/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _RTL8188E_PHYCFG_C_ #include #include #include #include /*---------------------------Define Local Constant---------------------------*/ /* Channel switch:The size of command tables for switch channel*/ #define MAX_PRECMD_CNT 16 #define MAX_RFDEPENDCMD_CNT 16 #define MAX_POSTCMD_CNT 16 #define MAX_DOZE_WAITING_TIMES_9x 64 /*---------------------------Define Local Constant---------------------------*/ /*------------------------Define global variable-----------------------------*/ /*------------------------Define local variable------------------------------*/ /*--------------------Define export function prototype-----------------------*/ /* Please refer to header file */ /*--------------------Define export function prototype-----------------------*/ /*----------------------------Function Body----------------------------------*/ /* */ /* 1. BB register R/W API */ /* */ /** * Function: phy_CalculateBitShift * * OverView: Get shifted position of the BitMask * * Input: * u4Byte BitMask, * * Output: none * Return: u4Byte Return the shift bit bit position of the mask */ static u32 phy_CalculateBitShift( u32 BitMask ) { u32 i; for (i=0; i<=31; i++) { if ( ((BitMask>>i) & 0x1 ) == 1) break; } return (i); } #if (SIC_ENABLE == 1) static bool sic_IsSICReady( PADAPTER Adapter ) { bool bRet=false; u32 retryCnt=0; u8 sic_cmd=0xff; while (1) { if (retryCnt++ >= SIC_MAX_POLL_CNT) { return false; } sic_cmd = rtw_read8(Adapter, SIC_CMD_REG); #if (SIC_HW_SUPPORT == 1) sic_cmd &= 0xf0; /* [7:4] */ #endif if (sic_cmd == SIC_CMD_READY) return true; else { rtw_msleep_os(1); } } return bRet; } static u32 sic_Read4Byte( void * Adapter, u32 offset ) { u32 u4ret=0xffffffff; #if RTL8188E_SUPPORT == 1 u8 retry = 0; #endif if (sic_IsSICReady(Adapter)) { #if (SIC_HW_SUPPORT == 1) rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_PREREAD); #endif rtw_write8(Adapter, SIC_ADDR_REG, (u8)(offset&0xff)); rtw_write8(Adapter, SIC_ADDR_REG+1, (u8)((offset&0xff00)>>8)); rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_READ); #if RTL8188E_SUPPORT == 1 retry = 4; while (retry--){ rtw_udelay_os(50); } #else rtw_udelay_os(200); #endif if (sic_IsSICReady(Adapter)) u4ret = rtw_read32(Adapter, SIC_DATA_REG); } return u4ret; } static void sic_Write4Byte( void * Adapter, u32 offset, u32 data ) { #if RTL8188E_SUPPORT == 1 u8 retry = 6; #endif if (sic_IsSICReady(Adapter)) { #if (SIC_HW_SUPPORT == 1) rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_PREWRITE); #endif rtw_write8(Adapter, SIC_ADDR_REG, (u8)(offset&0xff)); rtw_write8(Adapter, SIC_ADDR_REG+1, (u8)((offset&0xff00)>>8)); rtw_write32(Adapter, SIC_DATA_REG, (u32)data); rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_WRITE); #if RTL8188E_SUPPORT == 1 while (retry--){ rtw_udelay_os(50); } #else rtw_udelay_os(150); #endif } } /* */ /* extern function */ /* */ static void SIC_SetBBReg( PADAPTER Adapter, u32 RegAddr, u32 BitMask, u32 Data ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); u32 OriginalValue, BitShift; u16 BBWaitCounter = 0; /* */ /* Critical section start */ /* */ if (BitMask!= bMaskDWord){/* if not "double word" write */ OriginalValue = sic_Read4Byte(Adapter, RegAddr); BitShift = phy_CalculateBitShift(BitMask); Data = (((OriginalValue) & (~BitMask)) | (Data << BitShift)); } sic_Write4Byte(Adapter, RegAddr, Data); } static u32 SIC_QueryBBReg( PADAPTER Adapter, u32 RegAddr, u32 BitMask ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); u32 ReturnValue = 0, OriginalValue, BitShift; u16 BBWaitCounter = 0; OriginalValue = sic_Read4Byte(Adapter, RegAddr); BitShift = phy_CalculateBitShift(BitMask); ReturnValue = (OriginalValue & BitMask) >> BitShift; return (ReturnValue); } void SIC_Init( PADAPTER Adapter ) { /* Here we need to write 0x1b8~0x1bf = 0 after fw is downloaded */ /* because for 8723E at beginning 0x1b8=0x1e, that will cause */ /* sic always not be ready */ #if (SIC_HW_SUPPORT == 1) rtw_write8(Adapter, SIC_INIT_REG, SIC_INIT_VAL); rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_INIT); #else rtw_write32(Adapter, SIC_CMD_REG, 0); rtw_write32(Adapter, SIC_CMD_REG+4, 0); #endif } static bool SIC_LedOff( PADAPTER Adapter ) { /* When SIC is enabled, led pin will be used as debug pin, */ /* so don't execute led function when SIC is enabled. */ return true; } #endif /** * Function: PHY_QueryBBReg * * OverView: Read "sepcific bits" from BB register * * Input: * PADAPTER Adapter, * u4Byte RegAddr, The target address to be readback * u4Byte BitMask The target bit position in the target address * to be readback * Output: None * Return: u4Byte Data The readback register value * Note: This function is equal to "GetRegSetting" in PHY programming guide */ u32 rtl8188e_PHY_QueryBBReg( PADAPTER Adapter, u32 RegAddr, u32 BitMask ) { u32 ReturnValue = 0, OriginalValue, BitShift; u16 BBWaitCounter = 0; #if (DISABLE_BB_RF == 1) return 0; #endif #if (SIC_ENABLE == 1) return SIC_QueryBBReg(Adapter, RegAddr, BitMask); #endif OriginalValue = rtw_read32(Adapter, RegAddr); BitShift = phy_CalculateBitShift(BitMask); ReturnValue = (OriginalValue & BitMask) >> BitShift; return (ReturnValue); } /** * Function: PHY_SetBBReg * * OverView: Write "Specific bits" to BB register (page 8~) * * Input: * PADAPTER Adapter, * u4Byte RegAddr, The target address to be modified * u4Byte BitMask The target bit position in the target address * to be modified * u4Byte Data The new register value in the target bit position * of the target address * * Output: None * Return: None * Note: This function is equal to "PutRegSetting" in PHY programming guide */ void rtl8188e_PHY_SetBBReg( PADAPTER Adapter, u32 RegAddr, u32 BitMask, u32 Data ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); u32 OriginalValue, BitShift; #if (DISABLE_BB_RF == 1) return; #endif #if (SIC_ENABLE == 1) SIC_SetBBReg(Adapter, RegAddr, BitMask, Data); return; #endif if (BitMask!= bMaskDWord){/* if not "double word" write */ OriginalValue = rtw_read32(Adapter, RegAddr); BitShift = phy_CalculateBitShift(BitMask); Data = ((OriginalValue & (~BitMask)) | (Data << BitShift)); } rtw_write32(Adapter, RegAddr, Data); } /* */ /* 2. RF register R/W API */ /* */ /** * Function: phy_RFSerialRead * * OverView: Read regster from RF chips * * Input: * PADAPTER Adapter, * enum rf_radio_path eRFPath, Radio path of A/B/C/D * u4Byte Offset, The target address to be read * * Output: None * Return: u4Byte reback value * Note: Threre are three types of serial operations: * 1. Software serial write * 2. Hardware LSSI-Low Speed Serial Interface * 3. Hardware HSSI-High speed * serial write. Driver need to implement (1) and (2). * This function is equal to the combination of RF_ReadReg() and RFLSSIRead() */ static u32 phy_RFSerialRead( PADAPTER Adapter, enum rf_radio_path eRFPath, u32 Offset ) { u32 retValue = 0; struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); struct bb_reg_def *pPhyReg = &pHalData->PHYRegDef[eRFPath]; u32 NewOffset; u32 tmplong,tmplong2; u8 RfPiEnable=0; /* */ /* Make sure RF register offset is correct */ /* */ Offset &= 0xff; /* */ /* Switch page for 8256 RF IC */ /* */ NewOffset = Offset; /* For 92S LSSI Read RFLSSIRead */ /* For RF A/B write 0x824/82c(does not work in the future) */ /* We must use 0x824 for RF A and B to execute read trigger */ tmplong = PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord); if (eRFPath == RF_PATH_A) tmplong2 = tmplong; else tmplong2 = PHY_QueryBBReg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord); tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset<<23) | bLSSIReadEdge; /* T65 RF */ PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord, tmplong&(~bLSSIReadEdge)); rtw_udelay_os(10);/* PlatformStallExecution(10); */ PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord, tmplong2); rtw_udelay_os(100);/* PlatformStallExecution(100); */ rtw_udelay_os(10);/* PlatformStallExecution(10); */ if (eRFPath == RF_PATH_A) RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter1, BIT8); else if (eRFPath == RF_PATH_B) RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XB_HSSIParameter1, BIT8); if (RfPiEnable) { /* Read from BBreg8b8, 12 bits for 8190, 20bits for T65 RF */ retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBackPi, bLSSIReadBackData); } else { /* Read from BBreg8a0, 12 bits for 8190, 20 bits for T65 RF */ retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBack, bLSSIReadBackData); } return retValue; } /** * Function: phy_RFSerialWrite * * OverView: Write data to RF register (page 8~) * * Input: * PADAPTER Adapter, * enum rf_radio_path eRFPath, Radio path of A/B/C/D * u4Byte Offset, The target address to be read * u4Byte Data The new register Data in the target bit position * of the target to be read * * Output: None * Return: None * Note: Threre are three types of serial operations: * 1. Software serial write * 2. Hardware LSSI-Low Speed Serial Interface * 3. Hardware HSSI-High speed * serial write. Driver need to implement (1) and (2). * This function is equal to the combination of RF_ReadReg() and RFLSSIRead() * * Note: For RF8256 only * The total count of RTL8256(Zebra4) register is around 36 bit it only employs * 4-bit RF address. RTL8256 uses "register mode control bit" (Reg00[12], Reg00[10]) * to access register address bigger than 0xf. See "Appendix-4 in PHY Configuration * programming guide" for more details. * Thus, we define a sub-finction for RTL8526 register address conversion * =========================================================== * Register Mode RegCTL[1] RegCTL[0] Note * (Reg00[12]) (Reg00[10]) * =========================================================== * Reg_Mode0 0 x Reg 0 ~15(0x0 ~ 0xf) * ------------------------------------------------------------------ * Reg_Mode1 1 0 Reg 16 ~30(0x1 ~ 0xf) * ------------------------------------------------------------------ * Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf) * ------------------------------------------------------------------ * * 2008/09/02 MH Add 92S RF definition * * * */ static void phy_RFSerialWrite( PADAPTER Adapter, enum rf_radio_path eRFPath, u32 Offset, u32 Data ) { u32 DataAndAddr = 0; struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); struct bb_reg_def *pPhyReg = &pHalData->PHYRegDef[eRFPath]; u32 NewOffset; /* 2009/06/17 MH We can not execute IO for power save or other accident mode. */ Offset &= 0xff; /* */ /* Switch page for 8256 RF IC */ /* */ NewOffset = Offset; /* */ /* Put write addr in [5:0] and write data in [31:16] */ /* */ DataAndAddr = ((NewOffset<<20) | (Data&0x000fffff)) & 0x0fffffff; /* T65 RF */ /* */ /* Write Operation */ /* */ PHY_SetBBReg(Adapter, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr); } /** * Function: PHY_QueryRFReg * * OverView: Query "Specific bits" to RF register (page 8~) * * Input: * PADAPTER Adapter, * enum rf_radio_path eRFPath, Radio path of A/B/C/D * u4Byte RegAddr, The target address to be read * u4Byte BitMask The target bit position in the target address * to be read * * Output: None * Return: u4Byte Readback value * Note: This function is equal to "GetRFRegSetting" in PHY programming guide */ u32 rtl8188e_PHY_QueryRFReg(PADAPTER Adapter, enum rf_radio_path eRFPath, u32 RegAddr, u32 BitMask) { u32 Original_Value, Readback_Value, BitShift; #if (DISABLE_BB_RF == 1) return 0; #endif Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr); BitShift = phy_CalculateBitShift(BitMask); Readback_Value = (Original_Value & BitMask) >> BitShift; return (Readback_Value); } /** * Function: PHY_SetRFReg * * OverView: Write "Specific bits" to RF register (page 8~) * * Input: * PADAPTER Adapter, * enum rf_radio_path eRFPath, Radio path of A/B/C/D * u4Byte RegAddr, The target address to be modified * u4Byte BitMask The target bit position in the target address * to be modified * u4Byte Data The new register Data in the target bit position * of the target address * * Output: None * Return: None * Note: This function is equal to "PutRFRegSetting" in PHY programming guide */ void rtl8188e_PHY_SetRFReg( PADAPTER Adapter, enum rf_radio_path eRFPath, u32 RegAddr, u32 BitMask, u32 Data ) { u32 Original_Value, BitShift; #if (DISABLE_BB_RF == 1) return; #endif /* RF data is 12 bits only */ if (BitMask != bRFRegOffsetMask) { Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr); BitShift = phy_CalculateBitShift(BitMask); Data = ((Original_Value & (~BitMask)) | (Data<< BitShift)); } phy_RFSerialWrite(Adapter, eRFPath, RegAddr, Data); } /* */ /* 3. Initial MAC/BB/RF config by reading MAC/BB/RF txt. */ /* */ /*----------------------------------------------------------------------------- * Function: phy_ConfigMACWithParaFile() * * Overview: This function read BB parameters from general file format, and do register * Read/Write * * Input: PADAPTER Adapter * ps1Byte pFileName * * Output: NONE * * Return: RT_STATUS_SUCCESS: configuration file exist * * Note: The format of MACPHY_REG.txt is different from PHY and RF. * [Register][Mask][Value] *---------------------------------------------------------------------------*/ static int phy_ConfigMACWithParaFile( PADAPTER Adapter, u8* pFileName ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _FAIL; return rtStatus; } /*----------------------------------------------------------------------------- * Function: PHY_MACConfig8192C * * Overview: Condig MAC by header file or parameter file. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 08/12/2008 MHC Create Version 0. * *---------------------------------------------------------------------------*/ s32 PHY_MACConfig8188E(PADAPTER Adapter) { int rtStatus = _SUCCESS; struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); s8 sz8188EMACRegFile[] = RTL8188E_PHY_MACREG; /* */ /* Config MAC */ /* */ if (HAL_STATUS_FAILURE == ODM_ConfigMACWithHeaderFile(&pHalData->odmpriv)) rtStatus = _FAIL; /* 2010.07.13 AMPDU aggregation number B */ rtw_write16(Adapter, REG_MAX_AGGR_NUM, MAX_AGGR_NUM); return rtStatus; } /** * Function: phy_InitBBRFRegisterDefinition * * OverView: Initialize Register definition offset for Radio Path A/B/C/D * * Input: * PADAPTER Adapter, * * Output: None * Return: None * Note: The initialization value is constant and it should never be changes */ static void phy_InitBBRFRegisterDefinition( PADAPTER Adapter ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); /* RF Interface Sowrtware Control */ pHalData->PHYRegDef[RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 LSBs if read 32-bit from 0x870 */ pHalData->PHYRegDef[RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */ pHalData->PHYRegDef[RF_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW;/* 16 LSBs if read 32-bit from 0x874 */ pHalData->PHYRegDef[RF_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW;/* 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */ /* RF Interface Readback Value */ pHalData->PHYRegDef[RF_PATH_A].rfintfi = rFPGA0_XAB_RFInterfaceRB; /* 16 LSBs if read 32-bit from 0x8E0 */ pHalData->PHYRegDef[RF_PATH_B].rfintfi = rFPGA0_XAB_RFInterfaceRB;/* 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) */ pHalData->PHYRegDef[RF_PATH_C].rfintfi = rFPGA0_XCD_RFInterfaceRB;/* 16 LSBs if read 32-bit from 0x8E4 */ pHalData->PHYRegDef[RF_PATH_D].rfintfi = rFPGA0_XCD_RFInterfaceRB;/* 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) */ /* RF Interface Output (and Enable) */ pHalData->PHYRegDef[RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x860 */ pHalData->PHYRegDef[RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x864 */ /* RF Interface (Output and) Enable */ pHalData->PHYRegDef[RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */ pHalData->PHYRegDef[RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */ /* Addr of LSSI. Wirte RF register by driver */ pHalData->PHYRegDef[RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; /* LSSI Parameter */ pHalData->PHYRegDef[RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter; /* RF parameter */ pHalData->PHYRegDef[RF_PATH_A].rfLSSI_Select = rFPGA0_XAB_RFParameter; /* BB Band Select */ pHalData->PHYRegDef[RF_PATH_B].rfLSSI_Select = rFPGA0_XAB_RFParameter; pHalData->PHYRegDef[RF_PATH_C].rfLSSI_Select = rFPGA0_XCD_RFParameter; pHalData->PHYRegDef[RF_PATH_D].rfLSSI_Select = rFPGA0_XCD_RFParameter; /* Tx AGC Gain Stage (same for all path. Should we remove this?) */ pHalData->PHYRegDef[RF_PATH_A].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */ pHalData->PHYRegDef[RF_PATH_B].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */ pHalData->PHYRegDef[RF_PATH_C].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */ pHalData->PHYRegDef[RF_PATH_D].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */ /* Tranceiver A~D HSSI Parameter-1 */ pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara1 = rFPGA0_XA_HSSIParameter1; /* wire control parameter1 */ pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara1 = rFPGA0_XB_HSSIParameter1; /* wire control parameter1 */ /* Tranceiver A~D HSSI Parameter-2 */ pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; /* wire control parameter2 */ pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; /* wire control parameter2 */ /* RF switch Control */ pHalData->PHYRegDef[RF_PATH_A].rfSwitchControl = rFPGA0_XAB_SwitchControl; /* TR/Ant switch control */ pHalData->PHYRegDef[RF_PATH_B].rfSwitchControl = rFPGA0_XAB_SwitchControl; pHalData->PHYRegDef[RF_PATH_C].rfSwitchControl = rFPGA0_XCD_SwitchControl; pHalData->PHYRegDef[RF_PATH_D].rfSwitchControl = rFPGA0_XCD_SwitchControl; /* AGC control 1 */ pHalData->PHYRegDef[RF_PATH_A].rfAGCControl1 = rOFDM0_XAAGCCore1; pHalData->PHYRegDef[RF_PATH_B].rfAGCControl1 = rOFDM0_XBAGCCore1; pHalData->PHYRegDef[RF_PATH_C].rfAGCControl1 = rOFDM0_XCAGCCore1; pHalData->PHYRegDef[RF_PATH_D].rfAGCControl1 = rOFDM0_XDAGCCore1; /* AGC control 2 */ pHalData->PHYRegDef[RF_PATH_A].rfAGCControl2 = rOFDM0_XAAGCCore2; pHalData->PHYRegDef[RF_PATH_B].rfAGCControl2 = rOFDM0_XBAGCCore2; pHalData->PHYRegDef[RF_PATH_C].rfAGCControl2 = rOFDM0_XCAGCCore2; pHalData->PHYRegDef[RF_PATH_D].rfAGCControl2 = rOFDM0_XDAGCCore2; /* RX AFE control 1 */ pHalData->PHYRegDef[RF_PATH_A].rfRxIQImbalance = rOFDM0_XARxIQImbalance; pHalData->PHYRegDef[RF_PATH_B].rfRxIQImbalance = rOFDM0_XBRxIQImbalance; pHalData->PHYRegDef[RF_PATH_C].rfRxIQImbalance = rOFDM0_XCRxIQImbalance; pHalData->PHYRegDef[RF_PATH_D].rfRxIQImbalance = rOFDM0_XDRxIQImbalance; /* RX AFE control 1 */ pHalData->PHYRegDef[RF_PATH_A].rfRxAFE = rOFDM0_XARxAFE; pHalData->PHYRegDef[RF_PATH_B].rfRxAFE = rOFDM0_XBRxAFE; pHalData->PHYRegDef[RF_PATH_C].rfRxAFE = rOFDM0_XCRxAFE; pHalData->PHYRegDef[RF_PATH_D].rfRxAFE = rOFDM0_XDRxAFE; /* Tx AFE control 1 */ pHalData->PHYRegDef[RF_PATH_A].rfTxIQImbalance = rOFDM0_XATxIQImbalance; pHalData->PHYRegDef[RF_PATH_B].rfTxIQImbalance = rOFDM0_XBTxIQImbalance; pHalData->PHYRegDef[RF_PATH_C].rfTxIQImbalance = rOFDM0_XCTxIQImbalance; pHalData->PHYRegDef[RF_PATH_D].rfTxIQImbalance = rOFDM0_XDTxIQImbalance; /* Tx AFE control 2 */ pHalData->PHYRegDef[RF_PATH_A].rfTxAFE = rOFDM0_XATxAFE; pHalData->PHYRegDef[RF_PATH_B].rfTxAFE = rOFDM0_XBTxAFE; pHalData->PHYRegDef[RF_PATH_C].rfTxAFE = rOFDM0_XCTxAFE; pHalData->PHYRegDef[RF_PATH_D].rfTxAFE = rOFDM0_XDTxAFE; /* Tranceiver LSSI Readback SI mode */ pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack; pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack; pHalData->PHYRegDef[RF_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack; pHalData->PHYRegDef[RF_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack; /* Tranceiver LSSI Readback PI mode */ pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback; pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback; } /*----------------------------------------------------------------------------- * Function: phy_ConfigBBWithParaFile() * * Overview: This function read BB parameters from general file format, and do register * Read/Write * * Input: PADAPTER Adapter * ps1Byte pFileName * * Output: NONE * * Return: RT_STATUS_SUCCESS: configuration file exist * 2008/11/06 MH For 92S we do not support silent reset now. Disable * parameter file compare!!!!!!?? * *---------------------------------------------------------------------------*/ static int phy_ConfigBBWithParaFile( PADAPTER Adapter, u8* pFileName ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _SUCCESS; return rtStatus; } /* */ /* The following is for High Power PA */ /* */ static void phy_ConfigBBExternalPA(PADAPTER Adapter) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); u16 i=0; u32 temp=0; if (!pHalData->ExternalPA) return; /* 2010/10/19 MH According to Jenyu/EEChou 's opinion, we need not to execute the */ /* same code as SU. It is already updated in PHY_REG_1T_HP.txt. */ } void storePwrIndexDiffRateOffset( PADAPTER Adapter, u32 RegAddr, u32 BitMask, u32 Data ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); if (RegAddr == rTxAGC_A_Rate18_06) pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0] = Data; if (RegAddr == rTxAGC_A_Rate54_24) pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][1] = Data; if (RegAddr == rTxAGC_A_CCK1_Mcs32) pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][6] = Data; if (RegAddr == rTxAGC_B_CCK11_A_CCK2_11 && BitMask == 0xffffff00) pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][7] = Data; if (RegAddr == rTxAGC_A_Mcs03_Mcs00) pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][2] = Data; if (RegAddr == rTxAGC_A_Mcs07_Mcs04) pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][3] = Data; if (RegAddr == rTxAGC_A_Mcs11_Mcs08) pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][4] = Data; if (RegAddr == rTxAGC_A_Mcs15_Mcs12) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][5] = Data; if (pHalData->rf_type== RF_1T1R) pHalData->pwrGroupCnt++; } if (RegAddr == rTxAGC_B_Rate18_06) pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][8] = Data; if (RegAddr == rTxAGC_B_Rate54_24) pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][9] = Data; if (RegAddr == rTxAGC_B_CCK1_55_Mcs32) pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][14] = Data; if (RegAddr == rTxAGC_B_CCK11_A_CCK2_11 && BitMask == 0x000000ff) pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][15] = Data; if (RegAddr == rTxAGC_B_Mcs03_Mcs00) pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][10] = Data; if (RegAddr == rTxAGC_B_Mcs07_Mcs04) pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][11] = Data; if (RegAddr == rTxAGC_B_Mcs11_Mcs08) pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][12] = Data; if (RegAddr == rTxAGC_B_Mcs15_Mcs12) { pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][13] = Data; if (pHalData->rf_type != RF_1T1R) pHalData->pwrGroupCnt++; } } /*----------------------------------------------------------------------------- * Function: phy_ConfigBBWithPgParaFile * * Overview: * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 11/06/2008 MHC Create Version 0. * 2009/07/29 tynli (porting from 92SE branch)2009/03/11 Add copy parameter file to buffer for silent reset *---------------------------------------------------------------------------*/ static int phy_ConfigBBWithPgParaFile( PADAPTER Adapter, u8* pFileName) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _SUCCESS; return rtStatus; } /* phy_ConfigBBWithPgParaFile */ static void phy_BB8192C_Config_1T( PADAPTER Adapter ) { /* for path - B */ PHY_SetBBReg(Adapter, rFPGA0_TxInfo, 0x3, 0x2); PHY_SetBBReg(Adapter, rFPGA1_TxInfo, 0x300033, 0x200022); /* 20100519 Joseph: Add for 1T2R config. Suggested by Kevin, Jenyu and Yunan. */ PHY_SetBBReg(Adapter, rCCK0_AFESetting, bMaskByte3, 0x45); PHY_SetBBReg(Adapter, rOFDM0_TRxPathEnable, bMaskByte0, 0x23); PHY_SetBBReg(Adapter, rOFDM0_AGCParameter1, 0x30, 0x1); /* B path first AGC */ PHY_SetBBReg(Adapter, 0xe74, 0x0c000000, 0x2); PHY_SetBBReg(Adapter, 0xe78, 0x0c000000, 0x2); PHY_SetBBReg(Adapter, 0xe7c, 0x0c000000, 0x2); PHY_SetBBReg(Adapter, 0xe80, 0x0c000000, 0x2); PHY_SetBBReg(Adapter, 0xe88, 0x0c000000, 0x2); } /* Joseph test: new initialize order!! */ /* Test only!! This part need to be re-organized. */ /* Now it is just for 8256. */ static int phy_BB8190_Config_HardCode( PADAPTER Adapter ) { return _SUCCESS; } static int phy_BB8188E_Config_ParaFile( PADAPTER Adapter ) { EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(Adapter); struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _SUCCESS; u8 sz8188EBBRegFile[] = RTL8188E_PHY_REG; u8 sz8188EAGCTableFile[] = RTL8188E_AGC_TAB; u8 sz8188EBBRegPgFile[] = RTL8188E_PHY_REG_PG; u8 sz8188EBBRegMpFile[] = RTL8188E_PHY_REG_MP; /* */ /* 1. Read PHY_REG.TXT BB INIT!! */ /* We will seperate as 88C / 92C according to chip version */ /* */ if (HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG)) rtStatus = _FAIL; if (rtStatus != _SUCCESS) goto phy_BB8190_Config_ParaFile_Fail; /* */ /* 2. If EEPROM or EFUSE autoload OK, We must config by PHY_REG_PG.txt */ /* */ if (pEEPROM->bautoload_fail_flag == false) { pHalData->pwrGroupCnt = 0; if (HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG_PG)) rtStatus = _FAIL; } if (rtStatus != _SUCCESS) goto phy_BB8190_Config_ParaFile_Fail; /* */ /* 3. BB AGC table Initialization */ /* */ if (HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_AGC_TAB)) rtStatus = _FAIL; if (rtStatus != _SUCCESS) goto phy_BB8190_Config_ParaFile_Fail; phy_BB8190_Config_ParaFile_Fail: return rtStatus; } int PHY_BBConfig8188E( PADAPTER Adapter ) { int rtStatus = _SUCCESS; struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); u32 RegVal; u8 TmpU1B=0; u8 value8,CrystalCap; phy_InitBBRFRegisterDefinition(Adapter); /* Enable BB and RF */ RegVal = rtw_read16(Adapter, REG_SYS_FUNC_EN); rtw_write16(Adapter, REG_SYS_FUNC_EN, (u16)(RegVal|BIT13|BIT0|BIT1)); /* 20090923 Joseph: Advised by Steven and Jenyu. Power sequence before init RF. */ rtw_write8(Adapter, REG_RF_CTRL, RF_EN|RF_RSTB|RF_SDMRSTB); rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_USBA | FEN_USBD | FEN_BB_GLB_RSTn | FEN_BBRSTB); /* */ /* Config BB and AGC */ /* */ rtStatus = phy_BB8188E_Config_ParaFile(Adapter); /* write 0x24[16:11] = 0x24[22:17] = CrystalCap */ CrystalCap = pHalData->CrystalCap & 0x3F; PHY_SetBBReg(Adapter, REG_AFE_XTAL_CTRL, 0x7ff800, (CrystalCap | (CrystalCap << 6))); return rtStatus; } int PHY_RFConfig8188E( PADAPTER Adapter ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _SUCCESS; /* */ /* RF config */ /* */ rtStatus = PHY_RF6052_Config8188E(Adapter); return rtStatus; } /*----------------------------------------------------------------------------- * Function: PHY_ConfigRFWithParaFile() * * Overview: This function read RF parameters from general file format, and do RF 3-wire * * Input: PADAPTER Adapter * ps1Byte pFileName * enum rf_radio_path eRFPath * * Output: NONE * * Return: RT_STATUS_SUCCESS: configuration file exist * * Note: Delay may be required for RF configuration *---------------------------------------------------------------------------*/ int rtl8188e_PHY_ConfigRFWithParaFile( PADAPTER Adapter, u8* pFileName, enum rf_radio_path eRFPath ) { return _SUCCESS; } static int PHY_ConfigRFExternalPA(PADAPTER Adapter, enum rf_radio_path eRFPath) { int rtStatus = _SUCCESS; struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); u16 i=0; if (!pHalData->ExternalPA) return rtStatus; /* 2010/10/19 MH According to Jenyu/EEChou 's opinion, we need not to execute the */ /* same code as SU. It is already updated in radio_a_1T_HP.txt. */ return rtStatus; } void rtl8192c_PHY_GetHWRegOriginalValue( PADAPTER Adapter ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); /* read rx initial gain */ pHalData->DefaultInitialGain[0] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XAAGCCore1, bMaskByte0); pHalData->DefaultInitialGain[1] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XBAGCCore1, bMaskByte0); pHalData->DefaultInitialGain[2] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XCAGCCore1, bMaskByte0); pHalData->DefaultInitialGain[3] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XDAGCCore1, bMaskByte0); /* read framesync */ pHalData->framesync = (u8)PHY_QueryBBReg(Adapter, rOFDM0_RxDetector3, bMaskByte0); pHalData->framesyncC34 = PHY_QueryBBReg(Adapter, rOFDM0_RxDetector2, bMaskDWord); } /* */ /* Description: */ /* Map dBm into Tx power index according to */ /* current HW model, for example, RF and PA, and */ /* current wireless mode. */ /* By Bruce, 2008-01-29. */ /* */ static u8 phy_DbmToTxPwrIdx( PADAPTER Adapter, enum wireless_mode WirelessMode, int PowerInDbm ) { u8 TxPwrIdx = 0; int Offset = 0; /* */ /* Tested by MP, we found that CCK Index 0 equals to 8dbm, OFDM legacy equals to */ /* 3dbm, and OFDM HT equals to 0dbm repectively. */ /* Note: */ /* The mapping may be different by different NICs. Do not use this formula for what needs accurate result. */ /* By Bruce, 2008-01-29. */ /* */ switch (WirelessMode) { case WIRELESS_MODE_B: Offset = -7; break; case WIRELESS_MODE_G: case WIRELESS_MODE_N_24G: Offset = -8; break; default: Offset = -8; break; } if ((PowerInDbm - Offset) > 0) TxPwrIdx = (u8)((PowerInDbm - Offset) * 2); else TxPwrIdx = 0; /* Tx Power Index is too large. */ if (TxPwrIdx > MAX_TXPWR_IDX_NMODE_92S) TxPwrIdx = MAX_TXPWR_IDX_NMODE_92S; return TxPwrIdx; } /* */ /* Description: */ /* Map Tx power index into dBm according to */ /* current HW model, for example, RF and PA, and */ /* current wireless mode. */ /* By Bruce, 2008-01-29. */ /* */ static int phy_TxPwrIdxToDbm(PADAPTER Adapter, enum wireless_mode WirelessMode, u8 TxPwrIdx) { int Offset = 0; int PwrOutDbm = 0; /* */ /* Tested by MP, we found that CCK Index 0 equals to -7dbm, OFDM legacy equals to -8dbm. */ /* Note: */ /* The mapping may be different by different NICs. Do not use this formula for what needs accurate result. */ /* By Bruce, 2008-01-29. */ /* */ switch (WirelessMode) { case WIRELESS_MODE_B: Offset = -7; break; case WIRELESS_MODE_G: case WIRELESS_MODE_N_24G: Offset = -8; default: Offset = -8; break; } PwrOutDbm = TxPwrIdx / 2 + Offset; /* Discard the decimal part. */ return PwrOutDbm; } /*----------------------------------------------------------------------------- * Function: GetTxPowerLevel8190() * * Overview: This function is export to "common" moudule * * Input: PADAPTER Adapter * psByte Power Level * * Output: NONE * * Return: NONE * *---------------------------------------------------------------------------*/ void PHY_GetTxPowerLevel8188E( PADAPTER Adapter, u32* powerlevel ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); u8 TxPwrLevel = 0; int TxPwrDbm; /* */ /* Because the Tx power indexes are different, we report the maximum of them to */ /* meet the CCX TPC request. By Bruce, 2008-01-31. */ /* */ /* CCK */ TxPwrLevel = pHalData->CurrentCckTxPwrIdx; TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_B, TxPwrLevel); /* Legacy OFDM */ TxPwrLevel = pHalData->CurrentOfdm24GTxPwrIdx + pHalData->LegacyHTTxPowerDiff; /* Compare with Legacy OFDM Tx power. */ if (phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_G, TxPwrLevel) > TxPwrDbm) TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_G, TxPwrLevel); /* HT OFDM */ TxPwrLevel = pHalData->CurrentOfdm24GTxPwrIdx; /* Compare with HT OFDM Tx power. */ if (phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_N_24G, TxPwrLevel) > TxPwrDbm) TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_N_24G, TxPwrLevel); *powerlevel = TxPwrDbm; } static void getTxPowerIndex88E(PADAPTER Adapter, u8 channel, u8 *cckPowerLevel, u8 *ofdmPowerLevel, u8 *BW20PowerLevel, u8 *BW40PowerLevel) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); u8 index = (channel -1); u8 TxCount=0,path_nums; if ((RF_1T2R == pHalData->rf_type) || (RF_1T1R ==pHalData->rf_type)) path_nums = 1; else path_nums = 2; for (TxCount=0; TxCount < path_nums; TxCount++) { if (TxCount==RF_PATH_A) { /* 1. CCK */ cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index]; /* 2. OFDM */ ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->OFDM_24G_Diff[TxCount][RF_PATH_A]; /* 1. BW20 */ BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[TxCount][RF_PATH_A]; /* 2. BW40 */ BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index]; } else if (TxCount==RF_PATH_B) { /* 1. CCK */ cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index]; /* 2. OFDM */ ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[TxCount][index]; /* 1. BW20 */ BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[TxCount][RF_PATH_A]+ pHalData->BW20_24G_Diff[TxCount][index]; /* 2. BW40 */ BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index]; } else if (TxCount==RF_PATH_C) { /* 1. CCK */ cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index]; /* 2. OFDM */ ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_B][index]+ pHalData->BW20_24G_Diff[TxCount][index]; /* 1. BW20 */ BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_B][index]+ pHalData->BW20_24G_Diff[TxCount][index]; /* 2. BW40 */ BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index]; } else if (TxCount==RF_PATH_D) { /* 1. CCK */ cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index]; /* 2. OFDM */ ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_B][index]+ pHalData->BW20_24G_Diff[RF_PATH_C][index]+ pHalData->BW20_24G_Diff[TxCount][index]; /* 1. BW20 */ BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_A][index]+ pHalData->BW20_24G_Diff[RF_PATH_B][index]+ pHalData->BW20_24G_Diff[RF_PATH_C][index]+ pHalData->BW20_24G_Diff[TxCount][index]; /* 2. BW40 */ BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index]; } } } static void phy_PowerIndexCheck88E(PADAPTER Adapter, u8 channel, u8 *cckPowerLevel, u8 *ofdmPowerLevel, u8 *BW20PowerLevel, u8 *BW40PowerLevel) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); pHalData->CurrentCckTxPwrIdx = cckPowerLevel[0]; pHalData->CurrentOfdm24GTxPwrIdx = ofdmPowerLevel[0]; pHalData->CurrentBW2024GTxPwrIdx = BW20PowerLevel[0]; pHalData->CurrentBW4024GTxPwrIdx = BW40PowerLevel[0]; } /*----------------------------------------------------------------------------- * Function: SetTxPowerLevel8190() * * Overview: This function is export to "HalCommon" moudule * We must consider RF path later!!!!!!! * * Input: PADAPTER Adapter * u1Byte channel * * Output: NONE * * Return: NONE * 2008/11/04 MHC We remove EEPROM_93C56. * We need to move CCX relative code to independet file. * 2009/01/21 MHC Support new EEPROM format from SD3 requirement. * *---------------------------------------------------------------------------*/ void PHY_SetTxPowerLevel8188E( PADAPTER Adapter, u8 channel ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); u8 cckPowerLevel[MAX_TX_COUNT], ofdmPowerLevel[MAX_TX_COUNT];/* [0]:RF-A, [1]:RF-B */ u8 BW20PowerLevel[MAX_TX_COUNT], BW40PowerLevel[MAX_TX_COUNT]; u8 i=0; getTxPowerIndex88E(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0],&BW20PowerLevel[0],&BW40PowerLevel[0]); phy_PowerIndexCheck88E(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0],&BW20PowerLevel[0],&BW40PowerLevel[0]); rtl8188e_PHY_RF6052SetCckTxPower(Adapter, &cckPowerLevel[0]); rtl8188e_PHY_RF6052SetOFDMTxPower(Adapter, &ofdmPowerLevel[0],&BW20PowerLevel[0],&BW40PowerLevel[0], channel); } /* */ /* Description: */ /* Update transmit power level of all channel supported. */ /* */ /* TODO: */ /* A mode. */ /* By Bruce, 2008-02-04. */ /* */ bool PHY_UpdateTxPowerDbm8188E( PADAPTER Adapter, int powerInDbm ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); u8 idx; u8 rf_path; /* TODO: A mode Tx power. */ u8 CckTxPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_B, powerInDbm); u8 OfdmTxPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_N_24G, powerInDbm); if (OfdmTxPwrIdx - pHalData->LegacyHTTxPowerDiff > 0) OfdmTxPwrIdx -= pHalData->LegacyHTTxPowerDiff; else OfdmTxPwrIdx = 0; for (idx = 0; idx < 14; idx++) { for (rf_path = 0; rf_path < 2; rf_path++) { pHalData->TxPwrLevelCck[rf_path][idx] = CckTxPwrIdx; pHalData->TxPwrLevelHT40_1S[rf_path][idx] = pHalData->TxPwrLevelHT40_2S[rf_path][idx] = OfdmTxPwrIdx; } } return true; } void PHY_ScanOperationBackup8188E( PADAPTER Adapter, u8 Operation ) { } /*----------------------------------------------------------------------------- * Function: PHY_SetBWModeCallback8192C() * * Overview: Timer callback function for SetSetBWMode * * Input: PRT_TIMER pTimer * * Output: NONE * * Return: NONE * * Note: (1) We do not take j mode into consideration now * (2) Will two workitem of "switch channel" and "switch channel bandwidth" run * concurrently? *---------------------------------------------------------------------------*/ static void _PHY_SetBWMode92C( PADAPTER Adapter ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); u8 regBwOpMode; u8 regRRSR_RSC; if (pHalData->rf_chip == RF_PSEUDO_11N) return; /* There is no 40MHz mode in RF_8225. */ if (pHalData->rf_chip==RF_8225) return; if (Adapter->bDriverStopped) return; /* 3 */ /* 3<1>Set MAC register */ /* 3 */ regBwOpMode = rtw_read8(Adapter, REG_BWOPMODE); regRRSR_RSC = rtw_read8(Adapter, REG_RRSR+2); switch (pHalData->CurrentChannelBW) { case HT_CHANNEL_WIDTH_20: regBwOpMode |= BW_OPMODE_20MHZ; /* 2007/02/07 Mark by Emily becasue we have not verify whether this register works */ rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode); break; case HT_CHANNEL_WIDTH_40: regBwOpMode &= ~BW_OPMODE_20MHZ; /* 2007/02/07 Mark by Emily becasue we have not verify whether this register works */ rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode); regRRSR_RSC = (regRRSR_RSC&0x90) |(pHalData->nCur40MhzPrimeSC<<5); rtw_write8(Adapter, REG_RRSR+2, regRRSR_RSC); break; default: break; } /* 3 */ /* 3 <2>Set PHY related register */ /* 3 */ switch (pHalData->CurrentChannelBW) { /* 20 MHz channel*/ case HT_CHANNEL_WIDTH_20: PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x0); PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x0); /* PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 1); */ break; /* 40 MHz channel*/ case HT_CHANNEL_WIDTH_40: PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x1); PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x1); /* Set Control channel to upper or lower. These settings are required only for 40MHz */ PHY_SetBBReg(Adapter, rCCK0_System, bCCKSideBand, (pHalData->nCur40MhzPrimeSC>>1)); PHY_SetBBReg(Adapter, rOFDM1_LSTF, 0xC00, pHalData->nCur40MhzPrimeSC); PHY_SetBBReg(Adapter, 0x818, (BIT26|BIT27), (pHalData->nCur40MhzPrimeSC==HAL_PRIME_CHNL_OFFSET_LOWER)?2:1); break; default: break; } /* Skip over setting of J-mode in BB register here. Default value is "None J mode". Emily 20070315 */ /* 3<3>Set RF related register */ switch (pHalData->rf_chip) { case RF_8225: break; case RF_8256: /* Please implement this function in Hal8190PciPhy8256.c */ break; case RF_8258: /* Please implement this function in Hal8190PciPhy8258.c */ break; case RF_PSEUDO_11N: break; case RF_6052: rtl8188e_PHY_RF6052SetBandwidth(Adapter, pHalData->CurrentChannelBW); break; default: break; } } /*----------------------------------------------------------------------------- * Function: SetBWMode8190Pci() * * Overview: This function is export to "HalCommon" moudule * * Input: PADAPTER Adapter * HT_CHANNEL_WIDTH Bandwidth 20M or 40M * * Output: NONE * * Return: NONE * * Note: We do not take j mode into consideration now *---------------------------------------------------------------------------*/ void PHY_SetBWMode8188E( PADAPTER Adapter, HT_CHANNEL_WIDTH Bandwidth, /* 20M or 40M */ unsigned char Offset /* Upper, Lower, or Don't care */ ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); HT_CHANNEL_WIDTH tmpBW= pHalData->CurrentChannelBW; pHalData->CurrentChannelBW = Bandwidth; pHalData->nCur40MhzPrimeSC = Offset; if ((!Adapter->bDriverStopped) && (!Adapter->bSurpriseRemoved)) _PHY_SetBWMode92C(Adapter); else pHalData->CurrentChannelBW = tmpBW; } static void _PHY_SwChnl8192C(PADAPTER Adapter, u8 channel) { u8 eRFPath; u32 param1, param2; struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); if ( Adapter->bNotifyChannelChange ) { DBG_88E( "[%s] ch = %d\n", __func__, channel ); } /* s1. pre common command - CmdID_SetTxPowerLevel */ PHY_SetTxPowerLevel8188E(Adapter, channel); /* s2. RF dependent command - CmdID_RF_WriteReg, param1=RF_CHNLBW, param2=channel */ param1 = RF_CHNLBW; param2 = channel; for (eRFPath = 0; eRFPath NumTotalRFPath; eRFPath++) { pHalData->RfRegChnlVal[eRFPath] = ((pHalData->RfRegChnlVal[eRFPath] & 0xfffffc00) | param2); PHY_SetRFReg(Adapter, (enum rf_radio_path)eRFPath, param1, bRFRegOffsetMask, pHalData->RfRegChnlVal[eRFPath]); } } void PHY_SwChnl8188E( /* Call after initialization */ PADAPTER Adapter, u8 channel ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); u8 tmpchannel = pHalData->CurrentChannel; bool bResult = true; if (pHalData->rf_chip == RF_PSEUDO_11N) return; /* return immediately if it is peudo-phy */ /* */ switch (pHalData->CurrentWirelessMode) { case WIRELESS_MODE_A: case WIRELESS_MODE_N_5G: break; case WIRELESS_MODE_B: break; case WIRELESS_MODE_G: case WIRELESS_MODE_N_24G: break; default: break; } /* */ if (channel == 0) channel = 1; pHalData->CurrentChannel=channel; if ((!Adapter->bDriverStopped) && (!Adapter->bSurpriseRemoved)) { _PHY_SwChnl8192C(Adapter, channel); if (bResult) { ; } else { pHalData->CurrentChannel = tmpchannel; } } else { pHalData->CurrentChannel = tmpchannel; } } static bool phy_SwChnlStepByStep( PADAPTER Adapter, u8 channel, u8 *stage, u8 *step, u32 *delay ) { return true; } static bool phy_SetSwChnlCmdArray( struct sw_chnl_cmd *CmdTable, u32 CmdTableIdx, u32 CmdTableSz, enum sw_chnl_cmd_id CmdID, u32 Para1, u32 Para2, u32 msDelay ) { struct sw_chnl_cmd *pCmd; if (CmdTable == NULL) return false; if (CmdTableIdx >= CmdTableSz) return false; pCmd = CmdTable + CmdTableIdx; pCmd->CmdID = CmdID; pCmd->Para1 = Para1; pCmd->Para2 = Para2; pCmd->msDelay = msDelay; return true; } static void phy_FinishSwChnlNow( /* We should not call this function directly */ PADAPTER Adapter, u8 channel ) { } /* */ /* Description: */ /* Switch channel synchronously. Called by SwChnlByDelayHandler. */ /* */ /* Implemented by Bruce, 2008-02-14. */ /* The following procedure is operted according to SwChanlCallback8190Pci(). */ /* However, this procedure is performed synchronously which should be running under */ /* passive level. */ /* */ void PHY_SwChnlPhy8192C( /* Only called during initialize */ PADAPTER Adapter, u8 channel ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); /* return immediately if it is peudo-phy */ if (pHalData->rf_chip == RF_PSEUDO_11N) return; if ( channel == 0) channel = 1; pHalData->CurrentChannel=channel; phy_FinishSwChnlNow(Adapter,channel); } /* */ /* Description: */ /* Configure H/W functionality to enable/disable Monitor mode. */ /* Note, because we possibly need to configure BB and RF in this function, */ /* so caller should in PASSIVE_LEVEL. 080118, by rcnjko. */ /* */ void PHY_SetMonitorMode8192C( PADAPTER pAdapter, bool bEnableMonitorMode ) { } /*----------------------------------------------------------------------------- * Function: PHYCheckIsLegalRfPath8190Pci() * * Overview: Check different RF type to execute legal judgement. If RF Path is illegal * We will return false. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 11/15/2007 MHC Create Version 0. * *---------------------------------------------------------------------------*/ bool PHY_CheckIsLegalRfPath8192C(PADAPTER pAdapter, u32 eRFPath) { return true; } /* PHY_CheckIsLegalRfPath8192C */ static void _PHY_SetRFPathSwitch(PADAPTER pAdapter, bool bMain, bool is2T) { u8 u1bTmp; if (!pAdapter->hw_init_completed) { u1bTmp = rtw_read8(pAdapter, REG_LEDCFG2) | BIT7; rtw_write8(pAdapter, REG_LEDCFG2, u1bTmp); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT13, 0x01); } if (is2T) { if (bMain) PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6, 0x1); /* 92C_Path_A */ else PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6, 0x2); /* BT */ } else { if (bMain) PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300, 0x2); /* Main */ else PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300, 0x1); /* Aux */ } } static bool _PHY_QueryRFPathSwitch(PADAPTER pAdapter, bool is2T) { if (!pAdapter->hw_init_completed) { PHY_SetBBReg(pAdapter, REG_LEDCFG0, BIT23, 0x01); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT13, 0x01); } if (is2T) { if (PHY_QueryBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6) == 0x01) return true; else return false; } else { if (PHY_QueryBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300) == 0x02) return true; else return false; } } static void _PHY_DumpRFReg(PADAPTER pAdapter) { }