/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #ifndef __OSDEP_SERVICE_H_ #define __OSDEP_SERVICE_H_ #include #include #define _FAIL 0 #define _SUCCESS 1 #define RTW_RX_HANDLED 2 #include #include #include #include #include #include #include #include #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,5)) #include #endif #include #include #include #include #include #include #include #if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,26)) #include #else #include #endif #include #include #include #include #include #include #include #include #include // Necessary because we use the proc fs #include // for struct tasklet_struct #include #include #include #if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,21)) #include #else #include #endif typedef struct urb * PURB; #if (LINUX_VERSION_CODE>=KERNEL_VERSION(2,6,22)) #ifdef CONFIG_USB_SUSPEND #define CONFIG_AUTOSUSPEND 1 #endif #endif typedef struct semaphore _sema; typedef spinlock_t _lock; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37)) typedef struct mutex _mutex; #else typedef struct semaphore _mutex; #endif typedef struct timer_list _timer; struct __queue { struct list_head queue; _lock lock; }; typedef struct sk_buff _pkt; typedef unsigned char _buffer; typedef struct __queue _queue; typedef struct list_head _list; typedef int _OS_STATUS; //typedef u32 _irqL; typedef unsigned long _irqL; typedef struct net_device * _nic_hdl; typedef void* _thread_hdl_; typedef int thread_return; typedef void* thread_context; #define thread_exit() complete_and_exit(NULL, 0) typedef void timer_hdl_return; typedef void* timer_hdl_context; typedef struct work_struct _workitem; #if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24)) #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) #endif #if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22)) // Porting from linux kernel, for compatible with old kernel. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) { return skb->tail; } static inline void skb_reset_tail_pointer(struct sk_buff *skb) { skb->tail = skb->data; } static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) { skb->tail = skb->data + offset; } static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) { return skb->end; } #endif __inline static _list *get_next(_list *list) { return list->next; } __inline static _list *get_list_head(_queue *queue) { return (&(queue->queue)); } #define LIST_CONTAINOR(ptr, type, member) \ ((type *)((char *)(ptr)-(SIZE_T)(&((type *)0)->member))) __inline static void _enter_critical(_lock *plock, _irqL *pirqL) { spin_lock_irqsave(plock, *pirqL); } __inline static void _exit_critical(_lock *plock, _irqL *pirqL) { spin_unlock_irqrestore(plock, *pirqL); } __inline static void _enter_critical_ex(_lock *plock, _irqL *pirqL) { spin_lock_irqsave(plock, *pirqL); } __inline static void _exit_critical_ex(_lock *plock, _irqL *pirqL) { spin_unlock_irqrestore(plock, *pirqL); } __inline static void _enter_critical_bh(_lock *plock, _irqL *pirqL) { spin_lock_bh(plock); } __inline static void _exit_critical_bh(_lock *plock, _irqL *pirqL) { spin_unlock_bh(plock); } __inline static int _enter_critical_mutex(_mutex *pmutex, _irqL *pirqL) { int ret = 0; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37)) ret = mutex_lock_interruptible(pmutex); #else ret = down_interruptible(pmutex); #endif return ret; } __inline static void _exit_critical_mutex(_mutex *pmutex, _irqL *pirqL) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37)) mutex_unlock(pmutex); #else up(pmutex); #endif } __inline static void rtw_list_delete(_list *plist) { list_del_init(plist); } __inline static void _init_timer(_timer *ptimer,_nic_hdl nic_hdl,void *pfunc,void* cntx) { ptimer->function = pfunc; ptimer->data = (unsigned long)cntx; init_timer(ptimer); } __inline static void _set_timer(_timer *ptimer,u32 delay_time) { mod_timer(ptimer , (jiffies+(delay_time*HZ/1000))); } __inline static void _cancel_timer(_timer *ptimer,u8 *bcancelled) { del_timer_sync(ptimer); *bcancelled= true;//true ==1; false==0 } #define RTW_TIMER_HDL_ARGS void *FunctionContext #define RTW_TIMER_HDL_NAME(name) rtw_##name##_timer_hdl #define RTW_DECLARE_TIMER_HDL(name) void RTW_TIMER_HDL_NAME(name)(RTW_TIMER_HDL_ARGS) __inline static void _init_workitem(_workitem *pwork, void *pfunc, void * cntx) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)) INIT_WORK(pwork, pfunc); #else INIT_WORK(pwork, pfunc,pwork); #endif } __inline static void _set_workitem(_workitem *pwork) { schedule_work(pwork); } __inline static void _cancel_workitem_sync(_workitem *pwork) { #if (LINUX_VERSION_CODE>=KERNEL_VERSION(2,6,22)) cancel_work_sync(pwork); #else flush_scheduled_work(); #endif } // // Global Mutex: can only be used at PASSIVE level. // #define ACQUIRE_GLOBAL_MUTEX(_MutexCounter) \ { \ while (atomic_inc_return((atomic_t *)&(_MutexCounter)) != 1)\ { \ atomic_dec((atomic_t *)&(_MutexCounter)); \ msleep(10); \ } \ } #define RELEASE_GLOBAL_MUTEX(_MutexCounter) \ { \ atomic_dec((atomic_t *)&(_MutexCounter)); \ } static inline int rtw_netif_queue_stopped(struct net_device *pnetdev) { #if (LINUX_VERSION_CODE>=KERNEL_VERSION(2,6,35)) return (netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 0)) && netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 1)) && netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 2)) && netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 3)) ); #else return netif_queue_stopped(pnetdev); #endif } static inline void rtw_netif_wake_queue(struct net_device *pnetdev) { #if (LINUX_VERSION_CODE>=KERNEL_VERSION(2,6,35)) netif_tx_wake_all_queues(pnetdev); #else netif_wake_queue(pnetdev); #endif } static inline void rtw_netif_start_queue(struct net_device *pnetdev) { #if (LINUX_VERSION_CODE>=KERNEL_VERSION(2,6,35)) netif_tx_start_all_queues(pnetdev); #else netif_start_queue(pnetdev); #endif } static inline void rtw_netif_stop_queue(struct net_device *pnetdev) { #if (LINUX_VERSION_CODE>=KERNEL_VERSION(2,6,35)) netif_tx_stop_all_queues(pnetdev); #else netif_stop_queue(pnetdev); #endif } #ifndef BIT #define BIT(x) ( 1 << (x)) #endif #define BIT0 0x00000001 #define BIT1 0x00000002 #define BIT2 0x00000004 #define BIT3 0x00000008 #define BIT4 0x00000010 #define BIT5 0x00000020 #define BIT6 0x00000040 #define BIT7 0x00000080 #define BIT8 0x00000100 #define BIT9 0x00000200 #define BIT10 0x00000400 #define BIT11 0x00000800 #define BIT12 0x00001000 #define BIT13 0x00002000 #define BIT14 0x00004000 #define BIT15 0x00008000 #define BIT16 0x00010000 #define BIT17 0x00020000 #define BIT18 0x00040000 #define BIT19 0x00080000 #define BIT20 0x00100000 #define BIT21 0x00200000 #define BIT22 0x00400000 #define BIT23 0x00800000 #define BIT24 0x01000000 #define BIT25 0x02000000 #define BIT26 0x04000000 #define BIT27 0x08000000 #define BIT28 0x10000000 #define BIT29 0x20000000 #define BIT30 0x40000000 #define BIT31 0x80000000 #define BIT32 0x0100000000 #define BIT33 0x0200000000 #define BIT34 0x0400000000 #define BIT35 0x0800000000 #define BIT36 0x1000000000 extern int RTW_STATUS_CODE(int error_code); #define CONFIG_USE_VMALLOC //flags used for rtw_update_mem_stat() enum { MEM_STAT_VIR_ALLOC_SUCCESS, MEM_STAT_VIR_ALLOC_FAIL, MEM_STAT_VIR_FREE, MEM_STAT_PHY_ALLOC_SUCCESS, MEM_STAT_PHY_ALLOC_FAIL, MEM_STAT_PHY_FREE, MEM_STAT_TX, //used to distinguish TX/RX, asigned from caller MEM_STAT_TX_ALLOC_SUCCESS, MEM_STAT_TX_ALLOC_FAIL, MEM_STAT_TX_FREE, MEM_STAT_RX, //used to distinguish TX/RX, asigned from caller MEM_STAT_RX_ALLOC_SUCCESS, MEM_STAT_RX_ALLOC_FAIL, MEM_STAT_RX_FREE }; #ifdef DBG_MEM_ALLOC void rtw_update_mem_stat(u8 flag, u32 sz); void rtw_dump_mem_stat (void); extern u8* dbg_rtw_vmalloc(u32 sz, const char *func, int line); extern u8* dbg_rtw_zvmalloc(u32 sz, const char *func, int line); extern void dbg_rtw_vmfree(u8 *pbuf, u32 sz, const char *func, int line); extern u8* dbg_rtw_malloc(u32 sz, const char *func, int line); extern u8* dbg_rtw_zmalloc(u32 sz, const char *func, int line); extern void dbg_rtw_mfree(u8 *pbuf, u32 sz, const char *func, int line); #ifdef CONFIG_USE_VMALLOC #define rtw_vmalloc(sz) dbg_rtw_vmalloc((sz), __func__, __LINE__) #define rtw_zvmalloc(sz) dbg_rtw_zvmalloc((sz), __func__, __LINE__) #define rtw_vmfree(pbuf, sz) dbg_rtw_vmfree((pbuf), (sz), __func__, __LINE__) #else //CONFIG_USE_VMALLOC #define rtw_vmalloc(sz) dbg_rtw_malloc((sz), __func__, __LINE__) #define rtw_zvmalloc(sz) dbg_rtw_zmalloc((sz), __func__, __LINE__) #define rtw_vmfree(pbuf, sz) dbg_rtw_mfree((pbuf), (sz), __func__, __LINE__) #endif //CONFIG_USE_VMALLOC #define rtw_malloc(sz) dbg_rtw_malloc((sz), __func__, __LINE__) #define rtw_zmalloc(sz) dbg_rtw_zmalloc((sz), __func__, __LINE__) #define rtw_mfree(pbuf, sz) dbg_rtw_mfree((pbuf), (sz), __func__, __LINE__) #else #define rtw_update_mem_stat(flag, sz) do {} while (0) extern u8* _rtw_vmalloc(u32 sz); extern u8* _rtw_zvmalloc(u32 sz); extern void _rtw_vmfree(u8 *pbuf, u32 sz); extern u8* _rtw_zmalloc(u32 sz); extern u8* _rtw_malloc(u32 sz); extern void _rtw_mfree(u8 *pbuf, u32 sz); #ifdef CONFIG_USE_VMALLOC #define rtw_vmalloc(sz) _rtw_vmalloc((sz)) #define rtw_zvmalloc(sz) _rtw_zvmalloc((sz)) #define rtw_vmfree(pbuf, sz) _rtw_vmfree((pbuf), (sz)) #else //CONFIG_USE_VMALLOC #define rtw_vmalloc(sz) _rtw_malloc((sz)) #define rtw_zvmalloc(sz) _rtw_zmalloc((sz)) #define rtw_vmfree(pbuf, sz) _rtw_mfree((pbuf), (sz)) #endif //CONFIG_USE_VMALLOC #define rtw_malloc(sz) _rtw_malloc((sz)) #define rtw_zmalloc(sz) _rtw_zmalloc((sz)) #define rtw_mfree(pbuf, sz) _rtw_mfree((pbuf), (sz)) #endif extern void* rtw_malloc2d(int h, int w, int size); extern void rtw_mfree2d(void *pbuf, int h, int w, int size); extern void _rtw_memcpy(void* dec, void* sour, u32 sz); extern int _rtw_memcmp(void *dst, void *src, u32 sz); extern void _rtw_memset(void *pbuf, int c, u32 sz); extern void _rtw_init_listhead(_list *list); extern u32 rtw_is_list_empty(_list *phead); extern void rtw_list_insert_head(_list *plist, _list *phead); extern void rtw_list_insert_tail(_list *plist, _list *phead); extern void rtw_list_delete(_list *plist); extern void _rtw_init_sema(_sema *sema, int init_val); extern void _rtw_free_sema(_sema *sema); extern void _rtw_up_sema(_sema *sema); extern u32 _rtw_down_sema(_sema *sema); extern void _rtw_mutex_init(_mutex *pmutex); extern void _rtw_mutex_free(_mutex *pmutex); extern void _rtw_spinlock_init(_lock *plock); extern void _rtw_spinlock_free(_lock *plock); extern void _rtw_init_queue(_queue *pqueue); extern u32 _rtw_queue_empty(_queue *pqueue); extern u32 rtw_end_of_queue_search(_list *queue, _list *pelement); extern u32 rtw_get_current_time(void); extern u32 rtw_systime_to_ms(u32 systime); extern u32 rtw_ms_to_systime(u32 ms); extern s32 rtw_get_passing_time_ms(u32 start); extern s32 rtw_get_time_interval_ms(u32 start, u32 end); extern void rtw_sleep_schedulable(int ms); extern void rtw_msleep_os(int ms); extern void rtw_usleep_os(int us); extern u32 rtw_atoi(u8* s); #ifdef DBG_DELAY_OS #define rtw_mdelay_os(ms) _rtw_mdelay_os((ms), __func__, __LINE__) #define rtw_udelay_os(ms) _rtw_udelay_os((ms), __func__, __LINE__) extern void _rtw_mdelay_os(int ms, const char *func, const int line); extern void _rtw_udelay_os(int us, const char *func, const int line); #else extern void rtw_mdelay_os(int ms); extern void rtw_udelay_os(int us); #endif extern void rtw_yield_os(void); __inline static unsigned char _cancel_timer_ex(_timer *ptimer) { return del_timer_sync(ptimer); } static __inline void thread_enter(char *name) { #ifdef daemonize daemonize("%s", name); #endif allow_signal(SIGTERM); } __inline static void flush_signals_thread(void) { if (signal_pending (current)) flush_signals(current); } __inline static _OS_STATUS res_to_status(sint res) { return res; } #define _RND(sz, r) ((((sz)+((r)-1))/(r))*(r)) #define RND4(x) (((x >> 2) + (((x & 3) == 0) ? 0: 1)) << 2) __inline static u32 _RND4(u32 sz) { u32 val; val = ((sz >> 2) + ((sz & 3) ? 1: 0)) << 2; return val; } __inline static u32 _RND8(u32 sz) { u32 val; val = ((sz >> 3) + ((sz & 7) ? 1: 0)) << 3; return val; } __inline static u32 _RND128(u32 sz) { u32 val; val = ((sz >> 7) + ((sz & 127) ? 1: 0)) << 7; return val; } __inline static u32 _RND256(u32 sz) { u32 val; val = ((sz >> 8) + ((sz & 255) ? 1: 0)) << 8; return val; } __inline static u32 _RND512(u32 sz) { u32 val; val = ((sz >> 9) + ((sz & 511) ? 1: 0)) << 9; return val; } __inline static u32 bitshift(u32 bitmask) { u32 i; for (i = 0; i <= 31; i++) if (((bitmask>>i) & 0x1) == 1) break; return i; } #define STRUCT_PACKED __attribute__ ((packed)) // limitation of path length #define PATH_LENGTH_MAX PATH_MAX // Suspend lock prevent system from going suspend #ifdef CONFIG_WAKELOCK #include #endif extern void rtw_suspend_lock_init(void); extern void rtw_suspend_lock_uninit(void); extern void rtw_lock_suspend(void); extern void rtw_unlock_suspend(void); #ifdef CONFIG_WOWLAN extern void rtw_lock_suspend_timeout(long timeout); #endif //CONFIG_WOWLAN //Atomic integer operations #define ATOMIC_T atomic_t extern void ATOMIC_SET(ATOMIC_T *v, int i); extern int ATOMIC_READ(ATOMIC_T *v); extern void ATOMIC_ADD(ATOMIC_T *v, int i); extern void ATOMIC_SUB(ATOMIC_T *v, int i); extern void ATOMIC_INC(ATOMIC_T *v); extern void ATOMIC_DEC(ATOMIC_T *v); extern int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i); extern int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i); extern int ATOMIC_INC_RETURN(ATOMIC_T *v); extern int ATOMIC_DEC_RETURN(ATOMIC_T *v); //File operation APIs, just for linux now extern int rtw_is_file_readable(char *path); extern int rtw_retrive_from_file(char *path, u8 __user *buf, u32 sz); extern int rtw_store_to_file(char *path, u8 __user *buf, u32 sz); struct rtw_netdev_priv_indicator { void *priv; u32 sizeof_priv; }; struct net_device *rtw_alloc_etherdev_with_old_priv(int sizeof_priv, void *old_priv); extern struct net_device * rtw_alloc_etherdev(int sizeof_priv); #define rtw_netdev_priv(netdev) ( ((struct rtw_netdev_priv_indicator *)netdev_priv(netdev))->priv ) extern void rtw_free_netdev(struct net_device * netdev); #define NDEV_FMT "%s" #define NDEV_ARG(ndev) ndev->name #define ADPT_FMT "%s" #define ADPT_ARG(adapter) adapter->pnetdev->name #define FUNC_NDEV_FMT "%s(%s)" #define FUNC_NDEV_ARG(ndev) __func__, ndev->name #define FUNC_ADPT_FMT "%s(%s)" #define FUNC_ADPT_ARG(adapter) __func__, adapter->pnetdev->name #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,27)) #define rtw_signal_process(pid, sig) kill_pid(find_vpid((pid)),(sig), 1) #else //(LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,27)) #define rtw_signal_process(pid, sig) kill_proc((pid), (sig), 1) #endif //(LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,27)) extern u64 rtw_modular64(u64 x, u64 y); extern u64 rtw_division64(u64 x, u64 y); /* Macros for handling unaligned memory accesses */ #define RTW_GET_BE16(a) ((u16) (((a)[0] << 8) | (a)[1])) #define RTW_PUT_BE16(a, val) \ do { \ (a)[0] = ((u16) (val)) >> 8; \ (a)[1] = ((u16) (val)) & 0xff; \ } while (0) #define RTW_GET_LE16(a) ((u16) (((a)[1] << 8) | (a)[0])) #define RTW_PUT_LE16(a, val) \ do { \ (a)[1] = ((u16) (val)) >> 8; \ (a)[0] = ((u16) (val)) & 0xff; \ } while (0) #define RTW_GET_BE24(a) ((((u32) (a)[0]) << 16) | (((u32) (a)[1]) << 8) | \ ((u32) (a)[2])) #define RTW_PUT_BE24(a, val) \ do { \ (a)[0] = (u8) ((((u32) (val)) >> 16) & 0xff); \ (a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \ (a)[2] = (u8) (((u32) (val)) & 0xff); \ } while (0) #define RTW_GET_BE32(a) ((((u32) (a)[0]) << 24) | (((u32) (a)[1]) << 16) | \ (((u32) (a)[2]) << 8) | ((u32) (a)[3])) #define RTW_PUT_BE32(a, val) \ do { \ (a)[0] = (u8) ((((u32) (val)) >> 24) & 0xff); \ (a)[1] = (u8) ((((u32) (val)) >> 16) & 0xff); \ (a)[2] = (u8) ((((u32) (val)) >> 8) & 0xff); \ (a)[3] = (u8) (((u32) (val)) & 0xff); \ } while (0) #define RTW_GET_LE32(a) ((((u32) (a)[3]) << 24) | (((u32) (a)[2]) << 16) | \ (((u32) (a)[1]) << 8) | ((u32) (a)[0])) #define RTW_PUT_LE32(a, val) \ do { \ (a)[3] = (u8) ((((u32) (val)) >> 24) & 0xff); \ (a)[2] = (u8) ((((u32) (val)) >> 16) & 0xff); \ (a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \ (a)[0] = (u8) (((u32) (val)) & 0xff); \ } while (0) #define RTW_GET_BE64(a) ((((u64) (a)[0]) << 56) | (((u64) (a)[1]) << 48) | \ (((u64) (a)[2]) << 40) | (((u64) (a)[3]) << 32) | \ (((u64) (a)[4]) << 24) | (((u64) (a)[5]) << 16) | \ (((u64) (a)[6]) << 8) | ((u64) (a)[7])) #define RTW_PUT_BE64(a, val) \ do { \ (a)[0] = (u8) (((u64) (val)) >> 56); \ (a)[1] = (u8) (((u64) (val)) >> 48); \ (a)[2] = (u8) (((u64) (val)) >> 40); \ (a)[3] = (u8) (((u64) (val)) >> 32); \ (a)[4] = (u8) (((u64) (val)) >> 24); \ (a)[5] = (u8) (((u64) (val)) >> 16); \ (a)[6] = (u8) (((u64) (val)) >> 8); \ (a)[7] = (u8) (((u64) (val)) & 0xff); \ } while (0) #define RTW_GET_LE64(a) ((((u64) (a)[7]) << 56) | (((u64) (a)[6]) << 48) | \ (((u64) (a)[5]) << 40) | (((u64) (a)[4]) << 32) | \ (((u64) (a)[3]) << 24) | (((u64) (a)[2]) << 16) | \ (((u64) (a)[1]) << 8) | ((u64) (a)[0])) void rtw_buf_free(u8 **buf, u32 *buf_len); void rtw_buf_update(u8 **buf, u32 *buf_len, u8 *src, u32 src_len); struct rtw_cbuf { u32 write; u32 read; u32 size; void *bufs[0]; }; bool rtw_cbuf_full(struct rtw_cbuf *cbuf); bool rtw_cbuf_empty(struct rtw_cbuf *cbuf); bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf); void *rtw_cbuf_pop(struct rtw_cbuf *cbuf); struct rtw_cbuf *rtw_cbuf_alloc(u32 size); void rtw_cbuf_free(struct rtw_cbuf *cbuf); #endif