/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #ifndef __OSDEP_SERVICE_H_ #define __OSDEP_SERVICE_H_ #include #include #define _FAIL 0 #define _SUCCESS 1 #define RTW_RX_HANDLED 2 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Necessary because we use the proc fs */ #include /* for struct tasklet_struct */ #include #include #include #include struct __queue { struct list_head queue; spinlock_t lock; }; #define thread_exit() complete_and_exit(NULL, 0) static inline struct list_head *get_list_head(struct __queue *queue) { return (&(queue->queue)); } static inline int _enter_critical_mutex(struct mutex *pmutex, unsigned long *pirqL) { int ret; ret = mutex_lock_interruptible(pmutex); return ret; } static inline void _exit_critical_mutex(struct mutex *pmutex, unsigned long *pirqL) { mutex_unlock(pmutex); } static inline void rtw_list_delete(struct list_head *plist) { list_del_init(plist); } #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 15, 0) static inline void _init_timer(struct timer_list *ptimer,struct net_device *nic_hdl,void *pfunc,void* cntx) { ptimer->function = pfunc; ptimer->data = (unsigned long)cntx; init_timer(ptimer); } #endif static inline void _set_timer(struct timer_list *ptimer,u32 delay_time) { mod_timer(ptimer , (jiffies+(delay_time*HZ/1000))); } static inline void _cancel_timer(struct timer_list *ptimer,u8 *bcancelled) { del_timer_sync(ptimer); *bcancelled= true;/* true ==1; false==0 */ } #define RTW_TIMER_HDL_ARGS void *FunctionContext #define RTW_TIMER_HDL_NAME(name) rtw_##name##_timer_hdl #define RTW_DECLARE_TIMER_HDL(name) void RTW_TIMER_HDL_NAME(name)(RTW_TIMER_HDL_ARGS) static inline void _init_workitem(struct work_struct *pwork, void *pfunc, void * cntx) { INIT_WORK(pwork, pfunc); } static inline void _set_workitem(struct work_struct *pwork) { schedule_work(pwork); } static inline void _cancel_workitem_sync(struct work_struct *pwork) { cancel_work_sync(pwork); } /* */ /* Global Mutex: can only be used at PASSIVE level. */ /* */ #define ACQUIRE_GLOBAL_MUTEX(_MutexCounter) \ { \ while (atomic_inc_return((atomic_t *)&(_MutexCounter)) != 1)\ { \ atomic_dec((atomic_t *)&(_MutexCounter)); \ msleep(10); \ } \ } #define RELEASE_GLOBAL_MUTEX(_MutexCounter) \ { \ atomic_dec((atomic_t *)&(_MutexCounter)); \ } static inline int rtw_netif_queue_stopped(struct net_device *pnetdev) { return netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 0)) && netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 1)) && netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 2)) && netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 3)); } static inline void rtw_netif_wake_queue(struct net_device *pnetdev) { netif_tx_wake_all_queues(pnetdev); } static inline void rtw_netif_start_queue(struct net_device *pnetdev) { netif_tx_start_all_queues(pnetdev); } static inline void rtw_netif_stop_queue(struct net_device *pnetdev) { netif_tx_stop_all_queues(pnetdev); } #ifndef BIT #define BIT(x) ( 1 << (x)) #endif #define BIT0 0x00000001 #define BIT1 0x00000002 #define BIT2 0x00000004 #define BIT3 0x00000008 #define BIT4 0x00000010 #define BIT5 0x00000020 #define BIT6 0x00000040 #define BIT7 0x00000080 #define BIT8 0x00000100 #define BIT9 0x00000200 #define BIT10 0x00000400 #define BIT11 0x00000800 #define BIT12 0x00001000 #define BIT13 0x00002000 #define BIT14 0x00004000 #define BIT15 0x00008000 #define BIT16 0x00010000 #define BIT17 0x00020000 #define BIT18 0x00040000 #define BIT19 0x00080000 #define BIT20 0x00100000 #define BIT21 0x00200000 #define BIT22 0x00400000 #define BIT23 0x00800000 #define BIT24 0x01000000 #define BIT25 0x02000000 #define BIT26 0x04000000 #define BIT27 0x08000000 #define BIT28 0x10000000 #define BIT29 0x20000000 #define BIT30 0x40000000 #define BIT31 0x80000000 #define BIT32 0x0100000000 #define BIT33 0x0200000000 #define BIT34 0x0400000000 #define BIT35 0x0800000000 #define BIT36 0x1000000000 extern int RTW_STATUS_CODE(int error_code); /* flags used for rtw_update_mem_stat() */ enum { MEM_STAT_VIR_ALLOC_SUCCESS, MEM_STAT_VIR_ALLOC_FAIL, MEM_STAT_VIR_FREE, MEM_STAT_PHY_ALLOC_SUCCESS, MEM_STAT_PHY_ALLOC_FAIL, MEM_STAT_PHY_FREE, MEM_STAT_TX, /* used to distinguish TX/RX, asigned from caller */ MEM_STAT_TX_ALLOC_SUCCESS, MEM_STAT_TX_ALLOC_FAIL, MEM_STAT_TX_FREE, MEM_STAT_RX, /* used to distinguish TX/RX, asigned from caller */ MEM_STAT_RX_ALLOC_SUCCESS, MEM_STAT_RX_ALLOC_FAIL, MEM_STAT_RX_FREE }; extern unsigned char MCS_rate_2R[16]; extern unsigned char MCS_rate_1R[16]; extern unsigned char RTW_WPA_OUI[]; extern unsigned char WPA_TKIP_CIPHER[4]; extern unsigned char RSN_TKIP_CIPHER[4]; #define rtw_update_mem_stat(flag, sz) do {} while (0) u8 *_rtw_vmalloc(u32 sz); u8 *_rtw_zvmalloc(u32 sz); void _rtw_vmfree(u8 *pbuf, u32 sz); u8 *_rtw_zmalloc(u32 sz); u8 *_rtw_malloc(u32 sz); void _rtw_mfree(u8 *pbuf, u32 sz); #define rtw_vmalloc(sz) _rtw_vmalloc((sz)) #define rtw_zvmalloc(sz) _rtw_zvmalloc((sz)) #define rtw_vmfree(pbuf, sz) _rtw_vmfree((pbuf), (sz)) #define rtw_malloc(sz) _rtw_malloc((sz)) #define rtw_zmalloc(sz) _rtw_zmalloc((sz)) #define rtw_mfree(pbuf, sz) _rtw_mfree((pbuf), (sz)) void *rtw_malloc2d(int h, int w, int size); void rtw_mfree2d(void *pbuf, int h, int w, int size); u32 _rtw_down_sema(struct semaphore *sema); void _rtw_mutex_init(struct mutex *pmutex); void _rtw_mutex_free(struct mutex *pmutex); void _rtw_spinlock_free(spinlock_t *plock); void _rtw_init_queue(struct __queue *pqueue); u32 rtw_systime_to_ms(u32 systime); u32 rtw_ms_to_systime(u32 ms); s32 rtw_get_passing_time_ms(u32 start); s32 rtw_get_time_interval_ms(u32 start, u32 end); void rtw_sleep_schedulable(int ms); void rtw_msleep_os(int ms); void rtw_usleep_os(int us); u32 rtw_atoi(u8 *s); void rtw_mdelay_os(int ms); void rtw_udelay_os(int us); void rtw_yield_os(void); static inline unsigned char _cancel_timer_ex(struct timer_list *ptimer) { return del_timer_sync(ptimer); } static __inline void thread_enter(char *name) { #ifdef daemonize daemonize("%s", name); #endif allow_signal(SIGTERM); } static inline void flush_signals_thread(void) { if (signal_pending (current)) flush_signals(current); } static inline int res_to_status(int res) { return res; } #define _RND(sz, r) ((((sz)+((r)-1))/(r))*(r)) #define RND4(x) (((x >> 2) + (((x & 3) == 0) ? 0: 1)) << 2) static inline u32 _RND4(u32 sz) { u32 val; val = ((sz >> 2) + ((sz & 3) ? 1: 0)) << 2; return val; } static inline u32 _RND8(u32 sz) { u32 val; val = ((sz >> 3) + ((sz & 7) ? 1: 0)) << 3; return val; } static inline u32 _RND128(u32 sz) { u32 val; val = ((sz >> 7) + ((sz & 127) ? 1: 0)) << 7; return val; } static inline u32 _RND256(u32 sz) { u32 val; val = ((sz >> 8) + ((sz & 255) ? 1: 0)) << 8; return val; } static inline u32 _RND512(u32 sz) { u32 val; val = ((sz >> 9) + ((sz & 511) ? 1: 0)) << 9; return val; } static inline u32 bitshift(u32 bitmask) { u32 i; for (i = 0; i <= 31; i++) if (((bitmask>>i) & 0x1) == 1) break; return i; } /* limitation of path length */ #define PATH_LENGTH_MAX PATH_MAX void rtw_suspend_lock_init(void); void rtw_suspend_lock_uninit(void); void rtw_lock_suspend(void); void rtw_unlock_suspend(void); /* Atomic integer operations */ #define ATOMIC_T atomic_t void ATOMIC_SET(ATOMIC_T *v, int i); int ATOMIC_READ(ATOMIC_T *v); void ATOMIC_ADD(ATOMIC_T *v, int i); void ATOMIC_SUB(ATOMIC_T *v, int i); void ATOMIC_INC(ATOMIC_T *v); void ATOMIC_DEC(ATOMIC_T *v); int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i); int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i); int ATOMIC_INC_RETURN(ATOMIC_T *v); int ATOMIC_DEC_RETURN(ATOMIC_T *v); struct rtw_netdev_priv_indicator { void *priv; u32 sizeof_priv; }; struct net_device *rtw_alloc_etherdev_with_old_priv(int sizeof_priv, void *old_priv); struct net_device *rtw_alloc_etherdev(int sizeof_priv); #define rtw_netdev_priv(netdev) \ (((struct rtw_netdev_priv_indicator *)netdev_priv(netdev))->priv) void rtw_free_netdev(struct net_device *netdev); #define NDEV_FMT "%s" #define NDEV_ARG(ndev) ndev->name #define ADPT_FMT "%s" #define ADPT_ARG(adapter) adapter->pnetdev->name #define FUNC_NDEV_FMT "%s(%s)" #define FUNC_NDEV_ARG(ndev) __func__, ndev->name #define FUNC_ADPT_FMT "%s(%s)" #define FUNC_ADPT_ARG(adapter) __func__, adapter->pnetdev->name #define rtw_signal_process(pid, sig) kill_pid(find_vpid((pid)),(sig), 1) u64 rtw_modular64(u64 x, u64 y); u64 rtw_division64(u64 x, u64 y); /* Macros for handling unaligned memory accesses */ #define RTW_GET_BE16(a) ((u16) (((a)[0] << 8) | (a)[1])) #define RTW_PUT_BE16(a, val) \ do { \ (a)[0] = ((u16) (val)) >> 8; \ (a)[1] = ((u16) (val)) & 0xff; \ } while (0) #define RTW_PUT_LE16(a, val) \ do { \ (a)[1] = ((u16) (val)) >> 8; \ (a)[0] = ((u16) (val)) & 0xff; \ } while (0) #define RTW_GET_BE24(a) ((((u32) (a)[0]) << 16) | (((u32) (a)[1]) << 8) | \ ((u32) (a)[2])) #define RTW_PUT_BE24(a, val) \ do { \ (a)[0] = (u8) ((((u32) (val)) >> 16) & 0xff); \ (a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \ (a)[2] = (u8) (((u32) (val)) & 0xff); \ } while (0) #define RTW_GET_BE32(a) ((((u32) (a)[0]) << 24) | (((u32) (a)[1]) << 16) | \ (((u32) (a)[2]) << 8) | ((u32) (a)[3])) #define RTW_PUT_BE32(a, val) \ do { \ (a)[0] = (u8) ((((u32) (val)) >> 24) & 0xff); \ (a)[1] = (u8) ((((u32) (val)) >> 16) & 0xff); \ (a)[2] = (u8) ((((u32) (val)) >> 8) & 0xff); \ (a)[3] = (u8) (((u32) (val)) & 0xff); \ } while (0) #define RTW_GET_LE32(a) ((((u32) (a)[3]) << 24) | (((u32) (a)[2]) << 16) | \ (((u32) (a)[1]) << 8) | ((u32) (a)[0])) #define RTW_PUT_LE32(a, val) \ do { \ (a)[3] = (u8) ((((u32) (val)) >> 24) & 0xff); \ (a)[2] = (u8) ((((u32) (val)) >> 16) & 0xff); \ (a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \ (a)[0] = (u8) (((u32) (val)) & 0xff); \ } while (0) #define RTW_GET_BE64(a) ((((u64) (a)[0]) << 56) | (((u64) (a)[1]) << 48) | \ (((u64) (a)[2]) << 40) | (((u64) (a)[3]) << 32) | \ (((u64) (a)[4]) << 24) | (((u64) (a)[5]) << 16) | \ (((u64) (a)[6]) << 8) | ((u64) (a)[7])) #define RTW_PUT_BE64(a, val) \ do { \ (a)[0] = (u8) (((u64) (val)) >> 56); \ (a)[1] = (u8) (((u64) (val)) >> 48); \ (a)[2] = (u8) (((u64) (val)) >> 40); \ (a)[3] = (u8) (((u64) (val)) >> 32); \ (a)[4] = (u8) (((u64) (val)) >> 24); \ (a)[5] = (u8) (((u64) (val)) >> 16); \ (a)[6] = (u8) (((u64) (val)) >> 8); \ (a)[7] = (u8) (((u64) (val)) & 0xff); \ } while (0) #define RTW_GET_LE64(a) ((((u64) (a)[7]) << 56) | (((u64) (a)[6]) << 48) | \ (((u64) (a)[5]) << 40) | (((u64) (a)[4]) << 32) | \ (((u64) (a)[3]) << 24) | (((u64) (a)[2]) << 16) | \ (((u64) (a)[1]) << 8) | ((u64) (a)[0])) void rtw_buf_free(u8 **buf, u32 *buf_len); void rtw_buf_update(u8 **buf, u32 *buf_len, u8 *src, u32 src_len); struct rtw_cbuf { u32 write; u32 read; u32 size; void *bufs[0]; }; bool rtw_cbuf_full(struct rtw_cbuf *cbuf); bool rtw_cbuf_empty(struct rtw_cbuf *cbuf); bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf); void *rtw_cbuf_pop(struct rtw_cbuf *cbuf); struct rtw_cbuf *rtw_cbuf_alloc(u32 size); int wifirate2_ratetbl_inx(unsigned char rate); #endif