/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _HCI_HAL_INIT_C_ #include #include #include #include #include #include #ifdef CONFIG_IOL #include #endif #ifndef CONFIG_USB_HCI #error "CONFIG_USB_HCI shall be on!\n" #endif #include #include #include #ifdef CONFIG_EFUSE_CONFIG_FILE #include #include #endif //CONFIG_EFUSE_CONFIG_FILE #if DISABLE_BB_RF #define HAL_MAC_ENABLE 0 #define HAL_BB_ENABLE 0 #define HAL_RF_ENABLE 0 #else #define HAL_MAC_ENABLE 1 #define HAL_BB_ENABLE 1 #define HAL_RF_ENABLE 1 #endif static VOID _ConfigNormalChipOutEP_8188E( IN struct adapter *pAdapter, IN u8 NumOutPipe ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); switch(NumOutPipe){ case 3: pHalData->OutEpQueueSel=TX_SELE_HQ| TX_SELE_LQ|TX_SELE_NQ; pHalData->OutEpNumber=3; break; case 2: pHalData->OutEpQueueSel=TX_SELE_HQ| TX_SELE_NQ; pHalData->OutEpNumber=2; break; case 1: pHalData->OutEpQueueSel=TX_SELE_HQ; pHalData->OutEpNumber=1; break; default: break; } DBG_871X("%s OutEpQueueSel(0x%02x), OutEpNumber(%d) \n",__FUNCTION__,pHalData->OutEpQueueSel,pHalData->OutEpNumber ); } static BOOLEAN HalUsbSetQueuePipeMapping8188EUsb( IN struct adapter *pAdapter, IN u8 NumInPipe, IN u8 NumOutPipe ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); BOOLEAN result = _FALSE; _ConfigNormalChipOutEP_8188E(pAdapter, NumOutPipe); // Normal chip with one IN and one OUT doesn't have interrupt IN EP. if(1 == pHalData->OutEpNumber){ if(1 != NumInPipe){ return result; } } // All config other than above support one Bulk IN and one Interrupt IN. //if(2 != NumInPipe){ // return result; //} result = Hal_MappingOutPipe(pAdapter, NumOutPipe); return result; } void rtl8188eu_interface_configure(struct adapter *padapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter); if (pdvobjpriv->ishighspeed == _TRUE) { pHalData->UsbBulkOutSize = USB_HIGH_SPEED_BULK_SIZE;//512 bytes } else { pHalData->UsbBulkOutSize = USB_FULL_SPEED_BULK_SIZE;//64 bytes } pHalData->interfaceIndex = pdvobjpriv->InterfaceNumber; #ifdef CONFIG_USB_TX_AGGREGATION pHalData->UsbTxAggMode = 1; pHalData->UsbTxAggDescNum = 0x6; // only 4 bits #endif #ifdef CONFIG_USB_RX_AGGREGATION pHalData->UsbRxAggMode = USB_RX_AGG_DMA;// USB_RX_AGG_DMA; pHalData->UsbRxAggBlockCount = 8; //unit : 512b pHalData->UsbRxAggBlockTimeout = 0x6; pHalData->UsbRxAggPageCount = 48; //uint :128 b //0x0A; // 10 = MAX_RX_DMA_BUFFER_SIZE/2/pHalData->UsbBulkOutSize pHalData->UsbRxAggPageTimeout = 0x4; //6, absolute time = 34ms/(2^6) #endif HalUsbSetQueuePipeMapping8188EUsb(padapter, pdvobjpriv->RtNumInPipes, pdvobjpriv->RtNumOutPipes); } static u32 InitPowerOn_rtl8188eu(struct adapter *padapter) { u16 value16; u8 bMacPwrCtrlOn=_FALSE; // HW Power on sequence rtw_hal_get_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn); if(bMacPwrCtrlOn == _TRUE) return _SUCCESS; if(!HalPwrSeqCmdParsing(padapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_PWR_ON_FLOW)) { DBG_871X(KERN_ERR "%s: run power on flow fail\n", __func__); return _FAIL; } // Enable MAC DMA/WMAC/SCHEDULE/SEC block // Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. rtw_write16(padapter, REG_CR, 0x00); //suggseted by zhouzhou, by page, 20111230 // Enable MAC DMA/WMAC/SCHEDULE/SEC block value16 = rtw_read16(padapter, REG_CR); value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN | PROTOCOL_EN | SCHEDULE_EN | ENSEC | CALTMR_EN); // for SDIO - Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. rtw_write16(padapter, REG_CR, value16); bMacPwrCtrlOn = _TRUE; rtw_hal_set_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn); return _SUCCESS; } static void _dbg_dump_macreg(struct adapter *padapter) { u32 offset = 0; u32 val32 = 0; u32 index =0 ; for(index=0;index<64;index++) { offset = index*4; val32 = rtw_read32(padapter,offset); DBG_8192C("offset : 0x%02x ,val:0x%08x\n",offset,val32); } } static void _InitPABias(struct adapter *padapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); u8 pa_setting; BOOLEAN is92C = IS_92C_SERIAL(pHalData->VersionID); //FIXED PA current issue //efuse_one_byte_read(padapter, 0x1FA, &pa_setting); pa_setting = EFUSE_Read1Byte(padapter, 0x1FA); //RT_TRACE(COMP_INIT, DBG_LOUD, ("_InitPABias 0x1FA 0x%x \n",pa_setting)); if(!(pa_setting & BIT0)) { PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0x0F406); PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0x4F406); PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0x8F406); PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0xCF406); //RT_TRACE(COMP_INIT, DBG_LOUD, ("PA BIAS path A\n")); } if(!(pa_setting & BIT1) && is92C) { PHY_SetRFReg(padapter,RF_PATH_B, 0x15, 0x0FFFFF, 0x0F406); PHY_SetRFReg(padapter,RF_PATH_B, 0x15, 0x0FFFFF, 0x4F406); PHY_SetRFReg(padapter,RF_PATH_B, 0x15, 0x0FFFFF, 0x8F406); PHY_SetRFReg(padapter,RF_PATH_B, 0x15, 0x0FFFFF, 0xCF406); //RT_TRACE(COMP_INIT, DBG_LOUD, ("PA BIAS path B\n")); } if(!(pa_setting & BIT4)) { pa_setting = rtw_read8(padapter, 0x16); pa_setting &= 0x0F; rtw_write8(padapter, 0x16, pa_setting | 0x80); rtw_write8(padapter, 0x16, pa_setting | 0x90); } } #ifdef CONFIG_BT_COEXIST static void _InitBTCoexist(struct adapter *padapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct btcoexist_priv *pbtpriv = &(pHalData->bt_coexist); u8 u1Tmp; if(pbtpriv->BT_Coexist && pbtpriv->BT_CoexistType == BT_CSR_BC4) { //#if MP_DRIVER != 1 if (padapter->registrypriv.mp_mode == 0) { if(pbtpriv->BT_Ant_isolation) { rtw_write8( padapter,REG_GPIO_MUXCFG, 0xa0); DBG_8192C("BT write 0x%x = 0x%x\n", REG_GPIO_MUXCFG, 0xa0); } } //#endif u1Tmp = rtw_read8(padapter, 0x4fd) & BIT0; u1Tmp = u1Tmp | ((pbtpriv->BT_Ant_isolation==1)?0:BIT1) | ((pbtpriv->BT_Service==BT_SCO)?0:BIT2); rtw_write8( padapter, 0x4fd, u1Tmp); DBG_8192C("BT write 0x%x = 0x%x for non-isolation\n", 0x4fd, u1Tmp); rtw_write32(padapter, REG_BT_COEX_TABLE+4, 0xaaaa9aaa); DBG_8192C("BT write 0x%x = 0x%x\n", REG_BT_COEX_TABLE+4, 0xaaaa9aaa); rtw_write32(padapter, REG_BT_COEX_TABLE+8, 0xffbd0040); DBG_8192C("BT write 0x%x = 0x%x\n", REG_BT_COEX_TABLE+8, 0xffbd0040); rtw_write32(padapter, REG_BT_COEX_TABLE+0xc, 0x40000010); DBG_8192C("BT write 0x%x = 0x%x\n", REG_BT_COEX_TABLE+0xc, 0x40000010); //Config to 1T1R u1Tmp = rtw_read8(padapter,rOFDM0_TRxPathEnable); u1Tmp &= ~(BIT1); rtw_write8( padapter, rOFDM0_TRxPathEnable, u1Tmp); DBG_8192C("BT write 0xC04 = 0x%x\n", u1Tmp); u1Tmp = rtw_read8(padapter, rOFDM1_TRxPathEnable); u1Tmp &= ~(BIT1); rtw_write8( padapter, rOFDM1_TRxPathEnable, u1Tmp); DBG_8192C("BT write 0xD04 = 0x%x\n", u1Tmp); } } #endif //--------------------------------------------------------------- // // MAC init functions // //--------------------------------------------------------------- static VOID _SetMacID( IN struct adapter *Adapter, u8* MacID ) { u32 i; for(i=0 ; i< MAC_ADDR_LEN ; i++){ #ifdef CONFIG_CONCURRENT_MODE if(Adapter->iface_type == IFACE_PORT1) rtw_write32(Adapter, REG_MACID1+i, MacID[i]); else #endif rtw_write32(Adapter, REG_MACID+i, MacID[i]); } } static VOID _SetBSSID( IN struct adapter *Adapter, u8* BSSID ) { u32 i; for(i=0 ; i< MAC_ADDR_LEN ; i++){ #ifdef CONFIG_CONCURRENT_MODE if(Adapter->iface_type == IFACE_PORT1) rtw_write32(Adapter, REG_BSSID1+i, BSSID[i]); else #endif rtw_write32(Adapter, REG_BSSID+i, BSSID[i]); } } // Shall USB interface init this? static VOID _InitInterrupt( IN struct adapter *Adapter ) { u32 imr,imr_ex; u8 usb_opt; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); //HISR write one to clear rtw_write32(Adapter, REG_HISR_88E, 0xFFFFFFFF); // HIMR - imr = IMR_PSTIMEOUT_88E | IMR_TBDER_88E | IMR_CPWM_88E | IMR_CPWM2_88E ; rtw_write32(Adapter, REG_HIMR_88E, imr); pHalData->IntrMask[0]=imr; imr_ex = IMR_TXERR_88E | IMR_RXERR_88E | IMR_TXFOVW_88E |IMR_RXFOVW_88E; rtw_write32(Adapter, REG_HIMRE_88E, imr_ex); pHalData->IntrMask[1]=imr_ex; #ifdef CONFIG_SUPPORT_USB_INT // REG_USB_SPECIAL_OPTION - BIT(4) // 0; Use interrupt endpoint to upload interrupt pkt // 1; Use bulk endpoint to upload interrupt pkt, usb_opt = rtw_read8(Adapter, REG_USB_SPECIAL_OPTION); if(!adapter_to_dvobj(Adapter)->ishighspeed #ifdef CONFIG_USB_INTERRUPT_IN_PIPE || pHalData->RtIntInPipe == 0x05 #endif ) usb_opt = usb_opt & (~INT_BULK_SEL); else usb_opt = usb_opt | (INT_BULK_SEL); rtw_write8(Adapter, REG_USB_SPECIAL_OPTION, usb_opt ); #endif//CONFIG_SUPPORT_USB_INT } static VOID _InitQueueReservedPage( IN struct adapter *Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct registry_priv *pregistrypriv = &Adapter->registrypriv; u32 outEPNum = (u32)pHalData->OutEpNumber; u32 numHQ = 0; u32 numLQ = 0; u32 numNQ = 0; u32 numPubQ; u32 value32; u8 value8; BOOLEAN bWiFiConfig = pregistrypriv->wifi_spec; if((bWiFiConfig)|| (pregistrypriv->qos_opt_enable)) { if (pHalData->OutEpQueueSel & TX_SELE_HQ) { numHQ = 0x29; } if (pHalData->OutEpQueueSel & TX_SELE_LQ) { numLQ = 0x1C; } // NOTE: This step shall be proceed before writting REG_RQPN. if (pHalData->OutEpQueueSel & TX_SELE_NQ) { numNQ = 0x1C; } value8 = (u8)_NPQ(numNQ); rtw_write8(Adapter, REG_RQPN_NPQ, value8); numPubQ = 0xA8 - numHQ - numLQ - numNQ; // TX DMA value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN; rtw_write32(Adapter, REG_RQPN, value32); } else { rtw_write16(Adapter,REG_RQPN_NPQ, 0x0000);//Just follow MP Team,??? Georgia 03/28 rtw_write16(Adapter,REG_RQPN_NPQ, 0x0d); rtw_write32(Adapter,REG_RQPN, 0x808E000d);//reserve 7 page for LPS } } static VOID _InitTxBufferBoundary( IN struct adapter *Adapter, IN u8 txpktbuf_bndy ) { struct registry_priv *pregistrypriv = &Adapter->registrypriv; //HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); //u16 txdmactrl; rtw_write8(Adapter, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy); rtw_write8(Adapter, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy); rtw_write8(Adapter, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy); rtw_write8(Adapter, REG_TRXFF_BNDY, txpktbuf_bndy); rtw_write8(Adapter, REG_TDECTRL+1, txpktbuf_bndy); } static VOID _InitPageBoundary( IN struct adapter *Adapter ) { // RX Page Boundary // u16 rxff_bndy = MAX_RX_DMA_BUFFER_SIZE_88E-1; #if 0 // RX Page Boundary //srand(static_cast(time(NULL)) ); if(bSupportRemoteWakeUp) { Offset = MAX_RX_DMA_BUFFER_SIZE_88E+MAX_TX_REPORT_BUFFER_SIZE-MAX_SUPPORT_WOL_PATTERN_NUM(Adapter)*WKFMCAM_SIZE; Offset = Offset / 128; // RX page size = 128 byte rxff_bndy= (Offset*128) -1; } else #endif rtw_write16(Adapter, (REG_TRXFF_BNDY + 2), rxff_bndy); } static VOID _InitNormalChipRegPriority( IN struct adapter *Adapter, IN u16 beQ, IN u16 bkQ, IN u16 viQ, IN u16 voQ, IN u16 mgtQ, IN u16 hiQ ) { u16 value16 = (rtw_read16(Adapter, REG_TRXDMA_CTRL) & 0x7); value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) | _TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) | _TXDMA_MGQ_MAP(mgtQ)| _TXDMA_HIQ_MAP(hiQ); rtw_write16(Adapter, REG_TRXDMA_CTRL, value16); } static VOID _InitNormalChipOneOutEpPriority( IN struct adapter *Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u16 value = 0; switch(pHalData->OutEpQueueSel) { case TX_SELE_HQ: value = QUEUE_HIGH; break; case TX_SELE_LQ: value = QUEUE_LOW; break; case TX_SELE_NQ: value = QUEUE_NORMAL; break; default: //RT_ASSERT(FALSE,("Shall not reach here!\n")); break; } _InitNormalChipRegPriority(Adapter, value, value, value, value, value, value ); } static VOID _InitNormalChipTwoOutEpPriority( IN struct adapter *Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct registry_priv *pregistrypriv = &Adapter->registrypriv; u16 beQ,bkQ,viQ,voQ,mgtQ,hiQ; u16 valueHi = 0; u16 valueLow = 0; switch(pHalData->OutEpQueueSel) { case (TX_SELE_HQ | TX_SELE_LQ): valueHi = QUEUE_HIGH; valueLow = QUEUE_LOW; break; case (TX_SELE_NQ | TX_SELE_LQ): valueHi = QUEUE_NORMAL; valueLow = QUEUE_LOW; break; case (TX_SELE_HQ | TX_SELE_NQ): valueHi = QUEUE_HIGH; valueLow = QUEUE_NORMAL; break; default: //RT_ASSERT(FALSE,("Shall not reach here!\n")); break; } if(!pregistrypriv->wifi_spec ){ beQ = valueLow; bkQ = valueLow; viQ = valueHi; voQ = valueHi; mgtQ = valueHi; hiQ = valueHi; } else{//for WMM ,CONFIG_OUT_EP_WIFI_MODE beQ = valueLow; bkQ = valueHi; viQ = valueHi; voQ = valueLow; mgtQ = valueHi; hiQ = valueHi; } _InitNormalChipRegPriority(Adapter,beQ,bkQ,viQ,voQ,mgtQ,hiQ); } static VOID _InitNormalChipThreeOutEpPriority( IN struct adapter *Adapter ) { struct registry_priv *pregistrypriv = &Adapter->registrypriv; u16 beQ,bkQ,viQ,voQ,mgtQ,hiQ; if(!pregistrypriv->wifi_spec ){// typical setting beQ = QUEUE_LOW; bkQ = QUEUE_LOW; viQ = QUEUE_NORMAL; voQ = QUEUE_HIGH; mgtQ = QUEUE_HIGH; hiQ = QUEUE_HIGH; } else{// for WMM beQ = QUEUE_LOW; bkQ = QUEUE_NORMAL; viQ = QUEUE_NORMAL; voQ = QUEUE_HIGH; mgtQ = QUEUE_HIGH; hiQ = QUEUE_HIGH; } _InitNormalChipRegPriority(Adapter,beQ,bkQ,viQ,voQ,mgtQ,hiQ); } static VOID _InitQueuePriority( IN struct adapter *Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); switch(pHalData->OutEpNumber) { case 1: _InitNormalChipOneOutEpPriority(Adapter); break; case 2: _InitNormalChipTwoOutEpPriority(Adapter); break; case 3: _InitNormalChipThreeOutEpPriority(Adapter); break; default: //RT_ASSERT(FALSE,("Shall not reach here!\n")); break; } } static VOID _InitHardwareDropIncorrectBulkOut( IN struct adapter *Adapter ) { #ifdef ENABLE_USB_DROP_INCORRECT_OUT u32 value32 = rtw_read32(Adapter, REG_TXDMA_OFFSET_CHK); value32 |= DROP_DATA_EN; rtw_write32(Adapter, REG_TXDMA_OFFSET_CHK, value32); #endif } static VOID _InitNetworkType( IN struct adapter *Adapter ) { u32 value32; value32 = rtw_read32(Adapter, REG_CR); // TODO: use the other function to set network type value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AP); rtw_write32(Adapter, REG_CR, value32); // RASSERT(pIoBase->rtw_read8(REG_CR + 2) == 0x2); } static VOID _InitTransferPageSize( IN struct adapter *Adapter ) { // Tx page size is always 128. u8 value8; value8 = _PSRX(PBP_128) | _PSTX(PBP_128); rtw_write8(Adapter, REG_PBP, value8); } static VOID _InitDriverInfoSize( IN struct adapter *Adapter, IN u8 drvInfoSize ) { rtw_write8(Adapter,REG_RX_DRVINFO_SZ, drvInfoSize); } static VOID _InitWMACSetting( IN struct adapter *Adapter ) { //u4Byte value32; //u16 value16; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); //pHalData->ReceiveConfig = AAP | APM | AM | AB | APP_ICV | ADF | AMF | APP_FCS | HTC_LOC_CTRL | APP_MIC | APP_PHYSTS; //pHalData->ReceiveConfig = //RCR_AAP | RCR_APM | RCR_AM | RCR_AB |RCR_CBSSID_DATA| RCR_CBSSID_BCN| RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL | RCR_APP_MIC | RCR_APP_PHYSTS; // don't turn on AAP, it will allow all packets to driver pHalData->ReceiveConfig = RCR_APM | RCR_AM | RCR_AB |RCR_CBSSID_DATA| RCR_CBSSID_BCN| RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL | RCR_APP_MIC | RCR_APP_PHYSTS; #if (1 == RTL8188E_RX_PACKET_INCLUDE_CRC) pHalData->ReceiveConfig |= ACRC32; #endif // some REG_RCR will be modified later by phy_ConfigMACWithHeaderFile() rtw_write32(Adapter, REG_RCR, pHalData->ReceiveConfig); // Accept all multicast address rtw_write32(Adapter, REG_MAR, 0xFFFFFFFF); rtw_write32(Adapter, REG_MAR + 4, 0xFFFFFFFF); // Accept all data frames //value16 = 0xFFFF; //rtw_write16(Adapter, REG_RXFLTMAP2, value16); // 2010.09.08 hpfan // Since ADF is removed from RCR, ps-poll will not be indicate to driver, // RxFilterMap should mask ps-poll to gurantee AP mode can rx ps-poll. //value16 = 0x400; //rtw_write16(Adapter, REG_RXFLTMAP1, value16); // Accept all management frames //value16 = 0xFFFF; //rtw_write16(Adapter, REG_RXFLTMAP0, value16); //enable RX_SHIFT bits //rtw_write8(Adapter, REG_TRXDMA_CTRL, rtw_read8(Adapter, REG_TRXDMA_CTRL)|BIT(1)); } static VOID _InitAdaptiveCtrl( IN struct adapter *Adapter ) { u16 value16; u32 value32; // Response Rate Set value32 = rtw_read32(Adapter, REG_RRSR); value32 &= ~RATE_BITMAP_ALL; value32 |= RATE_RRSR_CCK_ONLY_1M; rtw_write32(Adapter, REG_RRSR, value32); // CF-END Threshold //m_spIoBase->rtw_write8(REG_CFEND_TH, 0x1); // SIFS (used in NAV) value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10); rtw_write16(Adapter, REG_SPEC_SIFS, value16); // Retry Limit value16 = _LRL(0x30) | _SRL(0x30); rtw_write16(Adapter, REG_RL, value16); } static VOID _InitRateFallback( IN struct adapter *Adapter ) { // Set Data Auto Rate Fallback Retry Count register. rtw_write32(Adapter, REG_DARFRC, 0x00000000); rtw_write32(Adapter, REG_DARFRC+4, 0x10080404); rtw_write32(Adapter, REG_RARFRC, 0x04030201); rtw_write32(Adapter, REG_RARFRC+4, 0x08070605); } static VOID _InitEDCA( IN struct adapter *Adapter ) { // Set Spec SIFS (used in NAV) rtw_write16(Adapter,REG_SPEC_SIFS, 0x100a); rtw_write16(Adapter,REG_MAC_SPEC_SIFS, 0x100a); // Set SIFS for CCK rtw_write16(Adapter,REG_SIFS_CTX, 0x100a); // Set SIFS for OFDM rtw_write16(Adapter,REG_SIFS_TRX, 0x100a); // TXOP rtw_write32(Adapter, REG_EDCA_BE_PARAM, 0x005EA42B); rtw_write32(Adapter, REG_EDCA_BK_PARAM, 0x0000A44F); rtw_write32(Adapter, REG_EDCA_VI_PARAM, 0x005EA324); rtw_write32(Adapter, REG_EDCA_VO_PARAM, 0x002FA226); } static VOID _InitBeaconMaxError( IN struct adapter *Adapter, IN BOOLEAN InfraMode ) { } #ifdef CONFIG_LED static void _InitHWLed(struct adapter *Adapter) { struct led_priv *pledpriv = &(Adapter->ledpriv); if( pledpriv->LedStrategy != HW_LED) return; // HW led control // to do .... //must consider cases of antenna diversity/ commbo card/solo card/mini card } #endif //CONFIG_LED static VOID _InitRDGSetting( IN struct adapter *Adapter ) { rtw_write8(Adapter,REG_RD_CTRL,0xFF); rtw_write16(Adapter, REG_RD_NAV_NXT, 0x200); rtw_write8(Adapter,REG_RD_RESP_PKT_TH,0x05); } static VOID _InitRxSetting( IN struct adapter *Adapter ) { rtw_write32(Adapter, REG_MACID, 0x87654321); rtw_write32(Adapter, 0x0700, 0x87654321); } static VOID _InitRetryFunction( IN struct adapter *Adapter ) { u8 value8; //#if 0 //MAC SPEC value8 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL); value8 |= EN_AMPDU_RTY_NEW; rtw_write8(Adapter, REG_FWHW_TXQ_CTRL, value8); //#endif // Set ACK timeout rtw_write8(Adapter, REG_ACKTO, 0x40); } /*----------------------------------------------------------------------------- * Function: usb_AggSettingTxUpdate() * * Overview: Seperate TX/RX parameters update independent for TP detection and * dynamic TX/RX aggreagtion parameters update. * * Input: PADAPTER * * Output/Return: NONE * * Revised History: * When Who Remark * 12/10/2010 MHC Seperate to smaller function. * *---------------------------------------------------------------------------*/ static VOID usb_AggSettingTxUpdate( IN struct adapter * Adapter ) { #ifdef CONFIG_USB_TX_AGGREGATION HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); //PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo); u32 value32; if(Adapter->registrypriv.wifi_spec) pHalData->UsbTxAggMode = _FALSE; if(pHalData->UsbTxAggMode){ value32 = rtw_read32(Adapter, REG_TDECTRL); value32 = value32 & ~(BLK_DESC_NUM_MASK << BLK_DESC_NUM_SHIFT); value32 |= ((pHalData->UsbTxAggDescNum & BLK_DESC_NUM_MASK) << BLK_DESC_NUM_SHIFT); rtw_write32(Adapter, REG_TDECTRL, value32); } #endif } // usb_AggSettingTxUpdate /*----------------------------------------------------------------------------- * Function: usb_AggSettingRxUpdate() * * Overview: Seperate TX/RX parameters update independent for TP detection and * dynamic TX/RX aggreagtion parameters update. * * Input: PADAPTER * * Output/Return: NONE * * Revised History: * When Who Remark * 12/10/2010 MHC Seperate to smaller function. * *---------------------------------------------------------------------------*/ static VOID usb_AggSettingRxUpdate( IN struct adapter * Adapter ) { #ifdef CONFIG_USB_RX_AGGREGATION HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); //PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo); u8 valueDMA; u8 valueUSB; valueDMA = rtw_read8(Adapter, REG_TRXDMA_CTRL); valueUSB = rtw_read8(Adapter, REG_USB_SPECIAL_OPTION); switch(pHalData->UsbRxAggMode) { case USB_RX_AGG_DMA: valueDMA |= RXDMA_AGG_EN; valueUSB &= ~USB_AGG_EN; break; case USB_RX_AGG_USB: valueDMA &= ~RXDMA_AGG_EN; valueUSB |= USB_AGG_EN; break; case USB_RX_AGG_MIX: valueDMA |= RXDMA_AGG_EN; valueUSB |= USB_AGG_EN; break; case USB_RX_AGG_DISABLE: default: valueDMA &= ~RXDMA_AGG_EN; valueUSB &= ~USB_AGG_EN; break; } rtw_write8(Adapter, REG_TRXDMA_CTRL, valueDMA); rtw_write8(Adapter, REG_USB_SPECIAL_OPTION, valueUSB); switch(pHalData->UsbRxAggMode) { case USB_RX_AGG_DMA: rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, pHalData->UsbRxAggPageCount); rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH+1, pHalData->UsbRxAggPageTimeout); break; case USB_RX_AGG_USB: rtw_write8(Adapter, REG_USB_AGG_TH, pHalData->UsbRxAggBlockCount); rtw_write8(Adapter, REG_USB_AGG_TO, pHalData->UsbRxAggBlockTimeout); break; case USB_RX_AGG_MIX: rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, pHalData->UsbRxAggPageCount); rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH+1, (pHalData->UsbRxAggPageTimeout& 0x1F));//0x280[12:8] rtw_write8(Adapter, REG_USB_AGG_TH, pHalData->UsbRxAggBlockCount); rtw_write8(Adapter, REG_USB_AGG_TO, pHalData->UsbRxAggBlockTimeout); break; case USB_RX_AGG_DISABLE: default: // TODO: break; } switch(PBP_128) { case PBP_128: pHalData->HwRxPageSize = 128; break; case PBP_64: pHalData->HwRxPageSize = 64; break; case PBP_256: pHalData->HwRxPageSize = 256; break; case PBP_512: pHalData->HwRxPageSize = 512; break; case PBP_1024: pHalData->HwRxPageSize = 1024; break; default: //RT_ASSERT(FALSE, ("RX_PAGE_SIZE_REG_VALUE definition is incorrect!\n")); break; } #endif } // usb_AggSettingRxUpdate static VOID InitUsbAggregationSetting( IN struct adapter *Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); // Tx aggregation setting usb_AggSettingTxUpdate(Adapter); // Rx aggregation setting usb_AggSettingRxUpdate(Adapter); // 201/12/10 MH Add for USB agg mode dynamic switch. pHalData->UsbRxHighSpeedMode = _FALSE; } VOID HalRxAggr8188EUsb( IN struct adapter *Adapter, IN BOOLEAN Value ) { #if 0//USB_RX_AGGREGATION_92C PMGNT_INFO pMgntInfo = &Adapter->MgntInfo; u1Byte valueDMATimeout; u1Byte valueDMAPageCount; u1Byte valueUSBTimeout; u1Byte valueUSBBlockCount; // selection to prevent bad TP. if( IS_WIRELESS_MODE_B(Adapter) || IS_WIRELESS_MODE_G(Adapter) || IS_WIRELESS_MODE_A(Adapter)|| pMgntInfo->bWiFiConfg) { // 2010.04.27 hpfan // Adjust RxAggrTimeout to close to zero disable RxAggr, suggested by designer // Timeout value is calculated by 34 / (2^n) valueDMATimeout = 0x0f; valueDMAPageCount = 0x01; valueUSBTimeout = 0x0f; valueUSBBlockCount = 0x01; rtw_hal_set_hwreg(Adapter, HW_VAR_RX_AGGR_PGTO, (pu1Byte)&valueDMATimeout); rtw_hal_set_hwreg(Adapter, HW_VAR_RX_AGGR_PGTH, (pu1Byte)&valueDMAPageCount); rtw_hal_set_hwreg(Adapter, HW_VAR_RX_AGGR_USBTO, (pu1Byte)&valueUSBTimeout); rtw_hal_set_hwreg(Adapter, HW_VAR_RX_AGGR_USBTH, (pu1Byte)&valueUSBBlockCount); } else { rtw_hal_set_hwreg(Adapter, HW_VAR_RX_AGGR_USBTO, (pu1Byte)&pMgntInfo->RegRxAggBlockTimeout); rtw_hal_set_hwreg(Adapter, HW_VAR_RX_AGGR_USBTH, (pu1Byte)&pMgntInfo->RegRxAggBlockCount); } #endif } /*----------------------------------------------------------------------------- * Function: USB_AggModeSwitch() * * Overview: When RX traffic is more than 40M, we need to adjust some parameters to increase * RX speed by increasing batch indication size. This will decrease TCP ACK speed, we * need to monitor the influence of FTP/network share. * For TX mode, we are still ubder investigation. * * Input: PADAPTER * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 12/10/2010 MHC Create Version 0. * *---------------------------------------------------------------------------*/ VOID USB_AggModeSwitch( IN struct adapter * Adapter ) { } // USB_AggModeSwitch static VOID _InitOperationMode( IN struct adapter * Adapter ) { } static VOID _InitBeaconParameters( IN struct adapter *Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); rtw_write16(Adapter, REG_BCN_CTRL, 0x1010); // TODO: Remove these magic number rtw_write16(Adapter, REG_TBTT_PROHIBIT,0x6404);// ms rtw_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);// 5ms rtw_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME); // 2ms // Suggested by designer timchen. Change beacon AIFS to the largest number // beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 rtw_write16(Adapter, REG_BCNTCFG, 0x660F); pHalData->RegBcnCtrlVal = rtw_read8(Adapter, REG_BCN_CTRL); pHalData->RegTxPause = rtw_read8(Adapter, REG_TXPAUSE); pHalData->RegFwHwTxQCtrl = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL+2); pHalData->RegReg542 = rtw_read8(Adapter, REG_TBTT_PROHIBIT+2); pHalData->RegCR_1 = rtw_read8(Adapter, REG_CR+1); } static VOID _InitRFType( IN struct adapter *Adapter ) { struct registry_priv *pregpriv = &Adapter->registrypriv; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); BOOLEAN is92CU = IS_92C_SERIAL(pHalData->VersionID); #if DISABLE_BB_RF pHalData->rf_chip = RF_PSEUDO_11N; return; #endif pHalData->rf_chip = RF_6052; if(_FALSE == is92CU){ pHalData->rf_type = RF_1T1R; DBG_8192C("Set RF Chip ID to RF_6052 and RF type to 1T1R.\n"); return; } // TODO: Consider that EEPROM set 92CU to 1T1R later. // Force to overwrite setting according to chip version. Ignore EEPROM setting. //pHalData->RF_Type = is92CU ? RF_2T2R : RF_1T1R; MSG_8192C("Set RF Chip ID to RF_6052 and RF type to %d.\n", pHalData->rf_type); } static VOID _BeaconFunctionEnable( IN struct adapter * Adapter, IN BOOLEAN Enable, IN BOOLEAN Linked ) { rtw_write8(Adapter, REG_BCN_CTRL, (BIT4 | BIT3 | BIT1)); //SetBcnCtrlReg(Adapter, (BIT4 | BIT3 | BIT1), 0x00); //RT_TRACE(COMP_BEACON, DBG_LOUD, ("_BeaconFunctionEnable 0x550 0x%x\n", PlatformEFIORead1Byte(Adapter, 0x550))); rtw_write8(Adapter, REG_RD_CTRL+1, 0x6F); } // Set CCK and OFDM Block "ON" static VOID _BBTurnOnBlock( IN struct adapter * Adapter ) { #if (DISABLE_BB_RF) return; #endif PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bCCKEn, 0x1); PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bOFDMEn, 0x1); } static VOID _RfPowerSave( IN struct adapter * Adapter ) { #if 0 HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo); u1Byte eRFPath; #if (DISABLE_BB_RF) return; #endif if(pMgntInfo->RegRfOff == TRUE){ // User disable RF via registry. RT_TRACE((COMP_INIT|COMP_RF), DBG_LOUD, ("InitializeAdapter8192CUsb(): Turn off RF for RegRfOff.\n")); MgntActSet_RF_State(Adapter, eRfOff, RF_CHANGE_BY_SW); // Those action will be discard in MgntActSet_RF_State because off the same state for(eRFPath = 0; eRFPath NumTotalRFPath; eRFPath++) PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)eRFPath, 0x4, 0xC00, 0x0); } else if(pMgntInfo->RfOffReason > RF_CHANGE_BY_PS){ // H/W or S/W RF OFF before sleep. RT_TRACE((COMP_INIT|COMP_RF), DBG_LOUD, ("InitializeAdapter8192CUsb(): Turn off RF for RfOffReason(%ld).\n", pMgntInfo->RfOffReason)); MgntActSet_RF_State(Adapter, eRfOff, pMgntInfo->RfOffReason); } else{ pHalData->eRFPowerState = eRfOn; pMgntInfo->RfOffReason = 0; if(Adapter->bInSetPower || Adapter->bResetInProgress) PlatformUsbEnableInPipes(Adapter); RT_TRACE((COMP_INIT|COMP_RF), DBG_LOUD, ("InitializeAdapter8192CUsb(): RF is on.\n")); } #endif } enum { Antenna_Lfet = 1, Antenna_Right = 2, }; static VOID _InitAntenna_Selection(IN struct adapter *Adapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if(pHalData->AntDivCfg==0) return; DBG_8192C("==> %s ....\n",__FUNCTION__); rtw_write32(Adapter, REG_LEDCFG0, rtw_read32(Adapter, REG_LEDCFG0)|BIT23); PHY_SetBBReg(Adapter, rFPGA0_XAB_RFParameter, BIT13, 0x01); if(PHY_QueryBBReg(Adapter, rFPGA0_XA_RFInterfaceOE, 0x300) == Antenna_A) pHalData->CurAntenna = Antenna_A; else pHalData->CurAntenna = Antenna_B; DBG_8192C("%s,Cur_ant:(%x)%s\n",__FUNCTION__,pHalData->CurAntenna,(pHalData->CurAntenna == Antenna_A)?"Antenna_A":"Antenna_B"); } // // 2010/08/26 MH Add for selective suspend mode check. // If Efuse 0x0e bit1 is not enabled, we can not support selective suspend for Minicard and // slim card. // static VOID HalDetectSelectiveSuspendMode( IN struct adapter * Adapter ) { #if 0 u8 tmpvalue; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(Adapter); // If support HW radio detect, we need to enable WOL ability, otherwise, we // can not use FW to notify host the power state switch. EFUSE_ShadowRead(Adapter, 1, EEPROM_USB_OPTIONAL1, (u32 *)&tmpvalue); DBG_8192C("HalDetectSelectiveSuspendMode(): SS "); if(tmpvalue & BIT1) { DBG_8192C("Enable\n"); } else { DBG_8192C("Disable\n"); pdvobjpriv->RegUsbSS = _FALSE; } // 2010/09/01 MH According to Dongle Selective Suspend INF. We can switch SS mode. if (pdvobjpriv->RegUsbSS && !SUPPORT_HW_RADIO_DETECT(pHalData)) { //PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo); //if (!pMgntInfo->bRegDongleSS) //{ // RT_TRACE(COMP_INIT, DBG_LOUD, ("Dongle disable SS\n")); pdvobjpriv->RegUsbSS = _FALSE; //} } #endif } // HalDetectSelectiveSuspendMode /*----------------------------------------------------------------------------- * Function: HwSuspendModeEnable92Cu() * * Overview: HW suspend mode switch. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 08/23/2010 MHC HW suspend mode switch test.. *---------------------------------------------------------------------------*/ static VOID HwSuspendModeEnable_88eu( IN struct adapter *pAdapter, IN u8 Type ) { //PRT_USB_DEVICE pDevice = GET_RT_USB_DEVICE(pAdapter); u16 reg = rtw_read16(pAdapter, REG_GPIO_MUXCFG); //if (!pDevice->RegUsbSS) { return; } // // 2010/08/23 MH According to Alfred's suggestion, we need to to prevent HW // to enter suspend mode automatically. Otherwise, it will shut down major power // domain and 8051 will stop. When we try to enter selective suspend mode, we // need to prevent HW to enter D2 mode aumotmatically. Another way, Host will // issue a S10 signal to power domain. Then it will cleat SIC setting(from Yngli). // We need to enable HW suspend mode when enter S3/S4 or disable. We need // to disable HW suspend mode for IPS/radio_off. // //RT_TRACE(COMP_RF, DBG_LOUD, ("HwSuspendModeEnable92Cu = %d\n", Type)); if (Type == _FALSE) { reg |= BIT14; //RT_TRACE(COMP_RF, DBG_LOUD, ("REG_GPIO_MUXCFG = %x\n", reg)); rtw_write16(pAdapter, REG_GPIO_MUXCFG, reg); reg |= BIT12; //RT_TRACE(COMP_RF, DBG_LOUD, ("REG_GPIO_MUXCFG = %x\n", reg)); rtw_write16(pAdapter, REG_GPIO_MUXCFG, reg); } else { reg &= (~BIT12); rtw_write16(pAdapter, REG_GPIO_MUXCFG, reg); reg &= (~BIT14); rtw_write16(pAdapter, REG_GPIO_MUXCFG, reg); } } // HwSuspendModeEnable92Cu rt_rf_power_state RfOnOffDetect(IN struct adapter *pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u8 val8; rt_rf_power_state rfpowerstate = rf_off; if(adapter_to_pwrctl(pAdapter)->bHWPowerdown) { val8 = rtw_read8(pAdapter, REG_HSISR); DBG_8192C("pwrdown, 0x5c(BIT7)=%02x\n", val8); rfpowerstate = (val8 & BIT7) ? rf_off: rf_on; } else // rf on/off { rtw_write8( pAdapter, REG_MAC_PINMUX_CFG,rtw_read8(pAdapter, REG_MAC_PINMUX_CFG)&~(BIT3)); val8 = rtw_read8(pAdapter, REG_GPIO_IO_SEL); DBG_8192C("GPIO_IN=%02x\n", val8); rfpowerstate = (val8 & BIT3) ? rf_on : rf_off; } return rfpowerstate; } // HalDetectPwrDownMode void _ps_open_RF(struct adapter *padapter); u32 rtl8188eu_hal_init(struct adapter *Adapter) { u8 value8 = 0; u16 value16; u8 txpktbuf_bndy; u32 status = _SUCCESS; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(Adapter); struct registry_priv *pregistrypriv = &Adapter->registrypriv; rt_rf_power_state eRfPowerStateToSet; #ifdef CONFIG_BT_COEXIST struct btcoexist_priv *pbtpriv = &(pHalData->bt_coexist); #endif u32 init_start_time = rtw_get_current_time(); #ifdef DBG_HAL_INIT_PROFILING enum HAL_INIT_STAGES { HAL_INIT_STAGES_BEGIN = 0, HAL_INIT_STAGES_INIT_PW_ON, HAL_INIT_STAGES_MISC01, HAL_INIT_STAGES_DOWNLOAD_FW, HAL_INIT_STAGES_MAC, HAL_INIT_STAGES_BB, HAL_INIT_STAGES_RF, HAL_INIT_STAGES_EFUSE_PATCH, HAL_INIT_STAGES_INIT_LLTT, HAL_INIT_STAGES_MISC02, HAL_INIT_STAGES_TURN_ON_BLOCK, HAL_INIT_STAGES_INIT_SECURITY, HAL_INIT_STAGES_MISC11, HAL_INIT_STAGES_INIT_HAL_DM, //HAL_INIT_STAGES_RF_PS, HAL_INIT_STAGES_IQK, HAL_INIT_STAGES_PW_TRACK, HAL_INIT_STAGES_LCK, //HAL_INIT_STAGES_MISC21, //HAL_INIT_STAGES_INIT_PABIAS, #ifdef CONFIG_BT_COEXIST HAL_INIT_STAGES_BT_COEXIST, #endif //HAL_INIT_STAGES_ANTENNA_SEL, //HAL_INIT_STAGES_MISC31, HAL_INIT_STAGES_END, HAL_INIT_STAGES_NUM }; char * hal_init_stages_str[] = { "HAL_INIT_STAGES_BEGIN", "HAL_INIT_STAGES_INIT_PW_ON", "HAL_INIT_STAGES_MISC01", "HAL_INIT_STAGES_DOWNLOAD_FW", "HAL_INIT_STAGES_MAC", "HAL_INIT_STAGES_BB", "HAL_INIT_STAGES_RF", "HAL_INIT_STAGES_EFUSE_PATCH", "HAL_INIT_STAGES_INIT_LLTT", "HAL_INIT_STAGES_MISC02", "HAL_INIT_STAGES_TURN_ON_BLOCK", "HAL_INIT_STAGES_INIT_SECURITY", "HAL_INIT_STAGES_MISC11", "HAL_INIT_STAGES_INIT_HAL_DM", //"HAL_INIT_STAGES_RF_PS", "HAL_INIT_STAGES_IQK", "HAL_INIT_STAGES_PW_TRACK", "HAL_INIT_STAGES_LCK", //"HAL_INIT_STAGES_MISC21", #ifdef CONFIG_BT_COEXIST "HAL_INIT_STAGES_BT_COEXIST", #endif //"HAL_INIT_STAGES_ANTENNA_SEL", //"HAL_INIT_STAGES_MISC31", "HAL_INIT_STAGES_END", }; int hal_init_profiling_i; u32 hal_init_stages_timestamp[HAL_INIT_STAGES_NUM]; //used to record the time of each stage's starting point for(hal_init_profiling_i=0;hal_init_profiling_iwowlan_wake_reason = rtw_read8(Adapter, REG_WOWLAN_WAKE_REASON); DBG_8192C("%s wowlan_wake_reason: 0x%02x\n", __func__, pwrctrlpriv->wowlan_wake_reason); if(rtw_read8(Adapter, REG_MCUFWDL)&BIT7){ /*&& (pwrctrlpriv->wowlan_wake_reason & FWDecisionDisconnect)) {*/ u8 reg_val=0; DBG_8192C("+Reset Entry+\n"); rtw_write8(Adapter, REG_MCUFWDL, 0x00); _8051Reset88E(Adapter); //reset BB reg_val = rtw_read8(Adapter, REG_SYS_FUNC_EN); reg_val &= ~(BIT(0) | BIT(1)); rtw_write8(Adapter, REG_SYS_FUNC_EN, reg_val); //reset RF rtw_write8(Adapter, REG_RF_CTRL, 0); //reset TRX path rtw_write16(Adapter, REG_CR, 0); //reset MAC, Digital Core reg_val = rtw_read8(Adapter, REG_SYS_FUNC_EN+1); reg_val &= ~(BIT(4) | BIT(7)); rtw_write8(Adapter, REG_SYS_FUNC_EN+1, reg_val); reg_val = rtw_read8(Adapter, REG_SYS_FUNC_EN+1); reg_val |= BIT(4) | BIT(7); rtw_write8(Adapter, REG_SYS_FUNC_EN+1, reg_val); DBG_8192C("-Reset Entry-\n"); } #endif //CONFIG_WOWLAN if(pwrctrlpriv->bkeepfwalive) { _ps_open_RF(Adapter); if(pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized){ // PHY_IQCalibrate(padapter, _TRUE); PHY_IQCalibrate_8188E(Adapter,_TRUE); } else { // PHY_IQCalibrate(padapter, _FALSE); PHY_IQCalibrate_8188E(Adapter,_FALSE); pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized = _TRUE; } // dm_CheckTXPowerTracking(padapter); // PHY_LCCalibrate(padapter); ODM_TXPowerTrackingCheck(&pHalData->odmpriv ); PHY_LCCalibrate_8188E(Adapter); goto exit; } HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PW_ON); status = InitPowerOn_rtl8188eu(Adapter); if(status == _FAIL){ RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init power on!\n")); goto exit; } // Save target channel pHalData->CurrentChannel = 6;//default set to 6 if(pwrctrlpriv->reg_rfoff == _TRUE){ pwrctrlpriv->rf_pwrstate = rf_off; } // 2010/08/09 MH We need to check if we need to turnon or off RF after detecting // HW GPIO pin. Before PHY_RFConfig8192C. //HalDetectPwrDownMode(Adapter); // 2010/08/26 MH If Efuse does not support sective suspend then disable the function. //HalDetectSelectiveSuspendMode(Adapter); if (!pregistrypriv->wifi_spec) { txpktbuf_bndy = TX_PAGE_BOUNDARY_88E; } else { // for WMM txpktbuf_bndy = WMM_NORMAL_TX_PAGE_BOUNDARY_88E; } HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC01); _InitQueueReservedPage(Adapter); _InitQueuePriority(Adapter); _InitPageBoundary(Adapter); _InitTransferPageSize(Adapter); #ifdef CONFIG_IOL_IOREG_CFG _InitTxBufferBoundary(Adapter, 0); #endif HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_DOWNLOAD_FW); #if (MP_DRIVER == 1) if (Adapter->registrypriv.mp_mode == 1) { _InitRxSetting(Adapter); } #endif //MP_DRIVER == 1 { #if 0 Adapter->bFWReady = _FALSE; //because no fw for test chip pHalData->fw_ractrl = _FALSE; #else #ifdef CONFIG_WOWLAN status = rtl8188e_FirmwareDownload(Adapter, _FALSE); #else status = rtl8188e_FirmwareDownload(Adapter); #endif //CONFIG_WOWLAN if (status != _SUCCESS) { DBG_871X("%s: Download Firmware failed!!\n", __FUNCTION__); Adapter->bFWReady = _FALSE; pHalData->fw_ractrl = _FALSE; return status; } else { RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Initializepadapter8192CSdio(): Download Firmware Success!!\n")); Adapter->bFWReady = _TRUE; pHalData->fw_ractrl = _FALSE; } #endif } rtl8188e_InitializeFirmwareVars(Adapter); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MAC); #if (HAL_MAC_ENABLE == 1) status = PHY_MACConfig8188E(Adapter); if(status == _FAIL) { DBG_871X(" ### Failed to init MAC ...... \n "); goto exit; } #endif // //d. Initialize BB related configurations. // HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_BB); #if (HAL_BB_ENABLE == 1) status = PHY_BBConfig8188E(Adapter); if(status == _FAIL) { DBG_871X(" ### Failed to init BB ...... \n "); goto exit; } #endif HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_RF); #if (HAL_RF_ENABLE == 1) status = PHY_RFConfig8188E(Adapter); if(status == _FAIL) { DBG_871X(" ### Failed to init RF ...... \n "); goto exit; } #endif HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_EFUSE_PATCH); #if defined(CONFIG_IOL_EFUSE_PATCH) status = rtl8188e_iol_efuse_patch(Adapter); if(status == _FAIL){ DBG_871X("%s rtl8188e_iol_efuse_patch failed \n",__FUNCTION__); goto exit; } #endif _InitTxBufferBoundary(Adapter, txpktbuf_bndy); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_LLTT); status = InitLLTTable(Adapter, txpktbuf_bndy); if(status == _FAIL){ RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init LLT table\n")); goto exit; } HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC02); // Get Rx PHY status in order to report RSSI and others. _InitDriverInfoSize(Adapter, DRVINFO_SZ); _InitInterrupt(Adapter); hal_init_macaddr(Adapter);//set mac_address _InitNetworkType(Adapter);//set msr _InitWMACSetting(Adapter); _InitAdaptiveCtrl(Adapter); _InitEDCA(Adapter); //_InitRateFallback(Adapter);//just follow MP Team ???Georgia _InitRetryFunction(Adapter); InitUsbAggregationSetting(Adapter); _InitOperationMode(Adapter);//todo _InitBeaconParameters(Adapter); _InitBeaconMaxError(Adapter, _TRUE); // // Init CR MACTXEN, MACRXEN after setting RxFF boundary REG_TRXFF_BNDY to patch // Hw bug which Hw initials RxFF boundry size to a value which is larger than the real Rx buffer size in 88E. // // Enable MACTXEN/MACRXEN block value16 = rtw_read16(Adapter, REG_CR); value16 |= (MACTXEN | MACRXEN); rtw_write8(Adapter, REG_CR, value16); _InitHardwareDropIncorrectBulkOut(Adapter); if(pHalData->bRDGEnable){ _InitRDGSetting(Adapter); } #if (RATE_ADAPTIVE_SUPPORT==1) {//Enable TX Report //Enable Tx Report Timer value8 = rtw_read8(Adapter, REG_TX_RPT_CTRL); rtw_write8(Adapter, REG_TX_RPT_CTRL, (value8|BIT1|BIT0)); //Set MAX RPT MACID rtw_write8(Adapter, REG_TX_RPT_CTRL+1, 2);//FOR sta mode ,0: bc/mc ,1:AP //Tx RPT Timer. Unit: 32us rtw_write16(Adapter, REG_TX_RPT_TIME, 0xCdf0); } #endif #if 0 if(pHTInfo->bRDGEnable){ _InitRDGSetting_8188E(Adapter); } #endif #ifdef CONFIG_TX_EARLY_MODE if( pHalData->bEarlyModeEnable) { RT_TRACE(_module_hci_hal_init_c_, _drv_info_,("EarlyMode Enabled!!!\n")); value8 = rtw_read8(Adapter, REG_EARLY_MODE_CONTROL); #if RTL8188E_EARLY_MODE_PKT_NUM_10 == 1 value8 = value8|0x1f; #else value8 = value8|0xf; #endif rtw_write8(Adapter, REG_EARLY_MODE_CONTROL, value8); rtw_write8(Adapter, REG_EARLY_MODE_CONTROL+3, 0x80); value8 = rtw_read8(Adapter, REG_TCR+1); value8 = value8|0x40; rtw_write8(Adapter,REG_TCR+1, value8); } else #endif { rtw_write8(Adapter, REG_EARLY_MODE_CONTROL, 0); } rtw_write32(Adapter,REG_MACID_NO_LINK_0,0xFFFFFFFF); rtw_write32(Adapter,REG_MACID_NO_LINK_1,0xFFFFFFFF); #if defined(CONFIG_CONCURRENT_MODE) || defined(CONFIG_TX_MCAST2UNI) #ifdef CONFIG_CHECK_AC_LIFETIME // Enable lifetime check for the four ACs rtw_write8(Adapter, REG_LIFETIME_EN, 0x0F); #endif // CONFIG_CHECK_AC_LIFETIME #ifdef CONFIG_TX_MCAST2UNI rtw_write16(Adapter, REG_PKT_VO_VI_LIFE_TIME, 0x0400); // unit: 256us. 256ms rtw_write16(Adapter, REG_PKT_BE_BK_LIFE_TIME, 0x0400); // unit: 256us. 256ms #else // CONFIG_TX_MCAST2UNI rtw_write16(Adapter, REG_PKT_VO_VI_LIFE_TIME, 0x3000); // unit: 256us. 3s rtw_write16(Adapter, REG_PKT_BE_BK_LIFE_TIME, 0x3000); // unit: 256us. 3s #endif // CONFIG_TX_MCAST2UNI #endif // CONFIG_CONCURRENT_MODE || CONFIG_TX_MCAST2UNI #ifdef CONFIG_LED _InitHWLed(Adapter); #endif //CONFIG_LED // // Joseph Note: Keep RfRegChnlVal for later use. // pHalData->RfRegChnlVal[0] = PHY_QueryRFReg(Adapter, (RF_RADIO_PATH_E)0, RF_CHNLBW, bRFRegOffsetMask); pHalData->RfRegChnlVal[1] = PHY_QueryRFReg(Adapter, (RF_RADIO_PATH_E)1, RF_CHNLBW, bRFRegOffsetMask); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_TURN_ON_BLOCK); _BBTurnOnBlock(Adapter); //NicIFSetMacAddress(padapter, padapter->PermanentAddress); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_SECURITY); invalidate_cam_all(Adapter); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC11); // 2010/12/17 MH We need to set TX power according to EFUSE content at first. PHY_SetTxPowerLevel8188E(Adapter, pHalData->CurrentChannel); // Move by Neo for USB SS to below setp //_RfPowerSave(Adapter); _InitAntenna_Selection(Adapter); // // Disable BAR, suggested by Scott // 2010.04.09 add by hpfan // rtw_write32(Adapter, REG_BAR_MODE_CTRL, 0x0201ffff); // HW SEQ CTRL //set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. rtw_write8(Adapter,REG_HWSEQ_CTRL, 0xFF); if(pregistrypriv->wifi_spec) rtw_write16(Adapter,REG_FAST_EDCA_CTRL ,0); //Nav limit , suggest by scott rtw_write8(Adapter, 0x652, 0x0); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_HAL_DM); rtl8188e_InitHalDm(Adapter); #if (MP_DRIVER == 1) if (Adapter->registrypriv.mp_mode == 1) { Adapter->mppriv.channel = pHalData->CurrentChannel; MPT_InitializeAdapter(Adapter, Adapter->mppriv.channel); } else #endif //#if (MP_DRIVER == 1) { // // 2010/08/11 MH Merge from 8192SE for Minicard init. We need to confirm current radio status // and then decide to enable RF or not.!!!??? For Selective suspend mode. We may not // call init_adapter. May cause some problem?? // // Fix the bug that Hw/Sw radio off before S3/S4, the RF off action will not be executed // in MgntActSet_RF_State() after wake up, because the value of pHalData->eRFPowerState // is the same as eRfOff, we should change it to eRfOn after we config RF parameters. // Added by tynli. 2010.03.30. pwrctrlpriv->rf_pwrstate = rf_on; #if 0 //to do RT_CLEAR_PS_LEVEL(pwrctrlpriv, RT_RF_OFF_LEVL_HALT_NIC); #if 1 //Todo // 20100326 Joseph: Copy from GPIOChangeRFWorkItemCallBack() function to check HW radio on/off. // 20100329 Joseph: Revise and integrate the HW/SW radio off code in initialization. eRfPowerStateToSet = (rt_rf_power_state) RfOnOffDetect(Adapter); pwrctrlpriv->rfoff_reason |= eRfPowerStateToSet==rf_on ? RF_CHANGE_BY_INIT : RF_CHANGE_BY_HW; pwrctrlpriv->rfoff_reason |= (pwrctrlpriv->reg_rfoff) ? RF_CHANGE_BY_SW : 0; if(pwrctrlpriv->rfoff_reason&RF_CHANGE_BY_HW) pwrctrlpriv->b_hw_radio_off = _TRUE; DBG_8192C("eRfPowerStateToSet=%d\n", eRfPowerStateToSet); if(pwrctrlpriv->reg_rfoff == _TRUE) { // User disable RF via registry. DBG_8192C("InitializeAdapter8192CU(): Turn off RF for RegRfOff.\n"); //MgntActSet_RF_State(Adapter, rf_off, RF_CHANGE_BY_SW, _TRUE); // Those action will be discard in MgntActSet_RF_State because off the same state //for(eRFPath = 0; eRFPath NumTotalRFPath; eRFPath++) //PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)eRFPath, 0x4, 0xC00, 0x0); } else if(pwrctrlpriv->rfoff_reason > RF_CHANGE_BY_PS) { // H/W or S/W RF OFF before sleep. DBG_8192C(" Turn off RF for RfOffReason(%x) ----------\n", pwrctrlpriv->rfoff_reason); //pwrctrlpriv->rfoff_reason = RF_CHANGE_BY_INIT; pwrctrlpriv->rf_pwrstate = rf_on; //MgntActSet_RF_State(Adapter, rf_off, pwrctrlpriv->rfoff_reason, _TRUE); } else { // Perform GPIO polling to find out current RF state. added by Roger, 2010.04.09. if(pHalData->BoardType == BOARD_MINICARD /*&& (Adapter->MgntInfo.PowerSaveControl.bGpioRfSw)*/) { DBG_8192C("InitializeAdapter8192CU(): RF=%d \n", eRfPowerStateToSet); if (eRfPowerStateToSet == rf_off) { //MgntActSet_RF_State(Adapter, rf_off, RF_CHANGE_BY_HW, _TRUE); pwrctrlpriv->b_hw_radio_off = _TRUE; } else { pwrctrlpriv->rf_pwrstate = rf_off; pwrctrlpriv->rfoff_reason = RF_CHANGE_BY_INIT; pwrctrlpriv->b_hw_radio_off = _FALSE; //MgntActSet_RF_State(Adapter, rf_on, pwrctrlpriv->rfoff_reason, _TRUE); } } else { pwrctrlpriv->rf_pwrstate = rf_off; pwrctrlpriv->rfoff_reason = RF_CHANGE_BY_INIT; //MgntActSet_RF_State(Adapter, rf_on, pwrctrlpriv->rfoff_reason, _TRUE); } pwrctrlpriv->rfoff_reason = 0; pwrctrlpriv->b_hw_radio_off = _FALSE; pwrctrlpriv->rf_pwrstate = rf_on; rtw_led_control(Adapter, LED_CTL_POWER_ON); } // 2010/-8/09 MH For power down module, we need to enable register block contrl reg at 0x1c. // Then enable power down control bit of register 0x04 BIT4 and BIT15 as 1. if(pHalData->pwrdown && eRfPowerStateToSet == rf_off) { // Enable register area 0x0-0xc. rtw_write8(Adapter, REG_RSV_CTRL, 0x0); // // We should configure HW PDn source for WiFi ONLY, and then // our HW will be set in power-down mode if PDn source from all functions are configured. // 2010.10.06. // //if(IS_HARDWARE_TYPE_8723AU(Adapter)) //{ // u1bTmp = rtw_read8(Adapter, REG_MULTI_FUNC_CTRL); // rtw_write8(Adapter, REG_MULTI_FUNC_CTRL, (u1bTmp|WL_HWPDN_EN)); //} //else //{ rtw_write16(Adapter, REG_APS_FSMCO, 0x8812); //} } //DrvIFIndicateCurrentPhyStatus(Adapter); // 2010/08/17 MH Disable to prevent BSOD. #endif #endif // enable Tx report. rtw_write8(Adapter, REG_FWHW_TXQ_CTRL+1, 0x0F); // Suggested by SD1 pisa. Added by tynli. 2011.10.21. rtw_write8(Adapter, REG_EARLY_MODE_CONTROL+3, 0x01);//Pretx_en, for WEP/TKIP SEC //tynli_test_tx_report. rtw_write16(Adapter, REG_TX_RPT_TIME, 0x3DF0); //RT_TRACE(COMP_INIT, DBG_TRACE, ("InitializeAdapter8188EUsb() <====\n")); //enable tx DMA to drop the redundate data of packet rtw_write16(Adapter,REG_TXDMA_OFFSET_CHK, (rtw_read16(Adapter,REG_TXDMA_OFFSET_CHK) | DROP_DATA_EN)); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_IQK); // 2010/08/26 MH Merge from 8192CE. if(pwrctrlpriv->rf_pwrstate == rf_on) { if(pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized){ PHY_IQCalibrate_8188E(Adapter,_TRUE); } else { PHY_IQCalibrate_8188E(Adapter,_FALSE); pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized = _TRUE; } HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_PW_TRACK); ODM_TXPowerTrackingCheck(&pHalData->odmpriv ); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_LCK); PHY_LCCalibrate_8188E(Adapter); } } //HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PABIAS); // _InitPABias(Adapter); rtw_write8(Adapter, REG_USB_HRPWM, 0); #ifdef CONFIG_XMIT_ACK //ack for xmit mgmt frames. rtw_write32(Adapter, REG_FWHW_TXQ_CTRL, rtw_read32(Adapter, REG_FWHW_TXQ_CTRL)|BIT(12)); #endif //CONFIG_XMIT_ACK exit: HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_END); DBG_871X("%s in %dms\n", __FUNCTION__, rtw_get_passing_time_ms(init_start_time)); #ifdef DBG_HAL_INIT_PROFILING hal_init_stages_timestamp[HAL_INIT_STAGES_END]=rtw_get_current_time(); for(hal_init_profiling_i=0;hal_init_profiling_iMgntInfo); u8 val8; u16 val16; u32 val32; u8 bMacPwrCtrlOn=_FALSE; rtw_hal_get_hwreg(Adapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn); if(bMacPwrCtrlOn == _FALSE) return ; RT_TRACE(COMP_INIT, DBG_LOUD, ("%s\n",__FUNCTION__)); //Stop Tx Report Timer. 0x4EC[Bit1]=b'0 val8 = rtw_read8(Adapter, REG_TX_RPT_CTRL); rtw_write8(Adapter, REG_TX_RPT_CTRL, val8&(~BIT1)); // stop rx rtw_write8(Adapter, REG_CR, 0x0); // Run LPS WL RFOFF flow HalPwrSeqCmdParsing(Adapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_LPS_ENTER_FLOW); // 2. 0x1F[7:0] = 0 // turn off RF //rtw_write8(Adapter, REG_RF_CTRL, 0x00); val8 = rtw_read8(Adapter, REG_MCUFWDL); if ((val8 & RAM_DL_SEL) && Adapter->bFWReady) //8051 RAM code { //rtl8723a_FirmwareSelfReset(padapter); //_8051Reset88E(padapter); // Reset MCU 0x2[10]=0. val8 = rtw_read8(Adapter, REG_SYS_FUNC_EN+1); val8 &= ~BIT(2); // 0x2[10], FEN_CPUEN rtw_write8(Adapter, REG_SYS_FUNC_EN+1, val8); } //val8 = rtw_read8(Adapter, REG_SYS_FUNC_EN+1); //val8 &= ~BIT(2); // 0x2[10], FEN_CPUEN //rtw_write8(Adapter, REG_SYS_FUNC_EN+1, val8); // MCUFWDL 0x80[1:0]=0 // reset MCU ready status rtw_write8(Adapter, REG_MCUFWDL, 0); //YJ,add,111212 //Disable 32k val8 = rtw_read8(Adapter, REG_32K_CTRL); rtw_write8(Adapter, REG_32K_CTRL, val8&(~BIT0)); // Card disable power action flow HalPwrSeqCmdParsing(Adapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_DISABLE_FLOW); // Reset MCU IO Wrapper val8 = rtw_read8(Adapter, REG_RSV_CTRL+1); rtw_write8(Adapter, REG_RSV_CTRL+1, (val8&(~BIT3))); val8 = rtw_read8(Adapter, REG_RSV_CTRL+1); rtw_write8(Adapter, REG_RSV_CTRL+1, val8|BIT3); #if 0 // 7. RSV_CTRL 0x1C[7:0] = 0x0E // lock ISO/CLK/Power control register rtw_write8(Adapter, REG_RSV_CTRL, 0x0e); #endif #if 1 //YJ,test add, 111207. For Power Consumption. val8 = rtw_read8(Adapter, GPIO_IN); rtw_write8(Adapter, GPIO_OUT, val8); rtw_write8(Adapter, GPIO_IO_SEL, 0xFF);//Reg0x46 val8 = rtw_read8(Adapter, REG_GPIO_IO_SEL); //rtw_write8(Adapter, REG_GPIO_IO_SEL, (val8<<4)|val8); rtw_write8(Adapter, REG_GPIO_IO_SEL, (val8<<4)); val8 = rtw_read8(Adapter, REG_GPIO_IO_SEL+1); rtw_write8(Adapter, REG_GPIO_IO_SEL+1, val8|0x0F);//Reg0x43 rtw_write32(Adapter, REG_BB_PAD_CTRL, 0x00080808);//set LNA ,TRSW,EX_PA Pin to output mode #endif bMacPwrCtrlOn = _FALSE; rtw_hal_set_hwreg(Adapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn); Adapter->bFWReady = _FALSE; } static void rtl8188eu_hw_power_down(struct adapter *padapter) { // 2010/-8/09 MH For power down module, we need to enable register block contrl reg at 0x1c. // Then enable power down control bit of register 0x04 BIT4 and BIT15 as 1. // Enable register area 0x0-0xc. rtw_write8(padapter,REG_RSV_CTRL, 0x0); rtw_write16(padapter, REG_APS_FSMCO, 0x8812); } u32 rtl8188eu_hal_deinit(struct adapter *Adapter) { struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(Adapter); HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); DBG_8192C("==> %s \n",__FUNCTION__); #ifdef CONFIG_SUPPORT_USB_INT rtw_write32(Adapter, REG_HIMR_88E, IMR_DISABLED_88E); rtw_write32(Adapter, REG_HIMRE_88E, IMR_DISABLED_88E); #endif #ifdef SUPPORT_HW_RFOFF_DETECTED DBG_8192C("bkeepfwalive(%x)\n", pwrctl->bkeepfwalive); if(pwrctl->bkeepfwalive) { _ps_close_RF(Adapter); if((pwrctl->bHWPwrPindetect) && (pwrctl->bHWPowerdown)) rtl8188eu_hw_power_down(Adapter); } else #endif { if(Adapter->hw_init_completed == _TRUE){ hal_poweroff_rtl8188eu(Adapter); if((pwrctl->bHWPwrPindetect ) && (pwrctl->bHWPowerdown)) rtl8188eu_hw_power_down(Adapter); } } return _SUCCESS; } unsigned int rtl8188eu_inirp_init(struct adapter *Adapter) { u8 i; struct recv_buf *precvbuf; uint status; struct dvobj_priv *pdev= adapter_to_dvobj(Adapter); struct intf_hdl * pintfhdl=&Adapter->iopriv.intf; struct recv_priv *precvpriv = &(Adapter->recvpriv); u32 (*_read_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem); #ifdef CONFIG_USB_INTERRUPT_IN_PIPE HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u32 (*_read_interrupt)(struct intf_hdl *pintfhdl, u32 addr); #endif _func_enter_; _read_port = pintfhdl->io_ops._read_port; status = _SUCCESS; RT_TRACE(_module_hci_hal_init_c_,_drv_info_,("===> usb_inirp_init \n")); precvpriv->ff_hwaddr = RECV_BULK_IN_ADDR; //issue Rx irp to receive data precvbuf = (struct recv_buf *)precvpriv->precv_buf; for(i=0; iff_hwaddr, 0, (unsigned char *)precvbuf) == _FALSE ) { RT_TRACE(_module_hci_hal_init_c_,_drv_err_,("usb_rx_init: usb_read_port error \n")); status = _FAIL; goto exit; } precvbuf++; precvpriv->free_recv_buf_queue_cnt--; } #ifdef CONFIG_USB_INTERRUPT_IN_PIPE if(pHalData->RtIntInPipe != 0x05) { status = _FAIL; DBG_871X("%s =>Warning !! Have not USB Int-IN pipe, pHalData->RtIntInPipe(%d)!!!\n",__FUNCTION__,pHalData->RtIntInPipe); goto exit; } _read_interrupt = pintfhdl->io_ops._read_interrupt; if(_read_interrupt(pintfhdl, RECV_INT_IN_ADDR) == _FALSE ) { RT_TRACE(_module_hci_hal_init_c_,_drv_err_,("usb_rx_init: usb_read_interrupt error \n")); status = _FAIL; } #endif exit: RT_TRACE(_module_hci_hal_init_c_,_drv_info_,("<=== usb_inirp_init \n")); _func_exit_; return status; } unsigned int rtl8188eu_inirp_deinit(struct adapter *Adapter) { RT_TRACE(_module_hci_hal_init_c_,_drv_info_,("\n ===> usb_rx_deinit \n")); rtw_read_port_cancel(Adapter); RT_TRACE(_module_hci_hal_init_c_,_drv_info_,("\n <=== usb_rx_deinit \n")); return _SUCCESS; } //------------------------------------------------------------------------- // // EEPROM Power index mapping // //------------------------------------------------------------------------- #if 0 static VOID _ReadPowerValueFromPROM( IN PTxPowerInfo pwrInfo, IN u8* PROMContent, IN BOOLEAN AutoLoadFail ) { u32 rfPath, eeAddr, group; _rtw_memset(pwrInfo, 0, sizeof(TxPowerInfo)); if(AutoLoadFail){ for(group = 0 ; group < CHANNEL_GROUP_MAX ; group++){ for(rfPath = 0 ; rfPath < RF_PATH_MAX ; rfPath++){ pwrInfo->CCKIndex[rfPath][group] = EEPROM_Default_TxPowerLevel; pwrInfo->HT40_1SIndex[rfPath][group] = EEPROM_Default_TxPowerLevel; pwrInfo->HT40_2SIndexDiff[rfPath][group]= EEPROM_Default_HT40_2SDiff; pwrInfo->HT20IndexDiff[rfPath][group] = EEPROM_Default_HT20_Diff; pwrInfo->OFDMIndexDiff[rfPath][group] = EEPROM_Default_LegacyHTTxPowerDiff; pwrInfo->HT40MaxOffset[rfPath][group] = EEPROM_Default_HT40_PwrMaxOffset; pwrInfo->HT20MaxOffset[rfPath][group] = EEPROM_Default_HT20_PwrMaxOffset; } } pwrInfo->TSSI_A = EEPROM_Default_TSSI; pwrInfo->TSSI_B = EEPROM_Default_TSSI; return; } for(rfPath = 0 ; rfPath < RF_PATH_MAX ; rfPath++){ for(group = 0 ; group < CHANNEL_GROUP_MAX ; group++){ eeAddr = EEPROM_CCK_TX_PWR_INX + (rfPath * 3) + group; pwrInfo->CCKIndex[rfPath][group] = PROMContent[eeAddr]; eeAddr = EEPROM_HT40_1S_TX_PWR_INX + (rfPath * 3) + group; pwrInfo->HT40_1SIndex[rfPath][group] = PROMContent[eeAddr]; } } for(group = 0 ; group < CHANNEL_GROUP_MAX ; group++){ for(rfPath = 0 ; rfPath < RF_PATH_MAX ; rfPath++){ pwrInfo->HT40_2SIndexDiff[rfPath][group] = (PROMContent[EEPROM_HT40_2S_TX_PWR_INX_DIFF + group] >> (rfPath * 4)) & 0xF; #if 1 pwrInfo->HT20IndexDiff[rfPath][group] = (PROMContent[EEPROM_HT20_TX_PWR_INX_DIFF + group] >> (rfPath * 4)) & 0xF; if(pwrInfo->HT20IndexDiff[rfPath][group] & BIT3) //4bit sign number to 8 bit sign number pwrInfo->HT20IndexDiff[rfPath][group] |= 0xF0; #else pwrInfo->HT20IndexDiff[rfPath][group] = (PROMContent[EEPROM_HT20_TX_PWR_INX_DIFF + group] >> (rfPath * 4)) & 0xF; #endif pwrInfo->OFDMIndexDiff[rfPath][group] = (PROMContent[EEPROM_OFDM_TX_PWR_INX_DIFF+ group] >> (rfPath * 4)) & 0xF; pwrInfo->HT40MaxOffset[rfPath][group] = (PROMContent[EEPROM_HT40_MAX_PWR_OFFSET+ group] >> (rfPath * 4)) & 0xF; pwrInfo->HT20MaxOffset[rfPath][group] = (PROMContent[EEPROM_HT20_MAX_PWR_OFFSET+ group] >> (rfPath * 4)) & 0xF; } } pwrInfo->TSSI_A = PROMContent[EEPROM_TSSI_A]; pwrInfo->TSSI_B = PROMContent[EEPROM_TSSI_B]; } static u32 _GetChannelGroup( IN u32 channel ) { //RT_ASSERT((channel < 14), ("Channel %d no is supported!\n")); if(channel < 3){ // Channel 1~3 return 0; } else if(channel < 9){ // Channel 4~9 return 1; } return 2; // Channel 10~14 } static VOID ReadTxPowerInfo( IN struct adapter * Adapter, IN u8* PROMContent, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); TxPowerInfo pwrInfo; u32 rfPath, ch, group; u8 pwr, diff; _ReadPowerValueFromPROM(&pwrInfo, PROMContent, AutoLoadFail); if(!AutoLoadFail) pHalData->bTXPowerDataReadFromEEPORM = _TRUE; for(rfPath = 0 ; rfPath < RF_PATH_MAX ; rfPath++){ for(ch = 0 ; ch < CHANNEL_MAX_NUMBER ; ch++){ group = _GetChannelGroup(ch); pHalData->TxPwrLevelCck[rfPath][ch] = pwrInfo.CCKIndex[rfPath][group]; pHalData->TxPwrLevelHT40_1S[rfPath][ch] = pwrInfo.HT40_1SIndex[rfPath][group]; pHalData->TxPwrHt20Diff[rfPath][ch] = pwrInfo.HT20IndexDiff[rfPath][group]; pHalData->TxPwrLegacyHtDiff[rfPath][ch] = pwrInfo.OFDMIndexDiff[rfPath][group]; pHalData->PwrGroupHT20[rfPath][ch] = pwrInfo.HT20MaxOffset[rfPath][group]; pHalData->PwrGroupHT40[rfPath][ch] = pwrInfo.HT40MaxOffset[rfPath][group]; pwr = pwrInfo.HT40_1SIndex[rfPath][group]; diff = pwrInfo.HT40_2SIndexDiff[rfPath][group]; pHalData->TxPwrLevelHT40_2S[rfPath][ch] = (pwr > diff) ? (pwr - diff) : 0; } } #if 0 //DBG for(rfPath = 0 ; rfPath < RF_PATH_MAX ; rfPath++){ for(ch = 0 ; ch < CHANNEL_MAX_NUMBER ; ch++){ RTPRINT(FINIT, INIT_TxPower, ("RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n", rfPath, ch, pHalData->TxPwrLevelCck[rfPath][ch], pHalData->TxPwrLevelHT40_1S[rfPath][ch], pHalData->TxPwrLevelHT40_2S[rfPath][ch])); } } for(ch = 0 ; ch < CHANNEL_MAX_NUMBER ; ch++){ RTPRINT(FINIT, INIT_TxPower, ("RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", ch, pHalData->TxPwrHt20Diff[RF_PATH_A][ch])); } for(ch = 0 ; ch < CHANNEL_MAX_NUMBER ; ch++){ RTPRINT(FINIT, INIT_TxPower, ("RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", ch, pHalData->TxPwrLegacyHtDiff[RF_PATH_A][ch])); } for(ch = 0 ; ch < CHANNEL_MAX_NUMBER ; ch++){ RTPRINT(FINIT, INIT_TxPower, ("RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", ch, pHalData->TxPwrHt20Diff[RF_PATH_B][ch])); } for(ch = 0 ; ch < CHANNEL_MAX_NUMBER ; ch++){ RTPRINT(FINIT, INIT_TxPower, ("RF-B Legacy to HT40 Diff[%d] = 0x%x\n", ch, pHalData->TxPwrLegacyHtDiff[RF_PATH_B][ch])); } #endif // 2010/10/19 MH Add Regulator recognize for CU. if(!AutoLoadFail) { pHalData->EEPROMRegulatory = (PROMContent[RF_OPTION1]&0x7); //bit0~2 } else { pHalData->EEPROMRegulatory = 0; } DBG_8192C("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory); } #endif //------------------------------------------------------------------- // // EEPROM/EFUSE Content Parsing // //------------------------------------------------------------------- static void _ReadIDs( IN struct adapter *Adapter, IN u8* PROMContent, IN BOOLEAN AutoloadFail ) { #if 0 HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if(_FALSE == AutoloadFail){ // VID, PID pHalData->EEPROMVID = le16_to_cpu( *(u16 *)&PROMContent[EEPROM_VID]); pHalData->EEPROMPID = le16_to_cpu( *(u16 *)&PROMContent[EEPROM_PID]); // Customer ID, 0x00 and 0xff are reserved for Realtek. pHalData->EEPROMCustomerID = *(u8 *)&PROMContent[EEPROM_CUSTOMER_ID]; pHalData->EEPROMSubCustomerID = *(u8 *)&PROMContent[EEPROM_SUBCUSTOMER_ID]; } else{ pHalData->EEPROMVID = EEPROM_Default_VID; pHalData->EEPROMPID = EEPROM_Default_PID; // Customer ID, 0x00 and 0xff are reserved for Realtek. pHalData->EEPROMCustomerID = EEPROM_Default_CustomerID; pHalData->EEPROMSubCustomerID = EEPROM_Default_SubCustomerID; } // For customized behavior. if((pHalData->EEPROMVID == 0x103C) && (pHalData->EEPROMVID == 0x1629))// HP Lite-On for RTL8188CUS Slim Combo. pHalData->CustomerID = RT_CID_819x_HP; // Decide CustomerID according to VID/DID or EEPROM switch(pHalData->EEPROMCustomerID) { case EEPROM_CID_DEFAULT: if((pHalData->EEPROMVID == 0x2001) && (pHalData->EEPROMPID == 0x3308)) pHalData->CustomerID = RT_CID_DLINK; else if((pHalData->EEPROMVID == 0x2001) && (pHalData->EEPROMPID == 0x3309)) pHalData->CustomerID = RT_CID_DLINK; else if((pHalData->EEPROMVID == 0x2001) && (pHalData->EEPROMPID == 0x330a)) pHalData->CustomerID = RT_CID_DLINK; break; case EEPROM_CID_WHQL: /* Adapter->bInHctTest = TRUE; pMgntInfo->bSupportTurboMode = FALSE; pMgntInfo->bAutoTurboBy8186 = FALSE; pMgntInfo->PowerSaveControl.bInactivePs = FALSE; pMgntInfo->PowerSaveControl.bIPSModeBackup = FALSE; pMgntInfo->PowerSaveControl.bLeisurePs = FALSE; pMgntInfo->keepAliveLevel = 0; Adapter->bUnloadDriverwhenS3S4 = FALSE; */ break; default: pHalData->CustomerID = RT_CID_DEFAULT; break; } MSG_8192C("EEPROMVID = 0x%04x\n", pHalData->EEPROMVID); MSG_8192C("EEPROMPID = 0x%04x\n", pHalData->EEPROMPID); MSG_8192C("EEPROMCustomerID : 0x%02x\n", pHalData->EEPROMCustomerID); MSG_8192C("EEPROMSubCustomerID: 0x%02x\n", pHalData->EEPROMSubCustomerID); MSG_8192C("RT_CustomerID: 0x%02x\n", pHalData->CustomerID); #endif } static VOID _ReadMACAddress( IN struct adapter *Adapter, IN u8* PROMContent, IN BOOLEAN AutoloadFail ) { #if 0 EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(Adapter); if(_FALSE == AutoloadFail){ //Read Permanent MAC address and set value to hardware _rtw_memcpy(pEEPROM->mac_addr, &PROMContent[EEPROM_MAC_ADDR], ETH_ALEN); } else{ //Random assigh MAC address u8 sMacAddr[MAC_ADDR_LEN] = {0x00, 0xE0, 0x4C, 0x81, 0x92, 0x00}; //sMacAddr[5] = (u8)GetRandomNumber(1, 254); _rtw_memcpy(pEEPROM->mac_addr, sMacAddr, ETH_ALEN); } DBG_8192C("%s MAC Address from EFUSE = "MAC_FMT"\n",__FUNCTION__, MAC_ARG(pEEPROM->mac_addr)); //NicIFSetMacAddress(Adapter, Adapter->PermanentAddress); //RT_PRINT_ADDR(COMP_INIT|COMP_EFUSE, DBG_LOUD, "MAC Addr: %s", Adapter->PermanentAddress); #endif } static VOID _ReadBoardType( IN struct adapter *Adapter, IN u8* PROMContent, IN BOOLEAN AutoloadFail ) { } static VOID _ReadLEDSetting( IN struct adapter *Adapter, IN u8* PROMContent, IN BOOLEAN AutoloadFail ) { struct led_priv *pledpriv = &(Adapter->ledpriv); HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); #ifdef CONFIG_SW_LED pledpriv->bRegUseLed = _TRUE; switch(pHalData->CustomerID) { default: pledpriv->LedStrategy = SW_LED_MODE1; break; } pHalData->bLedOpenDrain = _TRUE;// Support Open-drain arrangement for controlling the LED. Added by Roger, 2009.10.16. #else // HW LED pledpriv->LedStrategy = HW_LED; #endif //CONFIG_SW_LED } static VOID _ReadThermalMeter( IN struct adapter *Adapter, IN u8* PROMContent, IN BOOLEAN AutoloadFail ) { #if 0 HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct dm_priv *pdmpriv = &pHalData->dmpriv; u8 tempval; // // ThermalMeter from EEPROM // if(!AutoloadFail) tempval = PROMContent[EEPROM_THERMAL_METER]; else tempval = EEPROM_Default_ThermalMeter; pHalData->EEPROMThermalMeter = (tempval&0x1f); //[4:0] if(pHalData->EEPROMThermalMeter == 0x1f || AutoloadFail) pdmpriv->bAPKThermalMeterIgnore = _TRUE; #if 0 if(pHalData->EEPROMThermalMeter < 0x06 || pHalData->EEPROMThermalMeter > 0x1c) pHalData->EEPROMThermalMeter = 0x12; #endif pdmpriv->ThermalMeter[0] = pHalData->EEPROMThermalMeter; //RTPRINT(FINIT, INIT_TxPower, ("ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter)); #endif } static VOID _ReadRFSetting( IN struct adapter *Adapter, IN u8* PROMContent, IN BOOLEAN AutoloadFail ) { } static void _ReadPROMVersion( IN struct adapter *Adapter, IN u8* PROMContent, IN BOOLEAN AutoloadFail ) { #if 0 HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if(AutoloadFail){ pHalData->EEPROMVersion = EEPROM_Default_Version; } else{ pHalData->EEPROMVersion = *(u8 *)&PROMContent[EEPROM_VERSION]; } #endif } static VOID readAntennaDiversity( IN struct adapter *pAdapter, IN u8 *hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); struct registry_priv *registry_par = &pAdapter->registrypriv; pHalData->AntDivCfg = registry_par->antdiv_cfg ; // 0:OFF , 1:ON, #if 0 HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); struct registry_priv *registry_par = &pAdapter->registrypriv; if(!AutoLoadFail) { // Antenna Diversity setting. if(registry_par->antdiv_cfg == 2) // 2: From Efuse pHalData->AntDivCfg = (hwinfo[EEPROM_RF_OPT1]&0x18)>>3; else pHalData->AntDivCfg = registry_par->antdiv_cfg ; // 0:OFF , 1:ON, DBG_8192C("### AntDivCfg(%x)\n",pHalData->AntDivCfg); //if(pHalData->EEPROMBluetoothCoexist!=0 && pHalData->EEPROMBluetoothAntNum==Ant_x1) // pHalData->AntDivCfg = 0; } else { pHalData->AntDivCfg = 0; } #endif } static VOID hal_InitPGData( IN struct adapter *pAdapter, IN OUT u8 *PROMContent ) { #if 0 EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(pAdapter); HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u32 i; u16 value16; if(_FALSE == pEEPROM->bautoload_fail_flag) { // autoload OK. if (_TRUE == pEEPROM->EepromOrEfuse) { // Read all Content from EEPROM or EFUSE. for(i = 0; i < HWSET_MAX_SIZE_88E; i += 2) { //value16 = EF2Byte(ReadEEprom(pAdapter, (u2Byte) (i>>1))); //*((u16 *)(&PROMContent[i])) = value16; } } else { // Read EFUSE real map to shadow. EFUSE_ShadowMapUpdate(pAdapter, EFUSE_WIFI, _FALSE); _rtw_memcpy((void*)PROMContent, (void*)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_88E); } } else {//autoload fail //RT_TRACE(COMP_INIT, DBG_LOUD, ("AutoLoad Fail reported from CR9346!!\n")); pEEPROM->bautoload_fail_flag = _TRUE; //update to default value 0xFF if (_FALSE == pEEPROM->EepromOrEfuse) EFUSE_ShadowMapUpdate(pAdapter, EFUSE_WIFI, _FALSE); } #endif } static void Hal_EfuseParsePIDVID_8188EU( IN struct adapter * pAdapter, IN u8* hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); if( !AutoLoadFail ) { // VID, PID pHalData->EEPROMVID = EF2Byte( *(u16 *)&hwinfo[EEPROM_VID_88EU] ); pHalData->EEPROMPID = EF2Byte( *(u16 *)&hwinfo[EEPROM_PID_88EU] ); // Customer ID, 0x00 and 0xff are reserved for Realtek. pHalData->EEPROMCustomerID = *(u8 *)&hwinfo[EEPROM_CUSTOMERID_88E]; pHalData->EEPROMSubCustomerID = EEPROM_Default_SubCustomerID; } else { pHalData->EEPROMVID = EEPROM_Default_VID; pHalData->EEPROMPID = EEPROM_Default_PID; // Customer ID, 0x00 and 0xff are reserved for Realtek. pHalData->EEPROMCustomerID = EEPROM_Default_CustomerID; pHalData->EEPROMSubCustomerID = EEPROM_Default_SubCustomerID; } DBG_871X("VID = 0x%04X, PID = 0x%04X\n", pHalData->EEPROMVID, pHalData->EEPROMPID); DBG_871X("Customer ID: 0x%02X, SubCustomer ID: 0x%02X\n", pHalData->EEPROMCustomerID, pHalData->EEPROMSubCustomerID); } static void Hal_EfuseParseMACAddr_8188EU( IN struct adapter * padapter, IN u8* hwinfo, IN BOOLEAN AutoLoadFail ) { u16 i, usValue; u8 sMacAddr[6] = {0x00, 0xE0, 0x4C, 0x81, 0x88, 0x02}; EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter); if (AutoLoadFail) { // sMacAddr[5] = (u1Byte)GetRandomNumber(1, 254); for (i=0; i<6; i++) pEEPROM->mac_addr[i] = sMacAddr[i]; } else { //Read Permanent MAC address _rtw_memcpy(pEEPROM->mac_addr, &hwinfo[EEPROM_MAC_ADDR_88EU], ETH_ALEN); } // NicIFSetMacAddress(pAdapter, pAdapter->PermanentAddress); RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("Hal_EfuseParseMACAddr_8188EU: Permanent Address = %02x-%02x-%02x-%02x-%02x-%02x\n", pEEPROM->mac_addr[0], pEEPROM->mac_addr[1], pEEPROM->mac_addr[2], pEEPROM->mac_addr[3], pEEPROM->mac_addr[4], pEEPROM->mac_addr[5])); } static void Hal_CustomizeByCustomerID_8188EU( IN struct adapter * padapter ) { #if 0 PMGNT_INFO pMgntInfo = &(padapter->MgntInfo); HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); // For customized behavior. if((pHalData->EEPROMVID == 0x103C) && (pHalData->EEPROMVID == 0x1629))// HP Lite-On for RTL8188CUS Slim Combo. pMgntInfo->CustomerID = RT_CID_819x_HP; // Decide CustomerID according to VID/DID or EEPROM switch(pHalData->EEPROMCustomerID) { case EEPROM_CID_DEFAULT: if((pHalData->EEPROMVID == 0x2001) && (pHalData->EEPROMPID == 0x3308)) pMgntInfo->CustomerID = RT_CID_DLINK; else if((pHalData->EEPROMVID == 0x2001) && (pHalData->EEPROMPID == 0x3309)) pMgntInfo->CustomerID = RT_CID_DLINK; else if((pHalData->EEPROMVID == 0x2001) && (pHalData->EEPROMPID == 0x330a)) pMgntInfo->CustomerID = RT_CID_DLINK; break; case EEPROM_CID_WHQL: padapter->bInHctTest = TRUE; pMgntInfo->bSupportTurboMode = FALSE; pMgntInfo->bAutoTurboBy8186 = FALSE; pMgntInfo->PowerSaveControl.bInactivePs = FALSE; pMgntInfo->PowerSaveControl.bIPSModeBackup = FALSE; pMgntInfo->PowerSaveControl.bLeisurePs = FALSE; pMgntInfo->PowerSaveControl.bLeisurePsModeBackup =FALSE; pMgntInfo->keepAliveLevel = 0; padapter->bUnloadDriverwhenS3S4 = FALSE; break; default: pMgntInfo->CustomerID = RT_CID_DEFAULT; break; } RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Mgnt Customer ID: 0x%02x\n", pMgntInfo->CustomerID)); hal_CustomizedBehavior_8723U(padapter); #endif } // Read HW power down mode selection static void _ReadPSSetting(IN struct adapter *Adapter,IN u8*PROMContent,IN u8 AutoloadFail) { #if 0 struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(Adapter); if(AutoloadFail){ pwrctl->bHWPowerdown = _FALSE; pwrctl->bSupportRemoteWakeup = _FALSE; } else { //if(SUPPORT_HW_RADIO_DETECT(Adapter)) pwrctl->bHWPwrPindetect = Adapter->registrypriv.hwpwrp_detect; //else //pwrctl->bHWPwrPindetect = _FALSE;//dongle not support new //hw power down mode selection , 0:rf-off / 1:power down if(Adapter->registrypriv.hwpdn_mode==2) pwrctl->bHWPowerdown = (PROMContent[EEPROM_RF_OPT3] & BIT4); else pwrctl->bHWPowerdown = Adapter->registrypriv.hwpdn_mode; // decide hw if support remote wakeup function // if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume pwrctl->bSupportRemoteWakeup = (PROMContent[EEPROM_TEST_USB_OPT] & BIT1)?_TRUE :_FALSE; //if(SUPPORT_HW_RADIO_DETECT(Adapter)) //Adapter->registrypriv.usbss_enable = pwrctl->bSupportRemoteWakeup ; DBG_8192C("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) ,bSupportRemoteWakeup(%x)\n",__FUNCTION__, pwrctl->bHWPwrPindetect,pwrctl->bHWPowerdown ,pwrctl->bSupportRemoteWakeup); DBG_8192C("### PS params=> power_mgnt(%x),usbss_enable(%x) ###\n",Adapter->registrypriv.power_mgnt,Adapter->registrypriv.usbss_enable); } #endif } #ifdef CONFIG_EFUSE_CONFIG_FILE static u32 Hal_readPGDataFromConfigFile( struct adapter *padapter) { u32 i; struct file *fp; mm_segment_t fs; u8 temp[3]; loff_t pos = 0; EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter); u8 *PROMContent = pEEPROM->efuse_eeprom_data; temp[2] = 0; // add end of string '\0' fp = filp_open("/system/etc/wifi/wifi_efuse.map", O_RDWR, 0644); if (IS_ERR(fp)) { pEEPROM->bloadfile_fail_flag = _TRUE; DBG_871X("Error, Efuse configure file doesn't exist.\n"); return _FAIL; } fs = get_fs(); set_fs(KERNEL_DS); DBG_871X("Efuse configure file:\n"); for (i=0; ibloadfile_fail_flag = _FALSE; return _SUCCESS; } static void Hal_ReadMACAddrFromFile_8188EU( struct adapter * padapter ) { u32 i; struct file *fp; mm_segment_t fs; u8 source_addr[18]; loff_t pos = 0; u32 curtime = rtw_get_current_time(); EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter); u8 *head, *end; u8 null_mac_addr[ETH_ALEN] = {0, 0, 0,0, 0, 0}; u8 multi_mac_addr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; _rtw_memset(source_addr, 0, 18); _rtw_memset(pEEPROM->mac_addr, 0, ETH_ALEN); fp = filp_open("/data/wifimac.txt", O_RDWR, 0644); if (IS_ERR(fp)) { pEEPROM->bloadmac_fail_flag = _TRUE; DBG_871X("Error, wifi mac address file doesn't exist.\n"); } else { fs = get_fs(); set_fs(KERNEL_DS); DBG_871X("wifi mac address:\n"); vfs_read(fp, source_addr, 18, &pos); source_addr[17] = ':'; head = end = source_addr; for (i=0; imac_addr[i] = simple_strtoul(head, NULL, 16 ); if (end) { end++; head = end; } DBG_871X("%02x \n", pEEPROM->mac_addr[i]); } DBG_871X("\n"); set_fs(fs); pEEPROM->bloadmac_fail_flag = _FALSE; filp_close(fp, NULL); } if ( (_rtw_memcmp(pEEPROM->mac_addr, null_mac_addr, ETH_ALEN)) || (_rtw_memcmp(pEEPROM->mac_addr, multi_mac_addr, ETH_ALEN)) ) { pEEPROM->mac_addr[0] = 0x00; pEEPROM->mac_addr[1] = 0xe0; pEEPROM->mac_addr[2] = 0x4c; pEEPROM->mac_addr[3] = (u8)(curtime & 0xff) ; pEEPROM->mac_addr[4] = (u8)((curtime>>8) & 0xff) ; pEEPROM->mac_addr[5] = (u8)((curtime>>16) & 0xff) ; } DBG_871X("Hal_ReadMACAddrFromFile_8188ES: Permanent Address = %02x-%02x-%02x-%02x-%02x-%02x\n", pEEPROM->mac_addr[0], pEEPROM->mac_addr[1], pEEPROM->mac_addr[2], pEEPROM->mac_addr[3], pEEPROM->mac_addr[4], pEEPROM->mac_addr[5]); } #endif //CONFIG_EFUSE_CONFIG_FILE static VOID readAdapterInfo_8188EU( IN struct adapter *padapter ) { #if 1 EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter); /* parse the eeprom/efuse content */ Hal_EfuseParseIDCode88E(padapter, pEEPROM->efuse_eeprom_data); Hal_EfuseParsePIDVID_8188EU(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag); #ifdef CONFIG_EFUSE_CONFIG_FILE Hal_ReadMACAddrFromFile_8188EU(padapter); #else //CONFIG_EFUSE_CONFIG_FILE Hal_EfuseParseMACAddr_8188EU(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag); #endif //CONFIG_EFUSE_CONFIG_FILE Hal_ReadPowerSavingMode88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag); Hal_ReadTxPowerInfo88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag); Hal_EfuseParseEEPROMVer88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag); rtl8188e_EfuseParseChnlPlan(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag); Hal_EfuseParseXtal_8188E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag); Hal_EfuseParseCustomerID88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag); Hal_ReadAntennaDiversity88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag); Hal_EfuseParseBoardType88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag); Hal_ReadThermalMeter_88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag); // // The following part initialize some vars by PG info. // Hal_InitChannelPlan(padapter); #if defined(CONFIG_WOWLAN) && defined(CONFIG_SDIO_HCI) Hal_DetectWoWMode(padapter); #endif //CONFIG_WOWLAN && CONFIG_SDIO_HCI Hal_CustomizeByCustomerID_8188EU(padapter); _ReadLEDSetting(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag); #else #ifdef CONFIG_INTEL_PROXIM /* for intel proximity */ if (pHalData->rf_type== RF_1T1R) { Adapter->proximity.proxim_support = _TRUE; } else if (pHalData->rf_type== RF_2T2R) { if ((pHalData->EEPROMPID == 0x8186) && (pHalData->EEPROMVID== 0x0bda)) Adapter->proximity.proxim_support = _TRUE; } else { Adapter->proximity.proxim_support = _FALSE; } #endif //CONFIG_INTEL_PROXIM #endif } static void _ReadPROMContent( IN struct adapter * Adapter ) { EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(Adapter); u8 eeValue; /* check system boot selection */ eeValue = rtw_read8(Adapter, REG_9346CR); pEEPROM->EepromOrEfuse = (eeValue & BOOT_FROM_EEPROM) ? _TRUE : _FALSE; pEEPROM->bautoload_fail_flag = (eeValue & EEPROM_EN) ? _FALSE : _TRUE; DBG_8192C("Boot from %s, Autoload %s !\n", (pEEPROM->EepromOrEfuse ? "EEPROM" : "EFUSE"), (pEEPROM->bautoload_fail_flag ? "Fail" : "OK") ); //pHalData->EEType = IS_BOOT_FROM_EEPROM(Adapter) ? EEPROM_93C46 : EEPROM_BOOT_EFUSE; #ifdef CONFIG_EFUSE_CONFIG_FILE Hal_readPGDataFromConfigFile(Adapter); #else //CONFIG_EFUSE_CONFIG_FILE Hal_InitPGData88E(Adapter); #endif //CONFIG_EFUSE_CONFIG_FILE readAdapterInfo_8188EU(Adapter); } static VOID _ReadRFType( IN struct adapter *Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); #if DISABLE_BB_RF pHalData->rf_chip = RF_PSEUDO_11N; #else pHalData->rf_chip = RF_6052; #endif } static int _ReadAdapterInfo8188EU(struct adapter *Adapter) { //HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u32 start=rtw_get_current_time(); MSG_8192C("====> %s\n", __FUNCTION__); //Efuse_InitSomeVar(Adapter); //if(IS_HARDWARE_TYPE_8723A(Adapter)) // _EfuseCellSel(Adapter); _ReadRFType(Adapter);//rf_chip -> _InitRFType() _ReadPROMContent(Adapter); //MSG_8192C("%s()(done), rf_chip=0x%x, rf_type=0x%x\n", __FUNCTION__, pHalData->rf_chip, pHalData->rf_type); MSG_8192C("<==== %s in %d ms\n", __FUNCTION__, rtw_get_passing_time_ms(start)); return _SUCCESS; } static void ReadAdapterInfo8188EU(struct adapter *Adapter) { // Read EEPROM size before call any EEPROM function Adapter->EepromAddressSize = GetEEPROMSize8188E(Adapter); _ReadAdapterInfo8188EU(Adapter); } #define GPIO_DEBUG_PORT_NUM 0 static void rtl8192cu_trigger_gpio_0(struct adapter *padapter) { #ifdef CONFIG_USB_SUPPORT_ASYNC_VDN_REQ u32 gpioctrl; DBG_8192C("==> trigger_gpio_0...\n"); rtw_write16_async(padapter,REG_GPIO_PIN_CTRL,0); rtw_write8_async(padapter,REG_GPIO_PIN_CTRL+2,0xFF); gpioctrl = (BIT(GPIO_DEBUG_PORT_NUM)<<24 )|(BIT(GPIO_DEBUG_PORT_NUM)<<16); rtw_write32_async(padapter,REG_GPIO_PIN_CTRL,gpioctrl); gpioctrl |= (BIT(GPIO_DEBUG_PORT_NUM)<<8); rtw_write32_async(padapter,REG_GPIO_PIN_CTRL,gpioctrl); DBG_8192C("<=== trigger_gpio_0...\n"); #endif } static void ResumeTxBeacon(struct adapter *padapter) { HAL_DATA_TYPE* pHalData = GET_HAL_DATA(padapter); // 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value // which should be read from register to a global variable. rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl) | BIT6); pHalData->RegFwHwTxQCtrl |= BIT6; rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff); pHalData->RegReg542 |= BIT0; rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542); } void UpdateInterruptMask8188EU(struct adapter *padapter,u8 bHIMR0 ,u32 AddMSR, u32 RemoveMSR) { HAL_DATA_TYPE *pHalData; u32 *himr; pHalData = GET_HAL_DATA(padapter); if(bHIMR0) himr = &(pHalData->IntrMask[0]); else himr = &(pHalData->IntrMask[1]); if (AddMSR) *himr |= AddMSR; if (RemoveMSR) *himr &= (~RemoveMSR); if(bHIMR0) rtw_write32(padapter, REG_HIMR_88E, *himr); else rtw_write32(padapter, REG_HIMRE_88E, *himr); } static void StopTxBeacon(struct adapter *padapter) { HAL_DATA_TYPE* pHalData = GET_HAL_DATA(padapter); // 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value // which should be read from register to a global variable. rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl) & (~BIT6)); pHalData->RegFwHwTxQCtrl &= (~BIT6); rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64); pHalData->RegReg542 &= ~(BIT0); rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542); //todo: CheckFwRsvdPageContent(Adapter); // 2010.06.23. Added by tynli. } static void hw_var_set_opmode(struct adapter *Adapter, u8 variable, u8* val) { u8 val8; u8 mode = *((u8 *)val); //HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); #ifdef CONFIG_CONCURRENT_MODE if(Adapter->iface_type == IFACE_PORT1) { // disable Port1 TSF update rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(4)); // set net_type val8 = rtw_read8(Adapter, MSR)&0x03; val8 |= (mode<<2); rtw_write8(Adapter, MSR, val8); DBG_871X("%s()-%d mode = %d\n", __FUNCTION__, __LINE__, mode); if((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) { if(!check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE)) { #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT rtw_write8(Adapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms UpdateInterruptMask8188EU(Adapter,_TRUE, 0, IMR_BCNDMAINT0_88E); #endif // CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR UpdateInterruptMask8188EU(Adapter,_TRUE ,0, (IMR_TBDER_88E|IMR_TBDOK_88E)); #endif// CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR #endif //CONFIG_INTERRUPT_BASED_TXBCN StopTxBeacon(Adapter); } rtw_write8(Adapter,REG_BCN_CTRL_1, 0x11);//disable atim wnd and disable beacon function //rtw_write8(Adapter,REG_BCN_CTRL_1, 0x18); } else if((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/) { ResumeTxBeacon(Adapter); rtw_write8(Adapter,REG_BCN_CTRL_1, 0x1a); //BIT4 - If set 0, hw will clr bcnq when tx becon ok/fail or port 1 rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM)|BIT(3)|BIT(4)); } else if(mode == _HW_STATE_AP_) { #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT UpdateInterruptMask8188EU(Adapter,_TRUE ,IMR_BCNDMAINT0_88E, 0); #endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR UpdateInterruptMask8188EU(Adapter,_TRUE ,(IMR_TBDER_88E|IMR_TBDOK_88E), 0); #endif//CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR #endif //CONFIG_INTERRUPT_BASED_TXBCN ResumeTxBeacon(Adapter); rtw_write8(Adapter, REG_BCN_CTRL_1, 0x12); //Set RCR //rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0 //rtw_write32(Adapter, REG_RCR, 0x7000228e);//CBSSID_DATA must set to 0 rtw_write32(Adapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,reject ICV_ERR packet //enable to rx data frame rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF); //enable to rx ps-poll rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400); //Beacon Control related register for first time rtw_write8(Adapter, REG_BCNDMATIM, 0x02); // 2ms //rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); rtw_write8(Adapter, REG_ATIMWND_1, 0x0a); // 10ms for port1 rtw_write16(Adapter, REG_BCNTCFG, 0x00); rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04); rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms) //reset TSF2 rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)); //BIT4 - If set 0, hw will clr bcnq when tx becon ok/fail or port 1 rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM)|BIT(3)|BIT(4)); //enable BCN1 Function for if2 //don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received) rtw_write8(Adapter, REG_BCN_CTRL_1, (DIS_TSF_UDT0_NORMAL_CHIP|EN_BCN_FUNCTION | EN_TXBCN_RPT|BIT(1))); #ifdef CONFIG_CONCURRENT_MODE if(check_buddy_fwstate(Adapter, WIFI_FW_NULL_STATE)) rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & ~EN_BCN_FUNCTION); #endif //BCN1 TSF will sync to BCN0 TSF with offset(0x518) if if1_sta linked //rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(5)); //rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(3)); //dis BCN0 ATIM WND if if1 is station rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(0)); #ifdef CONFIG_TSF_RESET_OFFLOAD // Reset TSF for STA+AP concurrent mode if ( check_buddy_fwstate(Adapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)) ) { if (reset_tsf(Adapter, IFACE_PORT1) == _FALSE) DBG_871X("ERROR! %s()-%d: Reset port1 TSF fail\n", __FUNCTION__, __LINE__); } #endif // CONFIG_TSF_RESET_OFFLOAD } } else #endif //CONFIG_CONCURRENT_MODE { // disable Port0 TSF update rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4)); // set net_type val8 = rtw_read8(Adapter, MSR)&0x0c; val8 |= mode; rtw_write8(Adapter, MSR, val8); DBG_871X("%s()-%d mode = %d\n", __FUNCTION__, __LINE__, mode); if((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) { #ifdef CONFIG_CONCURRENT_MODE if(!check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE)) #endif //CONFIG_CONCURRENT_MODE { #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT rtw_write8(Adapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms UpdateInterruptMask8188EU(Adapter,_TRUE, 0, IMR_BCNDMAINT0_88E); #endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR UpdateInterruptMask8188EU(Adapter,_TRUE ,0, (IMR_TBDER_88E|IMR_TBDOK_88E)); #endif //CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR #endif //CONFIG_INTERRUPT_BASED_TXBCN StopTxBeacon(Adapter); } rtw_write8(Adapter,REG_BCN_CTRL, 0x19);//disable atim wnd //rtw_write8(Adapter,REG_BCN_CTRL, 0x18); } else if((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/) { ResumeTxBeacon(Adapter); rtw_write8(Adapter,REG_BCN_CTRL, 0x1a); //BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0 rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM)|BIT(3)|BIT(4)); } else if(mode == _HW_STATE_AP_) { #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT UpdateInterruptMask8188EU(Adapter,_TRUE ,IMR_BCNDMAINT0_88E, 0); #endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR UpdateInterruptMask8188EU(Adapter,_TRUE ,(IMR_TBDER_88E|IMR_TBDOK_88E), 0); #endif//CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR #endif //CONFIG_INTERRUPT_BASED_TXBCN ResumeTxBeacon(Adapter); rtw_write8(Adapter, REG_BCN_CTRL, 0x12); //Set RCR //rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0 //rtw_write32(Adapter, REG_RCR, 0x7000228e);//CBSSID_DATA must set to 0 rtw_write32(Adapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,reject ICV_ERR packet //enable to rx data frame rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF); //enable to rx ps-poll rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400); //Beacon Control related register for first time rtw_write8(Adapter, REG_BCNDMATIM, 0x02); // 2ms //rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); rtw_write8(Adapter, REG_ATIMWND, 0x0a); // 10ms rtw_write16(Adapter, REG_BCNTCFG, 0x00); rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04); rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms) //reset TSF rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0)); //BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0 rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM)|BIT(3)|BIT(4)); //enable BCN0 Function for if1 //don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) #if defined(CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR) rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP|EN_BCN_FUNCTION | EN_TXBCN_RPT|BIT(1))); #else rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP|EN_BCN_FUNCTION |BIT(1))); #endif #ifdef CONFIG_CONCURRENT_MODE if(check_buddy_fwstate(Adapter, WIFI_FW_NULL_STATE)) rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) & ~EN_BCN_FUNCTION); #endif //dis BCN1 ATIM WND if if2 is station rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(0)); #ifdef CONFIG_TSF_RESET_OFFLOAD // Reset TSF for STA+AP concurrent mode if ( check_buddy_fwstate(Adapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)) ) { if (reset_tsf(Adapter, IFACE_PORT0) == _FALSE) DBG_871X("ERROR! %s()-%d: Reset port0 TSF fail\n", __FUNCTION__, __LINE__); } #endif // CONFIG_TSF_RESET_OFFLOAD } } } static void hw_var_set_macaddr(struct adapter *Adapter, u8 variable, u8* val) { u8 idx = 0; u32 reg_macid; #ifdef CONFIG_CONCURRENT_MODE if(Adapter->iface_type == IFACE_PORT1) { reg_macid = REG_MACID1; } else #endif { reg_macid = REG_MACID; } for(idx = 0 ; idx < 6; idx++) { rtw_write8(Adapter, (reg_macid+idx), val[idx]); } } static void hw_var_set_bssid(struct adapter *Adapter, u8 variable, u8* val) { u8 idx = 0; u32 reg_bssid; #ifdef CONFIG_CONCURRENT_MODE if(Adapter->iface_type == IFACE_PORT1) { reg_bssid = REG_BSSID1; } else #endif { reg_bssid = REG_BSSID; } for(idx = 0 ; idx < 6; idx++) { rtw_write8(Adapter, (reg_bssid+idx), val[idx]); } } static void hw_var_set_bcn_func(struct adapter *Adapter, u8 variable, u8* val) { u32 bcn_ctrl_reg; #ifdef CONFIG_CONCURRENT_MODE if(Adapter->iface_type == IFACE_PORT1) { bcn_ctrl_reg = REG_BCN_CTRL_1; } else #endif { bcn_ctrl_reg = REG_BCN_CTRL; } if(*((u8 *)val)) { rtw_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT)); } else { rtw_write8(Adapter, bcn_ctrl_reg, rtw_read8(Adapter, bcn_ctrl_reg)&(~(EN_BCN_FUNCTION | EN_TXBCN_RPT))); } } static void hw_var_set_correct_tsf(struct adapter *Adapter, u8 variable, u8* val) { #ifdef CONFIG_CONCURRENT_MODE u64 tsf; struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct adapter *pbuddy_adapter = Adapter->pbuddy_adapter; //tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; //us if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)) { //pHalData->RegTxPause |= STOP_BCNQ;BIT(6) //rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)|BIT(6))); StopTxBeacon(Adapter); } if(Adapter->iface_type == IFACE_PORT1) { //disable related TSF function rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3))); rtw_write32(Adapter, REG_TSFTR1, tsf); rtw_write32(Adapter, REG_TSFTR1+4, tsf>>32); //enable related TSF function rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(3)); // Update buddy port's TSF if it is SoftAP for beacon TX issue! if ( (pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE && check_buddy_fwstate(Adapter, WIFI_AP_STATE) ) { //disable related TSF function rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3))); rtw_write32(Adapter, REG_TSFTR, tsf); rtw_write32(Adapter, REG_TSFTR+4, tsf>>32); //enable related TSF function rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3)); #ifdef CONFIG_TSF_RESET_OFFLOAD // Update buddy port's TSF(TBTT) if it is SoftAP for beacon TX issue! if (reset_tsf(Adapter, IFACE_PORT0) == _FALSE) DBG_871X("ERROR! %s()-%d: Reset port0 TSF fail\n", __FUNCTION__, __LINE__); #endif // CONFIG_TSF_RESET_OFFLOAD } } else { //disable related TSF function rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3))); rtw_write32(Adapter, REG_TSFTR, tsf); rtw_write32(Adapter, REG_TSFTR+4, tsf>>32); //enable related TSF function rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3)); // Update buddy port's TSF if it is SoftAP for beacon TX issue! if ( (pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE && check_buddy_fwstate(Adapter, WIFI_AP_STATE) ) { //disable related TSF function rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3))); rtw_write32(Adapter, REG_TSFTR1, tsf); rtw_write32(Adapter, REG_TSFTR1+4, tsf>>32); //enable related TSF function rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(3)); #ifdef CONFIG_TSF_RESET_OFFLOAD // Update buddy port's TSF if it is SoftAP for beacon TX issue! if (reset_tsf(Adapter, IFACE_PORT1) == _FALSE) DBG_871X("ERROR! %s()-%d: Reset port1 TSF fail\n", __FUNCTION__, __LINE__); #endif // CONFIG_TSF_RESET_OFFLOAD } } if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)) { //pHalData->RegTxPause &= (~STOP_BCNQ); //rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)&(~BIT(6)))); ResumeTxBeacon(Adapter); } #endif } static void hw_var_set_mlme_disconnect(struct adapter *Adapter, u8 variable, u8* val) { #ifdef CONFIG_CONCURRENT_MODE //HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct adapter *pbuddy_adapter = Adapter->pbuddy_adapter; if(check_buddy_mlmeinfo_state(Adapter, _HW_STATE_NOLINK_)) rtw_write16(Adapter, REG_RXFLTMAP2, 0x00); if(Adapter->iface_type == IFACE_PORT1) { //reset TSF1 rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)); //disable update TSF1 rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(4)); // disable Port1's beacon function rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3))); } else { //reset TSF rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0)); //disable update TSF rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4)); } #endif } static void hw_var_set_mlme_sitesurvey(struct adapter *Adapter, u8 variable, u8* val) { #ifdef CONFIG_CONCURRENT_MODE HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); if(*((u8 *)val))//under sitesurvey { //config RCR to receive different BSSID & not to receive data frame u32 v = rtw_read32(Adapter, REG_RCR); v &= ~(RCR_CBSSID_BCN); rtw_write32(Adapter, REG_RCR, v); //disable update TSF if((pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE) { if(Adapter->iface_type == IFACE_PORT1) { rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(4)); } else { rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4)); } } if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) && check_buddy_fwstate(Adapter, _FW_LINKED)) { StopTxBeacon(Adapter); } } else//sitesurvey done { //enable to rx data frame //write32(Adapter, REG_RCR, read32(padapter, REG_RCR)|RCR_ADF); rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF); //enable update TSF if(Adapter->iface_type == IFACE_PORT1) rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(4))); else rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4))); rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN); if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) && check_buddy_fwstate(Adapter, _FW_LINKED)) { ResumeTxBeacon(Adapter); } } #endif } static void hw_var_set_mlme_join(struct adapter *Adapter, u8 variable, u8* val) { #ifdef CONFIG_CONCURRENT_MODE u8 RetryLimit = 0x30; u8 type = *((u8 *)val); HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct mlme_priv *pmlmepriv = &Adapter->mlmepriv; if(type == 0) // prepare to join { if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) && check_buddy_fwstate(Adapter, _FW_LINKED)) { StopTxBeacon(Adapter); } //enable to rx data frame.Accept all data frame //rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF); if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE)) rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN); else rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN); if(check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE) { RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48; } else // Ad-hoc Mode { RetryLimit = 0x7; } } else if(type == 1) //joinbss_event call back when join res < 0 { if(check_buddy_mlmeinfo_state(Adapter, _HW_STATE_NOLINK_)) rtw_write16(Adapter, REG_RXFLTMAP2,0x00); if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) && check_buddy_fwstate(Adapter, _FW_LINKED)) { ResumeTxBeacon(Adapter); //reset TSF 1/2 after ResumeTxBeacon rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0)); } } else if(type == 2) //sta add event call back { //enable update TSF if(Adapter->iface_type == IFACE_PORT1) rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(4))); else rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4))); if(check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE)) { //fixed beacon issue for 8191su........... rtw_write8(Adapter,0x542 ,0x02); RetryLimit = 0x7; } if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) && check_buddy_fwstate(Adapter, _FW_LINKED)) { ResumeTxBeacon(Adapter); //reset TSF 1/2 after ResumeTxBeacon rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0)); } } rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT); #endif } void SetHwReg8188EU(struct adapter *Adapter, u8 variable, u8* val) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct dm_priv *pdmpriv = &pHalData->dmpriv; DM_ODM_T *podmpriv = &pHalData->odmpriv; _func_enter_; switch(variable) { case HW_VAR_MEDIA_STATUS: { u8 val8; val8 = rtw_read8(Adapter, MSR)&0x0c; val8 |= *((u8 *)val); rtw_write8(Adapter, MSR, val8); } break; case HW_VAR_MEDIA_STATUS1: { u8 val8; val8 = rtw_read8(Adapter, MSR)&0x03; val8 |= *((u8 *)val) <<2; rtw_write8(Adapter, MSR, val8); } break; case HW_VAR_SET_OPMODE: hw_var_set_opmode(Adapter, variable, val); break; case HW_VAR_MAC_ADDR: hw_var_set_macaddr(Adapter, variable, val); break; case HW_VAR_BSSID: hw_var_set_bssid(Adapter, variable, val); break; case HW_VAR_BASIC_RATE: { u16 BrateCfg = 0; u8 RateIndex = 0; // 2007.01.16, by Emily // Select RRSR (in Legacy-OFDM and CCK) // For 8190, we select only 24M, 12M, 6M, 11M, 5.5M, 2M, and 1M from the Basic rate. // We do not use other rates. HalSetBrateCfg( Adapter, val, &BrateCfg ); DBG_8192C("HW_VAR_BASIC_RATE: BrateCfg(%#x)\n", BrateCfg); //2011.03.30 add by Luke Lee //CCK 2M ACK should be disabled for some BCM and Atheros AP IOT //because CCK 2M has poor TXEVM //CCK 5.5M & 11M ACK should be enabled for better performance pHalData->BasicRateSet = BrateCfg = (BrateCfg |0xd) & 0x15d; BrateCfg |= 0x01; // default enable 1M ACK rate // Set RRSR rate table. rtw_write8(Adapter, REG_RRSR, BrateCfg&0xff); rtw_write8(Adapter, REG_RRSR+1, (BrateCfg>>8)&0xff); rtw_write8(Adapter, REG_RRSR+2, rtw_read8(Adapter, REG_RRSR+2)&0xf0); // Set RTS initial rate while(BrateCfg > 0x1) { BrateCfg = (BrateCfg>> 1); RateIndex++; } // Ziv - Check rtw_write8(Adapter, REG_INIRTS_RATE_SEL, RateIndex); } break; case HW_VAR_TXPAUSE: rtw_write8(Adapter, REG_TXPAUSE, *((u8 *)val)); break; case HW_VAR_BCN_FUNC: hw_var_set_bcn_func(Adapter, variable, val); break; case HW_VAR_CORRECT_TSF: #ifdef CONFIG_CONCURRENT_MODE hw_var_set_correct_tsf(Adapter, variable, val); #else { u64 tsf; struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); //tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; //us if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)) { //pHalData->RegTxPause |= STOP_BCNQ;BIT(6) //rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)|BIT(6))); StopTxBeacon(Adapter); } //disable related TSF function rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3))); rtw_write32(Adapter, REG_TSFTR, tsf); rtw_write32(Adapter, REG_TSFTR+4, tsf>>32); //enable related TSF function rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3)); if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)) { //pHalData->RegTxPause &= (~STOP_BCNQ); //rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)&(~BIT(6)))); ResumeTxBeacon(Adapter); } } #endif break; case HW_VAR_CHECK_BSSID: if(*((u8 *)val)) { rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN); } else { u32 val32; val32 = rtw_read32(Adapter, REG_RCR); val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN); rtw_write32(Adapter, REG_RCR, val32); } break; case HW_VAR_MLME_DISCONNECT: #ifdef CONFIG_CONCURRENT_MODE hw_var_set_mlme_disconnect(Adapter, variable, val); #else { //Set RCR to not to receive data frame when NO LINK state //rtw_write32(Adapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF); //reject all data frames rtw_write16(Adapter, REG_RXFLTMAP2,0x00); //reset TSF rtw_write8(Adapter, REG_DUAL_TSF_RST, (BIT(0)|BIT(1))); //disable update TSF rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4)); } #endif break; case HW_VAR_MLME_SITESURVEY: #ifdef CONFIG_CONCURRENT_MODE hw_var_set_mlme_sitesurvey(Adapter, variable, val); #else if(*((u8 *)val))//under sitesurvey { //config RCR to receive different BSSID & not to receive data frame u32 v = rtw_read32(Adapter, REG_RCR); v &= ~(RCR_CBSSID_BCN); rtw_write32(Adapter, REG_RCR, v); //reject all data frame rtw_write16(Adapter, REG_RXFLTMAP2,0x00); //disable update TSF rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4)); } else//sitesurvey done { struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); if ((is_client_associated_to_ap(Adapter) == _TRUE) || ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ) { //enable to rx data frame //rtw_write32(Adapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF); //enable update TSF rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4))); } else if((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE) { //rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_ADF); rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF); //enable update TSF rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4))); } if((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE) rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN); else { if(Adapter->in_cta_test) { u32 v = rtw_read32(Adapter, REG_RCR); v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN );//| RCR_ADF rtw_write32(Adapter, REG_RCR, v); } else { rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN); } } } #endif break; case HW_VAR_MLME_JOIN: #ifdef CONFIG_CONCURRENT_MODE hw_var_set_mlme_join(Adapter, variable, val); #else { u8 RetryLimit = 0x30; u8 type = *((u8 *)val); struct mlme_priv *pmlmepriv = &Adapter->mlmepriv; if(type == 0) // prepare to join { //enable to rx data frame.Accept all data frame //rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF); if(Adapter->in_cta_test) { u32 v = rtw_read32(Adapter, REG_RCR); v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN );//| RCR_ADF rtw_write32(Adapter, REG_RCR, v); } else { rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN); } if(check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE) { RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48; } else // Ad-hoc Mode { RetryLimit = 0x7; } } else if(type == 1) //joinbss_event call back when join res < 0 { rtw_write16(Adapter, REG_RXFLTMAP2,0x00); } else if(type == 2) //sta add event call back { //enable update TSF rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4))); if(check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE)) { RetryLimit = 0x7; } } rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT); } #endif break; case HW_VAR_ON_RCR_AM: rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_AM); DBG_871X("%s, %d, RCR= %x \n", __FUNCTION__,__LINE__, rtw_read32(Adapter, REG_RCR)); break; case HW_VAR_OFF_RCR_AM: rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)& (~RCR_AM)); DBG_871X("%s, %d, RCR= %x \n", __FUNCTION__,__LINE__, rtw_read32(Adapter, REG_RCR)); break; case HW_VAR_BEACON_INTERVAL: rtw_write16(Adapter, REG_BCN_INTERVAL, *((u16 *)val)); #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT { struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); u16 bcn_interval = *((u16 *)val); if((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE){ DBG_8192C("%s==> bcn_interval:%d, eraly_int:%d \n",__FUNCTION__,bcn_interval,bcn_interval>>1); rtw_write8(Adapter, REG_DRVERLYINT, bcn_interval>>1);// 50ms for sdio } } #endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT break; case HW_VAR_SLOT_TIME: { u8 u1bAIFS, aSifsTime; struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); rtw_write8(Adapter, REG_SLOT, val[0]); if(pmlmeinfo->WMM_enable == 0) { if( pmlmeext->cur_wireless_mode == WIRELESS_11B) aSifsTime = 10; else aSifsTime = 16; u1bAIFS = aSifsTime + (2 * pmlmeinfo->slotTime); // Temporary removed, 2008.06.20. rtw_write8(Adapter, REG_EDCA_VO_PARAM, u1bAIFS); rtw_write8(Adapter, REG_EDCA_VI_PARAM, u1bAIFS); rtw_write8(Adapter, REG_EDCA_BE_PARAM, u1bAIFS); rtw_write8(Adapter, REG_EDCA_BK_PARAM, u1bAIFS); } } break; case HW_VAR_RESP_SIFS: { #if 0 // SIFS for OFDM Data ACK rtw_write8(Adapter, REG_SIFS_CTX+1, val[0]); // SIFS for OFDM consecutive tx like CTS data! rtw_write8(Adapter, REG_SIFS_TRX+1, val[1]); rtw_write8(Adapter,REG_SPEC_SIFS+1, val[0]); rtw_write8(Adapter,REG_MAC_SPEC_SIFS+1, val[0]); // 20100719 Joseph: Revise SIFS setting due to Hardware register definition change. rtw_write8(Adapter, REG_R2T_SIFS+1, val[0]); rtw_write8(Adapter, REG_T2T_SIFS+1, val[0]); #else //SIFS_Timer = 0x0a0a0808; //RESP_SIFS for CCK rtw_write8(Adapter, REG_R2T_SIFS, val[0]); // SIFS_T2T_CCK (0x08) rtw_write8(Adapter, REG_R2T_SIFS+1, val[1]); //SIFS_R2T_CCK(0x08) //RESP_SIFS for OFDM rtw_write8(Adapter, REG_T2T_SIFS, val[2]); //SIFS_T2T_OFDM (0x0a) rtw_write8(Adapter, REG_T2T_SIFS+1, val[3]); //SIFS_R2T_OFDM(0x0a) #endif } break; case HW_VAR_ACK_PREAMBLE: { u8 regTmp; u8 bShortPreamble = *( (PBOOLEAN)val ); // Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) regTmp = (pHalData->nCur40MhzPrimeSC)<<5; //regTmp = 0; if(bShortPreamble) regTmp |= 0x80; rtw_write8(Adapter, REG_RRSR+2, regTmp); } break; case HW_VAR_SEC_CFG: #ifdef CONFIG_CONCURRENT_MODE rtw_write8(Adapter, REG_SECCFG, 0x0c|BIT(5));// enable tx enc and rx dec engine, and no key search for MC/BC #else rtw_write8(Adapter, REG_SECCFG, *((u8 *)val)); #endif break; case HW_VAR_DM_FLAG: podmpriv->SupportAbility = *((u8 *)val); //DBG_871X("HW_VAR_DM_FLAG ==> SupportAbility:0x%08x \n",podmpriv->SupportAbility ); break; case HW_VAR_DM_FUNC_OP: if(val[0]) {// save dm flag podmpriv->BK_SupportAbility = podmpriv->SupportAbility; } else {// restore dm flag podmpriv->SupportAbility = podmpriv->BK_SupportAbility; } //DBG_871X("HW_VAR_DM_FUNC_OP ==> %s SupportAbility:0x%08x \n", // (val[0]==1)?"Save":"Restore", // podmpriv->SupportAbility // ); break; case HW_VAR_DM_FUNC_SET: if(*((u32 *)val) == DYNAMIC_ALL_FUNC_ENABLE){ pdmpriv->DMFlag = pdmpriv->InitDMFlag; podmpriv->SupportAbility = pdmpriv->InitODMFlag; } else{ podmpriv->SupportAbility |= *((u32 *)val); } //DBG_871X("HW_VAR_DM_FUNC_SET ==> SupportAbility:0x%08x \n",podmpriv->SupportAbility ); break; case HW_VAR_DM_FUNC_CLR: podmpriv->SupportAbility &= *((u32 *)val); break; case HW_VAR_CAM_EMPTY_ENTRY: { u8 ucIndex = *((u8 *)val); u8 i; u32 ulCommand=0; u32 ulContent=0; u32 ulEncAlgo=CAM_AES; for(i=0;iAcParam_BE = ((u32 *)(val))[0]; rtw_write32(Adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]); break; case HW_VAR_AC_PARAM_BK: rtw_write32(Adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]); break; case HW_VAR_ACM_CTRL: { u8 acm_ctrl = *((u8 *)val); u8 AcmCtrl = rtw_read8( Adapter, REG_ACMHWCTRL); if(acm_ctrl > 1) AcmCtrl = AcmCtrl | 0x1; if(acm_ctrl & BIT(3)) AcmCtrl |= AcmHw_VoqEn; else AcmCtrl &= (~AcmHw_VoqEn); if(acm_ctrl & BIT(2)) AcmCtrl |= AcmHw_ViqEn; else AcmCtrl &= (~AcmHw_ViqEn); if(acm_ctrl & BIT(1)) AcmCtrl |= AcmHw_BeqEn; else AcmCtrl &= (~AcmHw_BeqEn); DBG_871X("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl ); rtw_write8(Adapter, REG_ACMHWCTRL, AcmCtrl ); } break; case HW_VAR_AMPDU_MIN_SPACE: { u8 MinSpacingToSet; u8 SecMinSpace; MinSpacingToSet = *((u8 *)val); if(MinSpacingToSet <= 7) { switch(Adapter->securitypriv.dot11PrivacyAlgrthm) { case _NO_PRIVACY_: case _AES_: SecMinSpace = 0; break; case _WEP40_: case _WEP104_: case _TKIP_: case _TKIP_WTMIC_: SecMinSpace = 6; break; default: SecMinSpace = 7; break; } if(MinSpacingToSet < SecMinSpace){ MinSpacingToSet = SecMinSpace; } //RT_TRACE(COMP_MLME, DBG_LOUD, ("Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", Adapter->MgntInfo.MinSpaceCfg)); rtw_write8(Adapter, REG_AMPDU_MIN_SPACE, (rtw_read8(Adapter, REG_AMPDU_MIN_SPACE) & 0xf8) | MinSpacingToSet); } } break; case HW_VAR_AMPDU_FACTOR: { u8 RegToSet_Normal[4]={0x41,0xa8,0x72, 0xb9}; u8 RegToSet_BT[4]={0x31,0x74,0x42, 0x97}; u8 FactorToSet; u8 *pRegToSet; u8 index = 0; #ifdef CONFIG_BT_COEXIST if( (pHalData->bt_coexist.BT_Coexist) && (pHalData->bt_coexist.BT_CoexistType == BT_CSR_BC4) ) pRegToSet = RegToSet_BT; // 0x97427431; else #endif pRegToSet = RegToSet_Normal; // 0xb972a841; FactorToSet = *((u8 *)val); if(FactorToSet <= 3) { FactorToSet = (1<<(FactorToSet + 2)); if(FactorToSet>0xf) FactorToSet = 0xf; for(index=0; index<4; index++) { if((pRegToSet[index] & 0xf0) > (FactorToSet<<4)) pRegToSet[index] = (pRegToSet[index] & 0x0f) | (FactorToSet<<4); if((pRegToSet[index] & 0x0f) > FactorToSet) pRegToSet[index] = (pRegToSet[index] & 0xf0) | (FactorToSet); rtw_write8(Adapter, (REG_AGGLEN_LMT+index), pRegToSet[index]); } //RT_TRACE(COMP_MLME, DBG_LOUD, ("Set HW_VAR_AMPDU_FACTOR: %#x\n", FactorToSet)); } } break; case HW_VAR_RXDMA_AGG_PG_TH: #ifdef CONFIG_USB_RX_AGGREGATION { u8 threshold = *((u8 *)val); if( threshold == 0) { threshold = pHalData->UsbRxAggPageCount; } rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, threshold); } #endif break; case HW_VAR_SET_RPWM: #ifdef CONFIG_LPS_LCLK { u8 ps_state = *((u8 *)val); //rpwm value only use BIT0(clock bit) ,BIT6(Ack bit), and BIT7(Toggle bit) for 88e. //BIT0 value - 1: 32k, 0:40MHz. //BIT6 value - 1: report cpwm value after success set, 0:do not report. //BIT7 value - Toggle bit change. //modify by Thomas. 2012/4/2. ps_state = ps_state & 0xC1; //DBG_871X("##### Change RPWM value to = %x for switch clk #####\n",ps_state); rtw_write8(Adapter, REG_USB_HRPWM, ps_state); } #endif break; case HW_VAR_H2C_FW_PWRMODE: { u8 psmode = (*(u8 *)val); // Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power // saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. if( (psmode != PS_MODE_ACTIVE) && (!IS_92C_SERIAL(pHalData->VersionID))) { ODM_RF_Saving(podmpriv, _TRUE); } rtl8188e_set_FwPwrMode_cmd(Adapter, psmode); } break; case HW_VAR_H2C_FW_JOINBSSRPT: { u8 mstatus = (*(u8 *)val); rtl8188e_set_FwJoinBssReport_cmd(Adapter, mstatus); } break; #ifdef CONFIG_P2P_PS case HW_VAR_H2C_FW_P2P_PS_OFFLOAD: { u8 p2p_ps_state = (*(u8 *)val); rtl8188e_set_p2p_ps_offload_cmd(Adapter, p2p_ps_state); } break; #endif //CONFIG_P2P_PS #ifdef CONFIG_TDLS case HW_VAR_TDLS_WRCR: rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)&(~RCR_CBSSID_DATA )); break; case HW_VAR_TDLS_INIT_CH_SEN: { rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)&(~ RCR_CBSSID_DATA )&(~RCR_CBSSID_BCN )); rtw_write16(Adapter, REG_RXFLTMAP2,0xffff); //disable update TSF rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4)); } break; case HW_VAR_TDLS_DONE_CH_SEN: { //enable update TSF rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~ BIT(4))); rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|(RCR_CBSSID_BCN )); } break; case HW_VAR_TDLS_RS_RCR: rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|(RCR_CBSSID_DATA)); break; #endif //CONFIG_TDLS case HW_VAR_INITIAL_GAIN: { DIG_T *pDigTable = &podmpriv->DM_DigTable; u32 rx_gain = ((u32 *)(val))[0]; if(rx_gain == 0xff){//restore rx gain ODM_Write_DIG(podmpriv,pDigTable->BackupIGValue); } else{ pDigTable->BackupIGValue = pDigTable->CurIGValue; ODM_Write_DIG(podmpriv,rx_gain); } } break; case HW_VAR_TRIGGER_GPIO_0: rtl8192cu_trigger_gpio_0(Adapter); break; #ifdef CONFIG_BT_COEXIST case HW_VAR_BT_SET_COEXIST: { u8 bStart = (*(u8 *)val); rtl8192c_set_dm_bt_coexist(Adapter, bStart); } break; case HW_VAR_BT_ISSUE_DELBA: { u8 dir = (*(u8 *)val); rtl8192c_issue_delete_ba(Adapter, dir); } break; #endif #if (RATE_ADAPTIVE_SUPPORT==1) case HW_VAR_RPT_TIMER_SETTING: { u16 min_rpt_time = (*(u16 *)val); ODM_RA_Set_TxRPT_Time(podmpriv,min_rpt_time); } break; #endif #ifdef CONFIG_SW_ANTENNA_DIVERSITY case HW_VAR_ANTENNA_DIVERSITY_LINK: //odm_SwAntDivRestAfterLink8192C(Adapter); ODM_SwAntDivRestAfterLink(podmpriv); break; #endif #ifdef CONFIG_ANTENNA_DIVERSITY case HW_VAR_ANTENNA_DIVERSITY_SELECT: { u8 Optimum_antenna = (*(u8 *)val); u8 Ant ; //switch antenna to Optimum_antenna //DBG_8192C("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B"); if(pHalData->CurAntenna != Optimum_antenna) { Ant = (Optimum_antenna==2)?MAIN_ANT:AUX_ANT; ODM_UpdateRxIdleAnt_88E(&pHalData->odmpriv, Ant); pHalData->CurAntenna = Optimum_antenna ; //DBG_8192C("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B"); } } break; #endif case HW_VAR_EFUSE_BYTES: // To set EFUE total used bytes, added by Roger, 2008.12.22. pHalData->EfuseUsedBytes = *((u16 *)val); break; case HW_VAR_FIFO_CLEARN_UP: { struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(Adapter); u8 trycnt = 100; //pause tx rtw_write8(Adapter,REG_TXPAUSE,0xff); //keep sn Adapter->xmitpriv.nqos_ssn = rtw_read16(Adapter,REG_NQOS_SEQ); if(pwrpriv->bkeepfwalive != _TRUE) { //RX DMA stop rtw_write32(Adapter,REG_RXPKT_NUM,(rtw_read32(Adapter,REG_RXPKT_NUM)|RW_RELEASE_EN)); do{ if(!(rtw_read32(Adapter,REG_RXPKT_NUM)&RXDMA_IDLE)) break; }while(trycnt--); if(trycnt ==0) DBG_8192C("Stop RX DMA failed...... \n"); //RQPN Load 0 rtw_write16(Adapter,REG_RQPN_NPQ,0x0); rtw_write32(Adapter,REG_RQPN,0x80000000); rtw_mdelay_os(10); } } break; case HW_VAR_CHECK_TXBUF: #ifdef CONFIG_CONCURRENT_MODE { int i; #if 0 //for Miracast source PKT lost issue u8 RetryLimit = 0x01; rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT); #endif for(i=0;i<1000;i++) { if(rtw_read32(Adapter, 0x200) != rtw_read32(Adapter, 0x204)) { //DBG_871X("packet in tx packet buffer - 0x204=%x, 0x200=%x (%d)\n", rtw_read32(Adapter, 0x204), rtw_read32(Adapter, 0x200), i); rtw_msleep_os(10); } else { DBG_871X("no packet in tx packet buffer (%d)\n", i); break; } } #if 0 //for Miracast source PKT lost issue RetryLimit = 0x30; rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT); #endif } #endif break; case HW_VAR_APFM_ON_MAC: pHalData->bMacPwrCtrlOn = *val; DBG_871X("%s: bMacPwrCtrlOn=%d\n", __func__, pHalData->bMacPwrCtrlOn); break; #ifdef CONFIG_WOWLAN case HW_VAR_WOWLAN: { struct wowlan_ioctl_param *poidparam; struct recv_buf *precvbuf; int res, i; u32 tmp; u16 len = 0; u8 mstatus = (*(u8 *)val); u8 trycnt = 100; u8 data[4]; poidparam = (struct wowlan_ioctl_param *)val; switch (poidparam->subcode){ case WOWLAN_ENABLE: DBG_871X_LEVEL(_drv_always_, "WOWLAN_ENABLE\n"); SetFwRelatedForWoWLAN8188ES(Adapter, _TRUE); //Set Pattern //if(adapter_to_pwrctl(Adapter)->wowlan_pattern==_TRUE) // rtw_wowlan_reload_pattern(Adapter); //RX DMA stop DBG_871X_LEVEL(_drv_always_, "Pause DMA\n"); rtw_write32(Adapter,REG_RXPKT_NUM,(rtw_read32(Adapter,REG_RXPKT_NUM)|RW_RELEASE_EN)); do{ if((rtw_read32(Adapter, REG_RXPKT_NUM)&RXDMA_IDLE)) { DBG_871X_LEVEL(_drv_always_, "RX_DMA_IDLE is true\n"); break; } else { // If RX_DMA is not idle, receive one pkt from DMA DBG_871X_LEVEL(_drv_always_, "RX_DMA_IDLE is not true\n"); } }while(trycnt--); if(trycnt ==0) DBG_871X_LEVEL(_drv_always_, "Stop RX DMA failed...... \n"); //Set WOWLAN H2C command. DBG_871X_LEVEL(_drv_always_, "Set WOWLan cmd\n"); rtl8188es_set_wowlan_cmd(Adapter, 1); mstatus = rtw_read8(Adapter, REG_WOW_CTRL); trycnt = 10; while(!(mstatus&BIT1) && trycnt>1) { mstatus = rtw_read8(Adapter, REG_WOW_CTRL); DBG_871X_LEVEL(_drv_always_, "Loop index: %d :0x%02x\n", trycnt, mstatus); trycnt --; rtw_msleep_os(2); } adapter_to_pwrctl(Adapter)->wowlan_wake_reason = rtw_read8(Adapter, REG_WOWLAN_WAKE_REASON); DBG_871X_LEVEL(_drv_always_, "wowlan_wake_reason: 0x%02x\n", adapter_to_pwrctl(Adapter)->wowlan_wake_reason); /* Invoid SE0 reset signal during suspending*/ rtw_write8(Adapter, REG_RSV_CTRL, 0x20); rtw_write8(Adapter, REG_RSV_CTRL, 0x60); //rtw_msleep_os(10); break; case WOWLAN_DISABLE: DBG_871X_LEVEL(_drv_always_, "WOWLAN_DISABLE\n"); trycnt = 10; rtl8188es_set_wowlan_cmd(Adapter, 0); mstatus = rtw_read8(Adapter, REG_WOW_CTRL); DBG_871X_LEVEL(_drv_info_, "%s mstatus:0x%02x\n", __func__, mstatus); while(mstatus&BIT1 && trycnt>1) { mstatus = rtw_read8(Adapter, REG_WOW_CTRL); DBG_871X_LEVEL(_drv_always_, "Loop index: %d :0x%02x\n", trycnt, mstatus); trycnt --; rtw_msleep_os(2); } if (mstatus & BIT1) printk("System did not release RX_DMA\n"); else SetFwRelatedForWoWLAN8188ES(Adapter, _FALSE); rtw_msleep_os(2); if(!(adapter_to_pwrctl(Adapter)->wowlan_wake_reason & FWDecisionDisconnect)) rtl8188e_set_FwJoinBssReport_cmd(Adapter, 1); //rtw_msleep_os(10); break; default: break; } } break; #endif //CONFIG_WOWLAN #if (RATE_ADAPTIVE_SUPPORT == 1) case HW_VAR_TX_RPT_MAX_MACID: { u8 maxMacid = *val; DBG_871X("### MacID(%d),Set Max Tx RPT MID(%d)\n",maxMacid,maxMacid+1); rtw_write8(Adapter, REG_TX_RPT_CTRL+1, maxMacid+1); } break; #endif case HW_VAR_H2C_MEDIA_STATUS_RPT: { rtl8188e_set_FwMediaStatus_cmd(Adapter , (*(u16 *)val)); } break; case HW_VAR_BCN_VALID: //BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw rtw_write8(Adapter, REG_TDECTRL+2, rtw_read8(Adapter, REG_TDECTRL+2) | BIT0); break; default: break; } _func_exit_; } void GetHwReg8188EU(struct adapter *Adapter, u8 variable, u8* val) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); DM_ODM_T *podmpriv = &pHalData->odmpriv; _func_enter_; switch(variable) { case HW_VAR_BASIC_RATE: *((u16 *)(val)) = pHalData->BasicRateSet; case HW_VAR_TXPAUSE: val[0] = rtw_read8(Adapter, REG_TXPAUSE); break; case HW_VAR_BCN_VALID: //BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 val[0] = (BIT0 & rtw_read8(Adapter, REG_TDECTRL+2))?_TRUE:_FALSE; break; case HW_VAR_DM_FLAG: val[0] = podmpriv->SupportAbility; break; case HW_VAR_RF_TYPE: val[0] = pHalData->rf_type; break; case HW_VAR_FWLPS_RF_ON: { //When we halt NIC, we should check if FW LPS is leave. if(adapter_to_pwrctl(Adapter)->rf_pwrstate == rf_off) { // If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, // because Fw is unload. val[0] = _TRUE; } else { u32 valRCR; valRCR = rtw_read32(Adapter, REG_RCR); valRCR &= 0x00070000; if(valRCR) val[0] = _FALSE; else val[0] = _TRUE; } } break; #ifdef CONFIG_ANTENNA_DIVERSITY case HW_VAR_CURRENT_ANTENNA: val[0] = pHalData->CurAntenna; break; #endif case HW_VAR_EFUSE_BYTES: // To get EFUE total used bytes, added by Roger, 2008.12.22. *((u16 *)(val)) = pHalData->EfuseUsedBytes; break; case HW_VAR_APFM_ON_MAC: *val = pHalData->bMacPwrCtrlOn; break; case HW_VAR_CHK_HI_QUEUE_EMPTY: *val = ((rtw_read32(Adapter, REG_HGQ_INFORMATION)&0x0000ff00)==0) ? _TRUE:_FALSE; break; case HW_VAR_READ_LLT_TAB: { Read_LLT_Tab(Adapter); } break; case HW_VAR_GET_CPWM: #ifdef CONFIG_LPS_LCLK { *val = rtw_read8(Adapter, REG_USB_HCPWM); } #endif break; case HW_VAR_C2HEVT_CLEAR: *val = rtw_read8(Adapter, REG_C2HEVT_CLEAR); break; case HW_VAR_C2HEVT_MSG_NORMAL: *val = rtw_read8(Adapter, REG_C2HEVT_MSG_NORMAL); break; default: break; } _func_exit_; } // // Description: // Query setting of specified variable. // u8 GetHalDefVar8188EUsb( IN struct adapter * Adapter, IN HAL_DEF_VARIABLE eVariable, IN PVOID pValue ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct dm_priv *pdmpriv = &pHalData->dmpriv; DM_ODM_T *podmpriv = &pHalData->odmpriv; u8 bResult = _SUCCESS; switch(eVariable) { case HAL_DEF_UNDERCORATEDSMOOTHEDPWDB: #if 1 //trunk { struct mlme_priv *pmlmepriv = &Adapter->mlmepriv; struct sta_priv * pstapriv = &Adapter->stapriv; struct sta_info * psta; psta = rtw_get_stainfo(pstapriv, pmlmepriv->cur_network.network.MacAddress); if(psta) { *((int *)pValue) = psta->rssi_stat.UndecoratedSmoothedPWDB; } } #else //V4 branch if(check_fwstate(&Adapter->mlmepriv, WIFI_STATION_STATE) == _TRUE){ *((int *)pValue) = pHalData->dmpriv.UndecoratedSmoothedPWDB; } else{ } #endif break; case HAL_DEF_IS_SUPPORT_ANT_DIV: #ifdef CONFIG_ANTENNA_DIVERSITY *((u8 *)pValue) = (pHalData->AntDivCfg==0)?_FALSE:_TRUE; #endif break; case HAL_DEF_CURRENT_ANTENNA: #ifdef CONFIG_ANTENNA_DIVERSITY *(( u8*)pValue) = pHalData->CurAntenna; #endif break; case HAL_DEF_DRVINFO_SZ: *(( u32*)pValue) = DRVINFO_SZ; break; case HAL_DEF_MAX_RECVBUF_SZ: *(( u32*)pValue) = MAX_RECVBUF_SZ; break; case HAL_DEF_RX_PACKET_OFFSET: *(( u32*)pValue) = RXDESC_SIZE + DRVINFO_SZ; break; #if (RATE_ADAPTIVE_SUPPORT == 1) case HAL_DEF_RA_DECISION_RATE: { u8 MacID = *((u8*)pValue); *((u8*)pValue) = ODM_RA_GetDecisionRate_8188E(podmpriv, MacID); } break; case HAL_DEF_RA_SGI: { u8 MacID = *((u8*)pValue); *((u8*)pValue) = ODM_RA_GetShortGI_8188E(podmpriv, MacID); } break; #endif case HAL_DEF_PT_PWR_STATUS: #if(POWER_TRAINING_ACTIVE==1) { u8 MacID = *((u8*)pValue); *((u8*)pValue) = ODM_RA_GetHwPwrStatus_8188E(podmpriv, MacID); } #endif//(POWER_TRAINING_ACTIVE==1) break; case HW_VAR_MAX_RX_AMPDU_FACTOR: *(( u32*)pValue) = MAX_AMPDU_FACTOR_64K; break; case HW_DEF_RA_INFO_DUMP: #if (RATE_ADAPTIVE_SUPPORT == 1) { u8 entry_id = *((u8*)pValue); u8 i; u8 bLinked = _FALSE; #ifdef CONFIG_CONCURRENT_MODE struct adapter *pbuddy_adapter = Adapter->pbuddy_adapter; #endif //CONFIG_CONCURRENT_MODE //if(check_fwstate(&Adapter->mlmepriv, _FW_LINKED)== _TRUE) if(rtw_linked_check(Adapter)) bLinked = _TRUE; #ifdef CONFIG_CONCURRENT_MODE if(pbuddy_adapter && rtw_linked_check(pbuddy_adapter)) bLinked = _TRUE; #endif if(bLinked){ DBG_871X("============ RA status check ===================\n"); if(Adapter->bRxRSSIDisplay >30) Adapter->bRxRSSIDisplay = 1; for(i=0;i< Adapter->bRxRSSIDisplay;i++){ DBG_8192C("Mac_id:%d ,RSSI:%d,RateID = %d,RAUseRate = 0x%08x,RateSGI = %d, DecisionRate = 0x%02x ,PTStage = %d, RetryOver drop:%d, LifeTimeOver drop:%d\n", i, podmpriv->RAInfo[i].RssiStaRA, podmpriv->RAInfo[i].RateID, podmpriv->RAInfo[i].RAUseRate, podmpriv->RAInfo[i].RateSGI, podmpriv->RAInfo[i].DecisionRate, podmpriv->RAInfo[i].PTStage, podmpriv->RAInfo[i].DROP, podmpriv->RAInfo[i].DROP1 ); } } } #endif //(RATE_ADAPTIVE_SUPPORT == 1) break; case HAL_DEF_DBG_DUMP_RXPKT: *(( u8*)pValue) = pHalData->bDumpRxPkt; break; case HAL_DEF_DBG_DUMP_TXPKT: *(( u8*)pValue) = pHalData->bDumpTxPkt; break; default: bResult = GetHalDefVar(Adapter, eVariable, pValue); break; } return bResult; } // // Description: // Change default setting of specified variable. // u8 SetHalDefVar8188EUsb( IN struct adapter * Adapter, IN HAL_DEF_VARIABLE eVariable, IN PVOID pValue ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct dm_priv *pdmpriv = &pHalData->dmpriv; DM_ODM_T *podmpriv = &pHalData->odmpriv; u8 bResult = _SUCCESS; switch(eVariable) { case HAL_DEF_DBG_DM_FUNC: { u8 dm_func = *(( u8*)pValue); if(dm_func == 0){ //disable all dynamic func podmpriv->SupportAbility = DYNAMIC_FUNC_DISABLE; DBG_8192C("==> Disable all dynamic function...\n"); } else if(dm_func == 1){//disable DIG podmpriv->SupportAbility &= (~DYNAMIC_BB_DIG); DBG_8192C("==> Disable DIG...\n"); } else if(dm_func == 2){//disable High power podmpriv->SupportAbility &= (~DYNAMIC_BB_DYNAMIC_TXPWR); } else if(dm_func == 3){//disable tx power tracking podmpriv->SupportAbility &= (~DYNAMIC_RF_CALIBRATION); DBG_8192C("==> Disable tx power tracking...\n"); } //else if(dm_func == 4){//disable BT coexistence // pdmpriv->DMFlag &= (~DYNAMIC_FUNC_BT); //} else if(dm_func == 5){//disable antenna diversity podmpriv->SupportAbility &= (~DYNAMIC_BB_ANT_DIV); } else if(dm_func == 6){//turn on all dynamic func if(!(podmpriv->SupportAbility & DYNAMIC_BB_DIG)) { DIG_T *pDigTable = &podmpriv->DM_DigTable; pDigTable->CurIGValue= rtw_read8(Adapter,0xc50); } //pdmpriv->DMFlag |= DYNAMIC_FUNC_BT; podmpriv->SupportAbility = DYNAMIC_ALL_FUNC_ENABLE; DBG_8192C("==> Turn on all dynamic function...\n"); } } break; case HAL_DEF_DBG_DUMP_RXPKT: pHalData->bDumpRxPkt = *(( u8*)pValue); break; case HAL_DEF_DBG_DUMP_TXPKT: pHalData->bDumpTxPkt = *(( u8*)pValue); break; default: bResult = SetHalDefVar(Adapter, eVariable, pValue); break; } return bResult; } /* u32 _update_92cu_basic_rate(struct adapter *padapter, unsigned int mask) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); #ifdef CONFIG_BT_COEXIST struct btcoexist_priv *pbtpriv = &(pHalData->bt_coexist); #endif unsigned int BrateCfg = 0; #ifdef CONFIG_BT_COEXIST if( (pbtpriv->BT_Coexist) && (pbtpriv->BT_CoexistType == BT_CSR_BC4) ) { BrateCfg = mask & 0x151; //DBG_8192C("BT temp disable cck 2/5.5/11M, (0x%x = 0x%x)\n", REG_RRSR, BrateCfg & 0x151); } else #endif { //if(pHalData->VersionID != VERSION_TEST_CHIP_88C) BrateCfg = mask & 0x15F; //else //for 88CU 46PING setting, Disable CCK 2M, 5.5M, Others must tuning // BrateCfg = mask & 0x159; } BrateCfg |= 0x01; // default enable 1M ACK rate return BrateCfg; } */ void _update_response_rate(struct adapter *padapter,unsigned int mask) { u8 RateIndex = 0; // Set RRSR rate table. rtw_write8(padapter, REG_RRSR, mask&0xff); rtw_write8(padapter,REG_RRSR+1, (mask>>8)&0xff); // Set RTS initial rate while(mask > 0x1) { mask = (mask>> 1); RateIndex++; } rtw_write8(padapter, REG_INIRTS_RATE_SEL, RateIndex); } void UpdateHalRAMask8188EUsb(struct adapter *padapter, u32 mac_id, u8 rssi_level) { //volatile unsigned int result; u8 init_rate=0; u8 networkType, raid; u32 mask,rate_bitmap; u8 shortGIrate = _FALSE; int supportRateNum = 0; struct sta_info *psta; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); //struct dm_priv *pdmpriv = &pHalData->dmpriv; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network); if (mac_id >= NUM_STA) //CAM_SIZE { return; } psta = pmlmeinfo->FW_sta_info[mac_id].psta; if(psta == NULL) { return; } switch (mac_id) { case 0:// for infra mode #ifdef CONFIG_CONCURRENT_MODE case 2:// first station uses macid=0, second station uses macid=2 #endif supportRateNum = rtw_get_rateset_len(cur_network->SupportedRates); networkType = judge_network_type(padapter, cur_network->SupportedRates, supportRateNum) & 0xf; //pmlmeext->cur_wireless_mode = networkType; raid = networktype_to_raid(networkType); mask = update_supported_rate(cur_network->SupportedRates, supportRateNum); mask |= (pmlmeinfo->HT_enable)? update_MSC_rate(&(pmlmeinfo->HT_caps)): 0; if (support_short_GI(padapter, &(pmlmeinfo->HT_caps))) { shortGIrate = _TRUE; } break; case 1://for broadcast/multicast supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates); if(pmlmeext->cur_wireless_mode & WIRELESS_11B) networkType = WIRELESS_11B; else networkType = WIRELESS_11G; raid = networktype_to_raid(networkType); mask = update_basic_rate(cur_network->SupportedRates, supportRateNum); break; default: //for each sta in IBSS supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates); networkType = judge_network_type(padapter, pmlmeinfo->FW_sta_info[mac_id].SupportedRates, supportRateNum) & 0xf; //pmlmeext->cur_wireless_mode = networkType; raid = networktype_to_raid(networkType); mask = update_supported_rate(cur_network->SupportedRates, supportRateNum); //todo: support HT in IBSS break; } //mask &=0x0fffffff; rate_bitmap = 0x0fffffff; #ifdef CONFIG_ODM_REFRESH_RAMASK { rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv,mac_id,mask,rssi_level); printk("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n", __FUNCTION__,mac_id,networkType,mask,rssi_level,rate_bitmap); } #endif mask &= rate_bitmap; init_rate = get_highest_rate_idx(mask)&0x3f; if(pHalData->fw_ractrl == _TRUE) { u8 arg = 0; //arg = (cam_idx-4)&0x1f;//MACID arg = mac_id&0x1f;//MACID arg |= BIT(7); if (shortGIrate==_TRUE) arg |= BIT(5); mask |= ((raid<<28)&0xf0000000); DBG_871X("update raid entry, mask=0x%x, arg=0x%x\n", mask, arg); psta->ra_mask=mask; #ifdef CONFIG_INTEL_PROXIM if(padapter->proximity.proxim_on ==_TRUE){ arg &= ~BIT(6); } else { arg |= BIT(6); } #endif //CONFIG_INTEL_PROXIM mask |= ((raid<<28)&0xf0000000); //to do /* *(pu4Byte)&RateMask=EF4Byte((ratr_bitmap&0x0fffffff) | (ratr_index<<28)); RateMask[4] = macId | (bShortGI?0x20:0x00) | 0x80; */ rtl8188e_set_raid_cmd(padapter, mask); } else { #if(RATE_ADAPTIVE_SUPPORT == 1) ODM_RA_UpdateRateInfo_8188E( &(pHalData->odmpriv), mac_id, raid, mask, shortGIrate ); #endif } //set ra_id psta->raid = raid; psta->init_rate = init_rate; } void SetBeaconRelatedRegisters8188EUsb(struct adapter *padapter) { u32 value32; //HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); u32 bcn_ctrl_reg = REG_BCN_CTRL; //reset TSF, enable update TSF, correcting TSF On Beacon //REG_BCN_INTERVAL //REG_BCNDMATIM //REG_ATIMWND //REG_TBTT_PROHIBIT //REG_DRVERLYINT //REG_BCN_MAX_ERR //REG_BCNTCFG //(0x510) //REG_DUAL_TSF_RST //REG_BCN_CTRL //(0x550) //BCN interval #ifdef CONFIG_CONCURRENT_MODE if (padapter->iface_type == IFACE_PORT1){ bcn_ctrl_reg = REG_BCN_CTRL_1; } #endif rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval); rtw_write8(padapter, REG_ATIMWND, 0x02);// 2ms _InitBeaconParameters(padapter); rtw_write8(padapter, REG_SLOT, 0x09); value32 =rtw_read32(padapter, REG_TCR); value32 &= ~TSFRST; rtw_write32(padapter, REG_TCR, value32); value32 |= TSFRST; rtw_write32(padapter, REG_TCR, value32); // NOTE: Fix test chip's bug (about contention windows's randomness) rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50); rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50); _BeaconFunctionEnable(padapter, _TRUE, _TRUE); ResumeTxBeacon(padapter); //rtw_write8(padapter, 0x422, rtw_read8(padapter, 0x422)|BIT(6)); //rtw_write8(padapter, 0x541, 0xff); //rtw_write8(padapter, 0x542, rtw_read8(padapter, 0x541)|BIT(0)); rtw_write8(padapter, bcn_ctrl_reg, rtw_read8(padapter, bcn_ctrl_reg)|BIT(1)); } static void rtl8188eu_init_default_value(struct adapter * padapter) { PHAL_DATA_TYPE pHalData; struct pwrctrl_priv *pwrctrlpriv; struct dm_priv *pdmpriv; u8 i; pHalData = GET_HAL_DATA(padapter); pwrctrlpriv = adapter_to_pwrctl(padapter); pdmpriv = &pHalData->dmpriv; //init default value pHalData->fw_ractrl = _FALSE; if(!pwrctrlpriv->bkeepfwalive) pHalData->LastHMEBoxNum = 0; //init dm default value pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized = _FALSE; pHalData->odmpriv.RFCalibrateInfo.TM_Trigger = 0;//for IQK //pdmpriv->binitialized = _FALSE; // pdmpriv->prv_traffic_idx = 3; // pdmpriv->initialize = 0; pHalData->pwrGroupCnt = 0; pHalData->PGMaxGroup= 13; pHalData->odmpriv.RFCalibrateInfo.ThermalValue_HP_index = 0; for(i = 0; i < HP_THERMAL_NUM; i++) pHalData->odmpriv.RFCalibrateInfo.ThermalValue_HP[i] = 0; } static u8 rtl8188eu_ps_func(struct adapter *Adapter,HAL_INTF_PS_FUNC efunc_id, u8 *val) { u8 bResult = _TRUE; switch(efunc_id){ #if defined(CONFIG_AUTOSUSPEND) && defined(SUPPORT_HW_RFOFF_DETECTED) case HAL_USB_SELECT_SUSPEND: { u8 bfwpoll = *(( u8*)val); //rtl8188e_set_FwSelectSuspend_cmd(Adapter,bfwpoll ,500);//note fw to support hw power down ping detect } break; #endif //CONFIG_AUTOSUSPEND && SUPPORT_HW_RFOFF_DETECTED default: break; } return bResult; } void rtl8188eu_set_hal_ops(struct adapter * padapter) { struct hal_ops *pHalFunc = &padapter->HalFunc; _func_enter_; #ifdef CONFIG_CONCURRENT_MODE if(padapter->isprimary) #endif //CONFIG_CONCURRENT_MODE { padapter->HalData = rtw_zmalloc(sizeof(HAL_DATA_TYPE)); if(padapter->HalData == NULL){ DBG_8192C("cant not alloc memory for HAL DATA \n"); } } //_rtw_memset(padapter->HalData, 0, sizeof(HAL_DATA_TYPE)); padapter->hal_data_sz = sizeof(HAL_DATA_TYPE); pHalFunc->hal_power_on = InitPowerOn_rtl8188eu; pHalFunc->hal_power_off = hal_poweroff_rtl8188eu; pHalFunc->hal_init = &rtl8188eu_hal_init; pHalFunc->hal_deinit = &rtl8188eu_hal_deinit; //pHalFunc->free_hal_data = &rtl8192c_free_hal_data; pHalFunc->inirp_init = &rtl8188eu_inirp_init; pHalFunc->inirp_deinit = &rtl8188eu_inirp_deinit; pHalFunc->init_xmit_priv = &rtl8188eu_init_xmit_priv; pHalFunc->free_xmit_priv = &rtl8188eu_free_xmit_priv; pHalFunc->init_recv_priv = &rtl8188eu_init_recv_priv; pHalFunc->free_recv_priv = &rtl8188eu_free_recv_priv; #ifdef CONFIG_SW_LED pHalFunc->InitSwLeds = &rtl8188eu_InitSwLeds; pHalFunc->DeInitSwLeds = &rtl8188eu_DeInitSwLeds; #else //case of hw led or no led pHalFunc->InitSwLeds = NULL; pHalFunc->DeInitSwLeds = NULL; #endif//CONFIG_SW_LED pHalFunc->init_default_value = &rtl8188eu_init_default_value; pHalFunc->intf_chip_configure = &rtl8188eu_interface_configure; pHalFunc->read_adapter_info = &ReadAdapterInfo8188EU; //pHalFunc->set_bwmode_handler = &PHY_SetBWMode8192C; //pHalFunc->set_channel_handler = &PHY_SwChnl8192C; //pHalFunc->hal_dm_watchdog = &rtl8192c_HalDmWatchDog; pHalFunc->SetHwRegHandler = &SetHwReg8188EU; pHalFunc->GetHwRegHandler = &GetHwReg8188EU; pHalFunc->GetHalDefVarHandler = &GetHalDefVar8188EUsb; pHalFunc->SetHalDefVarHandler = &SetHalDefVar8188EUsb; pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8188EUsb; pHalFunc->SetBeaconRelatedRegistersHandler = &SetBeaconRelatedRegisters8188EUsb; //pHalFunc->Add_RateATid = &rtl8192c_Add_RateATid; pHalFunc->hal_xmit = &rtl8188eu_hal_xmit; pHalFunc->mgnt_xmit = &rtl8188eu_mgnt_xmit; pHalFunc->hal_xmitframe_enqueue = &rtl8188eu_hal_xmitframe_enqueue; #ifdef CONFIG_HOSTAPD_MLME pHalFunc->hostap_mgnt_xmit_entry = &rtl8188eu_hostap_mgnt_xmit_entry; #endif pHalFunc->interface_ps_func = &rtl8188eu_ps_func; rtl8188e_set_hal_ops(pHalFunc); _func_exit_; }