/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _RTL8188E_PHYCFG_C_ #include #include #include #include #ifdef CONFIG_IOL #include #endif #include /*---------------------------Define Local Constant---------------------------*/ /* Channel switch:The size of command tables for switch channel*/ #define MAX_PRECMD_CNT 16 #define MAX_RFDEPENDCMD_CNT 16 #define MAX_POSTCMD_CNT 16 #define MAX_DOZE_WAITING_TIMES_9x 64 /*---------------------------Define Local Constant---------------------------*/ /*------------------------Define global variable-----------------------------*/ /*------------------------Define local variable------------------------------*/ /*--------------------Define export function prototype-----------------------*/ // Please refer to header file /*--------------------Define export function prototype-----------------------*/ /*----------------------------Function Body----------------------------------*/ // // 1. BB register R/W API // /** * Function: phy_CalculateBitShift * * OverView: Get shifted position of the BitMask * * Input: * u4Byte BitMask, * * Output: none * Return: u4Byte Return the shift bit bit position of the mask */ static u32 phy_CalculateBitShift( u32 BitMask ) { u32 i; for(i=0; i<=31; i++) { if ( ((BitMask>>i) & 0x1 ) == 1) break; } return (i); } #if(SIC_ENABLE == 1) static BOOLEAN sic_IsSICReady( IN struct adapter *Adapter ) { BOOLEAN bRet=_FALSE; u32 retryCnt=0; u8 sic_cmd=0xff; while(1) { if(retryCnt++ >= SIC_MAX_POLL_CNT) { //RTPRINT(FPHY, (PHY_SICR|PHY_SICW), ("[SIC], sic_IsSICReady() return FALSE\n")); return _FALSE; } //if(RT_SDIO_CANNOT_IO(Adapter)) // return _FALSE; sic_cmd = rtw_read8(Adapter, SIC_CMD_REG); //sic_cmd = PlatformEFIORead1Byte(Adapter, SIC_CMD_REG); #if(SIC_HW_SUPPORT == 1) sic_cmd &= 0xf0; // [7:4] #endif //RTPRINT(FPHY, (PHY_SICR|PHY_SICW), ("[SIC], sic_IsSICReady(), readback 0x%x=0x%x\n", SIC_CMD_REG, sic_cmd)); if(sic_cmd == SIC_CMD_READY) return _TRUE; else { rtw_msleep_os(1); //delay_ms(1); } } return bRet; } /* u32 sic_CalculateBitShift( u32 BitMask ) { u32 i; for(i=0; i<=31; i++) { if ( ((BitMask>>i) & 0x1 ) == 1) break; } return (i); } */ static u32 sic_Read4Byte( PVOID Adapter, u32 offset ) { u32 u4ret=0xffffffff; #if RTL8188E_SUPPORT == 1 u8 retry = 0; #endif //RTPRINT(FPHY, PHY_SICR, ("[SIC], sic_Read4Byte(): read offset(%#x)\n", offset)); if(sic_IsSICReady(Adapter)) { #if(SIC_HW_SUPPORT == 1) rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_PREREAD); //PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_PREREAD); //RTPRINT(FPHY, PHY_SICR, ("write cmdreg 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_PREREAD)); #endif rtw_write8(Adapter, SIC_ADDR_REG, (u8)(offset&0xff)); //PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG, (u1Byte)(offset&0xff)); //RTPRINT(FPHY, PHY_SICR, ("write 0x%x = 0x%x\n", SIC_ADDR_REG, (u1Byte)(offset&0xff))); rtw_write8(Adapter, SIC_ADDR_REG+1, (u8)((offset&0xff00)>>8)); //PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG+1, (u1Byte)((offset&0xff00)>>8)); //RTPRINT(FPHY, PHY_SICR, ("write 0x%x = 0x%x\n", SIC_ADDR_REG+1, (u1Byte)((offset&0xff00)>>8))); rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_READ); //PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_READ); //RTPRINT(FPHY, PHY_SICR, ("write cmdreg 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_READ)); #if RTL8188E_SUPPORT == 1 retry = 4; while(retry--){ rtw_udelay_os(50); //PlatformStallExecution(50); } #else rtw_udelay_os(200); //PlatformStallExecution(200); #endif if(sic_IsSICReady(Adapter)) { u4ret = rtw_read32(Adapter, SIC_DATA_REG); //u4ret = PlatformEFIORead4Byte(Adapter, SIC_DATA_REG); //RTPRINT(FPHY, PHY_SICR, ("read 0x%x = 0x%x\n", SIC_DATA_REG, u4ret)); //DbgPrint("<===Read 0x%x = 0x%x\n", offset, u4ret); } } return u4ret; } static VOID sic_Write4Byte( PVOID Adapter, u32 offset, u32 data ) { #if RTL8188E_SUPPORT == 1 u8 retry = 6; #endif //DbgPrint("=>Write 0x%x = 0x%x\n", offset, data); //RTPRINT(FPHY, PHY_SICW, ("[SIC], sic_Write4Byte(): write offset(%#x)=0x%x\n", offset, data)); if(sic_IsSICReady(Adapter)) { #if(SIC_HW_SUPPORT == 1) rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_PREWRITE); //PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_PREWRITE); //RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_PREWRITE)); #endif rtw_write8(Adapter, SIC_ADDR_REG, (u8)(offset&0xff)); //PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG, (u1Byte)(offset&0xff)); //RTPRINT(FPHY, PHY_SICW, ("write 0x%x=0x%x\n", SIC_ADDR_REG, (u1Byte)(offset&0xff))); rtw_write8(Adapter, SIC_ADDR_REG+1, (u8)((offset&0xff00)>>8)); //PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG+1, (u1Byte)((offset&0xff00)>>8)); //RTPRINT(FPHY, PHY_SICW, ("write 0x%x=0x%x\n", (SIC_ADDR_REG+1), (u1Byte)((offset&0xff00)>>8))); rtw_write32(Adapter, SIC_DATA_REG, (u32)data); //PlatformEFIOWrite4Byte(Adapter, SIC_DATA_REG, (u4Byte)data); //RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_DATA_REG, data)); rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_WRITE); //PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_WRITE); //RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_WRITE)); #if RTL8188E_SUPPORT == 1 while(retry--){ rtw_udelay_os(50); //PlatformStallExecution(50); } #else rtw_udelay_os(150); //PlatformStallExecution(150); #endif } } //============================================================ // extern function //============================================================ static VOID SIC_SetBBReg( IN struct adapter *Adapter, IN u32 RegAddr, IN u32 BitMask, IN u32 Data ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u32 OriginalValue, BitShift; u16 BBWaitCounter = 0; //RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg() start\n")); /* while(PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _TRUE) == _TRUE) { BBWaitCounter ++; delay_ms(10); // 1 ms if((BBWaitCounter > 100) || RT_CANNOT_IO(Adapter)) {// Wait too long, return FALSE to avoid to be stuck here. RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg(), Fail to set BB offset(%#x)!!, WaitCnt(%d)\n", RegAddr, BBWaitCounter)); return; } } */ // // Critical section start // //RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg(), mask=0x%x, addr[0x%x]=0x%x\n", BitMask, RegAddr, Data)); if(BitMask!= bMaskDWord){//if not "double word" write OriginalValue = sic_Read4Byte(Adapter, RegAddr); //BitShift = sic_CalculateBitShift(BitMask); BitShift = phy_CalculateBitShift(BitMask); Data = (((OriginalValue) & (~BitMask)) | (Data << BitShift)); } sic_Write4Byte(Adapter, RegAddr, Data); //PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _FALSE); //RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg() end\n")); } static u32 SIC_QueryBBReg( IN struct adapter *Adapter, IN u32 RegAddr, IN u32 BitMask ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u32 ReturnValue = 0, OriginalValue, BitShift; u16 BBWaitCounter = 0; //RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg() start\n")); /* while(PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _TRUE) == _TRUE) { BBWaitCounter ++; delay_ms(10); // 10 ms if((BBWaitCounter > 100) || RT_CANNOT_IO(Adapter)) {// Wait too long, return FALSE to avoid to be stuck here. RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_QueryBBReg(), Fail to query BB offset(%#x)!!, WaitCnt(%d)\n", RegAddr, BBWaitCounter)); return ReturnValue; } } */ OriginalValue = sic_Read4Byte(Adapter, RegAddr); //BitShift = sic_CalculateBitShift(BitMask); BitShift = phy_CalculateBitShift(BitMask); ReturnValue = (OriginalValue & BitMask) >> BitShift; //RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg(), 0x%x=0x%x\n", RegAddr, OriginalValue)); //RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg() end\n")); //PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _FALSE); return (ReturnValue); } VOID SIC_Init( IN struct adapter *Adapter ) { // Here we need to write 0x1b8~0x1bf = 0 after fw is downloaded // because for 8723E at beginning 0x1b8=0x1e, that will cause // sic always not be ready #if(SIC_HW_SUPPORT == 1) //RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x%x = 0x%x\n", // SIC_INIT_REG, SIC_INIT_VAL)); rtw_write8(Adapter, SIC_INIT_REG, SIC_INIT_VAL); //PlatformEFIOWrite1Byte(Adapter, SIC_INIT_REG, SIC_INIT_VAL); //RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x%x = 0x%x\n", // SIC_CMD_REG, SIC_CMD_INIT)); rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_INIT); //PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_INIT); #else //RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x1b8~0x1bf = 0x0\n")); rtw_write32(Adapter, SIC_CMD_REG, 0); //PlatformEFIOWrite4Byte(Adapter, SIC_CMD_REG, 0); rtw_write32(Adapter, SIC_CMD_REG+4, 0); //PlatformEFIOWrite4Byte(Adapter, SIC_CMD_REG+4, 0); #endif } static BOOLEAN SIC_LedOff( IN struct adapter *Adapter ) { // When SIC is enabled, led pin will be used as debug pin, // so don't execute led function when SIC is enabled. return _TRUE; } #endif /** * Function: PHY_QueryBBReg * * OverView: Read "sepcific bits" from BB register * * Input: * struct adapter * Adapter, * u4Byte RegAddr, //The target address to be readback * u4Byte BitMask //The target bit position in the target address * //to be readback * Output: None * Return: u4Byte Data //The readback register value * Note: This function is equal to "GetRegSetting" in PHY programming guide */ u32 rtl8188e_PHY_QueryBBReg( IN struct adapter *Adapter, IN u32 RegAddr, IN u32 BitMask ) { u32 ReturnValue = 0, OriginalValue, BitShift; u16 BBWaitCounter = 0; #if (DISABLE_BB_RF == 1) return 0; #endif #if(SIC_ENABLE == 1) return SIC_QueryBBReg(Adapter, RegAddr, BitMask); #endif //RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_QueryBBReg(): RegAddr(%#lx), BitMask(%#lx)\n", RegAddr, BitMask)); OriginalValue = rtw_read32(Adapter, RegAddr); BitShift = phy_CalculateBitShift(BitMask); ReturnValue = (OriginalValue & BitMask) >> BitShift; //RTPRINT(FPHY, PHY_BBR, ("BBR MASK=0x%lx Addr[0x%lx]=0x%lx\n", BitMask, RegAddr, OriginalValue)); //RT_TRACE(COMP_RF, DBG_TRACE, ("<---PHY_QueryBBReg(): RegAddr(%#lx), BitMask(%#lx), OriginalValue(%#lx)\n", RegAddr, BitMask, OriginalValue)); return (ReturnValue); } /** * Function: PHY_SetBBReg * * OverView: Write "Specific bits" to BB register (page 8~) * * Input: * struct adapter * Adapter, * u4Byte RegAddr, //The target address to be modified * u4Byte BitMask //The target bit position in the target address * //to be modified * u4Byte Data //The new register value in the target bit position * //of the target address * * Output: None * Return: None * Note: This function is equal to "PutRegSetting" in PHY programming guide */ VOID rtl8188e_PHY_SetBBReg( IN struct adapter *Adapter, IN u32 RegAddr, IN u32 BitMask, IN u32 Data ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); //u16 BBWaitCounter = 0; u32 OriginalValue, BitShift; #if (DISABLE_BB_RF == 1) return; #endif #if(SIC_ENABLE == 1) SIC_SetBBReg(Adapter, RegAddr, BitMask, Data); return; #endif //RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_SetBBReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx)\n", RegAddr, BitMask, Data)); if(BitMask!= bMaskDWord){//if not "double word" write OriginalValue = rtw_read32(Adapter, RegAddr); BitShift = phy_CalculateBitShift(BitMask); Data = ((OriginalValue & (~BitMask)) | ((Data << BitShift) & BitMask)); } rtw_write32(Adapter, RegAddr, Data); //RTPRINT(FPHY, PHY_BBW, ("BBW MASK=0x%lx Addr[0x%lx]=0x%lx\n", BitMask, RegAddr, Data)); //RT_TRACE(COMP_RF, DBG_TRACE, ("<---PHY_SetBBReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx)\n", RegAddr, BitMask, Data)); } // // 2. RF register R/W API // /** * Function: phy_RFSerialRead * * OverView: Read regster from RF chips * * Input: * struct adapter * Adapter, * RF_RADIO_PATH_E eRFPath, //Radio path of A/B/C/D * u4Byte Offset, //The target address to be read * * Output: None * Return: u4Byte reback value * Note: Threre are three types of serial operations: * 1. Software serial write * 2. Hardware LSSI-Low Speed Serial Interface * 3. Hardware HSSI-High speed * serial write. Driver need to implement (1) and (2). * This function is equal to the combination of RF_ReadReg() and RFLSSIRead() */ static u32 phy_RFSerialRead( IN struct adapter * Adapter, IN RF_RADIO_PATH_E eRFPath, IN u32 Offset ) { u32 retValue = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath]; u32 NewOffset; u32 tmplong,tmplong2; u8 RfPiEnable=0; #if 0 if(pHalData->RFChipID == RF_8225 && Offset > 0x24) //36 valid regs return retValue; if(pHalData->RFChipID == RF_8256 && Offset > 0x2D) //45 valid regs return retValue; #endif // // Make sure RF register offset is correct // Offset &= 0xff; // // Switch page for 8256 RF IC // NewOffset = Offset; // 2009/06/17 MH We can not execute IO for power save or other accident mode. //if(RT_CANNOT_IO(Adapter)) //{ // RTPRINT(FPHY, PHY_RFR, ("phy_RFSerialRead return all one\n")); // return 0xFFFFFFFF; //} // For 92S LSSI Read RFLSSIRead // For RF A/B write 0x824/82c(does not work in the future) // We must use 0x824 for RF A and B to execute read trigger tmplong = PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord); if(eRFPath == RF_PATH_A) tmplong2 = tmplong; else tmplong2 = PHY_QueryBBReg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord); tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset<<23) | bLSSIReadEdge; //T65 RF PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord, tmplong&(~bLSSIReadEdge)); rtw_udelay_os(10);// PlatformStallExecution(10); PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord, tmplong2); rtw_udelay_os(100);//PlatformStallExecution(100); //PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord, tmplong|bLSSIReadEdge); rtw_udelay_os(10);//PlatformStallExecution(10); if(eRFPath == RF_PATH_A) RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter1, BIT8); else if(eRFPath == RF_PATH_B) RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XB_HSSIParameter1, BIT8); if(RfPiEnable) { // Read from BBreg8b8, 12 bits for 8190, 20bits for T65 RF retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBackPi, bLSSIReadBackData); //DBG_8192C("Readback from RF-PI : 0x%x\n", retValue); } else { //Read from BBreg8a0, 12 bits for 8190, 20 bits for T65 RF retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBack, bLSSIReadBackData); //DBG_8192C("Readback from RF-SI : 0x%x\n", retValue); } //DBG_8192C("RFR-%d Addr[0x%x]=0x%x\n", eRFPath, pPhyReg->rfLSSIReadBack, retValue); return retValue; } /** * Function: phy_RFSerialWrite * * OverView: Write data to RF register (page 8~) * * Input: * struct adapter * Adapter, * RF_RADIO_PATH_E eRFPath, //Radio path of A/B/C/D * u4Byte Offset, //The target address to be read * u4Byte Data //The new register Data in the target bit position * //of the target to be read * * Output: None * Return: None * Note: Threre are three types of serial operations: * 1. Software serial write * 2. Hardware LSSI-Low Speed Serial Interface * 3. Hardware HSSI-High speed * serial write. Driver need to implement (1) and (2). * This function is equal to the combination of RF_ReadReg() and RFLSSIRead() * * Note: For RF8256 only * The total count of RTL8256(Zebra4) register is around 36 bit it only employs * 4-bit RF address. RTL8256 uses "register mode control bit" (Reg00[12], Reg00[10]) * to access register address bigger than 0xf. See "Appendix-4 in PHY Configuration * programming guide" for more details. * Thus, we define a sub-finction for RTL8526 register address conversion * =========================================================== * Register Mode RegCTL[1] RegCTL[0] Note * (Reg00[12]) (Reg00[10]) * =========================================================== * Reg_Mode0 0 x Reg 0 ~15(0x0 ~ 0xf) * ------------------------------------------------------------------ * Reg_Mode1 1 0 Reg 16 ~30(0x1 ~ 0xf) * ------------------------------------------------------------------ * Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf) * ------------------------------------------------------------------ * * 2008/09/02 MH Add 92S RF definition * * * */ static VOID phy_RFSerialWrite( IN struct adapter * Adapter, IN RF_RADIO_PATH_E eRFPath, IN u32 Offset, IN u32 Data ) { u32 DataAndAddr = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath]; u32 NewOffset; #if 0 // We should check valid regs for RF_6052 case. if(pHalData->RFChipID == RF_8225 && Offset > 0x24) //36 valid regs return; if(pHalData->RFChipID == RF_8256 && Offset > 0x2D) //45 valid regs return; #endif // 2009/06/17 MH We can not execute IO for power save or other accident mode. //if(RT_CANNOT_IO(Adapter)) //{ // RTPRINT(FPHY, PHY_RFW, ("phy_RFSerialWrite stop\n")); // return; //} Offset &= 0xff; // // Shadow Update // //PHY_RFShadowWrite(Adapter, eRFPath, Offset, Data); // // Switch page for 8256 RF IC // NewOffset = Offset; // // Put write addr in [5:0] and write data in [31:16] // //DataAndAddr = (Data<<16) | (NewOffset&0x3f); DataAndAddr = ((NewOffset<<20) | (Data&0x000fffff)) & 0x0fffffff; // T65 RF // // Write Operation // PHY_SetBBReg(Adapter, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr); //RTPRINT(FPHY, PHY_RFW, ("RFW-%d Addr[0x%lx]=0x%lx\n", eRFPath, pPhyReg->rf3wireOffset, DataAndAddr)); } /** * Function: PHY_QueryRFReg * * OverView: Query "Specific bits" to RF register (page 8~) * * Input: * struct adapter * Adapter, * RF_RADIO_PATH_E eRFPath, //Radio path of A/B/C/D * u4Byte RegAddr, //The target address to be read * u4Byte BitMask //The target bit position in the target address * //to be read * * Output: None * Return: u4Byte Readback value * Note: This function is equal to "GetRFRegSetting" in PHY programming guide */ u32 rtl8188e_PHY_QueryRFReg( IN struct adapter * Adapter, IN RF_RADIO_PATH_E eRFPath, IN u32 RegAddr, IN u32 BitMask ) { u32 Original_Value, Readback_Value, BitShift; //HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); //u8 RFWaitCounter = 0; //_irqL irqL; #if (DISABLE_BB_RF == 1) return 0; #endif //RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_QueryRFReg(): RegAddr(%#lx), eRFPath(%#x), BitMask(%#lx)\n", RegAddr, eRFPath,BitMask)); #ifdef CONFIG_USB_HCI //PlatformAcquireMutex(&pHalData->mxRFOperate); #else //_enter_critical(&pHalData->rf_lock, &irqL); #endif Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr); BitShift = phy_CalculateBitShift(BitMask); Readback_Value = (Original_Value & BitMask) >> BitShift; #ifdef CONFIG_USB_HCI //PlatformReleaseMutex(&pHalData->mxRFOperate); #else //_exit_critical(&pHalData->rf_lock, &irqL); #endif //RTPRINT(FPHY, PHY_RFR, ("RFR-%d MASK=0x%lx Addr[0x%lx]=0x%lx\n", eRFPath, BitMask, RegAddr, Original_Value));//BitMask(%#lx),BitMask, //RT_TRACE(COMP_RF, DBG_TRACE, ("<---PHY_QueryRFReg(): RegAddr(%#lx), eRFPath(%#x), Original_Value(%#lx)\n", // RegAddr, eRFPath, Original_Value)); return (Readback_Value); } /** * Function: PHY_SetRFReg * * OverView: Write "Specific bits" to RF register (page 8~) * * Input: * struct adapter * Adapter, * RF_RADIO_PATH_E eRFPath, //Radio path of A/B/C/D * u4Byte RegAddr, //The target address to be modified * u4Byte BitMask //The target bit position in the target address * //to be modified * u4Byte Data //The new register Data in the target bit position * //of the target address * * Output: None * Return: None * Note: This function is equal to "PutRFRegSetting" in PHY programming guide */ VOID rtl8188e_PHY_SetRFReg( IN struct adapter * Adapter, IN RF_RADIO_PATH_E eRFPath, IN u32 RegAddr, IN u32 BitMask, IN u32 Data ) { //HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); //u1Byte RFWaitCounter = 0; u32 Original_Value, BitShift; //_irqL irqL; #if (DISABLE_BB_RF == 1) return; #endif //RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_SetRFReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx), eRFPath(%#x)\n", // RegAddr, BitMask, Data, eRFPath)); //RTPRINT(FINIT, INIT_RF, ("PHY_SetRFReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx), eRFPath(%#x)\n", // RegAddr, BitMask, Data, eRFPath)); #ifdef CONFIG_USB_HCI //PlatformAcquireMutex(&pHalData->mxRFOperate); #else //_enter_critical(&pHalData->rf_lock, &irqL); #endif // RF data is 12 bits only if (BitMask != bRFRegOffsetMask) { Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr); BitShift = phy_CalculateBitShift(BitMask); Data = ((Original_Value & (~BitMask)) | (Data<< BitShift)); } phy_RFSerialWrite(Adapter, eRFPath, RegAddr, Data); #ifdef CONFIG_USB_HCI //PlatformReleaseMutex(&pHalData->mxRFOperate); #else //_exit_critical(&pHalData->rf_lock, &irqL); #endif //PHY_QueryRFReg(Adapter,eRFPath,RegAddr,BitMask); //RT_TRACE(COMP_RF, DBG_TRACE, ("<---PHY_SetRFReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx), eRFPath(%#x)\n", // RegAddr, BitMask, Data, eRFPath)); } // // 3. Initial MAC/BB/RF config by reading MAC/BB/RF txt. // /*----------------------------------------------------------------------------- * Function: phy_ConfigMACWithParaFile() * * Overview: This function read BB parameters from general file format, and do register * Read/Write * * Input: struct adapter * Adapter * ps1Byte pFileName * * Output: NONE * * Return: RT_STATUS_SUCCESS: configuration file exist * * Note: The format of MACPHY_REG.txt is different from PHY and RF. * [Register][Mask][Value] *---------------------------------------------------------------------------*/ static int phy_ConfigMACWithParaFile( IN struct adapter * Adapter, IN u8* pFileName ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _FAIL; return rtStatus; } /*----------------------------------------------------------------------------- * Function: phy_ConfigMACWithHeaderFile() * * Overview: This function read BB parameters from Header file we gen, and do register * Read/Write * * Input: struct adapter * Adapter * ps1Byte pFileName * * Output: NONE * * Return: RT_STATUS_SUCCESS: configuration file exist * * Note: The format of MACPHY_REG.txt is different from PHY and RF. * [Register][Mask][Value] *---------------------------------------------------------------------------*/ #ifndef CONFIG_PHY_SETTING_WITH_ODM static int phy_ConfigMACWithHeaderFile( IN struct adapter * Adapter ) { u32 i = 0; u32 ArrayLength = 0; u32* ptrArray; //HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); //2008.11.06 Modified by tynli. //RT_TRACE(COMP_INIT, DBG_LOUD, ("Read Rtl819XMACPHY_Array\n")); ArrayLength = Rtl8188E_MAC_ArrayLength; ptrArray = (u32*)Rtl8188E_MAC_Array; #ifdef CONFIG_IOL_MAC { struct xmit_frame *xmit_frame; if((xmit_frame=rtw_IOL_accquire_xmit_frame(Adapter)) == NULL) return _FAIL; for(i = 0 ;i < ArrayLength;i=i+2){ // Add by tynli for 2 column rtw_IOL_append_WB_cmd(xmit_frame, ptrArray[i], (u8)ptrArray[i+1]); } return rtw_IOL_exec_cmds_sync(Adapter, xmit_frame, 1000,0); } #else for(i = 0 ;i < ArrayLength;i=i+2){ // Add by tynli for 2 column rtw_write8(Adapter, ptrArray[i], (u8)ptrArray[i+1]); } #endif return _SUCCESS; } #endif //#ifndef CONFIG_PHY_SETTING_WITH_ODM /*----------------------------------------------------------------------------- * Function: PHY_MACConfig8192C * * Overview: Condig MAC by header file or parameter file. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 08/12/2008 MHC Create Version 0. * *---------------------------------------------------------------------------*/ s32 PHY_MACConfig8188E(struct adapter *Adapter) { int rtStatus = _SUCCESS; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); s8 *pszMACRegFile; s8 sz8188EMACRegFile[] = RTL8188E_PHY_MACREG; pszMACRegFile = sz8188EMACRegFile; // // Config MAC // #ifdef CONFIG_EMBEDDED_FWIMG #ifdef CONFIG_PHY_SETTING_WITH_ODM if(HAL_STATUS_FAILURE == ODM_ConfigMACWithHeaderFile(&pHalData->odmpriv)) rtStatus = _FAIL; #else rtStatus = phy_ConfigMACWithHeaderFile(Adapter); #endif//#ifdef CONFIG_PHY_SETTING_WITH_ODM #else // Not make sure EEPROM, add later //RT_TRACE(COMP_INIT, DBG_LOUD, ("Read MACREG.txt\n")); rtStatus = phy_ConfigMACWithParaFile(Adapter, pszMACRegFile); #endif//CONFIG_EMBEDDED_FWIMG // 2010.07.13 AMPDU aggregation number B rtw_write8(Adapter, REG_MAX_AGGR_NUM, MAX_AGGR_NUM); //rtw_write8(Adapter, REG_MAX_AGGR_NUM, 0x0B); return rtStatus; } /** * Function: phy_InitBBRFRegisterDefinition * * OverView: Initialize Register definition offset for Radio Path A/B/C/D * * Input: * struct adapter * Adapter, * * Output: None * Return: None * Note: The initialization value is constant and it should never be changes */ static VOID phy_InitBBRFRegisterDefinition( IN struct adapter * Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); // RF Interface Sowrtware Control pHalData->PHYRegDef[RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 LSBs if read 32-bit from 0x870 pHalData->PHYRegDef[RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) pHalData->PHYRegDef[RF_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW;// 16 LSBs if read 32-bit from 0x874 pHalData->PHYRegDef[RF_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW;// 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) // RF Interface Readback Value pHalData->PHYRegDef[RF_PATH_A].rfintfi = rFPGA0_XAB_RFInterfaceRB; // 16 LSBs if read 32-bit from 0x8E0 pHalData->PHYRegDef[RF_PATH_B].rfintfi = rFPGA0_XAB_RFInterfaceRB;// 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) pHalData->PHYRegDef[RF_PATH_C].rfintfi = rFPGA0_XCD_RFInterfaceRB;// 16 LSBs if read 32-bit from 0x8E4 pHalData->PHYRegDef[RF_PATH_D].rfintfi = rFPGA0_XCD_RFInterfaceRB;// 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) // RF Interface Output (and Enable) pHalData->PHYRegDef[RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x860 pHalData->PHYRegDef[RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x864 // RF Interface (Output and) Enable pHalData->PHYRegDef[RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) pHalData->PHYRegDef[RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) //Addr of LSSI. Wirte RF register by driver pHalData->PHYRegDef[RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; //LSSI Parameter pHalData->PHYRegDef[RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter; // RF parameter pHalData->PHYRegDef[RF_PATH_A].rfLSSI_Select = rFPGA0_XAB_RFParameter; //BB Band Select pHalData->PHYRegDef[RF_PATH_B].rfLSSI_Select = rFPGA0_XAB_RFParameter; pHalData->PHYRegDef[RF_PATH_C].rfLSSI_Select = rFPGA0_XCD_RFParameter; pHalData->PHYRegDef[RF_PATH_D].rfLSSI_Select = rFPGA0_XCD_RFParameter; // Tx AGC Gain Stage (same for all path. Should we remove this?) pHalData->PHYRegDef[RF_PATH_A].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage pHalData->PHYRegDef[RF_PATH_B].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage pHalData->PHYRegDef[RF_PATH_C].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage pHalData->PHYRegDef[RF_PATH_D].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage // Tranceiver A~D HSSI Parameter-1 pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara1 = rFPGA0_XA_HSSIParameter1; //wire control parameter1 pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara1 = rFPGA0_XB_HSSIParameter1; //wire control parameter1 // Tranceiver A~D HSSI Parameter-2 pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; //wire control parameter2 pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; //wire control parameter2 // RF switch Control pHalData->PHYRegDef[RF_PATH_A].rfSwitchControl = rFPGA0_XAB_SwitchControl; //TR/Ant switch control pHalData->PHYRegDef[RF_PATH_B].rfSwitchControl = rFPGA0_XAB_SwitchControl; pHalData->PHYRegDef[RF_PATH_C].rfSwitchControl = rFPGA0_XCD_SwitchControl; pHalData->PHYRegDef[RF_PATH_D].rfSwitchControl = rFPGA0_XCD_SwitchControl; // AGC control 1 pHalData->PHYRegDef[RF_PATH_A].rfAGCControl1 = rOFDM0_XAAGCCore1; pHalData->PHYRegDef[RF_PATH_B].rfAGCControl1 = rOFDM0_XBAGCCore1; pHalData->PHYRegDef[RF_PATH_C].rfAGCControl1 = rOFDM0_XCAGCCore1; pHalData->PHYRegDef[RF_PATH_D].rfAGCControl1 = rOFDM0_XDAGCCore1; // AGC control 2 pHalData->PHYRegDef[RF_PATH_A].rfAGCControl2 = rOFDM0_XAAGCCore2; pHalData->PHYRegDef[RF_PATH_B].rfAGCControl2 = rOFDM0_XBAGCCore2; pHalData->PHYRegDef[RF_PATH_C].rfAGCControl2 = rOFDM0_XCAGCCore2; pHalData->PHYRegDef[RF_PATH_D].rfAGCControl2 = rOFDM0_XDAGCCore2; // RX AFE control 1 pHalData->PHYRegDef[RF_PATH_A].rfRxIQImbalance = rOFDM0_XARxIQImbalance; pHalData->PHYRegDef[RF_PATH_B].rfRxIQImbalance = rOFDM0_XBRxIQImbalance; pHalData->PHYRegDef[RF_PATH_C].rfRxIQImbalance = rOFDM0_XCRxIQImbalance; pHalData->PHYRegDef[RF_PATH_D].rfRxIQImbalance = rOFDM0_XDRxIQImbalance; // RX AFE control 1 pHalData->PHYRegDef[RF_PATH_A].rfRxAFE = rOFDM0_XARxAFE; pHalData->PHYRegDef[RF_PATH_B].rfRxAFE = rOFDM0_XBRxAFE; pHalData->PHYRegDef[RF_PATH_C].rfRxAFE = rOFDM0_XCRxAFE; pHalData->PHYRegDef[RF_PATH_D].rfRxAFE = rOFDM0_XDRxAFE; // Tx AFE control 1 pHalData->PHYRegDef[RF_PATH_A].rfTxIQImbalance = rOFDM0_XATxIQImbalance; pHalData->PHYRegDef[RF_PATH_B].rfTxIQImbalance = rOFDM0_XBTxIQImbalance; pHalData->PHYRegDef[RF_PATH_C].rfTxIQImbalance = rOFDM0_XCTxIQImbalance; pHalData->PHYRegDef[RF_PATH_D].rfTxIQImbalance = rOFDM0_XDTxIQImbalance; // Tx AFE control 2 pHalData->PHYRegDef[RF_PATH_A].rfTxAFE = rOFDM0_XATxAFE; pHalData->PHYRegDef[RF_PATH_B].rfTxAFE = rOFDM0_XBTxAFE; pHalData->PHYRegDef[RF_PATH_C].rfTxAFE = rOFDM0_XCTxAFE; pHalData->PHYRegDef[RF_PATH_D].rfTxAFE = rOFDM0_XDTxAFE; // Tranceiver LSSI Readback SI mode pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack; pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack; pHalData->PHYRegDef[RF_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack; pHalData->PHYRegDef[RF_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack; // Tranceiver LSSI Readback PI mode pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback; pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback; //pHalData->PHYRegDef[RF_PATH_C].rfLSSIReadBackPi = rFPGA0_XC_LSSIReadBack; //pHalData->PHYRegDef[RF_PATH_D].rfLSSIReadBackPi = rFPGA0_XD_LSSIReadBack; } /*----------------------------------------------------------------------------- * Function: phy_ConfigBBWithParaFile() * * Overview: This function read BB parameters from general file format, and do register * Read/Write * * Input: struct adapter * Adapter * ps1Byte pFileName * * Output: NONE * * Return: RT_STATUS_SUCCESS: configuration file exist * 2008/11/06 MH For 92S we do not support silent reset now. Disable * parameter file compare!!!!!!?? * *---------------------------------------------------------------------------*/ static int phy_ConfigBBWithParaFile( IN struct adapter * Adapter, IN u8* pFileName ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _SUCCESS; return rtStatus; } //**************************************** // The following is for High Power PA //**************************************** VOID phy_ConfigBBExternalPA( IN struct adapter * Adapter ) { #ifdef CONFIG_USB_HCI HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u16 i=0; u32 temp=0; if(!pHalData->ExternalPA) { return; } // 2010/10/19 MH According to Jenyu/EEChou 's opinion, we need not to execute the // same code as SU. It is already updated in PHY_REG_1T_HP.txt. #if 0 PHY_SetBBReg(Adapter, 0xee8, BIT28, 1); temp = PHY_QueryBBReg(Adapter, 0x860, bMaskDWord); temp |= (BIT26|BIT21|BIT10|BIT5); PHY_SetBBReg(Adapter, 0x860, bMaskDWord, temp); PHY_SetBBReg(Adapter, 0x870, BIT10, 0); PHY_SetBBReg(Adapter, 0xc80, bMaskDWord, 0x20000080); PHY_SetBBReg(Adapter, 0xc88, bMaskDWord, 0x40000100); #endif #endif } /*----------------------------------------------------------------------------- * Function: phy_ConfigBBWithHeaderFile() * * Overview: This function read BB parameters from general file format, and do register * Read/Write * * Input: struct adapter * Adapter * u1Byte ConfigType 0 => PHY_CONFIG * 1 =>AGC_TAB * * Output: NONE * * Return: RT_STATUS_SUCCESS: configuration file exist * *---------------------------------------------------------------------------*/ #ifndef CONFIG_PHY_SETTING_WITH_ODM static int phy_ConfigBBWithHeaderFile( IN struct adapter * Adapter, IN u8 ConfigType ) { int i; u32* Rtl819XPHY_REGArray_Table; u32* Rtl819XAGCTAB_Array_Table; u16 PHY_REGArrayLen, AGCTAB_ArrayLen; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); DM_ODM_T *podmpriv = &pHalData->odmpriv; int ret = _SUCCESS; AGCTAB_ArrayLen = Rtl8188E_AGCTAB_1TArrayLength; Rtl819XAGCTAB_Array_Table = (u32*)Rtl8188E_AGCTAB_1TArray; PHY_REGArrayLen = Rtl8188E_PHY_REG_1TArrayLength; Rtl819XPHY_REGArray_Table = (u32*)Rtl8188E_PHY_REG_1TArray; // RT_TRACE(COMP_INIT, DBG_LOUD, (" ===> phy_ConfigBBWithHeaderFile() phy:Rtl8188EAGCTAB_1TArray\n")); // RT_TRACE(COMP_INIT, DBG_LOUD, (" ===> phy_ConfigBBWithHeaderFile() agc:Rtl8188EPHY_REG_1TArray\n")); if(ConfigType == CONFIG_BB_PHY_REG) { #ifdef CONFIG_IOL_BB_PHY_REG { struct xmit_frame *xmit_frame; u32 tmp_value; if((xmit_frame=rtw_IOL_accquire_xmit_frame(Adapter)) == NULL) { ret = _FAIL; goto exit; } for(i=0;iRFCalibrateInfo.RegA24 = Rtl819XPHY_REGArray_Table[i+1]; rtw_IOL_append_WD_cmd(xmit_frame, Rtl819XPHY_REGArray_Table[i], tmp_value); //RT_TRACE(COMP_INIT, DBG_TRACE, ("The Rtl819XPHY_REGArray_Table[0] is %lx Rtl819XPHY_REGArray[1] is %lx \n",Rtl819XPHY_REGArray_Table[i], Rtl819XPHY_REGArray_Table[i+1])); } ret = rtw_IOL_exec_cmds_sync(Adapter, xmit_frame, 1000,0); } #else for(i=0;iRFCalibrateInfo.RegA24 = Rtl819XPHY_REGArray_Table[i+1]; PHY_SetBBReg(Adapter, Rtl819XPHY_REGArray_Table[i], bMaskDWord, Rtl819XPHY_REGArray_Table[i+1]); // Add 1us delay between BB/RF register setting. rtw_udelay_os(1); //RT_TRACE(COMP_INIT, DBG_TRACE, ("The Rtl819XPHY_REGArray_Table[0] is %lx Rtl819XPHY_REGArray[1] is %lx \n",Rtl819XPHY_REGArray_Table[i], Rtl819XPHY_REGArray_Table[i+1])); } #endif // for External PA phy_ConfigBBExternalPA(Adapter); } else if(ConfigType == CONFIG_BB_AGC_TAB) { #ifdef CONFIG_IOL_BB_AGC_TAB { struct xmit_frame *xmit_frame; if((xmit_frame=rtw_IOL_accquire_xmit_frame(Adapter)) == NULL) { ret = _FAIL; goto exit; } for(i=0;iMCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][0]-TxAGC_A_Rate18_06 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0]); } if(RegAddr == rTxAGC_A_Rate54_24) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][1] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][1]-TxAGC_A_Rate54_24 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][1]); } if(RegAddr == rTxAGC_A_CCK1_Mcs32) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][6] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][6]-TxAGC_A_CCK1_Mcs32 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][6]); } if(RegAddr == rTxAGC_B_CCK11_A_CCK2_11 && BitMask == 0xffffff00) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][7] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][7]-TxAGC_B_CCK11_A_CCK2_11 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][7]); } if(RegAddr == rTxAGC_A_Mcs03_Mcs00) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][2] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][2]-TxAGC_A_Mcs03_Mcs00 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][2]); } if(RegAddr == rTxAGC_A_Mcs07_Mcs04) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][3] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][3]-TxAGC_A_Mcs07_Mcs04 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][3]); } if(RegAddr == rTxAGC_A_Mcs11_Mcs08) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][4] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][4]-TxAGC_A_Mcs11_Mcs08 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][4]); } if(RegAddr == rTxAGC_A_Mcs15_Mcs12) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][5] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][5]-TxAGC_A_Mcs15_Mcs12 = 0x%x\n", pHalData->pwrGroupCnt,pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][5]); if(pHalData->rf_type== RF_1T1R) { //printk("pwrGroupCnt = %d\n", pHalData->pwrGroupCnt); pHalData->pwrGroupCnt++; } } if(RegAddr == rTxAGC_B_Rate18_06) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][8] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][8]-TxAGC_B_Rate18_06 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][8]); } if(RegAddr == rTxAGC_B_Rate54_24) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][9] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][9]-TxAGC_B_Rate54_24 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][9]); } if(RegAddr == rTxAGC_B_CCK1_55_Mcs32) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][14] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][14]-TxAGC_B_CCK1_55_Mcs32 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][14]); } if(RegAddr == rTxAGC_B_CCK11_A_CCK2_11 && BitMask == 0x000000ff) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][15] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][15]-TxAGC_B_CCK11_A_CCK2_11 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][15]); } if(RegAddr == rTxAGC_B_Mcs03_Mcs00) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][10] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][10]-TxAGC_B_Mcs03_Mcs00 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][10]); } if(RegAddr == rTxAGC_B_Mcs07_Mcs04) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][11] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][11]-TxAGC_B_Mcs07_Mcs04 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][11]); } if(RegAddr == rTxAGC_B_Mcs11_Mcs08) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][12] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][12]-TxAGC_B_Mcs11_Mcs08 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][12]); } if(RegAddr == rTxAGC_B_Mcs15_Mcs12) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][13] = Data; //printk("MCSTxPowerLevelOriginalOffset[%d][13]-TxAGC_B_Mcs15_Mcs12 = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][13]); if(pHalData->rf_type != RF_1T1R) { //printk("pwrGroupCnt = %d\n", pHalData->pwrGroupCnt); pHalData->pwrGroupCnt++; } } } /*----------------------------------------------------------------------------- * Function: phy_ConfigBBWithPgParaFile * * Overview: * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 11/06/2008 MHC Create Version 0. * 2009/07/29 tynli (porting from 92SE branch)2009/03/11 Add copy parameter file to buffer for silent reset *---------------------------------------------------------------------------*/ static int phy_ConfigBBWithPgParaFile( IN struct adapter * Adapter, IN u8* pFileName) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _SUCCESS; return rtStatus; } /* phy_ConfigBBWithPgParaFile */ #ifndef CONFIG_PHY_SETTING_WITH_ODM /*----------------------------------------------------------------------------- * Function: phy_ConfigBBWithPgHeaderFile * * Overview: Config PHY_REG_PG array * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 11/06/2008 MHC Add later!!!!!!.. Please modify for new files!!!! * 11/10/2008 tynli Modify to mew files. *---------------------------------------------------------------------------*/ static int phy_ConfigBBWithPgHeaderFile( IN struct adapter * Adapter, IN u8 ConfigType) { int i; u32* Rtl819XPHY_REGArray_Table_PG; u16 PHY_REGArrayPGLen; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PHY_REGArrayPGLen = Rtl8188E_PHY_REG_Array_PGLength; Rtl819XPHY_REGArray_Table_PG = (u32*)Rtl8188E_PHY_REG_Array_PG; if(ConfigType == CONFIG_BB_PHY_REG) { for(i=0;iphy_BB8192S_Config_ParaFile\n")); pszBBRegFile = sz8188EBBRegFile ; pszAGCTableFile = sz8188EAGCTableFile; pszBBRegPgFile = sz8188EBBRegPgFile; pszBBRegMpFile = sz8188EBBRegMpFile; // // 1. Read PHY_REG.TXT BB INIT!! // We will seperate as 88C / 92C according to chip version // #ifdef CONFIG_EMBEDDED_FWIMG #ifdef CONFIG_PHY_SETTING_WITH_ODM if(HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG)) rtStatus = _FAIL; #else rtStatus = phy_ConfigBBWithHeaderFile(Adapter, CONFIG_BB_PHY_REG); #endif//#ifdef CONFIG_PHY_SETTING_WITH_ODM #else // No matter what kind of CHIP we always read PHY_REG.txt. We must copy different // type of parameter files to phy_reg.txt at first. rtStatus = phy_ConfigBBWithParaFile(Adapter,pszBBRegFile); #endif//#ifdef CONFIG_EMBEDDED_FWIMG if(rtStatus != _SUCCESS){ //RT_TRACE(COMP_INIT, DBG_SERIOUS, ("phy_BB8192S_Config_ParaFile():Write BB Reg Fail!!")); goto phy_BB8190_Config_ParaFile_Fail; } // // 20100318 Joseph: Config 2T2R to 1T2R if necessary. // //if(pHalData->rf_type == RF_1T2R) //{ //phy_BB8192C_Config_1T(Adapter); //DBG_8192C("phy_BB8188E_Config_ParaFile():Config to 1T!!\n"); //} // // 2. If EEPROM or EFUSE autoload OK, We must config by PHY_REG_PG.txt // if (pEEPROM->bautoload_fail_flag == _FALSE) { pHalData->pwrGroupCnt = 0; #ifdef CONFIG_EMBEDDED_FWIMG #ifdef CONFIG_PHY_SETTING_WITH_ODM if(HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG_PG)) rtStatus = _FAIL; #else rtStatus = phy_ConfigBBWithPgHeaderFile(Adapter, CONFIG_BB_PHY_REG_PG); #endif #else rtStatus = phy_ConfigBBWithPgParaFile(Adapter, pszBBRegPgFile); #endif } if(rtStatus != _SUCCESS){ //RT_TRACE(COMP_INIT, DBG_SERIOUS, ("phy_BB8192S_Config_ParaFile():BB_PG Reg Fail!!")); goto phy_BB8190_Config_ParaFile_Fail; } // // 3. BB AGC table Initialization // #ifdef CONFIG_EMBEDDED_FWIMG #ifdef CONFIG_PHY_SETTING_WITH_ODM if(HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_AGC_TAB)) rtStatus = _FAIL; #else rtStatus = phy_ConfigBBWithHeaderFile(Adapter, CONFIG_BB_AGC_TAB); #endif//#ifdef CONFIG_PHY_SETTING_WITH_ODM #else //RT_TRACE(COMP_INIT, DBG_LOUD, ("phy_BB8192S_Config_ParaFile AGC_TAB.txt\n")); rtStatus = phy_ConfigBBWithParaFile(Adapter, pszAGCTableFile); #endif//#ifdef CONFIG_EMBEDDED_FWIMG if(rtStatus != _SUCCESS){ //RT_TRACE(COMP_FPGA, DBG_SERIOUS, ("phy_BB8192S_Config_ParaFile():AGC Table Fail\n")); goto phy_BB8190_Config_ParaFile_Fail; } phy_BB8190_Config_ParaFile_Fail: return rtStatus; } int PHY_BBConfig8188E( IN struct adapter *Adapter ) { int rtStatus = _SUCCESS; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u32 RegVal; u8 TmpU1B=0; u8 value8,CrystalCap; phy_InitBBRFRegisterDefinition(Adapter); // Enable BB and RF RegVal = rtw_read16(Adapter, REG_SYS_FUNC_EN); rtw_write16(Adapter, REG_SYS_FUNC_EN, (u16)(RegVal|BIT13|BIT0|BIT1)); // 20090923 Joseph: Advised by Steven and Jenyu. Power sequence before init RF. //rtw_write8(Adapter, REG_AFE_PLL_CTRL, 0x83); //rtw_write8(Adapter, REG_AFE_PLL_CTRL+1, 0xdb); rtw_write8(Adapter, REG_RF_CTRL, RF_EN|RF_RSTB|RF_SDMRSTB); #ifdef CONFIG_USB_HCI rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_USBA | FEN_USBD | FEN_BB_GLB_RSTn | FEN_BBRSTB); #else rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_PPLL|FEN_PCIEA|FEN_DIO_PCIE|FEN_BB_GLB_RSTn|FEN_BBRSTB); #endif #if 0 #ifdef CONFIG_USB_HCI //To Fix MAC loopback mode fail. Suggested by SD4 Johnny. 2010.03.23. rtw_write8(Adapter, REG_LDOHCI12_CTRL, 0x0f); rtw_write8(Adapter, 0x15, 0xe9); #endif rtw_write8(Adapter, REG_AFE_XTAL_CTRL+1, 0x80); #endif #ifdef CONFIG_USB_HCI //rtw_write8(Adapter, 0x15, 0xe9); #endif #ifdef CONFIG_PCI_HCI // Force use left antenna by default for 88C. // if(!IS_92C_SERIAL(pHalData->VersionID) || IS_92C_1T2R(pHalData->VersionID)) if(Adapter->ledpriv.LedStrategy != SW_LED_MODE10) { RegVal = rtw_read32(Adapter, REG_LEDCFG0); rtw_write32(Adapter, REG_LEDCFG0, RegVal|BIT23); } #endif // // Config BB and AGC // rtStatus = phy_BB8188E_Config_ParaFile(Adapter); // write 0x24[16:11] = 0x24[22:17] = CrystalCap CrystalCap = pHalData->CrystalCap & 0x3F; PHY_SetBBReg(Adapter, REG_AFE_XTAL_CTRL, 0x7ff800, (CrystalCap | (CrystalCap << 6))); return rtStatus; } int PHY_RFConfig8188E( IN struct adapter *Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _SUCCESS; // // RF config // rtStatus = PHY_RF6052_Config8188E(Adapter); #if 0 switch(pHalData->rf_chip) { case RF_6052: rtStatus = PHY_RF6052_Config(Adapter); break; case RF_8225: rtStatus = PHY_RF8225_Config(Adapter); break; case RF_8256: rtStatus = PHY_RF8256_Config(Adapter); break; case RF_8258: break; case RF_PSEUDO_11N: rtStatus = PHY_RF8225_Config(Adapter); break; default: //for MacOs Warning: "RF_TYPE_MIN" not handled in switch break; } #endif return rtStatus; } /*----------------------------------------------------------------------------- * Function: PHY_ConfigRFWithParaFile() * * Overview: This function read RF parameters from general file format, and do RF 3-wire * * Input: struct adapter * Adapter * ps1Byte pFileName * RF_RADIO_PATH_E eRFPath * * Output: NONE * * Return: RT_STATUS_SUCCESS: configuration file exist * * Note: Delay may be required for RF configuration *---------------------------------------------------------------------------*/ int rtl8188e_PHY_ConfigRFWithParaFile( IN struct adapter * Adapter, IN u8* pFileName, RF_RADIO_PATH_E eRFPath ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _SUCCESS; return rtStatus; } //**************************************** // The following is for High Power PA //**************************************** #define HighPowerRadioAArrayLen 22 //This is for High power PA u32 Rtl8192S_HighPower_RadioA_Array[HighPowerRadioAArrayLen] = { 0x013,0x00029ea4, 0x013,0x00025e74, 0x013,0x00020ea4, 0x013,0x0001ced0, 0x013,0x00019f40, 0x013,0x00014e70, 0x013,0x000106a0, 0x013,0x0000c670, 0x013,0x000082a0, 0x013,0x00004270, 0x013,0x00000240, }; int PHY_ConfigRFExternalPA( IN struct adapter * Adapter, RF_RADIO_PATH_E eRFPath ) { int rtStatus = _SUCCESS; #ifdef CONFIG_USB_HCI HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u16 i=0; if(!pHalData->ExternalPA) { return rtStatus; } // 2010/10/19 MH According to Jenyu/EEChou 's opinion, we need not to execute the // same code as SU. It is already updated in radio_a_1T_HP.txt. #if 0 //add for SU High Power PA for(i = 0;i PHY_ConfigRFWithHeaderFile() Radio_A:Rtl8188ERadioA_1TArray\n")); // RT_TRACE(COMP_INIT, DBG_LOUD, (" ===> PHY_ConfigRFWithHeaderFile() Radio_B:Rtl8188ERadioB_1TArray\n")); switch (eRFPath) { case RF_PATH_A: #ifdef CONFIG_IOL_RF_RF_PATH_A { struct xmit_frame *xmit_frame; if((xmit_frame=rtw_IOL_accquire_xmit_frame(Adapter)) == NULL) { rtStatus = _FAIL; goto exit; } for(i = 0;iPHYRegDef[eRFPath]; u32 NewOffset = 0; u32 DataAndAddr = 0; NewOffset = Rtl819XRadioA_Array_Table[i] & 0x3f; DataAndAddr = ((NewOffset<<20) | (Rtl819XRadioA_Array_Table[i+1]&0x000fffff)) & 0x0fffffff; // T65 RF rtw_IOL_append_WD_cmd(xmit_frame, pPhyReg->rf3wireOffset, DataAndAddr); } } rtStatus = rtw_IOL_exec_cmds_sync(Adapter, xmit_frame, 1000,0); } #else for(i = 0;iPHYRegDef[eRFPath]; u32 NewOffset = 0; u32 DataAndAddr = 0; NewOffset = Rtl819XRadioB_Array_Table[i] & 0x3f; DataAndAddr = ((NewOffset<<20) | (Rtl819XRadioB_Array_Table[i+1]&0x000fffff)) & 0x0fffffff; // T65 RF rtw_IOL_append_WD_cmd(xmit_frame, pPhyReg->rf3wireOffset, DataAndAddr); } } rtStatus = rtw_IOL_exec_cmds_sync(Adapter, xmit_frame, 1000,0); } #else for(i = 0;i actually we call PlatformStallExecution()) to do NdisStallExecution() // [busy wait] instead of NdisMSleep(). So we acquire RT_INITIAL_SPINLOCK // to run at Dispatch level to achive it. //cosa PlatformAcquireSpinLock(Adapter, RT_INITIAL_SPINLOCK); WriteData[i] &= 0xfff; PHY_SetRFReg(Adapter, eRFPath, WriteAddr[HW90_BLOCK_RF], bRFRegOffsetMask, WriteData[i]); // TODO: we should not delay for such a long time. Ask SD3 rtw_mdelay_os(10); ulRegRead = PHY_QueryRFReg(Adapter, eRFPath, WriteAddr[HW90_BLOCK_RF], bMaskDWord); rtw_mdelay_os(10); //cosa PlatformReleaseSpinLock(Adapter, RT_INITIAL_SPINLOCK); break; default: rtStatus = _FAIL; break; } // // Check whether readback data is correct // if(ulRegRead != WriteData[i]) { //RT_TRACE(COMP_FPGA, DBG_LOUD, ("ulRegRead: %lx, WriteData: %lx \n", ulRegRead, WriteData[i])); rtStatus = _FAIL; break; } } return rtStatus; } VOID rtl8192c_PHY_GetHWRegOriginalValue( IN struct adapter * Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); // read rx initial gain pHalData->DefaultInitialGain[0] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XAAGCCore1, bMaskByte0); pHalData->DefaultInitialGain[1] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XBAGCCore1, bMaskByte0); pHalData->DefaultInitialGain[2] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XCAGCCore1, bMaskByte0); pHalData->DefaultInitialGain[3] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XDAGCCore1, bMaskByte0); //RT_TRACE(COMP_INIT, DBG_LOUD, //("Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x) \n", //pHalData->DefaultInitialGain[0], pHalData->DefaultInitialGain[1], //pHalData->DefaultInitialGain[2], pHalData->DefaultInitialGain[3])); // read framesync pHalData->framesync = (u8)PHY_QueryBBReg(Adapter, rOFDM0_RxDetector3, bMaskByte0); pHalData->framesyncC34 = PHY_QueryBBReg(Adapter, rOFDM0_RxDetector2, bMaskDWord); //RT_TRACE(COMP_INIT, DBG_LOUD, ("Default framesync (0x%x) = 0x%x \n", // rOFDM0_RxDetector3, pHalData->framesync)); } // // Description: // Map dBm into Tx power index according to // current HW model, for example, RF and PA, and // current wireless mode. // By Bruce, 2008-01-29. // static u8 phy_DbmToTxPwrIdx( IN struct adapter * Adapter, IN WIRELESS_MODE WirelessMode, IN int PowerInDbm ) { u8 TxPwrIdx = 0; int Offset = 0; // // Tested by MP, we found that CCK Index 0 equals to 8dbm, OFDM legacy equals to // 3dbm, and OFDM HT equals to 0dbm repectively. // Note: // The mapping may be different by different NICs. Do not use this formula for what needs accurate result. // By Bruce, 2008-01-29. // switch(WirelessMode) { case WIRELESS_MODE_B: Offset = -7; break; case WIRELESS_MODE_G: case WIRELESS_MODE_N_24G: Offset = -8; break; default: Offset = -8; break; } if((PowerInDbm - Offset) > 0) { TxPwrIdx = (u8)((PowerInDbm - Offset) * 2); } else { TxPwrIdx = 0; } // Tx Power Index is too large. if(TxPwrIdx > MAX_TXPWR_IDX_NMODE_92S) TxPwrIdx = MAX_TXPWR_IDX_NMODE_92S; return TxPwrIdx; } // // Description: // Map Tx power index into dBm according to // current HW model, for example, RF and PA, and // current wireless mode. // By Bruce, 2008-01-29. // int phy_TxPwrIdxToDbm( IN struct adapter * Adapter, IN WIRELESS_MODE WirelessMode, IN u8 TxPwrIdx ) { int Offset = 0; int PwrOutDbm = 0; // // Tested by MP, we found that CCK Index 0 equals to -7dbm, OFDM legacy equals to -8dbm. // Note: // The mapping may be different by different NICs. Do not use this formula for what needs accurate result. // By Bruce, 2008-01-29. // switch(WirelessMode) { case WIRELESS_MODE_B: Offset = -7; break; case WIRELESS_MODE_G: case WIRELESS_MODE_N_24G: Offset = -8; default: Offset = -8; break; } PwrOutDbm = TxPwrIdx / 2 + Offset; // Discard the decimal part. return PwrOutDbm; } /*----------------------------------------------------------------------------- * Function: GetTxPowerLevel8190() * * Overview: This function is export to "common" moudule * * Input: struct adapter * Adapter * psByte Power Level * * Output: NONE * * Return: NONE * *---------------------------------------------------------------------------*/ VOID PHY_GetTxPowerLevel8188E( IN struct adapter * Adapter, OUT u32* powerlevel ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 TxPwrLevel = 0; int TxPwrDbm; // // Because the Tx power indexes are different, we report the maximum of them to // meet the CCX TPC request. By Bruce, 2008-01-31. // // CCK TxPwrLevel = pHalData->CurrentCckTxPwrIdx; TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_B, TxPwrLevel); // Legacy OFDM TxPwrLevel = pHalData->CurrentOfdm24GTxPwrIdx + pHalData->LegacyHTTxPowerDiff; // Compare with Legacy OFDM Tx power. if(phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_G, TxPwrLevel) > TxPwrDbm) TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_G, TxPwrLevel); // HT OFDM TxPwrLevel = pHalData->CurrentOfdm24GTxPwrIdx; // Compare with HT OFDM Tx power. if(phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_N_24G, TxPwrLevel) > TxPwrDbm) TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_N_24G, TxPwrLevel); *powerlevel = TxPwrDbm; } #if 0 static void getTxPowerIndex( IN struct adapter * Adapter, IN u8 channel, IN OUT u8* cckPowerLevel, IN OUT u8* ofdmPowerLevel ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 index = (channel -1); // 1. CCK cckPowerLevel[RF_PATH_A] = pHalData->TxPwrLevelCck[RF_PATH_A][index]; //RF-A cckPowerLevel[RF_PATH_B] = pHalData->TxPwrLevelCck[RF_PATH_B][index]; //RF-B // 2. OFDM for 1S or 2S if (GET_RF_TYPE(Adapter) == RF_1T2R || GET_RF_TYPE(Adapter) == RF_1T1R) { // Read HT 40 OFDM TX power ofdmPowerLevel[RF_PATH_A] = pHalData->TxPwrLevelHT40_1S[RF_PATH_A][index]; ofdmPowerLevel[RF_PATH_B] = pHalData->TxPwrLevelHT40_1S[RF_PATH_B][index]; } else if (GET_RF_TYPE(Adapter) == RF_2T2R) { // Read HT 40 OFDM TX power ofdmPowerLevel[RF_PATH_A] = pHalData->TxPwrLevelHT40_2S[RF_PATH_A][index]; ofdmPowerLevel[RF_PATH_B] = pHalData->TxPwrLevelHT40_2S[RF_PATH_B][index]; } //RTPRINT(FPHY, PHY_TXPWR, ("Channel-%d, set tx power index !!\n", channel)); } #endif void getTxPowerIndex88E( IN struct adapter * Adapter, IN u8 channel, IN OUT u8* cckPowerLevel, IN OUT u8* ofdmPowerLevel, IN OUT u8* BW20PowerLevel, IN OUT u8* BW40PowerLevel ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 index = (channel -1); u8 TxCount=0,path_nums; if((RF_1T2R == pHalData->rf_type) ||(RF_1T1R ==pHalData->rf_type )) path_nums = 1; else path_nums = 2; for(TxCount=0;TxCount< path_nums ;TxCount++) { if(TxCount==RF_PATH_A) { // 1. CCK cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index]; //2. OFDM ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->OFDM_24G_Diff[TxCount][RF_PATH_A]; // 1. BW20 BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[TxCount][RF_PATH_A]; //2. BW40 BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index]; //RTPRINT(FPHY, PHY_TXPWR, ("getTxPowerIndex88E(): 40MBase=0x%x 20Mdiff=%d 20MBase=0x%x!!\n", // pHalData->Index24G_BW40_Base[RF_PATH_A][index], // pHalData->BW20_24G_Diff[TxCount][RF_PATH_A], // BW20PowerLevel[TxCount])); } else if(TxCount==RF_PATH_B) { // 1. CCK cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index]; //2. OFDM ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[TxCount][index]; // 1. BW20 BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[TxCount][RF_PATH_A]+ pHalData->BW20_24G_Diff[TxCount][index]; //2. BW40 BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index]; } else if(TxCount==RF_PATH_C) { // 1. CCK cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index]; //2. OFDM ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_B][index]+ pHalData->BW20_24G_Diff[TxCount][index]; // 1. BW20 BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_B][index]+ pHalData->BW20_24G_Diff[TxCount][index]; //2. BW40 BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index]; } else if(TxCount==RF_PATH_D) { // 1. CCK cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index]; //2. OFDM ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_B][index]+ pHalData->BW20_24G_Diff[RF_PATH_C][index]+ pHalData->BW20_24G_Diff[TxCount][index]; // 1. BW20 BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_B][index]+ pHalData->BW20_24G_Diff[RF_PATH_C][index]+ pHalData->BW20_24G_Diff[TxCount][index]; //2. BW40 BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index]; } else { } } #if 0 // (INTEL_PROXIMITY_SUPPORT == 1) switch(pMgntInfo->IntelProximityModeInfo.PowerOutput){ case 1: // 100% break; case 2: // 70% cckPowerLevel[0] -= 3; cckPowerLevel[1] -= 3; ofdmPowerLevel[0] -=3; ofdmPowerLevel[1] -= 3; break; case 3: // 50% cckPowerLevel[0] -= 6; cckPowerLevel[1] -= 6; ofdmPowerLevel[0] -=6; ofdmPowerLevel[1] -= 6; break; case 4: // 35% cckPowerLevel[0] -= 9; cckPowerLevel[1] -= 9; ofdmPowerLevel[0] -=9; ofdmPowerLevel[1] -= 9; break; case 5: // 15% cckPowerLevel[0] -= 17; cckPowerLevel[1] -= 17; ofdmPowerLevel[0] -=17; ofdmPowerLevel[1] -= 17; break; default: break; } #endif //RTPRINT(FPHY, PHY_TXPWR, ("Channel-%d, set tx power index !!\n", channel)); } void phy_PowerIndexCheck88E( IN struct adapter *Adapter, IN u8 channel, IN OUT u8 * cckPowerLevel, IN OUT u8 * ofdmPowerLevel, IN OUT u8 * BW20PowerLevel, IN OUT u8 * BW40PowerLevel ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); #if 0 // (CCX_SUPPORT == 1) PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo); PRT_CCX_INFO pCcxInfo = GET_CCX_INFO(pMgntInfo); // // CCX 2 S31, AP control of client transmit power: // 1. We shall not exceed Cell Power Limit as possible as we can. // 2. Tolerance is +/- 5dB. // 3. 802.11h Power Contraint takes higher precedence over CCX Cell Power Limit. // // TODO: // 1. 802.11h power contraint // // 071011, by rcnjko. // if( pMgntInfo->OpMode == RT_OP_MODE_INFRASTRUCTURE && pMgntInfo->mAssoc && pCcxInfo->bUpdateCcxPwr && pCcxInfo->bWithCcxCellPwr && channel == pMgntInfo->dot11CurrentChannelNumber) { u1Byte CckCellPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_B, pCcxInfo->CcxCellPwr); u1Byte LegacyOfdmCellPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_G, pCcxInfo->CcxCellPwr); u1Byte OfdmCellPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_N_24G, pCcxInfo->CcxCellPwr); RT_TRACE(COMP_TXAGC, DBG_LOUD, ("CCX Cell Limit: %d dbm => CCK Tx power index : %d, Legacy OFDM Tx power index : %d, OFDM Tx power index: %d\n", pCcxInfo->CcxCellPwr, CckCellPwrIdx, LegacyOfdmCellPwrIdx, OfdmCellPwrIdx)); RT_TRACE(COMP_TXAGC, DBG_LOUD, ("EEPROM channel(%d) => CCK Tx power index: %d, Legacy OFDM Tx power index : %d, OFDM Tx power index: %d\n", channel, cckPowerLevel[0], ofdmPowerLevel[0] + pHalData->LegacyHTTxPowerDiff, ofdmPowerLevel[0])); // CCK if(cckPowerLevel[0] > CckCellPwrIdx) cckPowerLevel[0] = CckCellPwrIdx; // Legacy OFDM, HT OFDM if(ofdmPowerLevel[0] + pHalData->LegacyHTTxPowerDiff > LegacyOfdmCellPwrIdx) { if((OfdmCellPwrIdx - pHalData->LegacyHTTxPowerDiff) > 0) { ofdmPowerLevel[0] = OfdmCellPwrIdx - pHalData->LegacyHTTxPowerDiff; } else { ofdmPowerLevel[0] = 0; } } RT_TRACE(COMP_TXAGC, DBG_LOUD, ("Altered CCK Tx power index : %d, Legacy OFDM Tx power index: %d, OFDM Tx power index: %d\n", cckPowerLevel[0], ofdmPowerLevel[0] + pHalData->LegacyHTTxPowerDiff, ofdmPowerLevel[0])); } #else // Add or not ??? #endif pHalData->CurrentCckTxPwrIdx = cckPowerLevel[0]; pHalData->CurrentOfdm24GTxPwrIdx = ofdmPowerLevel[0]; pHalData->CurrentBW2024GTxPwrIdx = BW20PowerLevel[0]; pHalData->CurrentBW4024GTxPwrIdx = BW40PowerLevel[0]; //DBG_871X("PHY_SetTxPowerLevel8188E(): CurrentCckTxPwrIdx : 0x%x,CurrentOfdm24GTxPwrIdx: 0x%x, CurrentBW2024GTxPwrIdx: 0x%dx, CurrentBW4024GTxPwrIdx: 0x%x \n", // pHalData->CurrentCckTxPwrIdx, pHalData->CurrentOfdm24GTxPwrIdx, pHalData->CurrentBW2024GTxPwrIdx, pHalData->CurrentBW4024GTxPwrIdx); } /*----------------------------------------------------------------------------- * Function: SetTxPowerLevel8190() * * Overview: This function is export to "HalCommon" moudule * We must consider RF path later!!!!!!! * * Input: struct adapter * Adapter * u1Byte channel * * Output: NONE * * Return: NONE * 2008/11/04 MHC We remove EEPROM_93C56. * We need to move CCX relative code to independet file. * 2009/01/21 MHC Support new EEPROM format from SD3 requirement. * *---------------------------------------------------------------------------*/ VOID PHY_SetTxPowerLevel8188E( IN struct adapter * Adapter, IN u8 channel ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 cckPowerLevel[MAX_TX_COUNT], ofdmPowerLevel[MAX_TX_COUNT];// [0]:RF-A, [1]:RF-B u8 BW20PowerLevel[MAX_TX_COUNT], BW40PowerLevel[MAX_TX_COUNT]; u8 i=0; /* #if(MP_DRIVER == 1) if (Adapter->registrypriv.mp_mode == 1) return; #endif */ //getTxPowerIndex(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0]); getTxPowerIndex88E(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0],&BW20PowerLevel[0],&BW40PowerLevel[0]); //printk("Channel-%d, cckPowerLevel = 0x%x, ofdmPowerLeve = 0x%x, BW20PowerLevel = 0x%x, BW40PowerLevel = 0x%x,\n", // channel, cckPowerLevel[0], ofdmPowerLevel[0], BW20PowerLevel[0] ,BW40PowerLevel[0]); //RTPRINT(FPHY, PHY_TXPWR, ("Channel-%d, cckPowerLevel (A / B) = 0x%x / 0x%x, ofdmPowerLevel (A / B) = 0x%x / 0x%x\n", // channel, cckPowerLevel[0], cckPowerLevel[1], ofdmPowerLevel[0], ofdmPowerLevel[1])); //ccxPowerIndexCheck(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0]); phy_PowerIndexCheck88E(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0],&BW20PowerLevel[0],&BW40PowerLevel[0]); rtl8188e_PHY_RF6052SetCckTxPower(Adapter, &cckPowerLevel[0]); rtl8188e_PHY_RF6052SetOFDMTxPower(Adapter, &ofdmPowerLevel[0],&BW20PowerLevel[0],&BW40PowerLevel[0], channel); #if 0 switch(pHalData->rf_chip) { case RF_8225: PHY_SetRF8225CckTxPower(Adapter, cckPowerLevel[0]); PHY_SetRF8225OfdmTxPower(Adapter, ofdmPowerLevel[0]); break; case RF_8256: PHY_SetRF8256CCKTxPower(Adapter, cckPowerLevel[0]); PHY_SetRF8256OFDMTxPower(Adapter, ofdmPowerLevel[0]); break; case RF_6052: PHY_RF6052SetCckTxPower(Adapter, &cckPowerLevel[0]); PHY_RF6052SetOFDMTxPower(Adapter, &ofdmPowerLevel[0], channel); break; case RF_8258: break; } #endif } // // Description: // Update transmit power level of all channel supported. // // TODO: // A mode. // By Bruce, 2008-02-04. // BOOLEAN PHY_UpdateTxPowerDbm8188E( IN struct adapter *Adapter, IN int powerInDbm ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 idx; u8 rf_path; // TODO: A mode Tx power. u8 CckTxPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_B, powerInDbm); u8 OfdmTxPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_N_24G, powerInDbm); if(OfdmTxPwrIdx - pHalData->LegacyHTTxPowerDiff > 0) OfdmTxPwrIdx -= pHalData->LegacyHTTxPowerDiff; else OfdmTxPwrIdx = 0; //RT_TRACE(COMP_TXAGC, DBG_LOUD, ("PHY_UpdateTxPowerDbm8192S(): %ld dBm , CckTxPwrIdx = %d, OfdmTxPwrIdx = %d\n", powerInDbm, CckTxPwrIdx, OfdmTxPwrIdx)); for(idx = 0; idx < 14; idx++) { for (rf_path = 0; rf_path < 2; rf_path++) { pHalData->TxPwrLevelCck[rf_path][idx] = CckTxPwrIdx; pHalData->TxPwrLevelHT40_1S[rf_path][idx] = pHalData->TxPwrLevelHT40_2S[rf_path][idx] = OfdmTxPwrIdx; } } //Adapter->HalFunc.SetTxPowerLevelHandler(Adapter, pHalData->CurrentChannel);//gtest:todo return _TRUE; } /* Description: When beacon interval is changed, the values of the hw registers should be modified. By tynli, 2008.10.24. */ void rtl8192c_PHY_SetBeaconHwReg( IN struct adapter * Adapter, IN u16 BeaconInterval ) { } VOID PHY_ScanOperationBackup8188E( IN struct adapter *Adapter, IN u8 Operation ) { #if 0 IO_TYPE IoType; if(!Adapter->bDriverStopped) { switch(Operation) { case SCAN_OPT_BACKUP: IoType = IO_CMD_PAUSE_DM_BY_SCAN; rtw_hal_set_hwreg(Adapter,HW_VAR_IO_CMD, (pu1Byte)&IoType); break; case SCAN_OPT_RESTORE: IoType = IO_CMD_RESUME_DM_BY_SCAN; rtw_hal_set_hwreg(Adapter,HW_VAR_IO_CMD, (pu1Byte)&IoType); break; default: RT_TRACE(COMP_SCAN, DBG_LOUD, ("Unknown Scan Backup Operation. \n")); break; } } #endif } /*----------------------------------------------------------------------------- * Function: PHY_SetBWModeCallback8192C() * * Overview: Timer callback function for SetSetBWMode * * Input: PRT_TIMER pTimer * * Output: NONE * * Return: NONE * * Note: (1) We do not take j mode into consideration now * (2) Will two workitem of "switch channel" and "switch channel bandwidth" run * concurrently? *---------------------------------------------------------------------------*/ static VOID _PHY_SetBWMode92C( IN struct adapter *Adapter ) { // struct adapter * Adapter = (PADAPTER)pTimer->Adapter; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 regBwOpMode; u8 regRRSR_RSC; //return; // Added it for 20/40 mhz switch time evaluation by guangan 070531 //u4Byte NowL, NowH; //u8Byte BeginTime, EndTime; /*RT_TRACE(COMP_SCAN, DBG_LOUD, ("==>PHY_SetBWModeCallback8192C() Switch to %s bandwidth\n", \ pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_20?"20MHz":"40MHz"))*/ if(pHalData->rf_chip == RF_PSEUDO_11N) { //pHalData->SetBWModeInProgress= _FALSE; return; } // There is no 40MHz mode in RF_8225. if(pHalData->rf_chip==RF_8225) return; if(Adapter->bDriverStopped) return; // Added it for 20/40 mhz switch time evaluation by guangan 070531 //NowL = PlatformEFIORead4Byte(Adapter, TSFR); //NowH = PlatformEFIORead4Byte(Adapter, TSFR+4); //BeginTime = ((u8Byte)NowH << 32) + NowL; //3// //3//<1>Set MAC register //3// //Adapter->HalFunc.SetBWModeHandler(); regBwOpMode = rtw_read8(Adapter, REG_BWOPMODE); regRRSR_RSC = rtw_read8(Adapter, REG_RRSR+2); //regBwOpMode = rtw_hal_get_hwreg(Adapter,HW_VAR_BWMODE,(pu1Byte)®BwOpMode); switch(pHalData->CurrentChannelBW) { case HT_CHANNEL_WIDTH_20: regBwOpMode |= BW_OPMODE_20MHZ; // 2007/02/07 Mark by Emily becasue we have not verify whether this register works rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode); break; case HT_CHANNEL_WIDTH_40: regBwOpMode &= ~BW_OPMODE_20MHZ; // 2007/02/07 Mark by Emily becasue we have not verify whether this register works rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode); regRRSR_RSC = (regRRSR_RSC&0x90) |(pHalData->nCur40MhzPrimeSC<<5); rtw_write8(Adapter, REG_RRSR+2, regRRSR_RSC); break; default: /*RT_TRACE(COMP_DBG, DBG_LOUD, ("PHY_SetBWModeCallback8192C(): unknown Bandwidth: %#X\n",pHalData->CurrentChannelBW));*/ break; } //3// //3//<2>Set PHY related register //3// switch(pHalData->CurrentChannelBW) { /* 20 MHz channel*/ case HT_CHANNEL_WIDTH_20: PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x0); PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x0); //PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 1); break; /* 40 MHz channel*/ case HT_CHANNEL_WIDTH_40: PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x1); PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x1); // Set Control channel to upper or lower. These settings are required only for 40MHz PHY_SetBBReg(Adapter, rCCK0_System, bCCKSideBand, (pHalData->nCur40MhzPrimeSC>>1)); PHY_SetBBReg(Adapter, rOFDM1_LSTF, 0xC00, pHalData->nCur40MhzPrimeSC); //PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 0); PHY_SetBBReg(Adapter, 0x818, (BIT26|BIT27), (pHalData->nCur40MhzPrimeSC==HAL_PRIME_CHNL_OFFSET_LOWER)?2:1); break; default: /*RT_TRACE(COMP_DBG, DBG_LOUD, ("PHY_SetBWModeCallback8192C(): unknown Bandwidth: %#X\n"\ ,pHalData->CurrentChannelBW));*/ break; } //Skip over setting of J-mode in BB register here. Default value is "None J mode". Emily 20070315 // Added it for 20/40 mhz switch time evaluation by guangan 070531 //NowL = PlatformEFIORead4Byte(Adapter, TSFR); //NowH = PlatformEFIORead4Byte(Adapter, TSFR+4); //EndTime = ((u8Byte)NowH << 32) + NowL; //RT_TRACE(COMP_SCAN, DBG_LOUD, ("SetBWModeCallback8190Pci: time of SetBWMode = %I64d us!\n", (EndTime - BeginTime))); //3<3>Set RF related register switch(pHalData->rf_chip) { case RF_8225: //PHY_SetRF8225Bandwidth(Adapter, pHalData->CurrentChannelBW); break; case RF_8256: // Please implement this function in Hal8190PciPhy8256.c //PHY_SetRF8256Bandwidth(Adapter, pHalData->CurrentChannelBW); break; case RF_8258: // Please implement this function in Hal8190PciPhy8258.c // PHY_SetRF8258Bandwidth(); break; case RF_PSEUDO_11N: // Do Nothing break; case RF_6052: rtl8188e_PHY_RF6052SetBandwidth(Adapter, pHalData->CurrentChannelBW); break; default: //RT_ASSERT(FALSE, ("Unknown RFChipID: %d\n", pHalData->RFChipID)); break; } //pHalData->SetBWModeInProgress= FALSE; //RT_TRACE(COMP_SCAN, DBG_LOUD, ("<==PHY_SetBWModeCallback8192C() \n" )); } /*----------------------------------------------------------------------------- * Function: SetBWMode8190Pci() * * Overview: This function is export to "HalCommon" moudule * * Input: struct adapter * Adapter * HT_CHANNEL_WIDTH Bandwidth //20M or 40M * * Output: NONE * * Return: NONE * * Note: We do not take j mode into consideration now *---------------------------------------------------------------------------*/ VOID PHY_SetBWMode8188E( IN struct adapter * Adapter, IN HT_CHANNEL_WIDTH Bandwidth, // 20M or 40M IN unsigned char Offset // Upper, Lower, or Don't care ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); HT_CHANNEL_WIDTH tmpBW= pHalData->CurrentChannelBW; // Modified it for 20/40 mhz switch by guangan 070531 //PMGNT_INFO pMgntInfo=&Adapter->MgntInfo; //return; //if(pHalData->SwChnlInProgress) // if(pMgntInfo->bScanInProgress) // { // RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SetBWMode8192C() %s Exit because bScanInProgress!\n", // Bandwidth == HT_CHANNEL_WIDTH_20?"20MHz":"40MHz")); // return; // } // if(pHalData->SetBWModeInProgress) // { // // Modified it for 20/40 mhz switch by guangan 070531 // RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SetBWMode8192C() %s cancel last timer because SetBWModeInProgress!\n", // Bandwidth == HT_CHANNEL_WIDTH_20?"20MHz":"40MHz")); // PlatformCancelTimer(Adapter, &pHalData->SetBWModeTimer); // //return; // } //if(pHalData->SetBWModeInProgress) // return; //pHalData->SetBWModeInProgress= TRUE; pHalData->CurrentChannelBW = Bandwidth; #if 0 if(Offset==HT_EXTCHNL_OFFSET_LOWER) pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER; else if(Offset==HT_EXTCHNL_OFFSET_UPPER) pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER; else pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE; #else pHalData->nCur40MhzPrimeSC = Offset; #endif if((!Adapter->bDriverStopped) && (!Adapter->bSurpriseRemoved)) { #if 0 //PlatformSetTimer(Adapter, &(pHalData->SetBWModeTimer), 0); #else _PHY_SetBWMode92C(Adapter); #endif } else { //RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SetBWMode8192C() SetBWModeInProgress FALSE driver sleep or unload\n")); //pHalData->SetBWModeInProgress= FALSE; pHalData->CurrentChannelBW = tmpBW; } } static void _PHY_SwChnl8192C(struct adapter *Adapter, u8 channel) { u8 eRFPath; u32 param1, param2; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if ( Adapter->bNotifyChannelChange ) { DBG_871X( "[%s] ch = %d\n", __FUNCTION__, channel ); } //s1. pre common command - CmdID_SetTxPowerLevel PHY_SetTxPowerLevel8188E(Adapter, channel); //s2. RF dependent command - CmdID_RF_WriteReg, param1=RF_CHNLBW, param2=channel param1 = RF_CHNLBW; param2 = channel; for(eRFPath = 0; eRFPath NumTotalRFPath; eRFPath++) { pHalData->RfRegChnlVal[eRFPath] = ((pHalData->RfRegChnlVal[eRFPath] & 0xfffffc00) | param2); PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)eRFPath, param1, bRFRegOffsetMask, pHalData->RfRegChnlVal[eRFPath]); } //s3. post common command - CmdID_End, None } // <20130708, James> A workaround to eliminate the 2480MHz spur for 8188E I-Cut void phy_SpurCalibration_8188E( IN struct adapter * Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); //DbgPrint("===> phy_SpurCalibration_8188E CurrentChannelBW = %d, CurrentChannel = %d\n", pHalData->CurrentChannelBW, pHalData->CurrentChannel); if(pHalData->CurrentChannelBW == 0 && pHalData->CurrentChannel == 13){ PHY_SetBBReg(Adapter, rOFDM1_CFOTracking, BIT(28), 0x1); //enable CSI Mask PHY_SetBBReg(Adapter, rOFDM1_csi_fix_mask, BIT(26)|BIT(25), 0x3); //Fix CSI Mask Tone } else{ PHY_SetBBReg(Adapter, rOFDM1_CFOTracking, BIT(28), 0x0); //disable CSI Mask PHY_SetBBReg(Adapter, rOFDM1_csi_fix_mask, BIT(26)|BIT(25), 0x0); } } VOID PHY_SwChnl8188E( // Call after initialization IN struct adapter *Adapter, IN u8 channel ) { //struct adapter *Adapter = ADJUST_TO_ADAPTIVE_ADAPTER(pAdapter, _TRUE); HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 tmpchannel = pHalData->CurrentChannel; BOOLEAN bResult = _TRUE; if(pHalData->rf_chip == RF_PSEUDO_11N) { //pHalData->SwChnlInProgress=FALSE; return; //return immediately if it is peudo-phy } //if(pHalData->SwChnlInProgress) // return; //if(pHalData->SetBWModeInProgress) // return; //-------------------------------------------- switch(pHalData->CurrentWirelessMode) { case WIRELESS_MODE_A: case WIRELESS_MODE_N_5G: //RT_ASSERT((channel>14), ("WIRELESS_MODE_A but channel<=14")); break; case WIRELESS_MODE_B: //RT_ASSERT((channel<=14), ("WIRELESS_MODE_B but channel>14")); break; case WIRELESS_MODE_G: case WIRELESS_MODE_N_24G: //RT_ASSERT((channel<=14), ("WIRELESS_MODE_G but channel>14")); break; default: //RT_ASSERT(FALSE, ("Invalid WirelessMode(%#x)!!\n", pHalData->CurrentWirelessMode)); break; } //-------------------------------------------- //pHalData->SwChnlInProgress = TRUE; if(channel == 0) channel = 1; pHalData->CurrentChannel=channel; //pHalData->SwChnlStage=0; //pHalData->SwChnlStep=0; if((!Adapter->bDriverStopped) && (!Adapter->bSurpriseRemoved)) { #if 0 //PlatformSetTimer(Adapter, &(pHalData->SwChnlTimer), 0); #else _PHY_SwChnl8192C(Adapter, channel); #endif if (IS_VENDOR_8188E_I_CUT_SERIES(Adapter)) phy_SpurCalibration_8188E( Adapter); if(bResult) { //RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SwChnl8192C SwChnlInProgress TRUE schdule workitem done\n")); } else { //RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SwChnl8192C SwChnlInProgress FALSE schdule workitem error\n")); //if(IS_HARDWARE_TYPE_8192SU(Adapter)) //{ // pHalData->SwChnlInProgress = FALSE; pHalData->CurrentChannel = tmpchannel; //} } } else { //RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SwChnl8192C SwChnlInProgress FALSE driver sleep or unload\n")); //if(IS_HARDWARE_TYPE_8192SU(Adapter)) //{ // pHalData->SwChnlInProgress = FALSE; pHalData->CurrentChannel = tmpchannel; //} } } static BOOLEAN phy_SwChnlStepByStep( IN struct adapter *Adapter, IN u8 channel, IN u8 *stage, IN u8 *step, OUT u32 *delay ) { #if 0 HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PCHANNEL_ACCESS_SETTING pChnlAccessSetting; SwChnlCmd PreCommonCmd[MAX_PRECMD_CNT]; u4Byte PreCommonCmdCnt; SwChnlCmd PostCommonCmd[MAX_POSTCMD_CNT]; u4Byte PostCommonCmdCnt; SwChnlCmd RfDependCmd[MAX_RFDEPENDCMD_CNT]; u4Byte RfDependCmdCnt; SwChnlCmd *CurrentCmd; u1Byte eRFPath; u4Byte RfTXPowerCtrl; BOOLEAN bAdjRfTXPowerCtrl = _FALSE; RT_ASSERT((Adapter != NULL), ("Adapter should not be NULL\n")); #if(MP_DRIVER != 1) RT_ASSERT(IsLegalChannel(Adapter, channel), ("illegal channel: %d\n", channel)); #endif RT_ASSERT((pHalData != NULL), ("pHalData should not be NULL\n")); pChnlAccessSetting = &Adapter->MgntInfo.Info8185.ChannelAccessSetting; RT_ASSERT((pChnlAccessSetting != NULL), ("pChnlAccessSetting should not be NULL\n")); //for(eRFPath = RF_PATH_A; eRFPath NumTotalRFPath; eRFPath++) //for(eRFPath = 0; eRFPath NumTotalRFPath; eRFPath++) //{ // <1> Fill up pre common command. PreCommonCmdCnt = 0; phy_SetSwChnlCmdArray(PreCommonCmd, PreCommonCmdCnt++, MAX_PRECMD_CNT, CmdID_SetTxPowerLevel, 0, 0, 0); phy_SetSwChnlCmdArray(PreCommonCmd, PreCommonCmdCnt++, MAX_PRECMD_CNT, CmdID_End, 0, 0, 0); // <2> Fill up post common command. PostCommonCmdCnt = 0; phy_SetSwChnlCmdArray(PostCommonCmd, PostCommonCmdCnt++, MAX_POSTCMD_CNT, CmdID_End, 0, 0, 0); // <3> Fill up RF dependent command. RfDependCmdCnt = 0; switch( pHalData->RFChipID ) { case RF_8225: RT_ASSERT((channel >= 1 && channel <= 14), ("illegal channel for Zebra: %d\n", channel)); // 2008/09/04 MH Change channel. if(channel==14) channel++; phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_RF_WriteReg, rZebra1_Channel, (0x10+channel-1), 10); phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_End, 0, 0, 0); break; case RF_8256: // TEST!! This is not the table for 8256!! RT_ASSERT((channel >= 1 && channel <= 14), ("illegal channel for Zebra: %d\n", channel)); phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_RF_WriteReg, rRfChannel, channel, 10); phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_End, 0, 0, 0); break; case RF_6052: RT_ASSERT((channel >= 1 && channel <= 14), ("illegal channel for Zebra: %d\n", channel)); phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_RF_WriteReg, RF_CHNLBW, channel, 10); phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_End, 0, 0, 0); break; case RF_8258: break; // For FPGA two MAC verification case RF_PSEUDO_11N: return TRUE; default: RT_ASSERT(FALSE, ("Unknown RFChipID: %d\n", pHalData->RFChipID)); return FALSE; break; } do{ switch(*stage) { case 0: CurrentCmd=&PreCommonCmd[*step]; break; case 1: CurrentCmd=&RfDependCmd[*step]; break; case 2: CurrentCmd=&PostCommonCmd[*step]; break; } if(CurrentCmd->CmdID==CmdID_End) { if((*stage)==2) { return TRUE; } else { (*stage)++; (*step)=0; continue; } } switch(CurrentCmd->CmdID) { case CmdID_SetTxPowerLevel: PHY_SetTxPowerLevel8192C(Adapter,channel); break; case CmdID_WritePortUlong: PlatformEFIOWrite4Byte(Adapter, CurrentCmd->Para1, CurrentCmd->Para2); break; case CmdID_WritePortUshort: PlatformEFIOWrite2Byte(Adapter, CurrentCmd->Para1, (u2Byte)CurrentCmd->Para2); break; case CmdID_WritePortUchar: PlatformEFIOWrite1Byte(Adapter, CurrentCmd->Para1, (u1Byte)CurrentCmd->Para2); break; case CmdID_RF_WriteReg: // Only modify channel for the register now !!!!! for(eRFPath = 0; eRFPath NumTotalRFPath; eRFPath++) { #if 1 pHalData->RfRegChnlVal[eRFPath] = ((pHalData->RfRegChnlVal[eRFPath] & 0xfffffc00) | CurrentCmd->Para2); PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)eRFPath, CurrentCmd->Para1, bRFRegOffsetMask, pHalData->RfRegChnlVal[eRFPath]); #else PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)eRFPath, CurrentCmd->Para1, bRFRegOffsetMask, (CurrentCmd->Para2)); #endif } break; } break; }while(TRUE); //cosa }/*for(Number of RF paths)*/ (*delay)=CurrentCmd->msDelay; (*step)++; return FALSE; #endif return _TRUE; } static BOOLEAN phy_SetSwChnlCmdArray( SwChnlCmd* CmdTable, u32 CmdTableIdx, u32 CmdTableSz, SwChnlCmdID CmdID, u32 Para1, u32 Para2, u32 msDelay ) { SwChnlCmd* pCmd; if(CmdTable == NULL) { //RT_ASSERT(FALSE, ("phy_SetSwChnlCmdArray(): CmdTable cannot be NULL.\n")); return _FALSE; } if(CmdTableIdx >= CmdTableSz) { //RT_ASSERT(FALSE, // ("phy_SetSwChnlCmdArray(): Access invalid index, please check size of the table, CmdTableIdx:%ld, CmdTableSz:%ld\n", // CmdTableIdx, CmdTableSz)); return _FALSE; } pCmd = CmdTable + CmdTableIdx; pCmd->CmdID = CmdID; pCmd->Para1 = Para1; pCmd->Para2 = Para2; pCmd->msDelay = msDelay; return _TRUE; } static void phy_FinishSwChnlNow( // We should not call this function directly IN struct adapter *Adapter, IN u8 channel ) { #if 0 HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u32 delay; while(!phy_SwChnlStepByStep(Adapter,channel,&pHalData->SwChnlStage,&pHalData->SwChnlStep,&delay)) { if(delay>0) rtw_mdelay_os(delay); } #endif } // // Description: // Switch channel synchronously. Called by SwChnlByDelayHandler. // // Implemented by Bruce, 2008-02-14. // The following procedure is operted according to SwChanlCallback8190Pci(). // However, this procedure is performed synchronously which should be running under // passive level. // VOID PHY_SwChnlPhy8192C( // Only called during initialize IN struct adapter *Adapter, IN u8 channel ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); //RT_TRACE(COMP_SCAN | COMP_RM, DBG_LOUD, ("==>PHY_SwChnlPhy8192S(), switch from channel %d to channel %d.\n", pHalData->CurrentChannel, channel)); // Cannot IO. //if(RT_CANNOT_IO(Adapter)) // return; // Channel Switching is in progress. //if(pHalData->SwChnlInProgress) // return; //return immediately if it is peudo-phy if(pHalData->rf_chip == RF_PSEUDO_11N) { //pHalData->SwChnlInProgress=FALSE; return; } //pHalData->SwChnlInProgress = TRUE; if( channel == 0) channel = 1; pHalData->CurrentChannel=channel; //pHalData->SwChnlStage = 0; //pHalData->SwChnlStep = 0; phy_FinishSwChnlNow(Adapter,channel); //pHalData->SwChnlInProgress = FALSE; } // // Description: // Configure H/W functionality to enable/disable Monitor mode. // Note, because we possibly need to configure BB and RF in this function, // so caller should in PASSIVE_LEVEL. 080118, by rcnjko. // VOID PHY_SetMonitorMode8192C( IN struct adapter * pAdapter, IN BOOLEAN bEnableMonitorMode ) { #if 0 HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); BOOLEAN bFilterOutNonAssociatedBSSID = FALSE; //2 Note: we may need to stop antenna diversity. if(bEnableMonitorMode) { bFilterOutNonAssociatedBSSID = FALSE; RT_TRACE(COMP_RM, DBG_LOUD, ("PHY_SetMonitorMode8192S(): enable monitor mode\n")); pHalData->bInMonitorMode = TRUE; pAdapter->HalFunc.AllowAllDestAddrHandler(pAdapter, TRUE, TRUE); rtw_hal_set_hwreg(pAdapter, HW_VAR_CHECK_BSSID, (pu1Byte)&bFilterOutNonAssociatedBSSID); } else { bFilterOutNonAssociatedBSSID = TRUE; RT_TRACE(COMP_RM, DBG_LOUD, ("PHY_SetMonitorMode8192S(): disable monitor mode\n")); pAdapter->HalFunc.AllowAllDestAddrHandler(pAdapter, FALSE, TRUE); pHalData->bInMonitorMode = FALSE; rtw_hal_set_hwreg(pAdapter, HW_VAR_CHECK_BSSID, (pu1Byte)&bFilterOutNonAssociatedBSSID); } #endif } /*----------------------------------------------------------------------------- * Function: PHYCheckIsLegalRfPath8190Pci() * * Overview: Check different RF type to execute legal judgement. If RF Path is illegal * We will return false. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 11/15/2007 MHC Create Version 0. * *---------------------------------------------------------------------------*/ BOOLEAN PHY_CheckIsLegalRfPath8192C( IN struct adapter *pAdapter, IN u32 eRFPath) { // HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); BOOLEAN rtValue = _TRUE; // NOt check RF Path now.! #if 0 if (pHalData->RF_Type == RF_1T2R && eRFPath != RF_PATH_A) { rtValue = FALSE; } if (pHalData->RF_Type == RF_1T2R && eRFPath != RF_PATH_A) { } #endif return rtValue; } /* PHY_CheckIsLegalRfPath8192C */ static VOID _PHY_SetRFPathSwitch( IN struct adapter *pAdapter, IN BOOLEAN bMain, IN BOOLEAN is2T ) { u8 u1bTmp; if(!pAdapter->hw_init_completed) { u1bTmp = rtw_read8(pAdapter, REG_LEDCFG2) | BIT7; rtw_write8(pAdapter, REG_LEDCFG2, u1bTmp); //PHY_SetBBReg(pAdapter, REG_LEDCFG0, BIT23, 0x01); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT13, 0x01); } if(is2T) { if(bMain) PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6, 0x1); //92C_Path_A else PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6, 0x2); //BT } else { if(bMain) PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300, 0x2); //Main else PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300, 0x1); //Aux } } //return value TRUE => Main; FALSE => Aux static BOOLEAN _PHY_QueryRFPathSwitch( IN struct adapter *pAdapter, IN BOOLEAN is2T ) { // if(is2T) // return _TRUE; if(!pAdapter->hw_init_completed) { PHY_SetBBReg(pAdapter, REG_LEDCFG0, BIT23, 0x01); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT13, 0x01); } if(is2T) { if(PHY_QueryBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6) == 0x01) return _TRUE; else return _FALSE; } else { if(PHY_QueryBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300) == 0x02) return _TRUE; else return _FALSE; } } static VOID _PHY_DumpRFReg(IN struct adapter *pAdapter) { u32 rfRegValue,rfRegOffset; //RTPRINT(FINIT, INIT_RF, ("PHY_DumpRFReg()====>\n")); for(rfRegOffset = 0x00;rfRegOffset<=0x30;rfRegOffset++){ rfRegValue = PHY_QueryRFReg(pAdapter,RF_PATH_A, rfRegOffset, bMaskDWord); //RTPRINT(FINIT, INIT_RF, (" 0x%02x = 0x%08x\n",rfRegOffset,rfRegValue)); } //RTPRINT(FINIT, INIT_RF, ("<===== PHY_DumpRFReg()\n")); } // // Move from phycfg.c to gen.c to be code independent later // //-------------------------Move to other DIR later----------------------------*/ #ifdef CONFIG_USB_HCI // // Description: // To dump all Tx FIFO LLT related link-list table. // Added by Roger, 2009.03.10. // VOID DumpBBDbgPort_92CU( IN struct adapter * Adapter ) { //RT_TRACE(COMP_SEND, DBG_WARNING, ("\n>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n")); //RT_TRACE(COMP_SEND, DBG_WARNING, ("BaseBand Debug Ports:\n")); PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0000); //RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord))); PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0803); //RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord))); PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0a06); //RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord))); PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0007); //RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord))); PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0100); PHY_SetBBReg(Adapter, 0x0a28, 0x00ff0000, 0x000f0000); //RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord))); PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0100); PHY_SetBBReg(Adapter, 0x0a28, 0x00ff0000, 0x00150000); //RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord))); //RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0x800, PHY_QueryBBReg(Adapter, 0x0800, bMaskDWord))); //RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0x900, PHY_QueryBBReg(Adapter, 0x0900, bMaskDWord))); //RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xa00, PHY_QueryBBReg(Adapter, 0x0a00, bMaskDWord))); //RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xa54, PHY_QueryBBReg(Adapter, 0x0a54, bMaskDWord))); //RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xa58, PHY_QueryBBReg(Adapter, 0x0a58, bMaskDWord))); } #endif