/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _HAL_MP_C_ #include #ifdef CONFIG_MP_INCLUDED #ifdef RTW_HALMAC #include /* struct HAL_DATA_TYPE, RF register definition and etc. */ #else /* !RTW_HALMAC */ #include #endif /* !RTW_HALMAC */ static u8 MgntQuery_NssTxRate(u16 Rate) { u8 NssNum = RF_TX_NUM_NONIMPLEMENT; if ((Rate >= MGN_MCS8 && Rate <= MGN_MCS15) || (Rate >= MGN_VHT2SS_MCS0 && Rate <= MGN_VHT2SS_MCS9)) NssNum = RF_2TX; else if ((Rate >= MGN_MCS16 && Rate <= MGN_MCS23) || (Rate >= MGN_VHT3SS_MCS0 && Rate <= MGN_VHT3SS_MCS9)) NssNum = RF_3TX; else if ((Rate >= MGN_MCS24 && Rate <= MGN_MCS31) || (Rate >= MGN_VHT4SS_MCS0 && Rate <= MGN_VHT4SS_MCS9)) NssNum = RF_4TX; else NssNum = RF_1TX; return NssNum; } void hal_mpt_SwitchRfSetting(PADAPTER pAdapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.mpt_ctx); u8 ChannelToSw = pMptCtx->MptChannelToSw; ULONG ulRateIdx = pMptCtx->mpt_rate_index; ULONG ulbandwidth = pMptCtx->MptBandWidth; /* <20120525, Kordan> Dynamic mechanism for APK, asked by Dennis.*/ if (IS_HARDWARE_TYPE_8188E(pAdapter)) { phy_set_rf_reg(pAdapter, ODM_RF_PATH_A, RF_0x52, 0x000F0, pMptCtx->backup0x52_RF_A); phy_set_rf_reg(pAdapter, ODM_RF_PATH_B, RF_0x52, 0x000F0, pMptCtx->backup0x52_RF_B); } } s32 hal_mpt_SetPowerTracking(PADAPTER padapter, u8 enable) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct PHY_DM_STRUCT *pDM_Odm = &(pHalData->odmpriv); if (!netif_running(padapter->pnetdev)) { return _FAIL; } if (check_fwstate(&padapter->mlmepriv, WIFI_MP_STATE) == _FALSE) { return _FAIL; } if (enable) pDM_Odm->rf_calibrate_info.txpowertrack_control = _TRUE; else pDM_Odm->rf_calibrate_info.txpowertrack_control = _FALSE; return _SUCCESS; } void hal_mpt_GetPowerTracking(PADAPTER padapter, u8 *enable) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct PHY_DM_STRUCT *pDM_Odm = &(pHalData->odmpriv); *enable = pDM_Odm->rf_calibrate_info.txpowertrack_control; } void hal_mpt_CCKTxPowerAdjust(PADAPTER Adapter, bool bInCH14) { u32 TempVal = 0, TempVal2 = 0, TempVal3 = 0; u32 CurrCCKSwingVal = 0, CCKSwingIndex = 12; u8 i; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PMPT_CONTEXT pMptCtx = &(Adapter->mppriv.mpt_ctx); u1Byte u1Channel = pHalData->current_channel; ULONG ulRateIdx = pMptCtx->mpt_rate_index; u1Byte DataRate = 0xFF; DataRate = mpt_to_mgnt_rate(ulRateIdx); if (u1Channel == 14 && IS_CCK_RATE(DataRate)) pHalData->bCCKinCH14 = TRUE; else pHalData->bCCKinCH14 = FALSE; /* get current cck swing value and check 0xa22 & 0xa23 later to match the table.*/ CurrCCKSwingVal = read_bbreg(Adapter, rCCK0_TxFilter1, bMaskHWord); if (!pHalData->bCCKinCH14) { /* Readback the current bb cck swing value and compare with the table to */ /* get the current swing index */ for (i = 0; i < CCK_TABLE_SIZE; i++) { if (((CurrCCKSwingVal & 0xff) == (u32)cck_swing_table_ch1_ch13[i][0]) && (((CurrCCKSwingVal & 0xff00) >> 8) == (u32)cck_swing_table_ch1_ch13[i][1])) { CCKSwingIndex = i; break; } } /*Write 0xa22 0xa23*/ TempVal = cck_swing_table_ch1_ch13[CCKSwingIndex][0] + (cck_swing_table_ch1_ch13[CCKSwingIndex][1] << 8); /*Write 0xa24 ~ 0xa27*/ TempVal2 = 0; TempVal2 = cck_swing_table_ch1_ch13[CCKSwingIndex][2] + (cck_swing_table_ch1_ch13[CCKSwingIndex][3] << 8) + (cck_swing_table_ch1_ch13[CCKSwingIndex][4] << 16) + (cck_swing_table_ch1_ch13[CCKSwingIndex][5] << 24); /*Write 0xa28 0xa29*/ TempVal3 = 0; TempVal3 = cck_swing_table_ch1_ch13[CCKSwingIndex][6] + (cck_swing_table_ch1_ch13[CCKSwingIndex][7] << 8); } else { for (i = 0; i < CCK_TABLE_SIZE; i++) { if (((CurrCCKSwingVal & 0xff) == (u32)cck_swing_table_ch14[i][0]) && (((CurrCCKSwingVal & 0xff00) >> 8) == (u32)cck_swing_table_ch14[i][1])) { CCKSwingIndex = i; break; } } /*Write 0xa22 0xa23*/ TempVal = cck_swing_table_ch14[CCKSwingIndex][0] + (cck_swing_table_ch14[CCKSwingIndex][1] << 8); /*Write 0xa24 ~ 0xa27*/ TempVal2 = 0; TempVal2 = cck_swing_table_ch14[CCKSwingIndex][2] + (cck_swing_table_ch14[CCKSwingIndex][3] << 8) + (cck_swing_table_ch14[CCKSwingIndex][4] << 16) + (cck_swing_table_ch14[CCKSwingIndex][5] << 24); /*Write 0xa28 0xa29*/ TempVal3 = 0; TempVal3 = cck_swing_table_ch14[CCKSwingIndex][6] + (cck_swing_table_ch14[CCKSwingIndex][7] << 8); } write_bbreg(Adapter, rCCK0_TxFilter1, bMaskHWord, TempVal); write_bbreg(Adapter, rCCK0_TxFilter2, bMaskDWord, TempVal2); write_bbreg(Adapter, rCCK0_DebugPort, bMaskLWord, TempVal3); } void hal_mpt_SetChannel(PADAPTER pAdapter) { u8 eRFPath; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); struct PHY_DM_STRUCT *pDM_Odm = &(pHalData->odmpriv); struct mp_priv *pmp = &pAdapter->mppriv; u8 channel = pmp->channel; u8 bandwidth = pmp->bandwidth; hal_mpt_SwitchRfSetting(pAdapter); pHalData->bSwChnl = _TRUE; pHalData->bSetChnlBW = _TRUE; rtw_hal_set_chnl_bw(pAdapter, channel, bandwidth, 0, 0); hal_mpt_CCKTxPowerAdjust(pAdapter, pHalData->bCCKinCH14); } /* * Notice * Switch bandwitdth may change center frequency(channel) */ void hal_mpt_SetBandwidth(PADAPTER pAdapter) { struct mp_priv *pmp = &pAdapter->mppriv; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u8 channel = pmp->channel; u8 bandwidth = pmp->bandwidth; pHalData->bSwChnl = _TRUE; pHalData->bSetChnlBW = _TRUE; rtw_hal_set_chnl_bw(pAdapter, channel, bandwidth, 0, 0); hal_mpt_SwitchRfSetting(pAdapter); } static void mpt_SetTxPower_Old(PADAPTER pAdapter, MPT_TXPWR_DEF Rate, u8 *pTxPower) { switch (Rate) { case MPT_CCK: { u4Byte TxAGC = 0, pwr = 0; u1Byte rf; pwr = pTxPower[ODM_RF_PATH_A]; if (pwr < 0x3f) { TxAGC = (pwr << 16) | (pwr << 8) | (pwr); phy_set_bb_reg(pAdapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, pTxPower[ODM_RF_PATH_A]); phy_set_bb_reg(pAdapter, rTxAGC_B_CCK11_A_CCK2_11, 0xffffff00, TxAGC); } pwr = pTxPower[ODM_RF_PATH_B]; if (pwr < 0x3f) { TxAGC = (pwr << 16) | (pwr << 8) | (pwr); phy_set_bb_reg(pAdapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte0, pTxPower[ODM_RF_PATH_B]); phy_set_bb_reg(pAdapter, rTxAGC_B_CCK1_55_Mcs32, 0xffffff00, TxAGC); } } break; case MPT_OFDM_AND_HT: { u4Byte TxAGC = 0; u1Byte pwr = 0, rf; pwr = pTxPower[0]; if (pwr < 0x3f) { TxAGC |= ((pwr << 24) | (pwr << 16) | (pwr << 8) | pwr); RTW_INFO("HT Tx-rf(A) Power = 0x%x\n", TxAGC); phy_set_bb_reg(pAdapter, rTxAGC_A_Rate18_06, bMaskDWord, TxAGC); phy_set_bb_reg(pAdapter, rTxAGC_A_Rate54_24, bMaskDWord, TxAGC); phy_set_bb_reg(pAdapter, rTxAGC_A_Mcs03_Mcs00, bMaskDWord, TxAGC); phy_set_bb_reg(pAdapter, rTxAGC_A_Mcs07_Mcs04, bMaskDWord, TxAGC); phy_set_bb_reg(pAdapter, rTxAGC_A_Mcs11_Mcs08, bMaskDWord, TxAGC); phy_set_bb_reg(pAdapter, rTxAGC_A_Mcs15_Mcs12, bMaskDWord, TxAGC); } TxAGC = 0; pwr = pTxPower[1]; if (pwr < 0x3f) { TxAGC |= ((pwr << 24) | (pwr << 16) | (pwr << 8) | pwr); RTW_INFO("HT Tx-rf(B) Power = 0x%x\n", TxAGC); phy_set_bb_reg(pAdapter, rTxAGC_B_Rate18_06, bMaskDWord, TxAGC); phy_set_bb_reg(pAdapter, rTxAGC_B_Rate54_24, bMaskDWord, TxAGC); phy_set_bb_reg(pAdapter, rTxAGC_B_Mcs03_Mcs00, bMaskDWord, TxAGC); phy_set_bb_reg(pAdapter, rTxAGC_B_Mcs07_Mcs04, bMaskDWord, TxAGC); phy_set_bb_reg(pAdapter, rTxAGC_B_Mcs11_Mcs08, bMaskDWord, TxAGC); phy_set_bb_reg(pAdapter, rTxAGC_B_Mcs15_Mcs12, bMaskDWord, TxAGC); } } break; default: break; } RTW_INFO("<===mpt_SetTxPower_Old()\n"); } static void mpt_SetTxPower( PADAPTER pAdapter, MPT_TXPWR_DEF Rate, pu1Byte pTxPower ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u1Byte path = 0 , i = 0, MaxRate = MGN_6M; u1Byte StartPath = ODM_RF_PATH_A, EndPath = ODM_RF_PATH_B; switch (Rate) { case MPT_CCK: { u1Byte rate[] = {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M}; for (path = StartPath; path <= EndPath; path++) for (i = 0; i < sizeof(rate); ++i) PHY_SetTxPowerIndex(pAdapter, pTxPower[path], path, rate[i]); } break; case MPT_OFDM: { u1Byte rate[] = { MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M, }; for (path = StartPath; path <= EndPath; path++) for (i = 0; i < sizeof(rate); ++i) PHY_SetTxPowerIndex(pAdapter, pTxPower[path], path, rate[i]); } break; case MPT_HT: { u1Byte rate[] = { MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7, MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15, MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23, MGN_MCS24, MGN_MCS25, MGN_MCS26, MGN_MCS27, MGN_MCS28, MGN_MCS29, MGN_MCS30, MGN_MCS31, }; if (pHalData->rf_type == RF_3T3R) MaxRate = MGN_MCS23; else if (pHalData->rf_type == RF_2T2R) MaxRate = MGN_MCS15; else MaxRate = MGN_MCS7; for (path = StartPath; path <= EndPath; path++) { for (i = 0; i < sizeof(rate); ++i) { if (rate[i] > MaxRate) break; PHY_SetTxPowerIndex(pAdapter, pTxPower[path], path, rate[i]); } } } break; case MPT_VHT: { u1Byte rate[] = { MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4, MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9, MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4, MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9, MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4, MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9, MGN_VHT4SS_MCS0, MGN_VHT4SS_MCS1, MGN_VHT4SS_MCS2, MGN_VHT4SS_MCS3, MGN_VHT4SS_MCS4, MGN_VHT4SS_MCS5, MGN_VHT4SS_MCS6, MGN_VHT4SS_MCS7, MGN_VHT4SS_MCS8, MGN_VHT4SS_MCS9, }; if (pHalData->rf_type == RF_3T3R) MaxRate = MGN_VHT3SS_MCS9; else if (pHalData->rf_type == RF_2T2R || pHalData->rf_type == RF_2T4R) MaxRate = MGN_VHT2SS_MCS9; else MaxRate = MGN_VHT1SS_MCS9; for (path = StartPath; path <= EndPath; path++) { for (i = 0; i < sizeof(rate); ++i) { if (rate[i] > MaxRate) break; PHY_SetTxPowerIndex(pAdapter, pTxPower[path], path, rate[i]); } } } break; default: RTW_INFO("<===mpt_SetTxPower: Illegal channel!!\n"); break; } } void hal_mpt_SetTxPower(PADAPTER pAdapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.mpt_ctx); struct PHY_DM_STRUCT *pDM_Odm = &pHalData->odmpriv; if (pHalData->rf_chip < RF_TYPE_MAX) { if (IS_HARDWARE_TYPE_8188E(pAdapter)) { u8 path = (pHalData->antenna_tx_path == ANTENNA_A) ? (ODM_RF_PATH_A) : (ODM_RF_PATH_B); RTW_INFO("===> MPT_ProSetTxPower: Old\n"); mpt_SetTxPower_Old(pAdapter, MPT_CCK, pMptCtx->TxPwrLevel); mpt_SetTxPower_Old(pAdapter, MPT_OFDM_AND_HT, pMptCtx->TxPwrLevel); } else { RTW_INFO("===> MPT_ProSetTxPower: Jaguar/Jaguar2\n"); mpt_SetTxPower(pAdapter, MPT_CCK, pMptCtx->TxPwrLevel); mpt_SetTxPower(pAdapter, MPT_OFDM, pMptCtx->TxPwrLevel); mpt_SetTxPower(pAdapter, MPT_HT, pMptCtx->TxPwrLevel); mpt_SetTxPower(pAdapter, MPT_VHT, pMptCtx->TxPwrLevel); } } else RTW_INFO("RFChipID < RF_TYPE_MAX, the RF chip is not supported - %d\n", pHalData->rf_chip); odm_clear_txpowertracking_state(pDM_Odm); } void hal_mpt_SetDataRate(PADAPTER pAdapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.mpt_ctx); u32 DataRate; DataRate = mpt_to_mgnt_rate(pMptCtx->mpt_rate_index); hal_mpt_SwitchRfSetting(pAdapter); hal_mpt_CCKTxPowerAdjust(pAdapter, pHalData->bCCKinCH14); } #define RF_PATH_AB 22 static void mpt_SetRFPath_819X(PADAPTER pAdapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.mpt_ctx); u4Byte ulAntennaTx, ulAntennaRx; R_ANTENNA_SELECT_OFDM *p_ofdm_tx; /* OFDM Tx register */ R_ANTENNA_SELECT_CCK *p_cck_txrx; u1Byte r_rx_antenna_ofdm = 0, r_ant_select_cck_val = 0; u1Byte chgTx = 0, chgRx = 0; u4Byte r_ant_sel_cck_val = 0, r_ant_select_ofdm_val = 0, r_ofdm_tx_en_val = 0; ulAntennaTx = pHalData->antenna_tx_path; ulAntennaRx = pHalData->AntennaRxPath; p_ofdm_tx = (R_ANTENNA_SELECT_OFDM *)&r_ant_select_ofdm_val; p_cck_txrx = (R_ANTENNA_SELECT_CCK *)&r_ant_select_cck_val; p_ofdm_tx->r_ant_ht1 = 0x1; p_ofdm_tx->r_ant_ht2 = 0x2;/*Second TX RF path is A*/ p_ofdm_tx->r_ant_non_ht = 0x3;/*/ 0x1+0x2=0x3 */ switch (ulAntennaTx) { case ANTENNA_A: p_ofdm_tx->r_tx_antenna = 0x1; r_ofdm_tx_en_val = 0x1; p_ofdm_tx->r_ant_l = 0x1; p_ofdm_tx->r_ant_ht_s1 = 0x1; p_ofdm_tx->r_ant_non_ht_s1 = 0x1; p_cck_txrx->r_ccktx_enable = 0x8; chgTx = 1; /*/ From SD3 Willis suggestion !!! Set RF A=TX and B as standby*/ { phy_set_bb_reg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 2); phy_set_bb_reg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 1); r_ofdm_tx_en_val = 0x3; /*/ Power save*/ /*/cosa r_ant_select_ofdm_val = 0x11111111;*/ /*/ We need to close RFB by SW control*/ if (pHalData->rf_type == RF_2T2R) { phy_set_bb_reg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT10, 0); phy_set_bb_reg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT26, 1); phy_set_bb_reg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT10, 0); phy_set_bb_reg(pAdapter, rFPGA0_XAB_RFParameter, BIT1, 1); phy_set_bb_reg(pAdapter, rFPGA0_XAB_RFParameter, BIT17, 0); } } pMptCtx->mpt_rf_path = ODM_RF_PATH_A; break; case ANTENNA_B: p_ofdm_tx->r_tx_antenna = 0x2; r_ofdm_tx_en_val = 0x2; p_ofdm_tx->r_ant_l = 0x2; p_ofdm_tx->r_ant_ht_s1 = 0x2; p_ofdm_tx->r_ant_non_ht_s1 = 0x2; p_cck_txrx->r_ccktx_enable = 0x4; chgTx = 1; /*/ From SD3 Willis suggestion !!! Set RF A as standby*/ { phy_set_bb_reg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 1); phy_set_bb_reg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 2); /*/ 2008/10/31 MH From SD3 Willi's suggestion. We must read RF 1T table.*/ /*/ 2009/01/08 MH From Sd3 Willis. We need to close RFA by SW control*/ if (pHalData->rf_type == RF_2T2R || pHalData->rf_type == RF_1T2R) { phy_set_bb_reg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT10, 1); phy_set_bb_reg(pAdapter, rFPGA0_XA_RFInterfaceOE, BIT10, 0); phy_set_bb_reg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT26, 0); /*/phy_set_bb_reg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT10, 0);*/ phy_set_bb_reg(pAdapter, rFPGA0_XAB_RFParameter, BIT1, 0); phy_set_bb_reg(pAdapter, rFPGA0_XAB_RFParameter, BIT17, 1); } } pMptCtx->mpt_rf_path = ODM_RF_PATH_B; break; case ANTENNA_AB:/*/ For 8192S*/ p_ofdm_tx->r_tx_antenna = 0x3; r_ofdm_tx_en_val = 0x3; p_ofdm_tx->r_ant_l = 0x3; p_ofdm_tx->r_ant_ht_s1 = 0x3; p_ofdm_tx->r_ant_non_ht_s1 = 0x3; p_cck_txrx->r_ccktx_enable = 0xC; chgTx = 1; /*/ From SD3Willis suggestion !!! Set RF B as standby*/ { phy_set_bb_reg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 2); phy_set_bb_reg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 2); /* Disable Power save*/ /*cosa r_ant_select_ofdm_val = 0x3321333;*/ /* 2009/01/08 MH From Sd3 Willis. We need to enable RFA/B by SW control*/ if (pHalData->rf_type == RF_2T2R) { phy_set_bb_reg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT10, 0); phy_set_bb_reg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT26, 0); /*/phy_set_bb_reg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT10, 0);*/ phy_set_bb_reg(pAdapter, rFPGA0_XAB_RFParameter, BIT1, 1); phy_set_bb_reg(pAdapter, rFPGA0_XAB_RFParameter, BIT17, 1); } } pMptCtx->mpt_rf_path = ODM_RF_PATH_AB; break; default: break; } switch (ulAntennaRx) { case ANTENNA_A: r_rx_antenna_ofdm = 0x1; /* A*/ p_cck_txrx->r_cckrx_enable = 0x0; /* default: A*/ p_cck_txrx->r_cckrx_enable_2 = 0x0; /* option: A*/ chgRx = 1; break; case ANTENNA_B: r_rx_antenna_ofdm = 0x2; /*/ B*/ p_cck_txrx->r_cckrx_enable = 0x1; /*/ default: B*/ p_cck_txrx->r_cckrx_enable_2 = 0x1; /*/ option: B*/ chgRx = 1; break; case ANTENNA_AB:/*/ For 8192S and 8192E/U...*/ r_rx_antenna_ofdm = 0x3;/*/ AB*/ p_cck_txrx->r_cckrx_enable = 0x0;/*/ default:A*/ p_cck_txrx->r_cckrx_enable_2 = 0x1;/*/ option:B*/ chgRx = 1; break; default: break; } if (chgTx && chgRx) { switch (pHalData->rf_chip) { case RF_8225: case RF_8256: case RF_6052: /*/r_ant_sel_cck_val = r_ant_select_cck_val;*/ phy_set_bb_reg(pAdapter, rFPGA1_TxInfo, 0x7fffffff, r_ant_select_ofdm_val); /*/OFDM Tx*/ phy_set_bb_reg(pAdapter, rFPGA0_TxInfo, 0x0000000f, r_ofdm_tx_en_val); /*/OFDM Tx*/ phy_set_bb_reg(pAdapter, rOFDM0_TRxPathEnable, 0x0000000f, r_rx_antenna_ofdm); /*/OFDM Rx*/ phy_set_bb_reg(pAdapter, rOFDM1_TRxPathEnable, 0x0000000f, r_rx_antenna_ofdm); /*/OFDM Rx*/ phy_set_bb_reg(pAdapter, rCCK0_AFESetting, bMaskByte3, r_ant_select_cck_val);/*/r_ant_sel_cck_val); /CCK TxRx*/ break; default: RTW_INFO("Unsupported RFChipID for switching antenna.\n"); break; } } } /* MPT_ProSetRFPath */ void hal_mpt_SetAntenna(PADAPTER pAdapter) { RTW_INFO("Do %s\n", __func__); mpt_SetRFPath_819X(pAdapter); RTW_INFO("mpt_SetRFPath_819X Do %s\n", __func__); } s32 hal_mpt_SetThermalMeter(PADAPTER pAdapter, u8 target_ther) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); if (!netif_running(pAdapter->pnetdev)) { return _FAIL; } if (check_fwstate(&pAdapter->mlmepriv, WIFI_MP_STATE) == _FALSE) { return _FAIL; } target_ther &= 0xff; if (target_ther < 0x07) target_ther = 0x07; else if (target_ther > 0x1d) target_ther = 0x1d; pHalData->eeprom_thermal_meter = target_ther; return _SUCCESS; } void hal_mpt_TriggerRFThermalMeter(PADAPTER pAdapter) { phy_set_rf_reg(pAdapter, ODM_RF_PATH_A, 0x42, BIT17 | BIT16, 0x03); } u8 hal_mpt_ReadRFThermalMeter(PADAPTER pAdapter) { u32 ThermalValue = 0; ThermalValue = (u1Byte)phy_query_rf_reg(pAdapter, ODM_RF_PATH_A, 0x42, 0xfc00); /*0x42: RF Reg[15:10]*/ return (u8)ThermalValue; } void hal_mpt_GetThermalMeter(PADAPTER pAdapter, u8 *value) { hal_mpt_TriggerRFThermalMeter(pAdapter); rtw_msleep_os(1000); *value = hal_mpt_ReadRFThermalMeter(pAdapter); } void hal_mpt_SetSingleCarrierTx(PADAPTER pAdapter, u8 bStart) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); pAdapter->mppriv.mpt_ctx.bSingleCarrier = bStart; if (bStart) {/*/ Start Single Carrier.*/ /*/ Start Single Carrier.*/ /*/ 1. if OFDM block on?*/ if (!phy_query_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn)) phy_set_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn, 1); /*set OFDM block on*/ /*/ 2. set CCK test mode off, set to CCK normal mode*/ phy_set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, 0); /*/ 3. turn on scramble setting*/ phy_set_bb_reg(pAdapter, rCCK0_System, bCCKScramble, 1); /*/ 4. Turn On Continue Tx and turn off the other test modes.*/ phy_set_bb_reg(pAdapter, rOFDM1_LSTF, BIT30 | BIT29 | BIT28, OFDM_SingleCarrier); } else { /*/ Stop Single Carrier.*/ /*/ Stop Single Carrier.*/ /*/ Turn off all test modes.*/ phy_set_bb_reg(pAdapter, rOFDM1_LSTF, BIT30 | BIT29 | BIT28, OFDM_ALL_OFF); rtw_msleep_os(10); /*/BB Reset*/ phy_set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x0); phy_set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x1); } } void hal_mpt_SetSingleToneTx(PADAPTER pAdapter, u8 bStart) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.mpt_ctx); u4Byte ulAntennaTx = pHalData->antenna_tx_path; static u4Byte regRF = 0, regBB0 = 0, regBB1 = 0, regBB2 = 0, regBB3 = 0; u8 rfPath; switch (ulAntennaTx) { case ANTENNA_B: rfPath = ODM_RF_PATH_B; break; case ANTENNA_C: rfPath = ODM_RF_PATH_C; break; case ANTENNA_D: rfPath = ODM_RF_PATH_D; break; case ANTENNA_A: default: rfPath = ODM_RF_PATH_A; break; } pAdapter->mppriv.mpt_ctx.is_single_tone = bStart; if (bStart) { /*/ Start Single Tone.*/ /*/ <20120326, Kordan> To amplify the power of tone for Xtal calibration. (asked by Edlu)*/ if (IS_HARDWARE_TYPE_8188E(pAdapter)) { regRF = phy_query_rf_reg(pAdapter, rfPath, lna_low_gain_3, bRFRegOffsetMask); phy_set_rf_reg(pAdapter, ODM_RF_PATH_A, lna_low_gain_3, BIT1, 0x1); /*/ RF LO enabled*/ phy_set_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn, 0x0); phy_set_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn, 0x0); } else { /*/ Turn On SingleTone and turn off the other test modes.*/ phy_set_bb_reg(pAdapter, rOFDM1_LSTF, BIT30 | BIT29 | BIT28, OFDM_SingleTone); } write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500); } else {/*/ Stop Single Ton e.*/ if (IS_HARDWARE_TYPE_8188E(pAdapter)) { phy_set_rf_reg(pAdapter, ODM_RF_PATH_A, lna_low_gain_3, bRFRegOffsetMask, regRF); phy_set_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn, 0x1); phy_set_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn, 0x1); } write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100); } } void hal_mpt_SetCarrierSuppressionTx(PADAPTER pAdapter, u8 bStart) { u8 Rate; pAdapter->mppriv.mpt_ctx.is_carrier_suppression = bStart; Rate = HwRateToMPTRate(pAdapter->mppriv.rateidx); if (bStart) {/* Start Carrier Suppression.*/ if (Rate <= MPT_RATE_11M) { /*/ 1. if CCK block on?*/ if (!read_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn)) write_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn, bEnable);/*set CCK block on*/ /*/Turn Off All Test Mode*/ phy_set_bb_reg(pAdapter, rOFDM1_LSTF, BIT30 | BIT29 | BIT28, OFDM_ALL_OFF); write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, 0x2); /*/transmit mode*/ write_bbreg(pAdapter, rCCK0_System, bCCKScramble, 0x0); /*/turn off scramble setting*/ /*/Set CCK Tx Test Rate*/ write_bbreg(pAdapter, rCCK0_System, bCCKTxRate, 0x0); /*/Set FTxRate to 1Mbps*/ } /*Set for dynamic set Power index*/ write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500); } else {/* Stop Carrier Suppression.*/ if (Rate <= MPT_RATE_11M) { write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, 0x0); /*normal mode*/ write_bbreg(pAdapter, rCCK0_System, bCCKScramble, 0x1); /*turn on scramble setting*/ /*BB Reset*/ write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x0); write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x1); } /*Stop for dynamic set Power index*/ write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100); write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100); } RTW_INFO("\n MPT_ProSetCarrierSupp() is finished.\n"); } u32 hal_mpt_query_phytxok(PADAPTER pAdapter) { PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.mpt_ctx); RT_PMAC_TX_INFO PMacTxInfo = pMptCtx->PMacTxInfo; u16 count = 0; if (IS_MPT_CCK_RATE(PMacTxInfo.TX_RATE)) count = phy_query_bb_reg(pAdapter, 0xF50, bMaskLWord); /* [15:0]*/ else count = phy_query_bb_reg(pAdapter, 0xF50, bMaskHWord); /* [31:16]*/ if (count > 50000) { rtw_reset_phy_trx_ok_counters(pAdapter); pAdapter->mppriv.tx.sended += count; count = 0; } return pAdapter->mppriv.tx.sended + count; } static void mpt_StopCckContTx( PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.mpt_ctx); u1Byte u1bReg; pMptCtx->bCckContTx = FALSE; pMptCtx->bOfdmContTx = FALSE; phy_set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, 0x0); /*normal mode*/ phy_set_bb_reg(pAdapter, rCCK0_System, bCCKScramble, 0x1); /*turn on scramble setting*/ /*BB Reset*/ phy_set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x0); phy_set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x1); phy_set_bb_reg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100); phy_set_bb_reg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100); } /* mpt_StopCckContTx */ static void mpt_StopOfdmContTx( PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.mpt_ctx); u1Byte u1bReg; u4Byte data; pMptCtx->bCckContTx = FALSE; pMptCtx->bOfdmContTx = FALSE; phy_set_bb_reg(pAdapter, rOFDM1_LSTF, BIT30 | BIT29 | BIT28, OFDM_ALL_OFF); rtw_mdelay_os(10); /*BB Reset*/ phy_set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x0); phy_set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x1); phy_set_bb_reg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100); phy_set_bb_reg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100); } /* mpt_StopOfdmContTx */ static void mpt_StartCckContTx( PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.mpt_ctx); u4Byte cckrate; /* 1. if CCK block on */ if (!phy_query_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn)) phy_set_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn, 1);/*set CCK block on*/ /*Turn Off All Test Mode*/ phy_set_bb_reg(pAdapter, rOFDM1_LSTF, BIT30 | BIT29 | BIT28, OFDM_ALL_OFF); cckrate = pAdapter->mppriv.rateidx; phy_set_bb_reg(pAdapter, rCCK0_System, bCCKTxRate, cckrate); phy_set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, 0x2); /*transmit mode*/ phy_set_bb_reg(pAdapter, rCCK0_System, bCCKScramble, 0x1); /*turn on scramble setting*/ phy_set_bb_reg(pAdapter, 0xa14, 0x300, 0x3); /* 0xa15[1:0] = 11 force cck rxiq = 0*/ phy_set_bb_reg(pAdapter, rOFDM0_TRMuxPar, 0x10000, 0x1); /* 0xc08[16] = 1 force ofdm rxiq = ofdm txiq*/ phy_set_bb_reg(pAdapter, rFPGA0_XA_HSSIParameter2, BIT14, 1); phy_set_bb_reg(pAdapter, rFPGA0_XB_HSSIParameter2, BIT14, 1); phy_set_bb_reg(pAdapter, 0x0B34, BIT14, 1); phy_set_bb_reg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500); phy_set_bb_reg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500); pMptCtx->bCckContTx = TRUE; pMptCtx->bOfdmContTx = FALSE; } /* mpt_StartCckContTx */ static void mpt_StartOfdmContTx( PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.mpt_ctx); /* 1. if OFDM block on?*/ if (!phy_query_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn)) phy_set_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn, 1);/*set OFDM block on*/ /* 2. set CCK test mode off, set to CCK normal mode*/ phy_set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, 0); /* 3. turn on scramble setting*/ phy_set_bb_reg(pAdapter, rCCK0_System, bCCKScramble, 1); phy_set_bb_reg(pAdapter, 0xa14, 0x300, 0x3); /* 0xa15[1:0] = 2b'11*/ phy_set_bb_reg(pAdapter, rOFDM0_TRMuxPar, 0x10000, 0x1); /* 0xc08[16] = 1*/ /* 4. Turn On Continue Tx and turn off the other test modes.*/ phy_set_bb_reg(pAdapter, rOFDM1_LSTF, BIT30 | BIT29 | BIT28, OFDM_ContinuousTx); phy_set_bb_reg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500); phy_set_bb_reg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500); pMptCtx->bCckContTx = FALSE; pMptCtx->bOfdmContTx = TRUE; } /* mpt_StartOfdmContTx */ void hal_mpt_SetContinuousTx(PADAPTER pAdapter, u8 bStart) { u8 Rate; RT_TRACE(_module_mp_, _drv_info_, ("SetContinuousTx: rate:%d\n", pAdapter->mppriv.rateidx)); Rate = HwRateToMPTRate(pAdapter->mppriv.rateidx); pAdapter->mppriv.mpt_ctx.is_start_cont_tx = bStart; if (Rate <= MPT_RATE_11M) { if (bStart) mpt_StartCckContTx(pAdapter); else mpt_StopCckContTx(pAdapter); } else if (Rate >= MPT_RATE_6M) { if (bStart) mpt_StartOfdmContTx(pAdapter); else mpt_StopOfdmContTx(pAdapter); } } #endif /* CONFIG_MP_INCLUDE*/