/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _HAL_INIT_C_ #include #include #include #include #include #include static void iol_mode_enable(struct adapter *padapter, u8 enable) { u8 reg_0xf0 = 0; if (enable) { /* Enable initial offload */ reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG); rtw_write8(padapter, REG_SYS_CFG, reg_0xf0|SW_OFFLOAD_EN); if (!padapter->bFWReady) { DBG_88E("bFWReady == false call reset 8051...\n"); _8051Reset88E(padapter); } } else { /* disable initial offload */ reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG); rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN); } } static s32 iol_execute(struct adapter *padapter, u8 control) { s32 status = _FAIL; u8 reg_0x88 = 0; u32 start = 0, passing_time = 0; control = control&0x0f; reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0); rtw_write8(padapter, REG_HMEBOX_E0, reg_0x88|control); start = rtw_get_current_time(); while ((reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0)) & control && (passing_time = rtw_get_passing_time_ms(start)) < 1000) { ; } reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0); status = (reg_0x88 & control) ? _FAIL : _SUCCESS; if (reg_0x88 & control<<4) status = _FAIL; return status; } static s32 iol_InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy) { s32 rst = _SUCCESS; iol_mode_enable(padapter, 1); rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy); rst = iol_execute(padapter, CMD_INIT_LLT); iol_mode_enable(padapter, 0); return rst; } static void efuse_phymap_to_logical(u8 *phymap, u16 _offset, u16 _size_byte, u8 *pbuf) { u8 *efuseTbl = NULL; u8 rtemp8; u16 eFuse_Addr = 0; u8 offset, wren; u16 i, j; u16 **eFuseWord = NULL; u16 efuse_utilized = 0; u8 u1temp = 0; efuseTbl = (u8 *)rtw_zmalloc(EFUSE_MAP_LEN_88E); if (efuseTbl == NULL) { DBG_88E("%s: alloc efuseTbl fail!\n", __func__); goto exit; } eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16)); if (eFuseWord == NULL) { DBG_88E("%s: alloc eFuseWord fail!\n", __func__); goto exit; } /* 0. Refresh efuse init map as all oxFF. */ for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) eFuseWord[i][j] = 0xFFFF; /* */ /* 1. Read the first byte to check if efuse is empty!!! */ /* */ /* */ rtemp8 = *(phymap+eFuse_Addr); if (rtemp8 != 0xFF) { efuse_utilized++; eFuse_Addr++; } else { DBG_88E("EFUSE is empty efuse_Addr-%d efuse_data =%x\n", eFuse_Addr, rtemp8); goto exit; } /* */ /* 2. Read real efuse content. Filter PG header and every section data. */ /* */ while ((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { /* Check PG header for section num. */ if ((rtemp8 & 0x1F) == 0x0F) { /* extended header */ u1temp = ((rtemp8 & 0xE0) >> 5); rtemp8 = *(phymap+eFuse_Addr); if ((rtemp8 & 0x0F) == 0x0F) { eFuse_Addr++; rtemp8 = *(phymap+eFuse_Addr); if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) eFuse_Addr++; continue; } else { offset = ((rtemp8 & 0xF0) >> 1) | u1temp; wren = (rtemp8 & 0x0F); eFuse_Addr++; } } else { offset = ((rtemp8 >> 4) & 0x0f); wren = (rtemp8 & 0x0f); } if (offset < EFUSE_MAX_SECTION_88E) { /* Get word enable value from PG header */ for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wren & 0x01)) { rtemp8 = *(phymap+eFuse_Addr); eFuse_Addr++; efuse_utilized++; eFuseWord[offset][i] = (rtemp8 & 0xff); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; rtemp8 = *(phymap+eFuse_Addr); eFuse_Addr++; efuse_utilized++; eFuseWord[offset][i] |= (((u16)rtemp8 << 8) & 0xff00); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; } wren >>= 1; } } /* Read next PG header */ rtemp8 = *(phymap+eFuse_Addr); if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { efuse_utilized++; eFuse_Addr++; } } /* */ /* 3. Collect 16 sections and 4 word unit into Efuse map. */ /* */ for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) { for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) { efuseTbl[(i*8)+(j*2)] = (eFuseWord[i][j] & 0xff); efuseTbl[(i*8)+((j*2)+1)] = ((eFuseWord[i][j] >> 8) & 0xff); } } /* */ /* 4. Copy from Efuse map to output pointer memory!!! */ /* */ for (i = 0; i < _size_byte; i++) pbuf[i] = efuseTbl[_offset+i]; /* */ /* 5. Calculate Efuse utilization. */ /* */ exit: kfree(efuseTbl); if (eFuseWord) rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16)); } static void efuse_read_phymap_from_txpktbuf( struct adapter *adapter, int bcnhead, /* beacon head, where FW store len(2-byte) and efuse physical map. */ u8 *content, /* buffer to store efuse physical map */ u16 *size /* for efuse content: the max byte to read. will update to byte read */ ) { u16 dbg_addr = 0; u32 start = 0, passing_time = 0; u8 reg_0x143 = 0; u32 lo32 = 0, hi32 = 0; u16 len = 0, count = 0; int i = 0; u16 limit = *size; u8 *pos = content; if (bcnhead < 0) /* if not valid */ bcnhead = rtw_read8(adapter, REG_TDECTRL+1); DBG_88E("%s bcnhead:%d\n", __func__, bcnhead); rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT); dbg_addr = bcnhead*128/8; /* 8-bytes addressing */ while (1) { rtw_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr+i); rtw_write8(adapter, REG_TXPKTBUF_DBG, 0); start = rtw_get_current_time(); while (!(reg_0x143 = rtw_read8(adapter, REG_TXPKTBUF_DBG)) && (passing_time = rtw_get_passing_time_ms(start)) < 1000) { DBG_88E("%s polling reg_0x143:0x%02x, reg_0x106:0x%02x\n", __func__, reg_0x143, rtw_read8(adapter, 0x106)); rtw_usleep_os(100); } lo32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L); hi32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H); if (i == 0) { u8 lenc[2]; u16 lenbak, aaabak; u16 aaa; lenc[0] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L); lenc[1] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+1); aaabak = le16_to_cpup((__le16 *)lenc); lenbak = le16_to_cpu(*((__le16 *)lenc)); aaa = le16_to_cpup((__le16 *)&lo32); len = le16_to_cpu(*((__le16 *)&lo32)); limit = (len-2 < limit) ? len-2 : limit; DBG_88E("%s len:%u, lenbak:%u, aaa:%u, aaabak:%u\n", __func__, len, lenbak, aaa, aaabak); memcpy(pos, ((u8 *)&lo32)+2, (limit >= count+2) ? 2 : limit-count); count += (limit >= count+2) ? 2 : limit-count; pos = content+count; } else { memcpy(pos, ((u8 *)&lo32), (limit >= count+4) ? 4 : limit-count); count += (limit >= count+4) ? 4 : limit-count; pos = content+count; } if (limit > count && len-2 > count) { memcpy(pos, (u8 *)&hi32, (limit >= count+4) ? 4 : limit-count); count += (limit >= count+4) ? 4 : limit-count; pos = content+count; } if (limit <= count || len-2 <= count) break; i++; } rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS); DBG_88E("%s read count:%u\n", __func__, count); *size = count; } static s32 iol_read_efuse(struct adapter *padapter, u8 txpktbuf_bndy, u16 offset, u16 size_byte, u8 *logical_map) { s32 status = _FAIL; u8 physical_map[512]; u16 size = 512; rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy); _rtw_memset(physical_map, 0xFF, 512); rtw_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT); status = iol_execute(padapter, CMD_READ_EFUSE_MAP); if (status == _SUCCESS) efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size); efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map); return status; } s32 rtl8188e_iol_efuse_patch(struct adapter *padapter) { s32 result = _SUCCESS; DBG_88E("==> %s\n", __func__); if (rtw_IOL_applied(padapter)) { iol_mode_enable(padapter, 1); result = iol_execute(padapter, CMD_READ_EFUSE_MAP); if (result == _SUCCESS) result = iol_execute(padapter, CMD_EFUSE_PATCH); iol_mode_enable(padapter, 0); } return result; } static s32 iol_ioconfig(struct adapter *padapter, u8 iocfg_bndy) { s32 rst = _SUCCESS; rtw_write8(padapter, REG_TDECTRL+1, iocfg_bndy); rst = iol_execute(padapter, CMD_IOCONFIG); return rst; } static int rtl8188e_IOL_exec_cmds_sync(struct adapter *adapter, struct xmit_frame *xmit_frame, u32 max_wating_ms, u32 bndy_cnt) { struct pkt_attrib *pattrib = &xmit_frame->attrib; u8 i; int ret = _FAIL; if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS) goto exit; if (rtw_usb_bulk_size_boundary(adapter, TXDESC_SIZE+pattrib->last_txcmdsz)) { if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS) goto exit; } dump_mgntframe_and_wait(adapter, xmit_frame, max_wating_ms); iol_mode_enable(adapter, 1); for (i = 0; i < bndy_cnt; i++) { u8 page_no = 0; page_no = i*2; ret = iol_ioconfig(adapter, page_no); if (ret != _SUCCESS) break; } iol_mode_enable(adapter, 0); exit: /* restore BCN_HEAD */ rtw_write8(adapter, REG_TDECTRL+1, 0); return ret; } void rtw_IOL_cmd_tx_pkt_buf_dump(struct adapter *Adapter, int data_len) { u32 fifo_data, reg_140; u32 addr, rstatus, loop = 0; u16 data_cnts = (data_len/8)+1; u8 *pbuf = rtw_zvmalloc(data_len+10); DBG_88E("###### %s ######\n", __func__); rtw_write8(Adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT); if (pbuf) { for (addr = 0; addr < data_cnts; addr++) { rtw_write32(Adapter, 0x140, addr); rtw_usleep_os(2); loop = 0; do { rstatus = (reg_140 = rtw_read32(Adapter, REG_PKTBUF_DBG_CTRL)&BIT24); if (rstatus) { fifo_data = rtw_read32(Adapter, REG_PKTBUF_DBG_DATA_L); memcpy(pbuf+(addr*8), &fifo_data, 4); fifo_data = rtw_read32(Adapter, REG_PKTBUF_DBG_DATA_H); memcpy(pbuf+(addr*8+4), &fifo_data, 4); } rtw_usleep_os(2); } while (!rstatus && (loop++ < 10)); } rtw_IOL_cmd_buf_dump(Adapter, data_len, pbuf); rtw_vmfree(pbuf, data_len+10); } DBG_88E("###### %s ######\n", __func__); } static void _FWDownloadEnable(struct adapter *padapter, bool enable) { u8 tmp; if (enable) { /* MCU firmware download enable. */ tmp = rtw_read8(padapter, REG_MCUFWDL); rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01); /* 8051 reset */ tmp = rtw_read8(padapter, REG_MCUFWDL+2); rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7); } else { /* MCU firmware download disable. */ tmp = rtw_read8(padapter, REG_MCUFWDL); rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe); /* Reserved for fw extension. */ rtw_write8(padapter, REG_MCUFWDL+1, 0x00); } } #define MAX_REG_BOLCK_SIZE 196 static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize) { int ret = _SUCCESS; u32 blockSize_p1 = 4; /* (Default) Phase #1 : PCI muse use 4-byte write to download FW */ u32 blockSize_p2 = 8; /* Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */ u32 blockSize_p3 = 1; /* Phase #3 : Use 1-byte, the remnant of FW image. */ u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0; u32 remainSize_p1 = 0, remainSize_p2 = 0; u8 *bufferPtr = (u8 *)buffer; u32 i = 0, offset = 0; blockSize_p1 = MAX_REG_BOLCK_SIZE; /* 3 Phase #1 */ blockCount_p1 = buffSize / blockSize_p1; remainSize_p1 = buffSize % blockSize_p1; if (blockCount_p1) { RT_TRACE(_module_hal_init_c_, _drv_notice_, ("_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n", buffSize, blockSize_p1, blockCount_p1, remainSize_p1)); } for (i = 0; i < blockCount_p1; i++) { ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1)); if (ret == _FAIL) goto exit; } /* 3 Phase #2 */ if (remainSize_p1) { offset = blockCount_p1 * blockSize_p1; blockCount_p2 = remainSize_p1/blockSize_p2; remainSize_p2 = remainSize_p1%blockSize_p2; if (blockCount_p2) { RT_TRACE(_module_hal_init_c_, _drv_notice_, ("_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n", (buffSize-offset), blockSize_p2 , blockCount_p2, remainSize_p2)); } for (i = 0; i < blockCount_p2; i++) { ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + offset + i*blockSize_p2), blockSize_p2, (bufferPtr + offset + i*blockSize_p2)); if (ret == _FAIL) goto exit; } } /* 3 Phase #3 */ if (remainSize_p2) { offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2); blockCount_p3 = remainSize_p2 / blockSize_p3; RT_TRACE(_module_hal_init_c_, _drv_notice_, ("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n", (buffSize-offset), blockSize_p3, blockCount_p3)); for (i = 0; i < blockCount_p3; i++) { ret = rtw_write8(padapter, (FW_8188E_START_ADDRESS + offset + i), *(bufferPtr + offset + i)); if (ret == _FAIL) goto exit; } } exit: return ret; } static int _PageWrite(struct adapter *padapter, u32 page, void *buffer, u32 size) { u8 value8; u8 u8Page = (u8)(page & 0x07); value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page; rtw_write8(padapter, REG_MCUFWDL+2, value8); return _BlockWrite(padapter, buffer, size); } static int _WriteFW(struct adapter *padapter, void *buffer, u32 size) { /* Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */ /* We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */ int ret = _SUCCESS; u32 pageNums, remainSize; u32 page, offset; u8 *bufferPtr = (u8 *)buffer; pageNums = size / MAX_PAGE_SIZE; remainSize = size % MAX_PAGE_SIZE; for (page = 0; page < pageNums; page++) { offset = page * MAX_PAGE_SIZE; ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_PAGE_SIZE); if (ret == _FAIL) goto exit; } if (remainSize) { offset = pageNums * MAX_PAGE_SIZE; page = pageNums; ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize); if (ret == _FAIL) goto exit; } RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n")); exit: return ret; } void _8051Reset88E(struct adapter *padapter) { u8 u1bTmp; u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1); rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2)); rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp|(BIT2)); DBG_88E("=====> _8051Reset88E(): 8051 reset success .\n"); } static s32 _FWFreeToGo(struct adapter *padapter) { u32 counter = 0; u32 value32; /* polling CheckSum report */ do { value32 = rtw_read32(padapter, REG_MCUFWDL); if (value32 & FWDL_ChkSum_rpt) break; } while (counter++ < POLLING_READY_TIMEOUT_COUNT); if (counter >= POLLING_READY_TIMEOUT_COUNT) { DBG_88E("%s: chksum report fail! REG_MCUFWDL:0x%08x\n", __func__, value32); return _FAIL; } DBG_88E("%s: Checksum report OK! REG_MCUFWDL:0x%08x\n", __func__, value32); value32 = rtw_read32(padapter, REG_MCUFWDL); value32 |= MCUFWDL_RDY; value32 &= ~WINTINI_RDY; rtw_write32(padapter, REG_MCUFWDL, value32); _8051Reset88E(padapter); /* polling for FW ready */ counter = 0; do { value32 = rtw_read32(padapter, REG_MCUFWDL); if (value32 & WINTINI_RDY) { DBG_88E("%s: Polling FW ready success!! REG_MCUFWDL:0x%08x\n", __func__, value32); return _SUCCESS; } rtw_udelay_os(5); } while (counter++ < POLLING_READY_TIMEOUT_COUNT); DBG_88E("%s: Polling FW ready fail!! REG_MCUFWDL:0x%08x\n", __func__, value32); return _FAIL; } #define IS_FW_81xxC(padapter) (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0) static int load_firmware(struct rt_firmware *pFirmware, struct device *device) { s32 rtStatus = _SUCCESS; const struct firmware *fw; const char *fw_name = "rtlwifi/rtl8188eufw.bin"; int err = request_firmware(&fw, fw_name, device); if (err) { pr_err("Request firmware failed with error 0x%x\n", err); rtStatus = _FAIL; goto Exit; } if (!fw) { pr_err("Firmware %s not available\n", fw_name); rtStatus = _FAIL; goto Exit; } if (fw->size > FW_8188E_SIZE) { rtStatus = _FAIL; RT_TRACE(_module_hal_init_c_, _drv_err_, ("Firmware size exceed 0x%X. Check it.\n", FW_8188E_SIZE)); goto Exit; } pFirmware->szFwBuffer = kzalloc(FW_8188E_SIZE, GFP_KERNEL); if (!pFirmware->szFwBuffer) { pr_err("Failed to allocate pFirmware->szFwBuffer\n"); rtStatus = _FAIL; goto Exit; } memcpy(pFirmware->szFwBuffer, fw->data, fw->size); pFirmware->ulFwLength = fw->size; release_firmware(fw); DBG_88E_LEVEL(_drv_info_, "+%s: !bUsedWoWLANFw, FmrmwareLen:%d+\n", __func__, pFirmware->ulFwLength); Exit: return rtStatus; } s32 rtl8188e_FirmwareDownload(struct adapter *padapter) { s32 rtStatus = _SUCCESS; u8 writeFW_retry = 0; u32 fwdl_start_time; struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter); struct dvobj_priv *dvobj = adapter_to_dvobj(padapter); struct device *device = dvobj_to_dev(dvobj); struct rt_firmware_hdr *pFwHdr = NULL; u8 *pFirmwareBuf; u32 FirmwareLen; static int log_version; RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __func__)); if (!dvobj->firmware.szFwBuffer) rtStatus = load_firmware(&dvobj->firmware, device); if (rtStatus == _FAIL) { dvobj->firmware.szFwBuffer = NULL; goto Exit; } pFirmwareBuf = dvobj->firmware.szFwBuffer; FirmwareLen = dvobj->firmware.ulFwLength; /* To Check Fw header. Added by tynli. 2009.12.04. */ pFwHdr = (struct rt_firmware_hdr *)dvobj->firmware.szFwBuffer; pHalData->FirmwareVersion = le16_to_cpu(pFwHdr->Version); pHalData->FirmwareSubVersion = pFwHdr->Subversion; pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature); if (!log_version++) pr_info("%sFirmware Version %d, SubVersion %d, Signature 0x%x\n", DRIVER_PREFIX, pHalData->FirmwareVersion, pHalData->FirmwareSubVersion, pHalData->FirmwareSignature); if (IS_FW_HEADER_EXIST(pFwHdr)) { /* Shift 32 bytes for FW header */ pFirmwareBuf = pFirmwareBuf + 32; FirmwareLen = FirmwareLen - 32; } /* Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */ /* or it will cause download Fw fail. 2010.02.01. by tynli. */ if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */ rtw_write8(padapter, REG_MCUFWDL, 0x00); _8051Reset88E(padapter); } _FWDownloadEnable(padapter, true); fwdl_start_time = rtw_get_current_time(); while (1) { /* reset the FWDL chksum */ rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL) | FWDL_ChkSum_rpt); rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen); if (rtStatus == _SUCCESS || (rtw_get_passing_time_ms(fwdl_start_time) > 500 && writeFW_retry++ >= 3)) break; DBG_88E("%s writeFW_retry:%u, time after fwdl_start_time:%ums\n", __func__, writeFW_retry, rtw_get_passing_time_ms(fwdl_start_time) ); } _FWDownloadEnable(padapter, false); if (_SUCCESS != rtStatus) { DBG_88E("DL Firmware failed!\n"); goto Exit; } rtStatus = _FWFreeToGo(padapter); if (_SUCCESS != rtStatus) { DBG_88E("DL Firmware failed!\n"); goto Exit; } RT_TRACE(_module_hal_init_c_, _drv_info_, ("Firmware is ready to run!\n")); Exit: return rtStatus; } void rtl8188e_InitializeFirmwareVars(struct adapter *padapter) { struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter); /* Init Fw LPS related. */ padapter->pwrctrlpriv.bFwCurrentInPSMode = false; /* Init H2C counter. by tynli. 2009.12.09. */ pHalData->LastHMEBoxNum = 0; } static void rtl8188e_free_hal_data(struct adapter *padapter) { _func_enter_; kfree(padapter->HalData); padapter->HalData = NULL; _func_exit_; } /* */ /* Efuse related code */ /* */ enum{ VOLTAGE_V25 = 0x03, LDOE25_SHIFT = 28 , }; static bool hal_EfusePgPacketWrite2ByteHeader( struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest); static bool hal_EfusePgPacketWrite1ByteHeader( struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest); static bool hal_EfusePgPacketWriteData( struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest); static void hal_EfusePowerSwitch_RTL8188E( struct adapter *pAdapter, u8 bWrite, u8 PwrState) { u8 tempval; u16 tmpV16; if (PwrState) { rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); /* 1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid */ tmpV16 = rtw_read16(pAdapter, REG_SYS_ISO_CTRL); if (!(tmpV16 & PWC_EV12V)) { tmpV16 |= PWC_EV12V; rtw_write16(pAdapter, REG_SYS_ISO_CTRL, tmpV16); } /* Reset: 0x0000h[28], default valid */ tmpV16 = rtw_read16(pAdapter, REG_SYS_FUNC_EN); if (!(tmpV16 & FEN_ELDR)) { tmpV16 |= FEN_ELDR; rtw_write16(pAdapter, REG_SYS_FUNC_EN, tmpV16); } /* Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */ tmpV16 = rtw_read16(pAdapter, REG_SYS_CLKR); if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) { tmpV16 |= (LOADER_CLK_EN | ANA8M); rtw_write16(pAdapter, REG_SYS_CLKR, tmpV16); } if (bWrite) { /* Enable LDO 2.5V before read/write action */ tempval = rtw_read8(pAdapter, EFUSE_TEST+3); tempval &= 0x0F; tempval |= (VOLTAGE_V25 << 4); rtw_write8(pAdapter, EFUSE_TEST+3, (tempval | 0x80)); } } else { rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF); if (bWrite) { /* Disable LDO 2.5V after read/write action */ tempval = rtw_read8(pAdapter, EFUSE_TEST+3); rtw_write8(pAdapter, EFUSE_TEST+3, (tempval & 0x7F)); } } } static void rtl8188e_EfusePowerSwitch( struct adapter *pAdapter, u8 bWrite, u8 PwrState) { hal_EfusePowerSwitch_RTL8188E(pAdapter, bWrite, PwrState); } static void Hal_EfuseReadEFuse88E(struct adapter *Adapter, u16 _offset, u16 _size_byte, u8 *pbuf, bool bPseudoTest ) { u8 *efuseTbl = NULL; u8 rtemp8[1]; u16 eFuse_Addr = 0; u8 offset, wren; u16 i, j; u16 **eFuseWord = NULL; u16 efuse_utilized = 0; u8 u1temp = 0; /* */ /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */ /* */ if ((_offset + _size_byte) > EFUSE_MAP_LEN_88E) {/* total E-Fuse table is 512bytes */ DBG_88E("Hal_EfuseReadEFuse88E(): Invalid offset(%#x) with read bytes(%#x)!!\n", _offset, _size_byte); goto exit; } efuseTbl = (u8 *)rtw_zmalloc(EFUSE_MAP_LEN_88E); if (efuseTbl == NULL) { DBG_88E("%s: alloc efuseTbl fail!\n", __func__); goto exit; } eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16)); if (eFuseWord == NULL) { DBG_88E("%s: alloc eFuseWord fail!\n", __func__); goto exit; } /* 0. Refresh efuse init map as all oxFF. */ for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) eFuseWord[i][j] = 0xFFFF; /* */ /* 1. Read the first byte to check if efuse is empty!!! */ /* */ /* */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); if (*rtemp8 != 0xFF) { efuse_utilized++; eFuse_Addr++; } else { DBG_88E("EFUSE is empty efuse_Addr-%d efuse_data =%x\n", eFuse_Addr, *rtemp8); goto exit; } /* */ /* 2. Read real efuse content. Filter PG header and every section data. */ /* */ while ((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { /* Check PG header for section num. */ if ((*rtemp8 & 0x1F) == 0x0F) { /* extended header */ u1temp = ((*rtemp8 & 0xE0) >> 5); ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); if ((*rtemp8 & 0x0F) == 0x0F) { eFuse_Addr++; ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) eFuse_Addr++; continue; } else { offset = ((*rtemp8 & 0xF0) >> 1) | u1temp; wren = (*rtemp8 & 0x0F); eFuse_Addr++; } } else { offset = ((*rtemp8 >> 4) & 0x0f); wren = (*rtemp8 & 0x0f); } if (offset < EFUSE_MAX_SECTION_88E) { /* Get word enable value from PG header */ for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wren & 0x01)) { ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); eFuse_Addr++; efuse_utilized++; eFuseWord[offset][i] = (*rtemp8 & 0xff); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); eFuse_Addr++; efuse_utilized++; eFuseWord[offset][i] |= (((u16)*rtemp8 << 8) & 0xff00); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; } wren >>= 1; } } /* Read next PG header */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { efuse_utilized++; eFuse_Addr++; } } /* 3. Collect 16 sections and 4 word unit into Efuse map. */ for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) { for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) { efuseTbl[(i*8)+(j*2)] = (eFuseWord[i][j] & 0xff); efuseTbl[(i*8)+((j*2)+1)] = ((eFuseWord[i][j] >> 8) & 0xff); } } /* 4. Copy from Efuse map to output pointer memory!!! */ for (i = 0; i < _size_byte; i++) pbuf[i] = efuseTbl[_offset+i]; /* 5. Calculate Efuse utilization. */ rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr); exit: kfree(efuseTbl); if (eFuseWord) rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16)); } static void ReadEFuseByIC(struct adapter *Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, bool bPseudoTest) { if (!bPseudoTest) { int ret = _FAIL; if (rtw_IOL_applied(Adapter)) { rtw_hal_power_on(Adapter); iol_mode_enable(Adapter, 1); ret = iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf); iol_mode_enable(Adapter, 0); if (_SUCCESS == ret) goto exit; } } Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest); exit: return; } static void ReadEFuse_Pseudo(struct adapter *Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, bool bPseudoTest) { Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest); } static void rtl8188e_ReadEFuse(struct adapter *Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, bool bPseudoTest) { if (bPseudoTest) ReadEFuse_Pseudo (Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest); else ReadEFuseByIC(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest); } /* Do not support BT */ static void Hal_EFUSEGetEfuseDefinition88E(struct adapter *pAdapter, u8 efuseType, u8 type, void *pOut) { switch (type) { case TYPE_EFUSE_MAX_SECTION: { u8 *pMax_section; pMax_section = (u8 *)pOut; *pMax_section = EFUSE_MAX_SECTION_88E; } break; case TYPE_EFUSE_REAL_CONTENT_LEN: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E; } break; case TYPE_EFUSE_CONTENT_LEN_BANK: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E; } break; case TYPE_AVAILABLE_EFUSE_BYTES_BANK: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E); } break; case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E); } break; case TYPE_EFUSE_MAP_LEN: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = (u16)EFUSE_MAP_LEN_88E; } break; case TYPE_EFUSE_PROTECT_BYTES_BANK: { u8 *pu1Tmp; pu1Tmp = (u8 *)pOut; *pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E); } break; default: { u8 *pu1Tmp; pu1Tmp = (u8 *)pOut; *pu1Tmp = 0; } break; } } static void Hal_EFUSEGetEfuseDefinition_Pseudo88E(struct adapter *pAdapter, u8 efuseType, u8 type, void *pOut) { switch (type) { case TYPE_EFUSE_MAX_SECTION: { u8 *pMax_section; pMax_section = (u8 *)pOut; *pMax_section = EFUSE_MAX_SECTION_88E; } break; case TYPE_EFUSE_REAL_CONTENT_LEN: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E; } break; case TYPE_EFUSE_CONTENT_LEN_BANK: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E; } break; case TYPE_AVAILABLE_EFUSE_BYTES_BANK: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E); } break; case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E); } break; case TYPE_EFUSE_MAP_LEN: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = (u16)EFUSE_MAP_LEN_88E; } break; case TYPE_EFUSE_PROTECT_BYTES_BANK: { u8 *pu1Tmp; pu1Tmp = (u8 *)pOut; *pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E); } break; default: { u8 *pu1Tmp; pu1Tmp = (u8 *)pOut; *pu1Tmp = 0; } break; } } static void rtl8188e_EFUSE_GetEfuseDefinition(struct adapter *pAdapter, u8 efuseType, u8 type, void *pOut, bool bPseudoTest) { if (bPseudoTest) Hal_EFUSEGetEfuseDefinition_Pseudo88E(pAdapter, efuseType, type, pOut); else Hal_EFUSEGetEfuseDefinition88E(pAdapter, efuseType, type, pOut); } static u8 Hal_EfuseWordEnableDataWrite(struct adapter *pAdapter, u16 efuse_addr, u8 word_en, u8 *data, bool bPseudoTest) { u16 tmpaddr = 0; u16 start_addr = efuse_addr; u8 badworden = 0x0F; u8 tmpdata[8]; _rtw_memset((void *)tmpdata, 0xff, PGPKT_DATA_SIZE); if (!(word_en&BIT0)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[0], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[1], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[0], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[1], bPseudoTest); if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) badworden &= (~BIT0); } if (!(word_en&BIT1)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[2], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[3], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr , &tmpdata[2], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[3], bPseudoTest); if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) badworden &= (~BIT1); } if (!(word_en&BIT2)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[4], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[5], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[4], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[5], bPseudoTest); if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) badworden &= (~BIT2); } if (!(word_en&BIT3)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[6], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[7], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[6], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[7], bPseudoTest); if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) badworden &= (~BIT3); } return badworden; } static u8 Hal_EfuseWordEnableDataWrite_Pseudo(struct adapter *pAdapter, u16 efuse_addr, u8 word_en, u8 *data, bool bPseudoTest) { u8 ret; ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest); return ret; } static u8 rtl8188e_Efuse_WordEnableDataWrite(struct adapter *pAdapter, u16 efuse_addr, u8 word_en, u8 *data, bool bPseudoTest) { u8 ret = 0; if (bPseudoTest) ret = Hal_EfuseWordEnableDataWrite_Pseudo (pAdapter, efuse_addr, word_en, data, bPseudoTest); else ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest); return ret; } static u16 hal_EfuseGetCurrentSize_8188e(struct adapter *pAdapter, bool bPseudoTest) { int bContinual = true; u16 efuse_addr = 0; u8 hoffset = 0, hworden = 0; u8 efuse_data, word_cnts = 0; if (bPseudoTest) efuse_addr = (u16)(fakeEfuseUsedBytes); else rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr); while (bContinual && efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data, bPseudoTest) && AVAILABLE_EFUSE_ADDR(efuse_addr)) { if (efuse_data != 0xFF) { if ((efuse_data&0x1F) == 0x0F) { /* extended header */ hoffset = efuse_data; efuse_addr++; efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data, bPseudoTest); if ((efuse_data & 0x0F) == 0x0F) { efuse_addr++; continue; } else { hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } } else { hoffset = (efuse_data>>4) & 0x0F; hworden = efuse_data & 0x0F; } word_cnts = Efuse_CalculateWordCnts(hworden); /* read next header */ efuse_addr = efuse_addr + (word_cnts*2)+1; } else { bContinual = false; } } if (bPseudoTest) fakeEfuseUsedBytes = efuse_addr; else rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr); return efuse_addr; } static u16 Hal_EfuseGetCurrentSize_Pseudo(struct adapter *pAdapter, bool bPseudoTest) { u16 ret = 0; ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest); return ret; } static u16 rtl8188e_EfuseGetCurrentSize(struct adapter *pAdapter, u8 efuseType, bool bPseudoTest) { u16 ret = 0; if (bPseudoTest) ret = Hal_EfuseGetCurrentSize_Pseudo(pAdapter, bPseudoTest); else ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest); return ret; } static int hal_EfusePgPacketRead_8188e(struct adapter *pAdapter, u8 offset, u8 *data, bool bPseudoTest) { u8 ReadState = PG_STATE_HEADER; int bContinual = true; int bDataEmpty = true; u8 efuse_data, word_cnts = 0; u16 efuse_addr = 0; u8 hoffset = 0, hworden = 0; u8 tmpidx = 0; u8 tmpdata[8]; u8 max_section = 0; u8 tmp_header = 0; EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, (void *)&max_section, bPseudoTest); if (data == NULL) return false; if (offset > max_section) return false; _rtw_memset((void *)data, 0xff, sizeof(u8)*PGPKT_DATA_SIZE); _rtw_memset((void *)tmpdata, 0xff, sizeof(u8)*PGPKT_DATA_SIZE); /* Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */ /* Skip dummy parts to prevent unexpected data read from Efuse. */ /* By pass right now. 2009.02.19. */ while (bContinual && AVAILABLE_EFUSE_ADDR(efuse_addr)) { /* Header Read ------------- */ if (ReadState & PG_STATE_HEADER) { if (efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) { if (EXT_HEADER(efuse_data)) { tmp_header = efuse_data; efuse_addr++; efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data, bPseudoTest); if (!ALL_WORDS_DISABLED(efuse_data)) { hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } else { DBG_88E("Error, All words disabled\n"); efuse_addr++; continue; } } else { hoffset = (efuse_data>>4) & 0x0F; hworden = efuse_data & 0x0F; } word_cnts = Efuse_CalculateWordCnts(hworden); bDataEmpty = true; if (hoffset == offset) { for (tmpidx = 0; tmpidx < word_cnts*2; tmpidx++) { if (efuse_OneByteRead(pAdapter, efuse_addr+1+tmpidx, &efuse_data, bPseudoTest)) { tmpdata[tmpidx] = efuse_data; if (efuse_data != 0xff) bDataEmpty = false; } } if (bDataEmpty == false) { ReadState = PG_STATE_DATA; } else {/* read next header */ efuse_addr = efuse_addr + (word_cnts*2)+1; ReadState = PG_STATE_HEADER; } } else {/* read next header */ efuse_addr = efuse_addr + (word_cnts*2)+1; ReadState = PG_STATE_HEADER; } } else { bContinual = false; } } else if (ReadState & PG_STATE_DATA) { /* Data section Read ------------- */ efuse_WordEnableDataRead(hworden, tmpdata, data); efuse_addr = efuse_addr + (word_cnts*2)+1; ReadState = PG_STATE_HEADER; } } if ((data[0] == 0xff) && (data[1] == 0xff) && (data[2] == 0xff) && (data[3] == 0xff) && (data[4] == 0xff) && (data[5] == 0xff) && (data[6] == 0xff) && (data[7] == 0xff)) return false; else return true; } static int Hal_EfusePgPacketRead(struct adapter *pAdapter, u8 offset, u8 *data, bool bPseudoTest) { int ret; ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest); return ret; } static int Hal_EfusePgPacketRead_Pseudo(struct adapter *pAdapter, u8 offset, u8 *data, bool bPseudoTest) { int ret; ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest); return ret; } static int rtl8188e_Efuse_PgPacketRead(struct adapter *pAdapter, u8 offset, u8 *data, bool bPseudoTest) { int ret; if (bPseudoTest) ret = Hal_EfusePgPacketRead_Pseudo (pAdapter, offset, data, bPseudoTest); else ret = Hal_EfusePgPacketRead(pAdapter, offset, data, bPseudoTest); return ret; } static bool hal_EfuseFixHeaderProcess(struct adapter *pAdapter, u8 efuseType, struct pgpkt *pFixPkt, u16 *pAddr, bool bPseudoTest) { u8 originaldata[8], badworden = 0; u16 efuse_addr = *pAddr; u32 PgWriteSuccess = 0; _rtw_memset((void *)originaldata, 0xff, 8); if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest)) { /* check if data exist */ badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pFixPkt->word_en, originaldata, bPseudoTest); if (badworden != 0xf) { /* write fail */ PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest); if (!PgWriteSuccess) return false; else efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest); } else { efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) + 1; } } else { efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) + 1; } *pAddr = efuse_addr; return true; } static bool hal_EfusePgPacketWrite2ByteHeader(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest) { bool bRet = false; u16 efuse_addr = *pAddr, efuse_max_available_len = 0; u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0; u8 repeatcnt = 0; EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (void *)&efuse_max_available_len, bPseudoTest); while (efuse_addr < efuse_max_available_len) { pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); while (tmp_header == 0xFF) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) return false; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); } /* to write ext_header */ if (tmp_header == pg_header) { efuse_addr++; pg_header_temp = pg_header; pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); while (tmp_header == 0xFF) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) return false; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); } if ((tmp_header & 0x0F) == 0x0F) { /* word_en PG fail */ if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { return false; } else { efuse_addr++; continue; } } else if (pg_header != tmp_header) { /* offset PG fail */ struct pgpkt fixPkt; fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1); fixPkt.word_en = tmp_header & 0x0F; fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en); if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest)) return false; } else { bRet = true; break; } } else if ((tmp_header & 0x1F) == 0x0F) { /* wrong extended header */ efuse_addr += 2; continue; } } *pAddr = efuse_addr; return bRet; } static bool hal_EfusePgPacketWrite1ByteHeader(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest) { bool bRet = false; u8 pg_header = 0, tmp_header = 0; u16 efuse_addr = *pAddr; u8 repeatcnt = 0; pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); while (tmp_header == 0xFF) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) return false; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); } if (pg_header == tmp_header) { bRet = true; } else { struct pgpkt fixPkt; fixPkt.offset = (tmp_header>>4) & 0x0F; fixPkt.word_en = tmp_header & 0x0F; fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en); if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest)) return false; } *pAddr = efuse_addr; return bRet; } static bool hal_EfusePgPacketWriteData(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest) { u16 efuse_addr = *pAddr; u8 badworden = 0; u32 PgWriteSuccess = 0; badworden = 0x0f; badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest); if (badworden == 0x0F) { /* write ok */ return true; } else { /* reorganize other pg packet */ PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest); if (!PgWriteSuccess) return false; else return true; } } static bool hal_EfusePgPacketWriteHeader( struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest) { bool bRet = false; if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE) bRet = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest); else bRet = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest); return bRet; } static bool wordEnMatched(struct pgpkt *pTargetPkt, struct pgpkt *pCurPkt, u8 *pWden) { u8 match_word_en = 0x0F; /* default all words are disabled */ /* check if the same words are enabled both target and current PG packet */ if (((pTargetPkt->word_en & BIT0) == 0) && ((pCurPkt->word_en & BIT0) == 0)) match_word_en &= ~BIT0; /* enable word 0 */ if (((pTargetPkt->word_en & BIT1) == 0) && ((pCurPkt->word_en & BIT1) == 0)) match_word_en &= ~BIT1; /* enable word 1 */ if (((pTargetPkt->word_en & BIT2) == 0) && ((pCurPkt->word_en & BIT2) == 0)) match_word_en &= ~BIT2; /* enable word 2 */ if (((pTargetPkt->word_en & BIT3) == 0) && ((pCurPkt->word_en & BIT3) == 0)) match_word_en &= ~BIT3; /* enable word 3 */ *pWden = match_word_en; if (match_word_en != 0xf) return true; else return false; } static bool hal_EfuseCheckIfDatafollowed(struct adapter *pAdapter, u8 word_cnts, u16 startAddr, bool bPseudoTest) { bool bRet = false; u8 i, efuse_data; for (i = 0; i < (word_cnts*2); i++) { if (efuse_OneByteRead(pAdapter, (startAddr+i), &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) bRet = true; } return bRet; } static bool hal_EfusePartialWriteCheck(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest) { bool bRet = false; u8 i, efuse_data = 0, cur_header = 0; u8 matched_wden = 0, badworden = 0; u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0; struct pgpkt curPkt; EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (void *)&efuse_max_available_len, bPseudoTest); EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_REAL_CONTENT_LEN, (void *)&efuse_max, bPseudoTest); if (efuseType == EFUSE_WIFI) { if (bPseudoTest) { startAddr = (u16)(fakeEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN); } else { rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr); startAddr %= EFUSE_REAL_CONTENT_LEN; } } else { if (bPseudoTest) startAddr = (u16)(fakeBTEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN); else startAddr = (u16)(BTEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN); } while (1) { if (startAddr >= efuse_max_available_len) { bRet = false; break; } if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) { if (EXT_HEADER(efuse_data)) { cur_header = efuse_data; startAddr++; efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest); if (ALL_WORDS_DISABLED(efuse_data)) { bRet = false; break; } else { curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); curPkt.word_en = efuse_data & 0x0F; } } else { cur_header = efuse_data; curPkt.offset = (cur_header>>4) & 0x0F; curPkt.word_en = cur_header & 0x0F; } curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en); /* if same header is found but no data followed */ /* write some part of data followed by the header. */ if ((curPkt.offset == pTargetPkt->offset) && (!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr+1, bPseudoTest)) && wordEnMatched(pTargetPkt, &curPkt, &matched_wden)) { /* Here to write partial data */ badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest); if (badworden != 0x0F) { u32 PgWriteSuccess = 0; /* if write fail on some words, write these bad words again */ PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest); if (!PgWriteSuccess) { bRet = false; /* write fail, return */ break; } } /* partial write ok, update the target packet for later use */ for (i = 0; i < 4; i++) { if ((matched_wden & (0x1<word_en |= (0x1<word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en); } /* read from next header */ startAddr = startAddr + (curPkt.word_cnts*2) + 1; } else { /* not used header, 0xff */ *pAddr = startAddr; bRet = true; break; } } return bRet; } static bool hal_EfusePgCheckAvailableAddr( struct adapter *pAdapter, u8 efuseType, bool bPseudoTest ) { u16 efuse_max_available_len = 0; /* Change to check TYPE_EFUSE_MAP_LEN , because 8188E raw 256, logic map over 256. */ EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&efuse_max_available_len, false); if (Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= efuse_max_available_len) return false; return true; } static void hal_EfuseConstructPGPkt(u8 offset, u8 word_en, u8 *pData, struct pgpkt *pTargetPkt) { _rtw_memset((void *)pTargetPkt->data, 0xFF, sizeof(u8)*8); pTargetPkt->offset = offset; pTargetPkt->word_en = word_en; efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data); pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en); } static bool hal_EfusePgPacketWrite_8188e(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *pData, bool bPseudoTest) { struct pgpkt targetPkt; u16 startAddr = 0; u8 efuseType = EFUSE_WIFI; if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest)) return false; hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt); if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return false; if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return false; if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return false; return true; } static int Hal_EfusePgPacketWrite_Pseudo(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *data, bool bPseudoTest) { int ret; ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest); return ret; } static int Hal_EfusePgPacketWrite(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *data, bool bPseudoTest) { int ret = 0; ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest); return ret; } static int rtl8188e_Efuse_PgPacketWrite(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *data, bool bPseudoTest) { int ret; if (bPseudoTest) ret = Hal_EfusePgPacketWrite_Pseudo (pAdapter, offset, word_en, data, bPseudoTest); else ret = Hal_EfusePgPacketWrite(pAdapter, offset, word_en, data, bPseudoTest); return ret; } static struct HAL_VERSION ReadChipVersion8188E(struct adapter *padapter) { u32 value32; struct HAL_VERSION ChipVersion; struct hal_data_8188e *pHalData; pHalData = GET_HAL_DATA(padapter); value32 = rtw_read32(padapter, REG_SYS_CFG); ChipVersion.ICType = CHIP_8188E; ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP); ChipVersion.RFType = RF_TYPE_1T1R; ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC); ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /* IC version (CUT) */ /* For regulator mode. by tynli. 2011.01.14 */ pHalData->RegulatorMode = ((value32 & TRP_BT_EN) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR); ChipVersion.ROMVer = 0; /* ROM code version. */ pHalData->MultiFunc = RT_MULTI_FUNC_NONE; dump_chip_info(ChipVersion); pHalData->VersionID = ChipVersion; if (IS_1T2R(ChipVersion)) { pHalData->rf_type = RF_1T2R; pHalData->NumTotalRFPath = 2; } else if (IS_2T2R(ChipVersion)) { pHalData->rf_type = RF_2T2R; pHalData->NumTotalRFPath = 2; } else{ pHalData->rf_type = RF_1T1R; pHalData->NumTotalRFPath = 1; } MSG_88E("RF_Type is %x!!\n", pHalData->rf_type); return ChipVersion; } static void rtl8188e_read_chip_version(struct adapter *padapter) { ReadChipVersion8188E(padapter); } static void rtl8188e_GetHalODMVar(struct adapter *Adapter, enum hal_odm_variable eVariable, void *pValue1, bool bSet) { } static void rtl8188e_SetHalODMVar(struct adapter *Adapter, enum hal_odm_variable eVariable, void *pValue1, bool bSet) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); struct odm_dm_struct *podmpriv = &pHalData->odmpriv; switch (eVariable) { case HAL_ODM_STA_INFO: { struct sta_info *psta = (struct sta_info *)pValue1; if (bSet) { DBG_88E("### Set STA_(%d) info\n", psta->mac_id); ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, psta); ODM_RAInfo_Init(podmpriv, psta->mac_id); } else { DBG_88E("### Clean STA_(%d) info\n", psta->mac_id); ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, NULL); } } break; case HAL_ODM_P2P_STATE: ODM_CmnInfoUpdate(podmpriv, ODM_CMNINFO_WIFI_DIRECT, bSet); break; case HAL_ODM_WIFI_DISPLAY_STATE: ODM_CmnInfoUpdate(podmpriv, ODM_CMNINFO_WIFI_DISPLAY, bSet); break; default: break; } } void rtl8188e_clone_haldata(struct adapter *dst_adapter, struct adapter *src_adapter) { memcpy(dst_adapter->HalData, src_adapter->HalData, dst_adapter->hal_data_sz); } void rtl8188e_start_thread(struct adapter *padapter) { } void rtl8188e_stop_thread(struct adapter *padapter) { } static void hal_notch_filter_8188e(struct adapter *adapter, bool enable) { if (enable) { DBG_88E("Enable notch filter\n"); rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1); } else { DBG_88E("Disable notch filter\n"); rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1); } } void rtl8188e_set_hal_ops(struct hal_ops *pHalFunc) { pHalFunc->free_hal_data = &rtl8188e_free_hal_data; pHalFunc->dm_init = &rtl8188e_init_dm_priv; pHalFunc->dm_deinit = &rtl8188e_deinit_dm_priv; pHalFunc->read_chip_version = &rtl8188e_read_chip_version; pHalFunc->set_bwmode_handler = &PHY_SetBWMode8188E; pHalFunc->set_channel_handler = &PHY_SwChnl8188E; pHalFunc->hal_dm_watchdog = &rtl8188e_HalDmWatchDog; pHalFunc->Add_RateATid = &rtl8188e_Add_RateATid; pHalFunc->run_thread = &rtl8188e_start_thread; pHalFunc->cancel_thread = &rtl8188e_stop_thread; pHalFunc->AntDivBeforeLinkHandler = &AntDivBeforeLink8188E; pHalFunc->AntDivCompareHandler = &AntDivCompare8188E; pHalFunc->read_bbreg = &rtl8188e_PHY_QueryBBReg; pHalFunc->write_bbreg = &rtl8188e_PHY_SetBBReg; pHalFunc->read_rfreg = &rtl8188e_PHY_QueryRFReg; pHalFunc->write_rfreg = &rtl8188e_PHY_SetRFReg; /* Efuse related function */ pHalFunc->EfusePowerSwitch = &rtl8188e_EfusePowerSwitch; pHalFunc->ReadEFuse = &rtl8188e_ReadEFuse; pHalFunc->EFUSEGetEfuseDefinition = &rtl8188e_EFUSE_GetEfuseDefinition; pHalFunc->EfuseGetCurrentSize = &rtl8188e_EfuseGetCurrentSize; pHalFunc->Efuse_PgPacketRead = &rtl8188e_Efuse_PgPacketRead; pHalFunc->Efuse_PgPacketWrite = &rtl8188e_Efuse_PgPacketWrite; pHalFunc->Efuse_WordEnableDataWrite = &rtl8188e_Efuse_WordEnableDataWrite; pHalFunc->sreset_init_value = &sreset_init_value; pHalFunc->sreset_reset_value = &sreset_reset_value; pHalFunc->silentreset = &rtl8188e_silentreset_for_specific_platform; pHalFunc->sreset_xmit_status_check = &rtl8188e_sreset_xmit_status_check; pHalFunc->sreset_linked_status_check = &rtl8188e_sreset_linked_status_check; pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status; pHalFunc->GetHalODMVarHandler = &rtl8188e_GetHalODMVar; pHalFunc->SetHalODMVarHandler = &rtl8188e_SetHalODMVar; pHalFunc->IOL_exec_cmds_sync = &rtl8188e_IOL_exec_cmds_sync; pHalFunc->hal_notch_filter = &hal_notch_filter_8188e; } u8 GetEEPROMSize8188E(struct adapter *padapter) { u8 size = 0; u32 cr; cr = rtw_read16(padapter, REG_9346CR); /* 6: EEPROM used is 93C46, 4: boot from E-Fuse. */ size = (cr & BOOT_FROM_EEPROM) ? 6 : 4; MSG_88E("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46"); return size; } /* */ /* */ /* LLT R/W/Init function */ /* */ /* */ static s32 _LLTWrite(struct adapter *padapter, u32 address, u32 data) { s32 status = _SUCCESS; s32 count = 0; u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); u16 LLTReg = REG_LLT_INIT; rtw_write32(padapter, LLTReg, value); /* polling */ do { value = rtw_read32(padapter, LLTReg); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) break; if (count > POLLING_LLT_THRESHOLD) { RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling write LLT done at address %d!\n", address)); status = _FAIL; break; } } while (count++); return status; } s32 InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy) { s32 status = _FAIL; u32 i; u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER;/* 176, 22k */ if (rtw_IOL_applied(padapter)) { status = iol_InitLLTTable(padapter, txpktbuf_bndy); } else { for (i = 0; i < (txpktbuf_bndy - 1); i++) { status = _LLTWrite(padapter, i, i + 1); if (_SUCCESS != status) return status; } /* end of list */ status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF); if (_SUCCESS != status) return status; /* Make the other pages as ring buffer */ /* This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */ /* Otherwise used as local loopback buffer. */ for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) { status = _LLTWrite(padapter, i, (i + 1)); if (_SUCCESS != status) return status; } /* Let last entry point to the start entry of ring buffer */ status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy); if (_SUCCESS != status) { return status; } } return status; } void Hal_InitPGData88E(struct adapter *padapter) { struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter); if (!pEEPROM->bautoload_fail_flag) { /* autoload OK. */ if (!is_boot_from_eeprom(padapter)) { /* Read EFUSE real map to shadow. */ EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false); } } else {/* autoload fail */ RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n")); /* update to default value 0xFF */ if (!is_boot_from_eeprom(padapter)) EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false); } } void Hal_EfuseParseIDCode88E( struct adapter *padapter, u8 *hwinfo ) { struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter); u16 EEPROMId; /* Checl 0x8129 again for making sure autoload status!! */ EEPROMId = le16_to_cpu(*((__le16 *)hwinfo)); if (EEPROMId != RTL_EEPROM_ID) { DBG_88E("EEPROM ID(%#x) is invalid!!\n", EEPROMId); pEEPROM->bautoload_fail_flag = true; } else { pEEPROM->bautoload_fail_flag = false; } DBG_88E("EEPROM ID = 0x%04x\n", EEPROMId); } static void Hal_ReadPowerValueFromPROM_8188E(struct txpowerinfo24g *pwrInfo24G, u8 *PROMContent, bool AutoLoadFail) { u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_88E, group, TxCount = 0; _rtw_memset(pwrInfo24G, 0, sizeof(struct txpowerinfo24g)); if (AutoLoadFail) { for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) { /* 2.4G default value */ for (group = 0; group < MAX_CHNL_GROUP_24G; group++) { pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; } for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) { if (TxCount == 0) { pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF; pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF; } else { pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } } } return; } for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) { /* 2.4G default value */ for (group = 0; group < MAX_CHNL_GROUP_24G; group++) { pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++]; if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF) pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; } for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) { pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++]; if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF) pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; } for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) { if (TxCount == 0) { pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0; if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF; } else { pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4; if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0; } if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF; } else { pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f); if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0; } pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0; eeAddr++; } else { if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } else { pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4; if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0; } if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } else { pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f); if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0; } eeAddr++; if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } else { pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4; if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0; } if (PROMContent[eeAddr] == 0xFF) { pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } else { pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f); if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */ pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0; } eeAddr++; } } } } static u8 Hal_GetChnlGroup88E(u8 chnl, u8 *pGroup) { u8 bIn24G = true; if (chnl <= 14) { bIn24G = true; if (chnl < 3) /* Channel 1-2 */ *pGroup = 0; else if (chnl < 6) /* Channel 3-5 */ *pGroup = 1; else if (chnl < 9) /* Channel 6-8 */ *pGroup = 2; else if (chnl < 12) /* Channel 9-11 */ *pGroup = 3; else if (chnl < 14) /* Channel 12-13 */ *pGroup = 4; else if (chnl == 14) /* Channel 14 */ *pGroup = 5; } else { bIn24G = false; if (chnl <= 40) *pGroup = 0; else if (chnl <= 48) *pGroup = 1; else if (chnl <= 56) *pGroup = 2; else if (chnl <= 64) *pGroup = 3; else if (chnl <= 104) *pGroup = 4; else if (chnl <= 112) *pGroup = 5; else if (chnl <= 120) *pGroup = 5; else if (chnl <= 128) *pGroup = 6; else if (chnl <= 136) *pGroup = 7; else if (chnl <= 144) *pGroup = 8; else if (chnl <= 153) *pGroup = 9; else if (chnl <= 161) *pGroup = 10; else if (chnl <= 177) *pGroup = 11; } return bIn24G; } void Hal_ReadPowerSavingMode88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail) { if (AutoLoadFail) { padapter->pwrctrlpriv.bHWPowerdown = false; padapter->pwrctrlpriv.bSupportRemoteWakeup = false; } else { /* hw power down mode selection , 0:rf-off / 1:power down */ if (padapter->registrypriv.hwpdn_mode == 2) padapter->pwrctrlpriv.bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_88E] & BIT4); else padapter->pwrctrlpriv.bHWPowerdown = padapter->registrypriv.hwpdn_mode; /* decide hw if support remote wakeup function */ /* if hw supported, 8051 (SIE) will generate WeakUP signal(D+/D- toggle) when autoresume */ padapter->pwrctrlpriv.bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1) ? true : false; DBG_88E("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) , bSupportRemoteWakeup(%x)\n", __func__, padapter->pwrctrlpriv.bHWPwrPindetect, padapter->pwrctrlpriv.bHWPowerdown , padapter->pwrctrlpriv.bSupportRemoteWakeup); DBG_88E("### PS params => power_mgnt(%x), usbss_enable(%x) ###\n", padapter->registrypriv.power_mgnt, padapter->registrypriv.usbss_enable); } } void Hal_ReadTxPowerInfo88E(struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail) { struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter); struct txpowerinfo24g pwrInfo24G; u8 rfPath, ch, group; u8 bIn24G, TxCount; Hal_ReadPowerValueFromPROM_8188E(&pwrInfo24G, PROMContent, AutoLoadFail); if (!AutoLoadFail) pHalData->bTXPowerDataReadFromEEPORM = true; for (rfPath = 0; rfPath < pHalData->NumTotalRFPath; rfPath++) { for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) { bIn24G = Hal_GetChnlGroup88E(ch, &group); if (bIn24G) { pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group]; if (ch == 14) pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][4]; else pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group]; } if (bIn24G) { DBG_88E("======= Path %d, Channel %d =======\n", rfPath, ch); DBG_88E("Index24G_CCK_Base[%d][%d] = 0x%x\n", rfPath, ch , pHalData->Index24G_CCK_Base[rfPath][ch]); DBG_88E("Index24G_BW40_Base[%d][%d] = 0x%x\n", rfPath, ch , pHalData->Index24G_BW40_Base[rfPath][ch]); } } for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) { pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount]; pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount]; pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount]; pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount]; DBG_88E("======= TxCount %d =======\n", TxCount); DBG_88E("CCK_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->CCK_24G_Diff[rfPath][TxCount]); DBG_88E("OFDM_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->OFDM_24G_Diff[rfPath][TxCount]); DBG_88E("BW20_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->BW20_24G_Diff[rfPath][TxCount]); DBG_88E("BW40_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->BW40_24G_Diff[rfPath][TxCount]); } } /* 2010/10/19 MH Add Regulator recognize for CU. */ if (!AutoLoadFail) { pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x7); /* bit0~2 */ if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF) pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); /* bit0~2 */ } else { pHalData->EEPROMRegulatory = 0; } DBG_88E("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory); } void Hal_EfuseParseXtal_8188E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail) { struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter); if (!AutoLoadFail) { pHalData->CrystalCap = hwinfo[EEPROM_XTAL_88E]; if (pHalData->CrystalCap == 0xFF) pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E; } else { pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E; } DBG_88E("CrystalCap: 0x%2x\n", pHalData->CrystalCap); } void Hal_EfuseParseBoardType88E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail) { struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter); if (!AutoLoadFail) pHalData->BoardType = ((hwinfo[EEPROM_RF_BOARD_OPTION_88E]&0xE0)>>5); else pHalData->BoardType = 0; DBG_88E("Board Type: 0x%2x\n", pHalData->BoardType); } void Hal_EfuseParseEEPROMVer88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail) { struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter); if (!AutoLoadFail) { pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_88E]; if (pHalData->EEPROMVersion == 0xFF) pHalData->EEPROMVersion = EEPROM_Default_Version; } else { pHalData->EEPROMVersion = 1; } RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n", pHalData->EEPROMVersion)); } void rtl8188e_EfuseParseChnlPlan(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail) { padapter->mlmepriv.ChannelPlan = hal_com_get_channel_plan(padapter, hwinfo ? hwinfo[EEPROM_ChannelPlan_88E] : 0xFF, padapter->registrypriv.channel_plan, RT_CHANNEL_DOMAIN_WORLD_WIDE_13, AutoLoadFail); DBG_88E("mlmepriv.ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan); } void Hal_EfuseParseCustomerID88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail) { struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter); if (!AutoLoadFail) { pHalData->EEPROMCustomerID = hwinfo[EEPROM_CUSTOMERID_88E]; } else { pHalData->EEPROMCustomerID = 0; pHalData->EEPROMSubCustomerID = 0; } DBG_88E("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID); } void Hal_ReadAntennaDiversity88E(struct adapter *pAdapter, u8 *PROMContent, bool AutoLoadFail) { struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter); struct registry_priv *registry_par = &pAdapter->registrypriv; if (!AutoLoadFail) { /* Antenna Diversity setting. */ if (registry_par->antdiv_cfg == 2) { /* 2:By EFUSE */ pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x18)>>3; if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF) pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION&0x18)>>3;; } else { pHalData->AntDivCfg = registry_par->antdiv_cfg; /* 0:OFF , 1:ON, 2:By EFUSE */ } if (registry_par->antdiv_type == 0) { /* If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead. */ pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_88E]; if (pHalData->TRxAntDivType == 0xFF) pHalData->TRxAntDivType = CG_TRX_HW_ANTDIV; /* For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port) */ } else { pHalData->TRxAntDivType = registry_par->antdiv_type; } if (pHalData->TRxAntDivType == CG_TRX_HW_ANTDIV || pHalData->TRxAntDivType == CGCS_RX_HW_ANTDIV) pHalData->AntDivCfg = 1; /* 0xC1[3] is ignored. */ } else { pHalData->AntDivCfg = 0; pHalData->TRxAntDivType = pHalData->TRxAntDivType; /* The value in the driver setting of device manager. */ } DBG_88E("EEPROM : AntDivCfg = %x, TRxAntDivType = %x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType); } void Hal_ReadThermalMeter_88E(struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); /* ThermalMeter from EEPROM */ if (!AutoloadFail) pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_88E]; else pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E; if (pHalData->EEPROMThermalMeter == 0xff || AutoloadFail) { pHalData->bAPKThermalMeterIgnore = true; pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E; } DBG_88E("ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter); } void Hal_InitChannelPlan(struct adapter *padapter) { } bool HalDetectPwrDownMode88E(struct adapter *Adapter) { u8 tmpvalue = 0; struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); struct pwrctrl_priv *pwrctrlpriv = &Adapter->pwrctrlpriv; EFUSE_ShadowRead(Adapter, 1, EEPROM_RF_FEATURE_OPTION_88E, (u32 *)&tmpvalue); /* 2010/08/25 MH INF priority > PDN Efuse value. */ if (tmpvalue & BIT(4) && pwrctrlpriv->reg_pdnmode) pHalData->pwrdown = true; else pHalData->pwrdown = false; DBG_88E("HalDetectPwrDownMode(): PDN =%d\n", pHalData->pwrdown); return pHalData->pwrdown; } /* HalDetectPwrDownMode */ /* This function is used only for 92C to set REG_BCN_CTRL(0x550) register. */ /* We just reserve the value of the register in variable pHalData->RegBcnCtrlVal and then operate */ /* the value of the register via atomic operation. */ /* This prevents from race condition when setting this register. */ /* The value of pHalData->RegBcnCtrlVal is initialized in HwConfigureRTL8192CE() function. */ void SetBcnCtrlReg(struct adapter *padapter, u8 SetBits, u8 ClearBits) { struct hal_data_8188e *pHalData; pHalData = GET_HAL_DATA(padapter); pHalData->RegBcnCtrlVal |= SetBits; pHalData->RegBcnCtrlVal &= ~ClearBits; rtw_write8(padapter, REG_BCN_CTRL, (u8)pHalData->RegBcnCtrlVal); }