// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2007 - 2011 Realtek Corporation. */ #define _HAL_INIT_C_ #include "../include/drv_types.h" #include "../include/rtw_efuse.h" #include "../include/rtl8188e_hal.h" #include "../include/rtw_iol.h" #include "../include/usb_ops.h" #include "../include/rtw_fw.h" static void iol_mode_enable(struct adapter *padapter, u8 enable) { u8 reg_0xf0 = 0; if (enable) { /* Enable initial offload */ reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG); rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 | SW_OFFLOAD_EN); if (!padapter->bFWReady) rtw_reset_8051(padapter); } else { /* disable initial offload */ reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG); rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN); } } static s32 iol_execute(struct adapter *padapter, u8 control) { s32 status = _FAIL; u8 reg_0x88 = 0; u32 start = 0, passing_time = 0; control = control & 0x0f; reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0); rtw_write8(padapter, REG_HMEBOX_E0, reg_0x88 | control); start = jiffies; while ((reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0)) & control && (passing_time = rtw_get_passing_time_ms(start)) < 1000) { ; } reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0); status = (reg_0x88 & control) ? _FAIL : _SUCCESS; if (reg_0x88 & control << 4) status = _FAIL; return status; } static s32 iol_InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy) { s32 rst = _SUCCESS; iol_mode_enable(padapter, 1); rtw_write8(padapter, REG_TDECTRL + 1, txpktbuf_bndy); rst = iol_execute(padapter, CMD_INIT_LLT); iol_mode_enable(padapter, 0); return rst; } static void efuse_phymap_to_logical(u8 *phymap, u16 _offset, u16 _size_byte, u8 *pbuf) { u8 *efuseTbl = NULL; u8 rtemp8; u16 eFuse_Addr = 0; u8 offset, wren; u16 i, j; u16 **eFuseWord = NULL; u16 efuse_utilized = 0; u8 u1temp = 0; efuseTbl = kzalloc(EFUSE_MAP_LEN_88E, GFP_KERNEL); if (!efuseTbl) goto exit; eFuseWord = rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16)); if (!eFuseWord) goto exit; /* 0. Refresh efuse init map as all oxFF. */ for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) eFuseWord[i][j] = 0xFFFF; /* */ /* 1. Read the first byte to check if efuse is empty!!! */ /* */ /* */ rtemp8 = *(phymap + eFuse_Addr); if (rtemp8 != 0xFF) { efuse_utilized++; eFuse_Addr++; } else { goto exit; } /* */ /* 2. Read real efuse content. Filter PG header and every section data. */ /* */ while ((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { /* Check PG header for section num. */ if ((rtemp8 & 0x1F) == 0x0F) { /* extended header */ u1temp = ((rtemp8 & 0xE0) >> 5); rtemp8 = *(phymap + eFuse_Addr); if ((rtemp8 & 0x0F) == 0x0F) { eFuse_Addr++; rtemp8 = *(phymap + eFuse_Addr); if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) eFuse_Addr++; continue; } else { offset = ((rtemp8 & 0xF0) >> 1) | u1temp; wren = (rtemp8 & 0x0F); eFuse_Addr++; } } else { offset = ((rtemp8 >> 4) & 0x0f); wren = (rtemp8 & 0x0f); } if (offset < EFUSE_MAX_SECTION_88E) { /* Get word enable value from PG header */ for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wren & 0x01)) { rtemp8 = *(phymap + eFuse_Addr); eFuse_Addr++; efuse_utilized++; eFuseWord[offset][i] = (rtemp8 & 0xff); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; rtemp8 = *(phymap + eFuse_Addr); eFuse_Addr++; efuse_utilized++; eFuseWord[offset][i] |= (((u16)rtemp8 << 8) & 0xff00); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; } wren >>= 1; } } /* Read next PG header */ rtemp8 = *(phymap + eFuse_Addr); if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { efuse_utilized++; eFuse_Addr++; } } /* */ /* 3. Collect 16 sections and 4 word unit into Efuse map. */ /* */ for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) { for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) { efuseTbl[(i * 8) + (j * 2)] = (eFuseWord[i][j] & 0xff); efuseTbl[(i * 8) + ((j * 2) + 1)] = ((eFuseWord[i][j] >> 8) & 0xff); } } /* */ /* 4. Copy from Efuse map to output pointer memory!!! */ /* */ for (i = 0; i < _size_byte; i++) pbuf[i] = efuseTbl[_offset + i]; /* */ /* 5. Calculate Efuse utilization. */ /* */ exit: kfree(efuseTbl); kfree(eFuseWord); } static void efuse_read_phymap_from_txpktbuf( struct adapter *adapter, int bcnhead, /* beacon head, where FW store len(2-byte) and efuse physical map. */ u8 *content, /* buffer to store efuse physical map */ u16 *size /* for efuse content: the max byte to read. will update to byte read */ ) { u16 dbg_addr = 0; u32 start = 0, passing_time = 0; __le32 lo32 = 0, hi32 = 0; u16 len = 0, count = 0; int i = 0; u16 limit = *size; u8 *pos = content; if (bcnhead < 0) /* if not valid */ bcnhead = rtw_read8(adapter, REG_TDECTRL + 1); rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT); dbg_addr = bcnhead * 128 / 8; /* 8-bytes addressing */ while (1) { rtw_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr + i); rtw_write8(adapter, REG_TXPKTBUF_DBG, 0); start = jiffies; while (!rtw_read8(adapter, REG_TXPKTBUF_DBG) && (passing_time = rtw_get_passing_time_ms(start)) < 1000) rtw_usleep_os(100); /* data from EEPROM needs to be in LE */ lo32 = cpu_to_le32(rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L)); hi32 = cpu_to_le32(rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H)); if (i == 0) { /* Although lenc is only used in a debug statement, * do not remove it as the rtw_read16() call consumes * 2 bytes from the EEPROM source. */ rtw_read16(adapter, REG_PKTBUF_DBG_DATA_L); len = le32_to_cpu(lo32) & 0x0000ffff; limit = (len - 2 < limit) ? len - 2 : limit; memcpy(pos, ((u8 *)&lo32) + 2, (limit >= count + 2) ? 2 : limit - count); count += (limit >= count + 2) ? 2 : limit - count; pos = content + count; } else { memcpy(pos, ((u8 *)&lo32), (limit >= count + 4) ? 4 : limit - count); count += (limit >= count + 4) ? 4 : limit - count; pos = content + count; } if (limit > count && len - 2 > count) { memcpy(pos, (u8 *)&hi32, (limit >= count + 4) ? 4 : limit - count); count += (limit >= count + 4) ? 4 : limit - count; pos = content + count; } if (limit <= count || len - 2 <= count) break; i++; } rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS); *size = count; } static s32 iol_read_efuse(struct adapter *padapter, u8 txpktbuf_bndy, u16 offset, u16 size_byte, u8 *logical_map) { s32 status = _FAIL; u8 physical_map[512]; u16 size = 512; rtw_write8(padapter, REG_TDECTRL + 1, txpktbuf_bndy); memset(physical_map, 0xFF, 512); rtw_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT); status = iol_execute(padapter, CMD_READ_EFUSE_MAP); if (status == _SUCCESS) efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size); efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map); return status; } s32 rtl8188e_iol_efuse_patch(struct adapter *padapter) { s32 result = _SUCCESS; if (rtw_IOL_applied(padapter)) { iol_mode_enable(padapter, 1); result = iol_execute(padapter, CMD_READ_EFUSE_MAP); if (result == _SUCCESS) result = iol_execute(padapter, CMD_EFUSE_PATCH); iol_mode_enable(padapter, 0); } return result; } static s32 iol_ioconfig(struct adapter *padapter, u8 iocfg_bndy) { s32 rst = _SUCCESS; rtw_write8(padapter, REG_TDECTRL + 1, iocfg_bndy); rst = iol_execute(padapter, CMD_IOCONFIG); return rst; } int rtl8188e_IOL_exec_cmds_sync(struct adapter *adapter, struct xmit_frame *xmit_frame, u32 max_wating_ms, u32 bndy_cnt) { struct pkt_attrib *pattrib = &xmit_frame->attrib; u8 i; int ret = _FAIL; if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS) goto exit; if (rtw_usb_bulk_size_boundary(adapter, TXDESC_SIZE + pattrib->last_txcmdsz)) { if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS) goto exit; } dump_mgntframe_and_wait(adapter, xmit_frame, max_wating_ms); iol_mode_enable(adapter, 1); for (i = 0; i < bndy_cnt; i++) { u8 page_no = 0; page_no = i * 2; ret = iol_ioconfig(adapter, page_no); if (ret != _SUCCESS) break; } iol_mode_enable(adapter, 0); exit: /* restore BCN_HEAD */ rtw_write8(adapter, REG_TDECTRL + 1, 0); return ret; } void rtl8188e_EfusePowerSwitch(struct adapter *pAdapter, u8 PwrState) { u16 tmpV16; if (PwrState) { rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); /* 1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid */ tmpV16 = rtw_read16(pAdapter, REG_SYS_ISO_CTRL); if (!(tmpV16 & PWC_EV12V)) { tmpV16 |= PWC_EV12V; rtw_write16(pAdapter, REG_SYS_ISO_CTRL, tmpV16); } /* Reset: 0x0000h[28], default valid */ tmpV16 = rtw_read16(pAdapter, REG_SYS_FUNC_EN); if (!(tmpV16 & FEN_ELDR)) { tmpV16 |= FEN_ELDR; rtw_write16(pAdapter, REG_SYS_FUNC_EN, tmpV16); } /* Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */ tmpV16 = rtw_read16(pAdapter, REG_SYS_CLKR); if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) { tmpV16 |= (LOADER_CLK_EN | ANA8M); rtw_write16(pAdapter, REG_SYS_CLKR, tmpV16); } } else { rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF); } } static void Hal_EfuseReadEFuse88E(struct adapter *Adapter, u16 _offset, u16 _size_byte, u8 *pbuf) { u8 *efuseTbl = NULL; u8 rtemp8[1]; u16 eFuse_Addr = 0; u8 offset, wren; u16 i, j; u16 **eFuseWord = NULL; u16 efuse_utilized = 0; u8 u1temp = 0; /* */ /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */ /* */ if ((_offset + _size_byte) > EFUSE_MAP_LEN_88E) /* total E-Fuse table is 512bytes */ goto exit; efuseTbl = kzalloc(EFUSE_MAP_LEN_88E, GFP_KERNEL); if (!efuseTbl) goto exit; eFuseWord = rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16)); if (!eFuseWord) goto exit; /* 0. Refresh efuse init map as all oxFF. */ for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) eFuseWord[i][j] = 0xFFFF; /* */ /* 1. Read the first byte to check if efuse is empty!!! */ /* */ /* */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8); if (*rtemp8 != 0xFF) { efuse_utilized++; eFuse_Addr++; } else { goto exit; } /* */ /* 2. Read real efuse content. Filter PG header and every section data. */ /* */ while ((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { /* Check PG header for section num. */ if ((*rtemp8 & 0x1F) == 0x0F) { /* extended header */ u1temp = ((*rtemp8 & 0xE0) >> 5); ReadEFuseByte(Adapter, eFuse_Addr, rtemp8); if ((*rtemp8 & 0x0F) == 0x0F) { eFuse_Addr++; ReadEFuseByte(Adapter, eFuse_Addr, rtemp8); if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) eFuse_Addr++; continue; } else { offset = ((*rtemp8 & 0xF0) >> 1) | u1temp; wren = (*rtemp8 & 0x0F); eFuse_Addr++; } } else { offset = ((*rtemp8 >> 4) & 0x0f); wren = (*rtemp8 & 0x0f); } if (offset < EFUSE_MAX_SECTION_88E) { /* Get word enable value from PG header */ for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wren & 0x01)) { ReadEFuseByte(Adapter, eFuse_Addr, rtemp8); eFuse_Addr++; efuse_utilized++; eFuseWord[offset][i] = (*rtemp8 & 0xff); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; ReadEFuseByte(Adapter, eFuse_Addr, rtemp8); eFuse_Addr++; efuse_utilized++; eFuseWord[offset][i] |= (((u16)*rtemp8 << 8) & 0xff00); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; } wren >>= 1; } } /* Read next PG header */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8); if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { efuse_utilized++; eFuse_Addr++; } } /* 3. Collect 16 sections and 4 word unit into Efuse map. */ for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) { for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) { efuseTbl[(i * 8) + (j * 2)] = (eFuseWord[i][j] & 0xff); efuseTbl[(i * 8) + ((j * 2) + 1)] = ((eFuseWord[i][j] >> 8) & 0xff); } } /* 4. Copy from Efuse map to output pointer memory!!! */ for (i = 0; i < _size_byte; i++) pbuf[i] = efuseTbl[_offset + i]; exit: kfree(efuseTbl); kfree(eFuseWord); } static void ReadEFuseByIC(struct adapter *Adapter, u16 _offset, u16 _size_byte, u8 *pbuf) { int ret = _FAIL; if (rtw_IOL_applied(Adapter)) { rtl8188eu_InitPowerOn(Adapter); iol_mode_enable(Adapter, 1); ret = iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf); iol_mode_enable(Adapter, 0); if (_SUCCESS == ret) return; } Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf); } void rtl8188e_ReadEFuse(struct adapter *Adapter, u16 _offset, u16 _size_byte, u8 *pbuf) { ReadEFuseByIC(Adapter, _offset, _size_byte, pbuf); } void rtl8188e_read_chip_version(struct adapter *padapter) { u32 value32; struct HAL_VERSION ChipVersion; struct hal_data_8188e *pHalData = &padapter->haldata; value32 = rtw_read32(padapter, REG_SYS_CFG); ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP); ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC); ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK) >> CHIP_VER_RTL_SHIFT; /* IC version (CUT) */ ChipVersion.ROMVer = 0; /* ROM code version. */ dump_chip_info(ChipVersion); pHalData->VersionID = ChipVersion; } void rtl8188e_SetHalODMVar(struct adapter *Adapter, void *pValue1, bool bSet) { struct hal_data_8188e *pHalData = &Adapter->haldata; struct odm_dm_struct *podmpriv = &pHalData->odmpriv; struct sta_info *psta = (struct sta_info *)pValue1; if (bSet) { podmpriv->pODM_StaInfo[psta->mac_id] = psta; ODM_RAInfo_Init(podmpriv, psta->mac_id); } else { podmpriv->pODM_StaInfo[psta->mac_id] = NULL; } } void hal_notch_filter_8188e(struct adapter *adapter, bool enable) { if (enable) rtw_write8(adapter, rOFDM0_RxDSP + 1, rtw_read8(adapter, rOFDM0_RxDSP + 1) | BIT(1)); else rtw_write8(adapter, rOFDM0_RxDSP + 1, rtw_read8(adapter, rOFDM0_RxDSP + 1) & ~BIT(1)); } /* */ /* */ /* LLT R/W/Init function */ /* */ /* */ static s32 _LLTWrite(struct adapter *padapter, u32 address, u32 data) { s32 status = _SUCCESS; s32 count = 0; u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); u16 LLTReg = REG_LLT_INIT; rtw_write32(padapter, LLTReg, value); /* polling */ do { value = rtw_read32(padapter, LLTReg); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) break; if (count > POLLING_LLT_THRESHOLD) { status = _FAIL; break; } } while (count++); return status; } s32 InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy) { s32 status = _FAIL; u32 i; u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER;/* 176, 22k */ if (rtw_IOL_applied(padapter)) { status = iol_InitLLTTable(padapter, txpktbuf_bndy); } else { for (i = 0; i < (txpktbuf_bndy - 1); i++) { status = _LLTWrite(padapter, i, i + 1); if (_SUCCESS != status) return status; } /* end of list */ status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF); if (_SUCCESS != status) return status; /* Make the other pages as ring buffer */ /* This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */ /* Otherwise used as local loopback buffer. */ for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) { status = _LLTWrite(padapter, i, (i + 1)); if (_SUCCESS != status) return status; } /* Let last entry point to the start entry of ring buffer */ status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy); if (_SUCCESS != status) { return status; } } return status; } void Hal_EfuseParseIDCode88E( struct adapter *padapter, u8 *hwinfo ) { struct eeprom_priv *pEEPROM = &padapter->eeprompriv; u16 EEPROMId; /* Check 0x8129 again for making sure autoload status!! */ EEPROMId = le16_to_cpu(*((__le16 *)hwinfo)); if (EEPROMId != RTL_EEPROM_ID) { pr_err("EEPROM ID(%#x) is invalid!!\n", EEPROMId); pEEPROM->bautoload_fail_flag = true; } else { pEEPROM->bautoload_fail_flag = false; } pr_info("EEPROM ID = 0x%04x\n", EEPROMId); } static void Hal_ReadPowerValueFromPROM_8188E(struct txpowerinfo24g *pwrInfo24G, u8 *PROMContent, bool AutoLoadFail) { u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_88E, group, TxCount = 0; memset(pwrInfo24G, 0, sizeof(struct txpowerinfo24g)); if (AutoLoadFail) { for (rfPath = 0; rfPath < RF_PATH_MAX; rfPath++) { /* 2.4G default value */ for (group = 0; group < MAX_CHNL_GROUP_24G; group++) { pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; } for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) { if (TxCount == 0) { pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF; pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF; } else { pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } } } return; } for (rfPath = 0; rfPath < RF_PATH_MAX; rfPath++) { /* 2.4G default value */ for (group = 0; group < MAX_CHNL_GROUP_24G; group++) { pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++]; if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF) pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; } for (group = 0; group < MAX_CHNL_GROUP_24G - 1; group++) { pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++]; if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF) pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; } for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) { if (TxCount == 0) { pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0; if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF; } else { pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr] & 0xf0) >> 4; if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT(3)) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0; } if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF; } else { pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr] & 0x0f); if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT(3)) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0; } pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0; eeAddr++; } else { if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } else { pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr] & 0xf0) >> 4; if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT(3)) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0; } if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } else { pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr] & 0x0f); if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT(3)) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0; } eeAddr++; if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } else { pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr] & 0xf0) >> 4; if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT(3)) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0; } if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } else { pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr] & 0x0f); if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT(3)) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0; } eeAddr++; } } } } static void hal_get_chnl_group_88e(u8 chnl, u8 *group) { if (chnl < 3) /* Channel 1-2 */ *group = 0; else if (chnl < 6) /* Channel 3-5 */ *group = 1; else if (chnl < 9) /* Channel 6-8 */ *group = 2; else if (chnl < 12) /* Channel 9-11 */ *group = 3; else if (chnl < 14) /* Channel 12-13 */ *group = 4; else if (chnl == 14) /* Channel 14 */ *group = 5; } void Hal_ReadPowerSavingMode88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail) { if (AutoLoadFail) padapter->pwrctrlpriv.bSupportRemoteWakeup = false; else /* hw power down mode selection , 0:rf-off / 1:power down */ /* decide hw if support remote wakeup function */ /* if hw supported, 8051 (SIE) will generate WeakUP signal(D+/D- toggle) when autoresume */ padapter->pwrctrlpriv.bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT(1)) ? true : false; } void Hal_ReadTxPowerInfo88E(struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail) { struct hal_data_8188e *pHalData = &padapter->haldata; struct txpowerinfo24g pwrInfo24G; u8 ch, group; u8 TxCount; Hal_ReadPowerValueFromPROM_8188E(&pwrInfo24G, PROMContent, AutoLoadFail); for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) { hal_get_chnl_group_88e(ch, &group); pHalData->Index24G_CCK_Base[ch] = pwrInfo24G.IndexCCK_Base[0][group]; if (ch == 14) pHalData->Index24G_BW40_Base[ch] = pwrInfo24G.IndexBW40_Base[0][4]; else pHalData->Index24G_BW40_Base[ch] = pwrInfo24G.IndexBW40_Base[0][group]; } for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) { pHalData->OFDM_24G_Diff[TxCount] = pwrInfo24G.OFDM_Diff[0][TxCount]; pHalData->BW20_24G_Diff[TxCount] = pwrInfo24G.BW20_Diff[0][TxCount]; } /* 2010/10/19 MH Add Regulator recognize for CU. */ if (!AutoLoadFail) { pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_88E] & 0x7); /* bit0~2 */ if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF) pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION & 0x7); /* bit0~2 */ } else { pHalData->EEPROMRegulatory = 0; } } void Hal_EfuseParseXtal_8188E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail) { struct hal_data_8188e *pHalData = &pAdapter->haldata; if (!AutoLoadFail) { pHalData->CrystalCap = hwinfo[EEPROM_XTAL_88E]; if (pHalData->CrystalCap == 0xFF) pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E; } else { pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E; } } void rtl8188e_EfuseParseChnlPlan(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail) { padapter->mlmepriv.ChannelPlan = hal_com_get_channel_plan(padapter, hwinfo ? hwinfo[EEPROM_ChannelPlan_88E] : 0xFF, padapter->registrypriv.channel_plan, RT_CHANNEL_DOMAIN_WORLD_WIDE_13, AutoLoadFail); } void Hal_ReadAntennaDiversity88E(struct adapter *pAdapter, u8 *PROMContent, bool AutoLoadFail) { struct hal_data_8188e *pHalData = &pAdapter->haldata; struct registry_priv *registry_par = &pAdapter->registrypriv; if (!AutoLoadFail) { /* Antenna Diversity setting. */ if (registry_par->antdiv_cfg == 2) { /* 2:By EFUSE */ pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_88E] & 0x18) >> 3; if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF) pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION & 0x18) >> 3; } else { pHalData->AntDivCfg = registry_par->antdiv_cfg; /* 0:OFF , 1:ON, 2:By EFUSE */ } if (registry_par->antdiv_type == 0) { /* If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead. */ pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_88E]; if (pHalData->TRxAntDivType == 0xFF) pHalData->TRxAntDivType = CG_TRX_HW_ANTDIV; /* For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port) */ } else { pHalData->TRxAntDivType = registry_par->antdiv_type; } if (pHalData->TRxAntDivType == CG_TRX_HW_ANTDIV || pHalData->TRxAntDivType == CGCS_RX_HW_ANTDIV) pHalData->AntDivCfg = 1; /* 0xC1[3] is ignored. */ } else { pHalData->AntDivCfg = 0; } } void Hal_ReadThermalMeter_88E(struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail) { struct hal_data_8188e *pHalData = &Adapter->haldata; /* ThermalMeter from EEPROM */ if (!AutoloadFail) pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_88E]; else pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E; if (pHalData->EEPROMThermalMeter == 0xff || AutoloadFail) pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E; }