/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _HAL_INIT_C_ #include #include #include #include #include #include #include void iol_mode_enable(struct adapter *padapter, u8 enable) { u8 reg_0xf0 = 0; if (enable) { /* Enable initial offload */ reg_0xf0 = usb_read8(padapter, REG_SYS_CFG); usb_write8(padapter, REG_SYS_CFG, reg_0xf0|SW_OFFLOAD_EN); if (!padapter->bFWReady) { DBG_88E("bFWReady == false call reset 8051...\n"); _8051Reset88E(padapter); } } else { /* disable initial offload */ reg_0xf0 = usb_read8(padapter, REG_SYS_CFG); usb_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN); } } s32 iol_execute(struct adapter *padapter, u8 control) { s32 status = _FAIL; u8 reg_0x88 = 0; u32 start = 0, passing_time = 0; control = control&0x0f; reg_0x88 = usb_read8(padapter, REG_HMEBOX_E0); usb_write8(padapter, REG_HMEBOX_E0, reg_0x88|control); start = jiffies; while ((reg_0x88 = usb_read8(padapter, REG_HMEBOX_E0)) & control && (passing_time = rtw_get_passing_time_ms(start)) < 1000) { ; } reg_0x88 = usb_read8(padapter, REG_HMEBOX_E0); status = (reg_0x88 & control) ? _FAIL : _SUCCESS; if (reg_0x88 & control<<4) status = _FAIL; return status; } static s32 iol_InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy) { s32 rst = _SUCCESS; iol_mode_enable(padapter, 1); usb_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy); rst = iol_execute(padapter, CMD_INIT_LLT); iol_mode_enable(padapter, 0); return rst; } s32 rtl8188e_iol_efuse_patch(struct adapter *padapter) { s32 result = _SUCCESS; DBG_88E("==> %s\n", __func__); if (rtw_IOL_applied(padapter)) { iol_mode_enable(padapter, 1); result = iol_execute(padapter, CMD_READ_EFUSE_MAP); if (result == _SUCCESS) result = iol_execute(padapter, CMD_EFUSE_PATCH); iol_mode_enable(padapter, 0); } return result; } #define MAX_REG_BOLCK_SIZE 196 void _8051Reset88E(struct adapter *padapter) { u8 u1bTmp; u1bTmp = usb_read8(padapter, REG_SYS_FUNC_EN+1); usb_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2)); usb_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp|(BIT2)); DBG_88E("=====> _8051Reset88E(): 8051 reset success .\n"); } void rtl8188e_InitializeFirmwareVars(struct adapter *padapter) { struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter); /* Init Fw LPS related. */ padapter->pwrctrlpriv.bFwCurrentInPSMode = false; /* Init H2C counter. by tynli. 2009.12.09. */ pHalData->LastHMEBoxNum = 0; } static void rtl8188e_free_hal_data(struct adapter *padapter) { kfree(padapter->HalData); padapter->HalData = NULL; } static struct HAL_VERSION ReadChipVersion8188E(struct adapter *padapter) { u32 value32; struct HAL_VERSION ChipVersion; struct hal_data_8188e *pHalData; pHalData = GET_HAL_DATA(padapter); value32 = usb_read32(padapter, REG_SYS_CFG); ChipVersion.ICType = CHIP_8188E; ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP); ChipVersion.RFType = RF_TYPE_1T1R; ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC); ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /* IC version (CUT) */ /* For regulator mode. by tynli. 2011.01.14 */ pHalData->RegulatorMode = ((value32 & TRP_BT_EN) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR); ChipVersion.ROMVer = 0; /* ROM code version. */ dump_chip_info(ChipVersion); pHalData->VersionID = ChipVersion; if (IS_1T2R(ChipVersion)) { pHalData->rf_type = RF_1T2R; pHalData->NumTotalRFPath = 2; } else if (IS_2T2R(ChipVersion)) { pHalData->rf_type = RF_2T2R; pHalData->NumTotalRFPath = 2; } else{ pHalData->rf_type = RF_1T1R; pHalData->NumTotalRFPath = 1; } MSG_88E("RF_Type is %x!!\n", pHalData->rf_type); return ChipVersion; } static void rtl8188e_read_chip_version(struct adapter *padapter) { ReadChipVersion8188E(padapter); } static void rtl8188e_SetHalODMVar(struct adapter *Adapter, enum hal_odm_variable eVariable, void *pValue1, bool bSet) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); struct odm_dm_struct *podmpriv = &pHalData->odmpriv; switch (eVariable) { case HAL_ODM_STA_INFO: { struct sta_info *psta = (struct sta_info *)pValue1; if (bSet) { DBG_88E("### Set STA_(%d) info\n", psta->mac_id); ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, psta); ODM_RAInfo_Init(podmpriv, psta->mac_id); } else { DBG_88E("### Clean STA_(%d) info\n", psta->mac_id); ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, NULL); } } break; case HAL_ODM_P2P_STATE: ODM_CmnInfoUpdate(podmpriv, ODM_CMNINFO_WIFI_DIRECT, bSet); break; case HAL_ODM_WIFI_DISPLAY_STATE: ODM_CmnInfoUpdate(podmpriv, ODM_CMNINFO_WIFI_DISPLAY, bSet); break; default: break; } } static void hal_notch_filter_8188e(struct adapter *adapter, bool enable) { if (enable) { DBG_88E("Enable notch filter\n"); usb_write8(adapter, rOFDM0_RxDSP+1, usb_read8(adapter, rOFDM0_RxDSP+1) | BIT1); } else { DBG_88E("Disable notch filter\n"); usb_write8(adapter, rOFDM0_RxDSP+1, usb_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1); } } void rtl8188e_set_hal_ops(struct hal_ops *pHalFunc) { pHalFunc->free_hal_data = &rtl8188e_free_hal_data; pHalFunc->dm_init = &rtl8188e_init_dm_priv; pHalFunc->read_chip_version = &rtl8188e_read_chip_version; pHalFunc->set_bwmode_handler = &phy_set_bw_mode; pHalFunc->set_channel_handler = &phy_sw_chnl; pHalFunc->hal_dm_watchdog = &rtl8188e_HalDmWatchDog; pHalFunc->Add_RateATid = &rtl8188e_Add_RateATid; pHalFunc->AntDivBeforeLinkHandler = &AntDivBeforeLink8188E; pHalFunc->AntDivCompareHandler = &AntDivCompare8188E; pHalFunc->read_rfreg = &phy_query_rf_reg; pHalFunc->write_rfreg = &phy_set_rf_reg; pHalFunc->sreset_init_value = &sreset_init_value; pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status; pHalFunc->SetHalODMVarHandler = &rtl8188e_SetHalODMVar; pHalFunc->hal_notch_filter = &hal_notch_filter_8188e; } u8 GetEEPROMSize8188E(struct adapter *padapter) { u8 size = 0; u32 cr; cr = usb_read16(padapter, REG_9346CR); /* 6: EEPROM used is 93C46, 4: boot from E-Fuse. */ size = (cr & BOOT_FROM_EEPROM) ? 6 : 4; MSG_88E("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46"); return size; } /* */ /* */ /* LLT R/W/Init function */ /* */ /* */ static s32 _LLTWrite(struct adapter *padapter, u32 address, u32 data) { s32 status = _SUCCESS; s32 count = 0; u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); u16 LLTReg = REG_LLT_INIT; usb_write32(padapter, LLTReg, value); /* polling */ do { value = usb_read32(padapter, LLTReg); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) break; if (count > POLLING_LLT_THRESHOLD) { RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling write LLT done at address %d!\n", address)); status = _FAIL; break; } } while (count++); return status; } s32 InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy) { s32 status = _FAIL; u32 i; u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER;/* 176, 22k */ if (rtw_IOL_applied(padapter)) { status = iol_InitLLTTable(padapter, txpktbuf_bndy); } else { for (i = 0; i < (txpktbuf_bndy - 1); i++) { status = _LLTWrite(padapter, i, i + 1); if (_SUCCESS != status) return status; } /* end of list */ status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF); if (_SUCCESS != status) return status; /* Make the other pages as ring buffer */ /* This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */ /* Otherwise used as local loopback buffer. */ for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) { status = _LLTWrite(padapter, i, (i + 1)); if (_SUCCESS != status) return status; } /* Let last entry point to the start entry of ring buffer */ status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy); if (_SUCCESS != status) { return status; } } return status; } void Hal_InitPGData88E(struct adapter *padapter) { struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter); if (!pEEPROM->bautoload_fail_flag) { /* autoload OK. */ if (!is_boot_from_eeprom(padapter)) { /* Read EFUSE real map to shadow. */ EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI); } } else {/* autoload fail */ RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n")); /* update to default value 0xFF */ if (!is_boot_from_eeprom(padapter)) EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI); } } void Hal_EfuseParseIDCode88E( struct adapter *padapter, u8 *hwinfo ) { struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter); u16 EEPROMId; /* Checl 0x8129 again for making sure autoload status!! */ EEPROMId = le16_to_cpu(*((__le16 *)hwinfo)); if (EEPROMId != RTL_EEPROM_ID) { DBG_88E("EEPROM ID(%#x) is invalid!!\n", EEPROMId); pEEPROM->bautoload_fail_flag = true; } else { pEEPROM->bautoload_fail_flag = false; } DBG_88E("EEPROM ID = 0x%04x\n", EEPROMId); } static void Hal_ReadPowerValueFromPROM_8188E(struct txpowerinfo24g *pwrInfo24G, u8 *PROMContent, bool AutoLoadFail) { u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_88E, group, TxCount = 0; memset(pwrInfo24G, 0, sizeof(struct txpowerinfo24g)); if (AutoLoadFail) { for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) { /* 2.4G default value */ for (group = 0; group < MAX_CHNL_GROUP_24G; group++) { pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; } for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) { if (TxCount == 0) { pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF; pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF; } else { pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } } } return; } for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) { /* 2.4G default value */ for (group = 0; group < MAX_CHNL_GROUP_24G; group++) { pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++]; if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF) pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; } for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) { pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++]; if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF) pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; } for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) { if (TxCount == 0) { pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0; if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF; } else { pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4; if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0; } if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF; } else { pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f); if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0; } pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0; eeAddr++; } else { if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } else { pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4; if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0; } if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } else { pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f); if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0; } eeAddr++; if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } else { pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4; if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0; } if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } else { pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f); if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0; } eeAddr++; } } } } static u8 Hal_GetChnlGroup88E(u8 chnl, u8 *pGroup) { u8 bIn24G = true; if (chnl <= 14) { bIn24G = true; if (chnl < 3) /* Channel 1-2 */ *pGroup = 0; else if (chnl < 6) /* Channel 3-5 */ *pGroup = 1; else if (chnl < 9) /* Channel 6-8 */ *pGroup = 2; else if (chnl < 12) /* Channel 9-11 */ *pGroup = 3; else if (chnl < 14) /* Channel 12-13 */ *pGroup = 4; else if (chnl == 14) /* Channel 14 */ *pGroup = 5; } else { bIn24G = false; if (chnl <= 40) *pGroup = 0; else if (chnl <= 48) *pGroup = 1; else if (chnl <= 56) *pGroup = 2; else if (chnl <= 64) *pGroup = 3; else if (chnl <= 104) *pGroup = 4; else if (chnl <= 112) *pGroup = 5; else if (chnl <= 120) *pGroup = 5; else if (chnl <= 128) *pGroup = 6; else if (chnl <= 136) *pGroup = 7; else if (chnl <= 144) *pGroup = 8; else if (chnl <= 153) *pGroup = 9; else if (chnl <= 161) *pGroup = 10; else if (chnl <= 177) *pGroup = 11; } return bIn24G; } void Hal_ReadPowerSavingMode88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail) { if (AutoLoadFail) { padapter->pwrctrlpriv.bHWPowerdown = false; padapter->pwrctrlpriv.bSupportRemoteWakeup = false; } else { /* hw power down mode selection , 0:rf-off / 1:power down */ if (padapter->registrypriv.hwpdn_mode == 2) padapter->pwrctrlpriv.bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_88E] & BIT4); else padapter->pwrctrlpriv.bHWPowerdown = padapter->registrypriv.hwpdn_mode; /* decide hw if support remote wakeup function */ /* if hw supported, 8051 (SIE) will generate WeakUP signal(D+/D- toggle) when autoresume */ padapter->pwrctrlpriv.bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1) ? true : false; DBG_88E("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) , bSupportRemoteWakeup(%x)\n", __func__, padapter->pwrctrlpriv.bHWPwrPindetect, padapter->pwrctrlpriv.bHWPowerdown , padapter->pwrctrlpriv.bSupportRemoteWakeup); DBG_88E("### PS params => power_mgnt(%x), usbss_enable(%x) ###\n", padapter->registrypriv.power_mgnt, padapter->registrypriv.usbss_enable); } } void Hal_ReadTxPowerInfo88E(struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail) { struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter); struct txpowerinfo24g pwrInfo24G; u8 rfPath, ch, group; u8 bIn24G, TxCount; Hal_ReadPowerValueFromPROM_8188E(&pwrInfo24G, PROMContent, AutoLoadFail); if (!AutoLoadFail) pHalData->bTXPowerDataReadFromEEPORM = true; for (rfPath = 0; rfPath < pHalData->NumTotalRFPath; rfPath++) { for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) { bIn24G = Hal_GetChnlGroup88E(ch, &group); if (bIn24G) { pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group]; if (ch == 14) pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][4]; else pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group]; } if (bIn24G) { DBG_88E("======= Path %d, Channel %d =======\n", rfPath, ch); DBG_88E("Index24G_CCK_Base[%d][%d] = 0x%x\n", rfPath, ch , pHalData->Index24G_CCK_Base[rfPath][ch]); DBG_88E("Index24G_BW40_Base[%d][%d] = 0x%x\n", rfPath, ch , pHalData->Index24G_BW40_Base[rfPath][ch]); } } for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) { pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount]; pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount]; pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount]; pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount]; DBG_88E("======= TxCount %d =======\n", TxCount); DBG_88E("CCK_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->CCK_24G_Diff[rfPath][TxCount]); DBG_88E("OFDM_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->OFDM_24G_Diff[rfPath][TxCount]); DBG_88E("BW20_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->BW20_24G_Diff[rfPath][TxCount]); DBG_88E("BW40_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->BW40_24G_Diff[rfPath][TxCount]); } } /* 2010/10/19 MH Add Regulator recognize for CU. */ if (!AutoLoadFail) { pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x7); /* bit0~2 */ if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF) pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); /* bit0~2 */ } else { pHalData->EEPROMRegulatory = 0; } DBG_88E("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory); } void Hal_EfuseParseXtal_8188E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail) { struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter); if (!AutoLoadFail) { pHalData->CrystalCap = hwinfo[EEPROM_XTAL_88E]; if (pHalData->CrystalCap == 0xFF) pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E; } else { pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E; } DBG_88E("CrystalCap: 0x%2x\n", pHalData->CrystalCap); } void Hal_EfuseParseBoardType88E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail) { struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter); if (!AutoLoadFail) pHalData->BoardType = ((hwinfo[EEPROM_RF_BOARD_OPTION_88E]&0xE0)>>5); else pHalData->BoardType = 0; DBG_88E("Board Type: 0x%2x\n", pHalData->BoardType); } void Hal_EfuseParseEEPROMVer88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail) { struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter); if (!AutoLoadFail) { pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_88E]; if (pHalData->EEPROMVersion == 0xFF) pHalData->EEPROMVersion = EEPROM_Default_Version; } else { pHalData->EEPROMVersion = 1; } RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n", pHalData->EEPROMVersion)); } void rtl8188e_EfuseParseChnlPlan(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail) { padapter->mlmepriv.ChannelPlan = hal_com_get_channel_plan(padapter, hwinfo ? hwinfo[EEPROM_ChannelPlan_88E] : 0xFF, padapter->registrypriv.channel_plan, RT_CHANNEL_DOMAIN_WORLD_WIDE_13, AutoLoadFail); DBG_88E("mlmepriv.ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan); } void Hal_EfuseParseCustomerID88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail) { struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter); if (!AutoLoadFail) { pHalData->EEPROMCustomerID = hwinfo[EEPROM_CUSTOMERID_88E]; } else { pHalData->EEPROMCustomerID = 0; pHalData->EEPROMSubCustomerID = 0; } DBG_88E("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID); } void Hal_ReadAntennaDiversity88E(struct adapter *pAdapter, u8 *PROMContent, bool AutoLoadFail) { struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter); struct registry_priv *registry_par = &pAdapter->registrypriv; if (!AutoLoadFail) { /* Antenna Diversity setting. */ if (registry_par->antdiv_cfg == 2) { /* 2:By EFUSE */ pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x18)>>3; if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF) pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION&0x18)>>3; } else { pHalData->AntDivCfg = registry_par->antdiv_cfg; /* 0:OFF , 1:ON, 2:By EFUSE */ } if (registry_par->antdiv_type == 0) { /* If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead. */ pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_88E]; if (pHalData->TRxAntDivType == 0xFF) pHalData->TRxAntDivType = CG_TRX_HW_ANTDIV; /* For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port) */ } else { pHalData->TRxAntDivType = registry_par->antdiv_type; } if (pHalData->TRxAntDivType == CG_TRX_HW_ANTDIV || pHalData->TRxAntDivType == CGCS_RX_HW_ANTDIV) pHalData->AntDivCfg = 1; /* 0xC1[3] is ignored. */ } else { pHalData->AntDivCfg = 0; pHalData->TRxAntDivType = pHalData->TRxAntDivType; /* The value in the driver setting of device manager. */ } DBG_88E("EEPROM : AntDivCfg = %x, TRxAntDivType = %x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType); } void Hal_ReadThermalMeter_88E(struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); /* ThermalMeter from EEPROM */ if (!AutoloadFail) pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_88E]; else pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E; if (pHalData->EEPROMThermalMeter == 0xff || AutoloadFail) { pHalData->bAPKThermalMeterIgnore = true; pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E; } DBG_88E("ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter); }