev_open_error: padapter->bup = false; netif_carrier_off(pnetdev); rtw_netif_stop_queue(pnetdev); RT_TRACE(_module_os_intfs_c_, _drv_err_, ("-88eu_drv - dev_open, fail!\n")); DBG_88E("-88eu_drv - drv_open fail, bup =%d\n", padapter->bup); return -1; } int netdev_open(struct net_device *pnetdev) { int ret; struct adapter *padapter = (struct adapter *)rtw_netdev_priv(pnetdev); _enter_critical_mutex(padapter->hw_init_mutex, NULL); ret = _netdev_open(pnetdev); _exit_critical_mutex(padapter->hw_init_mutex, NULL); return ret; } static int ips_netdrv_open(struct adapter *padapter) { int status = _SUCCESS; padapter->net_closed = false; DBG_88E("===> %s.........\n", __func__); padapter->bDriverStopped = false; padapter->bSurpriseRemoved = false; padapter->bCardDisableWOHSM = false; status = rtw_hal_init(padapter); if (status == _FAIL) { RT_TRACE(_module_os_intfs_c_, _drv_err_, ("ips_netdrv_open(): Can't init h/w!\n")); goto netdev_open_error; } if (padapter->intf_start) padapter->intf_start(padapter); rtw_set_pwr_state_check_timer(&padapter->pwrctrlpriv); _set_timer(&padapter->mlmepriv.dynamic_chk_timer, 5000); return _SUCCESS; netdev_open_error: DBG_88E("-ips_netdrv_open - drv_open failure, bup =%d\n", padapter->bup); return _FAIL; } int rtw_ips_pwr_up(struct adapter *padapter) { int result; u32 start_time = rtw_get_current_time(); DBG_88E("===> rtw_ips_pwr_up..............\n"); rtw_reset_drv_sw(padapter); result = ips_netdrv_open(padapter); rtw_led_control(padapter, LED_CTL_NO_LINK); DBG_88E("<=== rtw_ips_pwr_up.............. in %dms\n", rtw_get_passing_time_ms(start_time)); return result; } void rtw_ips_pwr_down(struct adapter *padapter) { u32 start_time = rtw_get_current_time(); DBG_88E("===> rtw_ips_pwr_down...................\n"); padapter->bCardDisableWOHSM = true; padapter->net_closed = true; rtw_led_control(padapter, LED_CTL_POWER_OFF); rtw_ips_dev_unload(padapter); padapter->bCardDisableWOHSM = false; DBG_88E("<=== rtw_ips_pwr_down..................... in %dms\n", rtw_get_passing_time_ms(start_time)); } void rtw_ips_dev_unload(struct adapter *padapter) { struct net_device *pnetdev = (struct net_device *)padapter->pnetdev; struct xmit_priv *pxmitpriv = &(padapter->xmitpriv); DBG_88E("====> %s...\n", __func__); rtw_hal_set_hwreg(padapter, HW_VAR_FIFO_CLEARN_UP, NULL); if (padapter->intf_stop) padapter->intf_stop(padapter); /* s5. */ if (!padapter->bSurpriseRemoved) rtw_hal_deinit(padapter); } int pm_netdev_open(struct net_device *pnetdev, u8 bnormal) { int status; if (bnormal) status = netdev_open(pnetdev); else status = (_SUCCESS == ips_netdrv_open((struct adapter *)rtw_netdev_priv(pnetdev))) ? (0) : (-1); return status; } static int netdev_close(struct net_device *pnetdev) { struct adapter *padapter = (struct adapter *)rtw_netdev_priv(pnetdev); RT_TRACE(_module_os_intfs_c_, _drv_info_, ("+88eu_drv - drv_close\n")); if (padapter->pwrctrlpriv.bInternalAutoSuspend) { if (padapter->pwrctrlpriv.rf_pwrstate == rf_off) padapter->pwrctrlpriv.ps_flag = true; } padapter->net_closed = true; if (padapter->pwrctrlpriv.rf_pwrstate == rf_on) { DBG_88E("(2)88eu_drv - drv_close, bup =%d, hw_init_completed =%d\n", padapter->bup, padapter->hw_init_completed); /* s1. */ if (pnetdev) { if (!rtw_netif_queue_stopped(pnetdev)) rtw_netif_stop_queue(pnetdev); } /* s2. */ LeaveAllPowerSaveMode(padapter); rtw_disassoc_cmd(padapter, 500, false); /* s2-2. indicate disconnect to os */ rtw_indicate_disconnect(padapter); /* s2-3. */ rtw_free_assoc_resources(padapter, 1); /* s2-4. */ rtw_free_network_queue(padapter, true); /* Close LED */ rtw_led_control(padapter, LED_CTL_POWER_OFF); } nat25_db_cleanup(padapter); #ifdef CONFIG_P2P rtw_p2p_enable(padapter, P2P_ROLE_DISABLE); #endif /* CONFIG_P2P */ RT_TRACE(_module_os_intfs_c_, _drv_info_, ("-88eu_drv - drv_close\n")); DBG_88E("-88eu_drv - drv_close, bup =%d\n", padapter->bup); return 0; }