/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _HCI_HAL_INIT_C_ #include #include #include #include #include #include #include #include #include #define HAL_MAC_ENABLE 1 #define HAL_BB_ENABLE 1 #define HAL_RF_ENABLE 1 static void _ConfigNormalChipOutEP_8188E(struct adapter *adapt, u8 NumOutPipe) { struct hal_data_8188e *haldata = GET_HAL_DATA(adapt); switch (NumOutPipe) { case 3: haldata->OutEpQueueSel = TX_SELE_HQ | TX_SELE_LQ | TX_SELE_NQ; haldata->OutEpNumber = 3; break; case 2: haldata->OutEpQueueSel = TX_SELE_HQ | TX_SELE_NQ; haldata->OutEpNumber = 2; break; case 1: haldata->OutEpQueueSel = TX_SELE_HQ; haldata->OutEpNumber = 1; break; default: break; } DBG_88E("%s OutEpQueueSel(0x%02x), OutEpNumber(%d)\n", __func__, haldata->OutEpQueueSel, haldata->OutEpNumber); } static bool HalUsbSetQueuePipeMapping8188EUsb(struct adapter *adapt, u8 NumInPipe, u8 NumOutPipe) { struct hal_data_8188e *haldata = GET_HAL_DATA(adapt); bool result = false; _ConfigNormalChipOutEP_8188E(adapt, NumOutPipe); /* Normal chip with one IN and one OUT doesn't have interrupt IN EP. */ if (1 == haldata->OutEpNumber) { if (1 != NumInPipe) return result; } /* All config other than above support one Bulk IN and one Interrupt IN. */ result = Hal_MappingOutPipe(adapt, NumOutPipe); return result; } static void rtl8188eu_interface_configure(struct adapter *adapt) { struct hal_data_8188e *haldata = GET_HAL_DATA(adapt); struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(adapt); if (pdvobjpriv->ishighspeed) haldata->UsbBulkOutSize = USB_HIGH_SPEED_BULK_SIZE;/* 512 bytes */ else haldata->UsbBulkOutSize = USB_FULL_SPEED_BULK_SIZE;/* 64 bytes */ haldata->interfaceIndex = pdvobjpriv->InterfaceNumber; haldata->UsbTxAggMode = 1; haldata->UsbTxAggDescNum = 0x6; /* only 4 bits */ haldata->UsbRxAggMode = USB_RX_AGG_DMA;/* USB_RX_AGG_DMA; */ haldata->UsbRxAggBlockCount = 8; /* unit : 512b */ haldata->UsbRxAggBlockTimeout = 0x6; haldata->UsbRxAggPageCount = 48; /* uint :128 b 0x0A; 10 = MAX_RX_DMA_BUFFER_SIZE/2/haldata->UsbBulkOutSize */ haldata->UsbRxAggPageTimeout = 0x4; /* 6, absolute time = 34ms/(2^6) */ HalUsbSetQueuePipeMapping8188EUsb(adapt, pdvobjpriv->RtNumInPipes, pdvobjpriv->RtNumOutPipes); } static u32 rtl8188eu_InitPowerOn(struct adapter *adapt) { u16 value16; /* HW Power on sequence */ struct hal_data_8188e *haldata = GET_HAL_DATA(adapt); if (haldata->bMacPwrCtrlOn) return _SUCCESS; if (!HalPwrSeqCmdParsing(adapt, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_PWR_ON_FLOW)) { DBG_88E(KERN_ERR "%s: run power on flow fail\n", __func__); return _FAIL; } /* Enable MAC DMA/WMAC/SCHEDULE/SEC block */ /* Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */ rtw_write16(adapt, REG_CR, 0x00); /* suggseted by zhouzhou, by page, 20111230 */ /* Enable MAC DMA/WMAC/SCHEDULE/SEC block */ value16 = rtw_read16(adapt, REG_CR); value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN | PROTOCOL_EN | SCHEDULE_EN | ENSEC | CALTMR_EN); /* for SDIO - Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */ rtw_write16(adapt, REG_CR, value16); haldata->bMacPwrCtrlOn = true; return _SUCCESS; } /* Shall USB interface init this? */ static void _InitInterrupt(struct adapter *Adapter) { u32 imr, imr_ex; u8 usb_opt; struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); /* HISR write one to clear */ rtw_write32(Adapter, REG_HISR_88E, 0xFFFFFFFF); /* HIMR - */ imr = IMR_PSTIMEOUT_88E | IMR_TBDER_88E | IMR_CPWM_88E | IMR_CPWM2_88E; rtw_write32(Adapter, REG_HIMR_88E, imr); haldata->IntrMask[0] = imr; imr_ex = IMR_TXERR_88E | IMR_RXERR_88E | IMR_TXFOVW_88E | IMR_RXFOVW_88E; rtw_write32(Adapter, REG_HIMRE_88E, imr_ex); haldata->IntrMask[1] = imr_ex; /* REG_USB_SPECIAL_OPTION - BIT(4) */ /* 0; Use interrupt endpoint to upload interrupt pkt */ /* 1; Use bulk endpoint to upload interrupt pkt, */ usb_opt = rtw_read8(Adapter, REG_USB_SPECIAL_OPTION); if (!adapter_to_dvobj(Adapter)->ishighspeed) usb_opt = usb_opt & (~INT_BULK_SEL); else usb_opt = usb_opt | (INT_BULK_SEL); rtw_write8(Adapter, REG_USB_SPECIAL_OPTION, usb_opt); } static void _InitQueueReservedPage(struct adapter *Adapter) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); struct registry_priv *pregistrypriv = &Adapter->registrypriv; u32 numHQ = 0; u32 numLQ = 0; u32 numNQ = 0; u32 numPubQ; u32 value32; u8 value8; bool bWiFiConfig = pregistrypriv->wifi_spec; if (bWiFiConfig) { if (haldata->OutEpQueueSel & TX_SELE_HQ) numHQ = 0x29; if (haldata->OutEpQueueSel & TX_SELE_LQ) numLQ = 0x1C; /* NOTE: This step shall be proceed before writting REG_RQPN. */ if (haldata->OutEpQueueSel & TX_SELE_NQ) numNQ = 0x1C; value8 = (u8)_NPQ(numNQ); rtw_write8(Adapter, REG_RQPN_NPQ, value8); numPubQ = 0xA8 - numHQ - numLQ - numNQ; /* TX DMA */ value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN; rtw_write32(Adapter, REG_RQPN, value32); } else { rtw_write16(Adapter, REG_RQPN_NPQ, 0x0000);/* Just follow MP Team,??? Georgia 03/28 */ rtw_write16(Adapter, REG_RQPN_NPQ, 0x0d); rtw_write32(Adapter, REG_RQPN, 0x808E000d);/* reserve 7 page for LPS */ } } static void _InitTxBufferBoundary(struct adapter *Adapter, u8 txpktbuf_bndy) { rtw_write8(Adapter, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy); rtw_write8(Adapter, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy); rtw_write8(Adapter, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy); rtw_write8(Adapter, REG_TRXFF_BNDY, txpktbuf_bndy); rtw_write8(Adapter, REG_TDECTRL+1, txpktbuf_bndy); } static void _InitPageBoundary(struct adapter *Adapter) { /* RX Page Boundary */ /* */ u16 rxff_bndy = MAX_RX_DMA_BUFFER_SIZE_88E-1; rtw_write16(Adapter, (REG_TRXFF_BNDY + 2), rxff_bndy); } static void _InitNormalChipRegPriority(struct adapter *Adapter, u16 beQ, u16 bkQ, u16 viQ, u16 voQ, u16 mgtQ, u16 hiQ) { u16 value16 = (rtw_read16(Adapter, REG_TRXDMA_CTRL) & 0x7); value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) | _TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) | _TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ); rtw_write16(Adapter, REG_TRXDMA_CTRL, value16); } static void _InitNormalChipOneOutEpPriority(struct adapter *Adapter) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); u16 value = 0; switch (haldata->OutEpQueueSel) { case TX_SELE_HQ: value = QUEUE_HIGH; break; case TX_SELE_LQ: value = QUEUE_LOW; break; case TX_SELE_NQ: value = QUEUE_NORMAL; break; default: break; } _InitNormalChipRegPriority(Adapter, value, value, value, value, value, value); } static void _InitNormalChipTwoOutEpPriority(struct adapter *Adapter) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); struct registry_priv *pregistrypriv = &Adapter->registrypriv; u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ; u16 valueHi = 0; u16 valueLow = 0; switch (haldata->OutEpQueueSel) { case (TX_SELE_HQ | TX_SELE_LQ): valueHi = QUEUE_HIGH; valueLow = QUEUE_LOW; break; case (TX_SELE_NQ | TX_SELE_LQ): valueHi = QUEUE_NORMAL; valueLow = QUEUE_LOW; break; case (TX_SELE_HQ | TX_SELE_NQ): valueHi = QUEUE_HIGH; valueLow = QUEUE_NORMAL; break; default: break; } if (!pregistrypriv->wifi_spec) { beQ = valueLow; bkQ = valueLow; viQ = valueHi; voQ = valueHi; mgtQ = valueHi; hiQ = valueHi; } else {/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */ beQ = valueLow; bkQ = valueHi; viQ = valueHi; voQ = valueLow; mgtQ = valueHi; hiQ = valueHi; } _InitNormalChipRegPriority(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ); } static void _InitNormalChipThreeOutEpPriority(struct adapter *Adapter) { struct registry_priv *pregistrypriv = &Adapter->registrypriv; u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ; if (!pregistrypriv->wifi_spec) {/* typical setting */ beQ = QUEUE_LOW; bkQ = QUEUE_LOW; viQ = QUEUE_NORMAL; voQ = QUEUE_HIGH; mgtQ = QUEUE_HIGH; hiQ = QUEUE_HIGH; } else {/* for WMM */ beQ = QUEUE_LOW; bkQ = QUEUE_NORMAL; viQ = QUEUE_NORMAL; voQ = QUEUE_HIGH; mgtQ = QUEUE_HIGH; hiQ = QUEUE_HIGH; } _InitNormalChipRegPriority(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ); } static void _InitQueuePriority(struct adapter *Adapter) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); switch (haldata->OutEpNumber) { case 1: _InitNormalChipOneOutEpPriority(Adapter); break; case 2: _InitNormalChipTwoOutEpPriority(Adapter); break; case 3: _InitNormalChipThreeOutEpPriority(Adapter); break; default: break; } } static void _InitNetworkType(struct adapter *Adapter) { u32 value32; value32 = rtw_read32(Adapter, REG_CR); /* TODO: use the other function to set network type */ value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AP); rtw_write32(Adapter, REG_CR, value32); } static void _InitTransferPageSize(struct adapter *Adapter) { /* Tx page size is always 128. */ u8 value8; value8 = _PSRX(PBP_128) | _PSTX(PBP_128); rtw_write8(Adapter, REG_PBP, value8); } static void _InitDriverInfoSize(struct adapter *Adapter, u8 drvInfoSize) { rtw_write8(Adapter, REG_RX_DRVINFO_SZ, drvInfoSize); } static void _InitWMACSetting(struct adapter *Adapter) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); haldata->ReceiveConfig = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_CBSSID_DATA | RCR_CBSSID_BCN | RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL | RCR_APP_MIC | RCR_APP_PHYSTS; /* some REG_RCR will be modified later by phy_ConfigMACWithHeaderFile() */ rtw_write32(Adapter, REG_RCR, haldata->ReceiveConfig); /* Accept all multicast address */ rtw_write32(Adapter, REG_MAR, 0xFFFFFFFF); rtw_write32(Adapter, REG_MAR + 4, 0xFFFFFFFF); } static void _InitAdaptiveCtrl(struct adapter *Adapter) { u16 value16; u32 value32; /* Response Rate Set */ value32 = rtw_read32(Adapter, REG_RRSR); value32 &= ~RATE_BITMAP_ALL; value32 |= RATE_RRSR_CCK_ONLY_1M; rtw_write32(Adapter, REG_RRSR, value32); /* CF-END Threshold */ /* SIFS (used in NAV) */ value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10); rtw_write16(Adapter, REG_SPEC_SIFS, value16); /* Retry Limit */ value16 = _LRL(0x30) | _SRL(0x30); rtw_write16(Adapter, REG_RL, value16); } static void _InitEDCA(struct adapter *Adapter) { /* Set Spec SIFS (used in NAV) */ rtw_write16(Adapter, REG_SPEC_SIFS, 0x100a); rtw_write16(Adapter, REG_MAC_SPEC_SIFS, 0x100a); /* Set SIFS for CCK */ rtw_write16(Adapter, REG_SIFS_CTX, 0x100a); /* Set SIFS for OFDM */ rtw_write16(Adapter, REG_SIFS_TRX, 0x100a); /* TXOP */ rtw_write32(Adapter, REG_EDCA_BE_PARAM, 0x005EA42B); rtw_write32(Adapter, REG_EDCA_BK_PARAM, 0x0000A44F); rtw_write32(Adapter, REG_EDCA_VI_PARAM, 0x005EA324); rtw_write32(Adapter, REG_EDCA_VO_PARAM, 0x002FA226); } static void _InitBeaconMaxError(struct adapter *Adapter, bool InfraMode) { } static void _InitHWLed(struct adapter *Adapter) { struct led_priv *pledpriv = &(Adapter->ledpriv); if (pledpriv->LedStrategy != HW_LED) return; /* HW led control */ /* to do .... */ /* must consider cases of antenna diversity/ commbo card/solo card/mini card */ } static void _InitRDGSetting(struct adapter *Adapter) { rtw_write8(Adapter, REG_RD_CTRL, 0xFF); rtw_write16(Adapter, REG_RD_NAV_NXT, 0x200); rtw_write8(Adapter, REG_RD_RESP_PKT_TH, 0x05); } static void _InitRxSetting(struct adapter *Adapter) { rtw_write32(Adapter, REG_MACID, 0x87654321); rtw_write32(Adapter, 0x0700, 0x87654321); } static void _InitRetryFunction(struct adapter *Adapter) { u8 value8; value8 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL); value8 |= EN_AMPDU_RTY_NEW; rtw_write8(Adapter, REG_FWHW_TXQ_CTRL, value8); /* Set ACK timeout */ rtw_write8(Adapter, REG_ACKTO, 0x40); } /*----------------------------------------------------------------------------- * Function: usb_AggSettingTxUpdate() * * Overview: Separate TX/RX parameters update independent for TP detection and * dynamic TX/RX aggreagtion parameters update. * * Input: struct adapter * * * Output/Return: NONE * * Revised History: * When Who Remark * 12/10/2010 MHC Separate to smaller function. * *---------------------------------------------------------------------------*/ static void usb_AggSettingTxUpdate(struct adapter *Adapter) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); u32 value32; if (Adapter->registrypriv.wifi_spec) haldata->UsbTxAggMode = false; if (haldata->UsbTxAggMode) { value32 = rtw_read32(Adapter, REG_TDECTRL); value32 = value32 & ~(BLK_DESC_NUM_MASK << BLK_DESC_NUM_SHIFT); value32 |= ((haldata->UsbTxAggDescNum & BLK_DESC_NUM_MASK) << BLK_DESC_NUM_SHIFT); rtw_write32(Adapter, REG_TDECTRL, value32); } } /* usb_AggSettingTxUpdate */ /*----------------------------------------------------------------------------- * Function: usb_AggSettingRxUpdate() * * Overview: Separate TX/RX parameters update independent for TP detection and * dynamic TX/RX aggreagtion parameters update. * * Input: struct adapter * * * Output/Return: NONE * * Revised History: * When Who Remark * 12/10/2010 MHC Separate to smaller function. * *---------------------------------------------------------------------------*/ static void usb_AggSettingRxUpdate( struct adapter *Adapter ) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); u8 valueDMA; u8 valueUSB; valueDMA = rtw_read8(Adapter, REG_TRXDMA_CTRL); valueUSB = rtw_read8(Adapter, REG_USB_SPECIAL_OPTION); switch (haldata->UsbRxAggMode) { case USB_RX_AGG_DMA: valueDMA |= RXDMA_AGG_EN; valueUSB &= ~USB_AGG_EN; break; case USB_RX_AGG_USB: valueDMA &= ~RXDMA_AGG_EN; valueUSB |= USB_AGG_EN; break; case USB_RX_AGG_MIX: valueDMA |= RXDMA_AGG_EN; valueUSB |= USB_AGG_EN; break; case USB_RX_AGG_DISABLE: default: valueDMA &= ~RXDMA_AGG_EN; valueUSB &= ~USB_AGG_EN; break; } rtw_write8(Adapter, REG_TRXDMA_CTRL, valueDMA); rtw_write8(Adapter, REG_USB_SPECIAL_OPTION, valueUSB); switch (haldata->UsbRxAggMode) { case USB_RX_AGG_DMA: rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, haldata->UsbRxAggPageCount); rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH+1, haldata->UsbRxAggPageTimeout); break; case USB_RX_AGG_USB: rtw_write8(Adapter, REG_USB_AGG_TH, haldata->UsbRxAggBlockCount); rtw_write8(Adapter, REG_USB_AGG_TO, haldata->UsbRxAggBlockTimeout); break; case USB_RX_AGG_MIX: rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, haldata->UsbRxAggPageCount); rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH+1, (haldata->UsbRxAggPageTimeout & 0x1F));/* 0x280[12:8] */ rtw_write8(Adapter, REG_USB_AGG_TH, haldata->UsbRxAggBlockCount); rtw_write8(Adapter, REG_USB_AGG_TO, haldata->UsbRxAggBlockTimeout); break; case USB_RX_AGG_DISABLE: default: /* TODO: */ break; } switch (PBP_128) { case PBP_128: haldata->HwRxPageSize = 128; break; case PBP_64: haldata->HwRxPageSize = 64; break; case PBP_256: haldata->HwRxPageSize = 256; break; case PBP_512: haldata->HwRxPageSize = 512; break; case PBP_1024: haldata->HwRxPageSize = 1024; break; default: break; } } /* usb_AggSettingRxUpdate */ static void InitUsbAggregationSetting(struct adapter *Adapter) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); /* Tx aggregation setting */ usb_AggSettingTxUpdate(Adapter); /* Rx aggregation setting */ usb_AggSettingRxUpdate(Adapter); /* 201/12/10 MH Add for USB agg mode dynamic switch. */ haldata->UsbRxHighSpeedMode = false; } static void _InitOperationMode(struct adapter *Adapter) { } static void _InitBeaconParameters(struct adapter *Adapter) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); rtw_write16(Adapter, REG_BCN_CTRL, 0x1010); /* TODO: Remove these magic number */ rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0x6404);/* ms */ rtw_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);/* 5ms */ rtw_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME); /* 2ms */ /* Suggested by designer timchen. Change beacon AIFS to the largest number */ /* beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */ rtw_write16(Adapter, REG_BCNTCFG, 0x660F); haldata->RegBcnCtrlVal = rtw_read8(Adapter, REG_BCN_CTRL); haldata->RegTxPause = rtw_read8(Adapter, REG_TXPAUSE); haldata->RegFwHwTxQCtrl = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL+2); haldata->RegReg542 = rtw_read8(Adapter, REG_TBTT_PROHIBIT+2); haldata->RegCR_1 = rtw_read8(Adapter, REG_CR+1); } static void _BeaconFunctionEnable(struct adapter *Adapter, bool Enable, bool Linked) { rtw_write8(Adapter, REG_BCN_CTRL, (BIT4 | BIT3 | BIT1)); rtw_write8(Adapter, REG_RD_CTRL+1, 0x6F); } /* Set CCK and OFDM Block "ON" */ static void _BBTurnOnBlock(struct adapter *Adapter) { PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bCCKEn, 0x1); PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bOFDMEn, 0x1); } enum { Antenna_Lfet = 1, Antenna_Right = 2, }; static void _InitAntenna_Selection(struct adapter *Adapter) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); if (haldata->AntDivCfg == 0) return; DBG_88E("==> %s ....\n", __func__); rtw_write32(Adapter, REG_LEDCFG0, rtw_read32(Adapter, REG_LEDCFG0)|BIT23); PHY_SetBBReg(Adapter, rFPGA0_XAB_RFParameter, BIT13, 0x01); if (PHY_QueryBBReg(Adapter, rFPGA0_XA_RFInterfaceOE, 0x300) == Antenna_A) haldata->CurAntenna = Antenna_A; else haldata->CurAntenna = Antenna_B; DBG_88E("%s,Cur_ant:(%x)%s\n", __func__, haldata->CurAntenna, (haldata->CurAntenna == Antenna_A) ? "Antenna_A" : "Antenna_B"); } /*----------------------------------------------------------------------------- * Function: HwSuspendModeEnable92Cu() * * Overview: HW suspend mode switch. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 08/23/2010 MHC HW suspend mode switch test.. *---------------------------------------------------------------------------*/ enum rt_rf_power_state RfOnOffDetect(struct adapter *adapt) { u8 val8; enum rt_rf_power_state rfpowerstate = rf_off; if (adapt->pwrctrlpriv.bHWPowerdown) { val8 = rtw_read8(adapt, REG_HSISR); DBG_88E("pwrdown, 0x5c(BIT7)=%02x\n", val8); rfpowerstate = (val8 & BIT7) ? rf_off : rf_on; } else { /* rf on/off */ rtw_write8(adapt, REG_MAC_PINMUX_CFG, rtw_read8(adapt, REG_MAC_PINMUX_CFG)&~(BIT3)); val8 = rtw_read8(adapt, REG_GPIO_IO_SEL); DBG_88E("GPIO_IN=%02x\n", val8); rfpowerstate = (val8 & BIT3) ? rf_on : rf_off; } return rfpowerstate; } /* HalDetectPwrDownMode */ static u32 rtl8188eu_hal_init(struct adapter *Adapter) { u8 value8 = 0; u16 value16; u8 txpktbuf_bndy; u32 status = _SUCCESS; struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); struct pwrctrl_priv *pwrctrlpriv = &Adapter->pwrctrlpriv; struct registry_priv *pregistrypriv = &Adapter->registrypriv; u32 init_start_time = jiffies; #define HAL_INIT_PROFILE_TAG(stage) do {} while (0) HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_BEGIN); if (Adapter->pwrctrlpriv.bkeepfwalive) { _ps_open_RF(Adapter); if (haldata->odmpriv.RFCalibrateInfo.bIQKInitialized) { PHY_IQCalibrate_8188E(Adapter, true); } else { PHY_IQCalibrate_8188E(Adapter, false); haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = true; } ODM_TXPowerTrackingCheck(&haldata->odmpriv); PHY_LCCalibrate_8188E(Adapter); goto exit; } HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PW_ON); status = rtl8188eu_InitPowerOn(Adapter); if (status == _FAIL) { RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init power on!\n")); goto exit; } /* Save target channel */ haldata->CurrentChannel = 6;/* default set to 6 */ if (pwrctrlpriv->reg_rfoff) { pwrctrlpriv->rf_pwrstate = rf_off; } /* 2010/08/09 MH We need to check if we need to turnon or off RF after detecting */ /* HW GPIO pin. Before PHY_RFConfig8192C. */ /* 2010/08/26 MH If Efuse does not support sective suspend then disable the function. */ if (!pregistrypriv->wifi_spec) { txpktbuf_bndy = TX_PAGE_BOUNDARY_88E; } else { /* for WMM */ txpktbuf_bndy = WMM_NORMAL_TX_PAGE_BOUNDARY_88E; } HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC01); _InitQueueReservedPage(Adapter); _InitQueuePriority(Adapter); _InitPageBoundary(Adapter); _InitTransferPageSize(Adapter); _InitTxBufferBoundary(Adapter, 0); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_DOWNLOAD_FW); if (Adapter->registrypriv.mp_mode == 1) { _InitRxSetting(Adapter); Adapter->bFWReady = false; haldata->fw_ractrl = false; } else { status = rtl8188e_FirmwareDownload(Adapter); if (status != _SUCCESS) { DBG_88E("%s: Download Firmware failed!!\n", __func__); Adapter->bFWReady = false; haldata->fw_ractrl = false; return status; } else { RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Initializeadapt8192CSdio(): Download Firmware Success!!\n")); Adapter->bFWReady = true; haldata->fw_ractrl = false; } } rtl8188e_InitializeFirmwareVars(Adapter); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MAC); #if (HAL_MAC_ENABLE == 1) status = PHY_MACConfig8188E(Adapter); if (status == _FAIL) { DBG_88E(" ### Failed to init MAC ......\n "); goto exit; } #endif /* */ /* d. Initialize BB related configurations. */ /* */ HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_BB); #if (HAL_BB_ENABLE == 1) status = PHY_BBConfig8188E(Adapter); if (status == _FAIL) { DBG_88E(" ### Failed to init BB ......\n "); goto exit; } #endif HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_RF); #if (HAL_RF_ENABLE == 1) status = PHY_RFConfig8188E(Adapter); if (status == _FAIL) { DBG_88E(" ### Failed to init RF ......\n "); goto exit; } #endif HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_EFUSE_PATCH); status = rtl8188e_iol_efuse_patch(Adapter); if (status == _FAIL) { DBG_88E("%s rtl8188e_iol_efuse_patch failed\n", __func__); goto exit; } _InitTxBufferBoundary(Adapter, txpktbuf_bndy); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_LLTT); status = InitLLTTable(Adapter, txpktbuf_bndy); if (status == _FAIL) { RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init LLT table\n")); goto exit; } HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC02); /* Get Rx PHY status in order to report RSSI and others. */ _InitDriverInfoSize(Adapter, DRVINFO_SZ); _InitInterrupt(Adapter); hal_init_macaddr(Adapter);/* set mac_address */ _InitNetworkType(Adapter);/* set msr */ _InitWMACSetting(Adapter); _InitAdaptiveCtrl(Adapter); _InitEDCA(Adapter); _InitRetryFunction(Adapter); InitUsbAggregationSetting(Adapter); _InitOperationMode(Adapter);/* todo */ _InitBeaconParameters(Adapter); _InitBeaconMaxError(Adapter, true); /* */ /* Init CR MACTXEN, MACRXEN after setting RxFF boundary REG_TRXFF_BNDY to patch */ /* Hw bug which Hw initials RxFF boundary size to a value which is larger than the real Rx buffer size in 88E. */ /* */ /* Enable MACTXEN/MACRXEN block */ value16 = rtw_read16(Adapter, REG_CR); value16 |= (MACTXEN | MACRXEN); rtw_write8(Adapter, REG_CR, value16); if (haldata->bRDGEnable) _InitRDGSetting(Adapter); /* Enable TX Report */ /* Enable Tx Report Timer */ value8 = rtw_read8(Adapter, REG_TX_RPT_CTRL); rtw_write8(Adapter, REG_TX_RPT_CTRL, (value8|BIT1|BIT0)); /* Set MAX RPT MACID */ rtw_write8(Adapter, REG_TX_RPT_CTRL+1, 2);/* FOR sta mode ,0: bc/mc ,1:AP */ /* Tx RPT Timer. Unit: 32us */ rtw_write16(Adapter, REG_TX_RPT_TIME, 0xCdf0); rtw_write8(Adapter, REG_EARLY_MODE_CONTROL, 0); rtw_write16(Adapter, REG_PKT_VO_VI_LIFE_TIME, 0x0400); /* unit: 256us. 256ms */ rtw_write16(Adapter, REG_PKT_BE_BK_LIFE_TIME, 0x0400); /* unit: 256us. 256ms */ _InitHWLed(Adapter); /* Keep RfRegChnlVal for later use. */ haldata->RfRegChnlVal[0] = PHY_QueryRFReg(Adapter, (enum rf_radio_path)0, RF_CHNLBW, bRFRegOffsetMask); haldata->RfRegChnlVal[1] = PHY_QueryRFReg(Adapter, (enum rf_radio_path)1, RF_CHNLBW, bRFRegOffsetMask); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_TURN_ON_BLOCK); _BBTurnOnBlock(Adapter); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_SECURITY); invalidate_cam_all(Adapter); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC11); /* 2010/12/17 MH We need to set TX power according to EFUSE content at first. */ PHY_SetTxPowerLevel8188E(Adapter, haldata->CurrentChannel); /* Move by Neo for USB SS to below setp */ /* _RfPowerSave(Adapter); */ _InitAntenna_Selection(Adapter); /* */ /* Disable BAR, suggested by Scott */ /* 2010.04.09 add by hpfan */ /* */ rtw_write32(Adapter, REG_BAR_MODE_CTRL, 0x0201ffff); /* HW SEQ CTRL */ /* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */ rtw_write8(Adapter, REG_HWSEQ_CTRL, 0xFF); if (pregistrypriv->wifi_spec) rtw_write16(Adapter, REG_FAST_EDCA_CTRL, 0); /* Nav limit , suggest by scott */ rtw_write8(Adapter, 0x652, 0x0); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_HAL_DM); rtl8188e_InitHalDm(Adapter); if (Adapter->registrypriv.mp_mode == 1) { Adapter->mppriv.channel = haldata->CurrentChannel; MPT_InitializeAdapter(Adapter, Adapter->mppriv.channel); } else { /* 2010/08/11 MH Merge from 8192SE for Minicard init. We need to confirm current radio status */ /* and then decide to enable RF or not.!!!??? For Selective suspend mode. We may not */ /* call initstruct adapter. May cause some problem?? */ /* Fix the bug that Hw/Sw radio off before S3/S4, the RF off action will not be executed */ /* in MgntActSet_RF_State() after wake up, because the value of haldata->eRFPowerState */ /* is the same as eRfOff, we should change it to eRfOn after we config RF parameters. */ /* Added by tynli. 2010.03.30. */ pwrctrlpriv->rf_pwrstate = rf_on; /* enable Tx report. */ rtw_write8(Adapter, REG_FWHW_TXQ_CTRL+1, 0x0F); /* Suggested by SD1 pisa. Added by tynli. 2011.10.21. */ rtw_write8(Adapter, REG_EARLY_MODE_CONTROL+3, 0x01);/* Pretx_en, for WEP/TKIP SEC */ /* tynli_test_tx_report. */ rtw_write16(Adapter, REG_TX_RPT_TIME, 0x3DF0); /* enable tx DMA to drop the redundate data of packet */ rtw_write16(Adapter, REG_TXDMA_OFFSET_CHK, (rtw_read16(Adapter, REG_TXDMA_OFFSET_CHK) | DROP_DATA_EN)); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_IQK); /* 2010/08/26 MH Merge from 8192CE. */ if (pwrctrlpriv->rf_pwrstate == rf_on) { if (haldata->odmpriv.RFCalibrateInfo.bIQKInitialized) { PHY_IQCalibrate_8188E(Adapter, true); } else { PHY_IQCalibrate_8188E(Adapter, false); haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = true; } HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_PW_TRACK); ODM_TXPowerTrackingCheck(&haldata->odmpriv); HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_LCK); PHY_LCCalibrate_8188E(Adapter); } } /* HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PABIAS); */ /* _InitPABias(Adapter); */ rtw_write8(Adapter, REG_USB_HRPWM, 0); /* ack for xmit mgmt frames. */ rtw_write32(Adapter, REG_FWHW_TXQ_CTRL, rtw_read32(Adapter, REG_FWHW_TXQ_CTRL)|BIT(12)); exit: HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_END); DBG_88E("%s in %dms\n", __func__, rtw_get_passing_time_ms(init_start_time)); return status; } void _ps_open_RF(struct adapter *adapt) { /* here call with bRegSSPwrLvl 1, bRegSSPwrLvl 2 needs to be verified */ /* phy_SsPwrSwitch92CU(adapt, rf_on, 1); */ } static void _ps_close_RF(struct adapter *adapt) { /* here call with bRegSSPwrLvl 1, bRegSSPwrLvl 2 needs to be verified */ /* phy_SsPwrSwitch92CU(adapt, rf_off, 1); */ } static void CardDisableRTL8188EU(struct adapter *Adapter) { u8 val8; struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("CardDisableRTL8188EU\n")); /* Stop Tx Report Timer. 0x4EC[Bit1]=b'0 */ val8 = rtw_read8(Adapter, REG_TX_RPT_CTRL); rtw_write8(Adapter, REG_TX_RPT_CTRL, val8&(~BIT1)); /* stop rx */ rtw_write8(Adapter, REG_CR, 0x0); /* Run LPS WL RFOFF flow */ HalPwrSeqCmdParsing(Adapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_LPS_ENTER_FLOW); /* 2. 0x1F[7:0] = 0 turn off RF */ val8 = rtw_read8(Adapter, REG_MCUFWDL); if ((val8 & RAM_DL_SEL) && Adapter->bFWReady) { /* 8051 RAM code */ /* Reset MCU 0x2[10]=0. */ val8 = rtw_read8(Adapter, REG_SYS_FUNC_EN+1); val8 &= ~BIT(2); /* 0x2[10], FEN_CPUEN */ rtw_write8(Adapter, REG_SYS_FUNC_EN+1, val8); } /* reset MCU ready status */ rtw_write8(Adapter, REG_MCUFWDL, 0); /* YJ,add,111212 */ /* Disable 32k */ val8 = rtw_read8(Adapter, REG_32K_CTRL); rtw_write8(Adapter, REG_32K_CTRL, val8&(~BIT0)); /* Card disable power action flow */ HalPwrSeqCmdParsing(Adapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_DISABLE_FLOW); /* Reset MCU IO Wrapper */ val8 = rtw_read8(Adapter, REG_RSV_CTRL+1); rtw_write8(Adapter, REG_RSV_CTRL+1, (val8&(~BIT3))); val8 = rtw_read8(Adapter, REG_RSV_CTRL+1); rtw_write8(Adapter, REG_RSV_CTRL+1, val8|BIT3); /* YJ,test add, 111207. For Power Consumption. */ val8 = rtw_read8(Adapter, GPIO_IN); rtw_write8(Adapter, GPIO_OUT, val8); rtw_write8(Adapter, GPIO_IO_SEL, 0xFF);/* Reg0x46 */ val8 = rtw_read8(Adapter, REG_GPIO_IO_SEL); rtw_write8(Adapter, REG_GPIO_IO_SEL, (val8<<4)); val8 = rtw_read8(Adapter, REG_GPIO_IO_SEL+1); rtw_write8(Adapter, REG_GPIO_IO_SEL+1, val8|0x0F);/* Reg0x43 */ rtw_write32(Adapter, REG_BB_PAD_CTRL, 0x00080808);/* set LNA ,TRSW,EX_PA Pin to output mode */ haldata->bMacPwrCtrlOn = false; Adapter->bFWReady = false; } static void rtl8192cu_hw_power_down(struct adapter *adapt) { /* 2010/-8/09 MH For power down module, we need to enable register block contrl reg at 0x1c. */ /* Then enable power down control bit of register 0x04 BIT4 and BIT15 as 1. */ /* Enable register area 0x0-0xc. */ rtw_write8(adapt, REG_RSV_CTRL, 0x0); rtw_write16(adapt, REG_APS_FSMCO, 0x8812); } static u32 rtl8188eu_hal_deinit(struct adapter *Adapter) { DBG_88E("==> %s\n", __func__); rtw_write32(Adapter, REG_HIMR_88E, IMR_DISABLED_88E); rtw_write32(Adapter, REG_HIMRE_88E, IMR_DISABLED_88E); DBG_88E("bkeepfwalive(%x)\n", Adapter->pwrctrlpriv.bkeepfwalive); if (Adapter->pwrctrlpriv.bkeepfwalive) { _ps_close_RF(Adapter); if ((Adapter->pwrctrlpriv.bHWPwrPindetect) && (Adapter->pwrctrlpriv.bHWPowerdown)) rtl8192cu_hw_power_down(Adapter); } else { if (Adapter->hw_init_completed) { CardDisableRTL8188EU(Adapter); if ((Adapter->pwrctrlpriv.bHWPwrPindetect) && (Adapter->pwrctrlpriv.bHWPowerdown)) rtl8192cu_hw_power_down(Adapter); } } return _SUCCESS; } static unsigned int rtl8188eu_inirp_init(struct adapter *Adapter) { u8 i; struct recv_buf *precvbuf; uint status; struct intf_hdl *pintfhdl = &Adapter->iopriv.intf; struct recv_priv *precvpriv = &(Adapter->recvpriv); u32 (*_read_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem); _read_port = pintfhdl->io_ops._read_port; status = _SUCCESS; RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("===> usb_inirp_init\n")); precvpriv->ff_hwaddr = RECV_BULK_IN_ADDR; /* issue Rx irp to receive data */ precvbuf = (struct recv_buf *)precvpriv->precv_buf; for (i = 0; i < NR_RECVBUFF; i++) { if (_read_port(pintfhdl, precvpriv->ff_hwaddr, 0, (unsigned char *)precvbuf) == false) { RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("usb_rx_init: usb_read_port error\n")); status = _FAIL; goto exit; } precvbuf++; precvpriv->free_recv_buf_queue_cnt--; } exit: RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("<=== usb_inirp_init\n")); return status; } static unsigned int rtl8188eu_inirp_deinit(struct adapter *Adapter) { RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("\n ===> usb_rx_deinit\n")); rtw_read_port_cancel(Adapter); RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("\n <=== usb_rx_deinit\n")); return _SUCCESS; } /* */ /* */ /* EEPROM/EFUSE Content Parsing */ /* */ /* */ static void _ReadLEDSetting(struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail) { struct led_priv *pledpriv = &(Adapter->ledpriv); struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); pledpriv->bRegUseLed = true; pledpriv->LedStrategy = SW_LED_MODE1; haldata->bLedOpenDrain = true;/* Support Open-drain arrangement for controlling the LED. */ } static void Hal_EfuseParsePIDVID_8188EU(struct adapter *adapt, u8 *hwinfo, bool AutoLoadFail) { struct hal_data_8188e *haldata = GET_HAL_DATA(adapt); if (!AutoLoadFail) { /* VID, PID */ haldata->EEPROMVID = EF2BYTE(*(__le16 *)&hwinfo[EEPROM_VID_88EU]); haldata->EEPROMPID = EF2BYTE(*(__le16 *)&hwinfo[EEPROM_PID_88EU]); /* Customer ID, 0x00 and 0xff are reserved for Realtek. */ haldata->EEPROMCustomerID = *(u8 *)&hwinfo[EEPROM_CUSTOMERID_88E]; haldata->EEPROMSubCustomerID = EEPROM_Default_SubCustomerID; } else { haldata->EEPROMVID = EEPROM_Default_VID; haldata->EEPROMPID = EEPROM_Default_PID; /* Customer ID, 0x00 and 0xff are reserved for Realtek. */ haldata->EEPROMCustomerID = EEPROM_Default_CustomerID; haldata->EEPROMSubCustomerID = EEPROM_Default_SubCustomerID; } DBG_88E("VID = 0x%04X, PID = 0x%04X\n", haldata->EEPROMVID, haldata->EEPROMPID); DBG_88E("Customer ID: 0x%02X, SubCustomer ID: 0x%02X\n", haldata->EEPROMCustomerID, haldata->EEPROMSubCustomerID); } static void Hal_EfuseParseMACAddr_8188EU(struct adapter *adapt, u8 *hwinfo, bool AutoLoadFail) { u16 i; u8 sMacAddr[6] = {0x00, 0xE0, 0x4C, 0x81, 0x88, 0x02}; struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(adapt); if (AutoLoadFail) { for (i = 0; i < 6; i++) eeprom->mac_addr[i] = sMacAddr[i]; } else { /* Read Permanent MAC address */ memcpy(eeprom->mac_addr, &hwinfo[EEPROM_MAC_ADDR_88EU], ETH_ALEN); } RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("Hal_EfuseParseMACAddr_8188EU: Permanent Address = %02x-%02x-%02x-%02x-%02x-%02x\n", eeprom->mac_addr[0], eeprom->mac_addr[1], eeprom->mac_addr[2], eeprom->mac_addr[3], eeprom->mac_addr[4], eeprom->mac_addr[5])); } static void Hal_CustomizeByCustomerID_8188EU(struct adapter *adapt) { } static void readAdapterInfo_8188EU( struct adapter *adapt ) { struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(adapt); /* parse the eeprom/efuse content */ Hal_EfuseParseIDCode88E(adapt, eeprom->efuse_eeprom_data); Hal_EfuseParsePIDVID_8188EU(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag); Hal_EfuseParseMACAddr_8188EU(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag); Hal_ReadPowerSavingMode88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag); Hal_ReadTxPowerInfo88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag); Hal_EfuseParseEEPROMVer88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag); rtl8188e_EfuseParseChnlPlan(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag); Hal_EfuseParseXtal_8188E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag); Hal_EfuseParseCustomerID88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag); Hal_ReadAntennaDiversity88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag); Hal_EfuseParseBoardType88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag); Hal_ReadThermalMeter_88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag); /* */ /* The following part initialize some vars by PG info. */ /* */ Hal_InitChannelPlan(adapt); Hal_CustomizeByCustomerID_8188EU(adapt); _ReadLEDSetting(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag); } static void _ReadPROMContent( struct adapter *Adapter ) { struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(Adapter); u8 eeValue; /* check system boot selection */ eeValue = rtw_read8(Adapter, REG_9346CR); eeprom->EepromOrEfuse = (eeValue & BOOT_FROM_EEPROM) ? true : false; eeprom->bautoload_fail_flag = (eeValue & EEPROM_EN) ? false : true; DBG_88E("Boot from %s, Autoload %s !\n", (eeprom->EepromOrEfuse ? "EEPROM" : "EFUSE"), (eeprom->bautoload_fail_flag ? "Fail" : "OK")); Hal_InitPGData88E(Adapter); readAdapterInfo_8188EU(Adapter); } static void _ReadRFType(struct adapter *Adapter) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); haldata->rf_chip = RF_6052; } static int _ReadAdapterInfo8188EU(struct adapter *Adapter) { u32 start = jiffies; MSG_88E("====> %s\n", __func__); _ReadRFType(Adapter);/* rf_chip -> _InitRFType() */ _ReadPROMContent(Adapter); MSG_88E("<==== %s in %d ms\n", __func__, rtw_get_passing_time_ms(start)); return _SUCCESS; } static void ReadAdapterInfo8188EU(struct adapter *Adapter) { /* Read EEPROM size before call any EEPROM function */ Adapter->EepromAddressSize = GetEEPROMSize8188E(Adapter); _ReadAdapterInfo8188EU(Adapter); } #define GPIO_DEBUG_PORT_NUM 0 static void rtl8192cu_trigger_gpio_0(struct adapter *adapt) { } static void ResumeTxBeacon(struct adapter *adapt) { struct hal_data_8188e *haldata = GET_HAL_DATA(adapt); /* 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */ /* which should be read from register to a global variable. */ rtw_write8(adapt, REG_FWHW_TXQ_CTRL+2, (haldata->RegFwHwTxQCtrl) | BIT6); haldata->RegFwHwTxQCtrl |= BIT6; rtw_write8(adapt, REG_TBTT_PROHIBIT+1, 0xff); haldata->RegReg542 |= BIT0; rtw_write8(adapt, REG_TBTT_PROHIBIT+2, haldata->RegReg542); } static void StopTxBeacon(struct adapter *adapt) { struct hal_data_8188e *haldata = GET_HAL_DATA(adapt); /* 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */ /* which should be read from register to a global variable. */ rtw_write8(adapt, REG_FWHW_TXQ_CTRL+2, (haldata->RegFwHwTxQCtrl) & (~BIT6)); haldata->RegFwHwTxQCtrl &= (~BIT6); rtw_write8(adapt, REG_TBTT_PROHIBIT+1, 0x64); haldata->RegReg542 &= ~(BIT0); rtw_write8(adapt, REG_TBTT_PROHIBIT+2, haldata->RegReg542); /* todo: CheckFwRsvdPageContent(Adapter); 2010.06.23. Added by tynli. */ } static void hw_var_set_opmode(struct adapter *Adapter, u8 variable, u8 *val) { u8 val8; u8 mode = *((u8 *)val); /* disable Port0 TSF update */ rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4)); /* set net_type */ val8 = rtw_read8(Adapter, MSR)&0x0c; val8 |= mode; rtw_write8(Adapter, MSR, val8); DBG_88E("%s()-%d mode = %d\n", __func__, __LINE__, mode); if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) { StopTxBeacon(Adapter); rtw_write8(Adapter, REG_BCN_CTRL, 0x19);/* disable atim wnd */ } else if ((mode == _HW_STATE_ADHOC_)) { ResumeTxBeacon(Adapter); rtw_write8(Adapter, REG_BCN_CTRL, 0x1a); } else if (mode == _HW_STATE_AP_) { ResumeTxBeacon(Adapter); rtw_write8(Adapter, REG_BCN_CTRL, 0x12); /* Set RCR */ rtw_write32(Adapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0,reject ICV_ERR packet */ /* enable to rx data frame */ rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF); /* enable to rx ps-poll */ rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400); /* Beacon Control related register for first time */ rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */ rtw_write8(Adapter, REG_ATIMWND, 0x0a); /* 10ms */ rtw_write16(Adapter, REG_BCNTCFG, 0x00); rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04); rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */ /* reset TSF */ rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0)); /* BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0 */ rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4)); /* enable BCN0 Function for if1 */ /* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */ rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP|EN_BCN_FUNCTION | BIT(1))); /* dis BCN1 ATIM WND if if2 is station */ rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) | BIT(0)); } } static void hw_var_set_macaddr(struct adapter *Adapter, u8 variable, u8 *val) { u8 idx = 0; u32 reg_macid; reg_macid = REG_MACID; for (idx = 0; idx < 6; idx++) rtw_write8(Adapter, (reg_macid+idx), val[idx]); } static void hw_var_set_bssid(struct adapter *Adapter, u8 variable, u8 *val) { u8 idx = 0; u32 reg_bssid; reg_bssid = REG_BSSID; for (idx = 0; idx < 6; idx++) rtw_write8(Adapter, (reg_bssid+idx), val[idx]); } static void hw_var_set_bcn_func(struct adapter *Adapter, u8 variable, u8 *val) { u32 bcn_ctrl_reg; bcn_ctrl_reg = REG_BCN_CTRL; if (*((u8 *)val)) rtw_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT)); else rtw_write8(Adapter, bcn_ctrl_reg, rtw_read8(Adapter, bcn_ctrl_reg)&(~(EN_BCN_FUNCTION | EN_TXBCN_RPT))); } static void SetHwReg8188EU(struct adapter *Adapter, u8 variable, u8 *val) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); struct dm_priv *pdmpriv = &haldata->dmpriv; struct odm_dm_struct *podmpriv = &haldata->odmpriv; switch (variable) { case HW_VAR_MEDIA_STATUS: { u8 val8; val8 = rtw_read8(Adapter, MSR)&0x0c; val8 |= *((u8 *)val); rtw_write8(Adapter, MSR, val8); } break; case HW_VAR_MEDIA_STATUS1: { u8 val8; val8 = rtw_read8(Adapter, MSR) & 0x03; val8 |= *((u8 *)val) << 2; rtw_write8(Adapter, MSR, val8); } break; case HW_VAR_SET_OPMODE: hw_var_set_opmode(Adapter, variable, val); break; case HW_VAR_MAC_ADDR: hw_var_set_macaddr(Adapter, variable, val); break; case HW_VAR_BSSID: hw_var_set_bssid(Adapter, variable, val); break; case HW_VAR_BASIC_RATE: { u16 BrateCfg = 0; u8 RateIndex = 0; /* 2007.01.16, by Emily */ /* Select RRSR (in Legacy-OFDM and CCK) */ /* For 8190, we select only 24M, 12M, 6M, 11M, 5.5M, 2M, and 1M from the Basic rate. */ /* We do not use other rates. */ HalSetBrateCfg(Adapter, val, &BrateCfg); DBG_88E("HW_VAR_BASIC_RATE: BrateCfg(%#x)\n", BrateCfg); /* 2011.03.30 add by Luke Lee */ /* CCK 2M ACK should be disabled for some BCM and Atheros AP IOT */ /* because CCK 2M has poor TXEVM */ /* CCK 5.5M & 11M ACK should be enabled for better performance */ BrateCfg = (BrateCfg | 0xd) & 0x15d; haldata->BasicRateSet = BrateCfg; BrateCfg |= 0x01; /* default enable 1M ACK rate */ /* Set RRSR rate table. */ rtw_write8(Adapter, REG_RRSR, BrateCfg & 0xff); rtw_write8(Adapter, REG_RRSR+1, (BrateCfg >> 8) & 0xff); rtw_write8(Adapter, REG_RRSR+2, rtw_read8(Adapter, REG_RRSR+2)&0xf0); /* Set RTS initial rate */ while (BrateCfg > 0x1) { BrateCfg = (BrateCfg >> 1); RateIndex++; } /* Ziv - Check */ rtw_write8(Adapter, REG_INIRTS_RATE_SEL, RateIndex); } break; case HW_VAR_TXPAUSE: rtw_write8(Adapter, REG_TXPAUSE, *((u8 *)val)); break; case HW_VAR_BCN_FUNC: hw_var_set_bcn_func(Adapter, variable, val); break; case HW_VAR_CORRECT_TSF: { u64 tsf; struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) - 1024; /* us */ if (((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)) StopTxBeacon(Adapter); /* disable related TSF function */ rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3))); rtw_write32(Adapter, REG_TSFTR, tsf); rtw_write32(Adapter, REG_TSFTR+4, tsf>>32); /* enable related TSF function */ rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3)); if (((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)) ResumeTxBeacon(Adapter); } break; case HW_VAR_CHECK_BSSID: if (*((u8 *)val)) { rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN); } else { u32 val32; val32 = rtw_read32(Adapter, REG_RCR); val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN); rtw_write32(Adapter, REG_RCR, val32); } break; case HW_VAR_MLME_DISCONNECT: /* Set RCR to not to receive data frame when NO LINK state */ /* reject all data frames */ rtw_write16(Adapter, REG_RXFLTMAP2, 0x00); /* reset TSF */ rtw_write8(Adapter, REG_DUAL_TSF_RST, (BIT(0)|BIT(1))); /* disable update TSF */ rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4)); break; case HW_VAR_MLME_SITESURVEY: if (*((u8 *)val)) { /* under sitesurvey */ /* config RCR to receive different BSSID & not to receive data frame */ u32 v = rtw_read32(Adapter, REG_RCR); v &= ~(RCR_CBSSID_BCN); rtw_write32(Adapter, REG_RCR, v); /* reject all data frame */ rtw_write16(Adapter, REG_RXFLTMAP2, 0x00); /* disable update TSF */ rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4)); } else { /* sitesurvey done */ struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); if ((is_client_associated_to_ap(Adapter)) || ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE)) { /* enable to rx data frame */ rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF); /* enable update TSF */ rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4))); } else if ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE) { rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF); /* enable update TSF */ rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4))); } if ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE) { rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN); } else { if (Adapter->in_cta_test) { u32 v = rtw_read32(Adapter, REG_RCR); v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/* RCR_ADF */ rtw_write32(Adapter, REG_RCR, v); } else { rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN); } } } break; case HW_VAR_MLME_JOIN: { u8 RetryLimit = 0x30; u8 type = *((u8 *)val); struct mlme_priv *pmlmepriv = &Adapter->mlmepriv; if (type == 0) { /* prepare to join */ /* enable to rx data frame.Accept all data frame */ rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF); if (Adapter->in_cta_test) { u32 v = rtw_read32(Adapter, REG_RCR); v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/* RCR_ADF */ rtw_write32(Adapter, REG_RCR, v); } else { rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN); } if (check_fwstate(pmlmepriv, WIFI_STATION_STATE)) RetryLimit = (haldata->CustomerID == RT_CID_CCX) ? 7 : 48; else /* Ad-hoc Mode */ RetryLimit = 0x7; } else if (type == 1) { /* joinbss_event call back when join res < 0 */ rtw_write16(Adapter, REG_RXFLTMAP2, 0x00); } else if (type == 2) { /* sta add event call back */ /* enable update TSF */ rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4))); if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE)) RetryLimit = 0x7; } rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT); } break; case HW_VAR_BEACON_INTERVAL: rtw_write16(Adapter, REG_BCN_INTERVAL, *((u16 *)val)); break; case HW_VAR_SLOT_TIME: { u8 u1bAIFS, aSifsTime; struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); rtw_write8(Adapter, REG_SLOT, val[0]); if (pmlmeinfo->WMM_enable == 0) { if (pmlmeext->cur_wireless_mode == WIRELESS_11B) aSifsTime = 10; else aSifsTime = 16; u1bAIFS = aSifsTime + (2 * pmlmeinfo->slotTime); /* Temporary removed, 2008.06.20. */ rtw_write8(Adapter, REG_EDCA_VO_PARAM, u1bAIFS); rtw_write8(Adapter, REG_EDCA_VI_PARAM, u1bAIFS); rtw_write8(Adapter, REG_EDCA_BE_PARAM, u1bAIFS); rtw_write8(Adapter, REG_EDCA_BK_PARAM, u1bAIFS); } } break; case HW_VAR_RESP_SIFS: /* RESP_SIFS for CCK */ rtw_write8(Adapter, REG_R2T_SIFS, val[0]); /* SIFS_T2T_CCK (0x08) */ rtw_write8(Adapter, REG_R2T_SIFS+1, val[1]); /* SIFS_R2T_CCK(0x08) */ /* RESP_SIFS for OFDM */ rtw_write8(Adapter, REG_T2T_SIFS, val[2]); /* SIFS_T2T_OFDM (0x0a) */ rtw_write8(Adapter, REG_T2T_SIFS+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */ break; case HW_VAR_ACK_PREAMBLE: { u8 regTmp; u8 bShortPreamble = *((bool *)val); /* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */ regTmp = (haldata->nCur40MhzPrimeSC)<<5; if (bShortPreamble) regTmp |= 0x80; rtw_write8(Adapter, REG_RRSR+2, regTmp); } break; case HW_VAR_SEC_CFG: rtw_write8(Adapter, REG_SECCFG, *((u8 *)val)); break; case HW_VAR_DM_FLAG: podmpriv->SupportAbility = *((u8 *)val); break; case HW_VAR_DM_FUNC_OP: if (val[0]) podmpriv->BK_SupportAbility = podmpriv->SupportAbility; else podmpriv->SupportAbility = podmpriv->BK_SupportAbility; break; case HW_VAR_DM_FUNC_SET: if (*((u32 *)val) == DYNAMIC_ALL_FUNC_ENABLE) { pdmpriv->DMFlag = pdmpriv->InitDMFlag; podmpriv->SupportAbility = pdmpriv->InitODMFlag; } else { podmpriv->SupportAbility |= *((u32 *)val); } break; case HW_VAR_DM_FUNC_CLR: podmpriv->SupportAbility &= *((u32 *)val); break; case HW_VAR_CAM_EMPTY_ENTRY: { u8 ucIndex = *((u8 *)val); u8 i; u32 ulCommand = 0; u32 ulContent = 0; u32 ulEncAlgo = CAM_AES; for (i = 0; i < CAM_CONTENT_COUNT; i++) { /* filled id in CAM config 2 byte */ if (i == 0) ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2); else ulContent = 0; /* polling bit, and No Write enable, and address */ ulCommand = CAM_CONTENT_COUNT*ucIndex+i; ulCommand = ulCommand | CAM_POLLINIG|CAM_WRITE; /* write content 0 is equall to mark invalid */ rtw_write32(Adapter, WCAMI, ulContent); /* delay_ms(40); */ rtw_write32(Adapter, RWCAM, ulCommand); /* delay_ms(40); */ } } break; case HW_VAR_CAM_INVALID_ALL: rtw_write32(Adapter, RWCAM, BIT(31)|BIT(30)); break; case HW_VAR_CAM_WRITE: { u32 cmd; u32 *cam_val = (u32 *)val; rtw_write32(Adapter, WCAMI, cam_val[0]); cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1]; rtw_write32(Adapter, RWCAM, cmd); } break; case HW_VAR_AC_PARAM_VO: rtw_write32(Adapter, REG_EDCA_VO_PARAM, ((u32 *)(val))[0]); break; case HW_VAR_AC_PARAM_VI: rtw_write32(Adapter, REG_EDCA_VI_PARAM, ((u32 *)(val))[0]); break; case HW_VAR_AC_PARAM_BE: haldata->AcParam_BE = ((u32 *)(val))[0]; rtw_write32(Adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]); break; case HW_VAR_AC_PARAM_BK: rtw_write32(Adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]); break; case HW_VAR_ACM_CTRL: { u8 acm_ctrl = *((u8 *)val); u8 AcmCtrl = rtw_read8(Adapter, REG_ACMHWCTRL); if (acm_ctrl > 1) AcmCtrl = AcmCtrl | 0x1; if (acm_ctrl & BIT(3)) AcmCtrl |= AcmHw_VoqEn; else AcmCtrl &= (~AcmHw_VoqEn); if (acm_ctrl & BIT(2)) AcmCtrl |= AcmHw_ViqEn; else AcmCtrl &= (~AcmHw_ViqEn); if (acm_ctrl & BIT(1)) AcmCtrl |= AcmHw_BeqEn; else AcmCtrl &= (~AcmHw_BeqEn); DBG_88E("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl); rtw_write8(Adapter, REG_ACMHWCTRL, AcmCtrl); } break; case HW_VAR_AMPDU_MIN_SPACE: { u8 MinSpacingToSet; u8 SecMinSpace; MinSpacingToSet = *((u8 *)val); if (MinSpacingToSet <= 7) { switch (Adapter->securitypriv.dot11PrivacyAlgrthm) { case _NO_PRIVACY_: case _AES_: SecMinSpace = 0; break; case _WEP40_: case _WEP104_: case _TKIP_: case _TKIP_WTMIC_: SecMinSpace = 6; break; default: SecMinSpace = 7; break; } if (MinSpacingToSet < SecMinSpace) MinSpacingToSet = SecMinSpace; rtw_write8(Adapter, REG_AMPDU_MIN_SPACE, (rtw_read8(Adapter, REG_AMPDU_MIN_SPACE) & 0xf8) | MinSpacingToSet); } } break; case HW_VAR_AMPDU_FACTOR: { u8 RegToSet_Normal[4] = {0x41, 0xa8, 0x72, 0xb9}; u8 FactorToSet; u8 *pRegToSet; u8 index = 0; pRegToSet = RegToSet_Normal; /* 0xb972a841; */ FactorToSet = *((u8 *)val); if (FactorToSet <= 3) { FactorToSet = (1<<(FactorToSet + 2)); if (FactorToSet > 0xf) FactorToSet = 0xf; for (index = 0; index < 4; index++) { if ((pRegToSet[index] & 0xf0) > (FactorToSet<<4)) pRegToSet[index] = (pRegToSet[index] & 0x0f) | (FactorToSet<<4); if ((pRegToSet[index] & 0x0f) > FactorToSet) pRegToSet[index] = (pRegToSet[index] & 0xf0) | (FactorToSet); rtw_write8(Adapter, (REG_AGGLEN_LMT+index), pRegToSet[index]); } } } break; case HW_VAR_RXDMA_AGG_PG_TH: { u8 threshold = *((u8 *)val); if (threshold == 0) threshold = haldata->UsbRxAggPageCount; rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, threshold); } break; case HW_VAR_SET_RPWM: break; case HW_VAR_H2C_FW_PWRMODE: { u8 psmode = (*(u8 *)val); /* Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */ /* saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */ if ((psmode != PS_MODE_ACTIVE) && (!IS_92C_SERIAL(haldata->VersionID))) ODM_RF_Saving(podmpriv, true); rtl8188e_set_FwPwrMode_cmd(Adapter, psmode); } break; case HW_VAR_H2C_FW_JOINBSSRPT: { u8 mstatus = (*(u8 *)val); rtl8188e_set_FwJoinBssReport_cmd(Adapter, mstatus); } break; #ifdef CONFIG_88EU_P2P case HW_VAR_H2C_FW_P2P_PS_OFFLOAD: { u8 p2p_ps_state = (*(u8 *)val); rtl8188e_set_p2p_ps_offload_cmd(Adapter, p2p_ps_state); } break; #endif case HW_VAR_INITIAL_GAIN: { struct rtw_dig *pDigTable = &podmpriv->DM_DigTable; u32 rx_gain = ((u32 *)(val))[0]; if (rx_gain == 0xff) {/* restore rx gain */ ODM_Write_DIG(podmpriv, pDigTable->BackupIGValue); } else { pDigTable->BackupIGValue = pDigTable->CurIGValue; ODM_Write_DIG(podmpriv, rx_gain); } } break; case HW_VAR_TRIGGER_GPIO_0: rtl8192cu_trigger_gpio_0(Adapter); break; case HW_VAR_RPT_TIMER_SETTING: { u16 min_rpt_time = (*(u16 *)val); ODM_RA_Set_TxRPT_Time(podmpriv, min_rpt_time); } break; case HW_VAR_ANTENNA_DIVERSITY_SELECT: { u8 Optimum_antenna = (*(u8 *)val); u8 Ant; /* switch antenna to Optimum_antenna */ if (haldata->CurAntenna != Optimum_antenna) { Ant = (Optimum_antenna == 2) ? MAIN_ANT : AUX_ANT; ODM_UpdateRxIdleAnt_88E(&haldata->odmpriv, Ant); haldata->CurAntenna = Optimum_antenna; } } break; case HW_VAR_EFUSE_BYTES: /* To set EFUE total used bytes, added by Roger, 2008.12.22. */ haldata->EfuseUsedBytes = *((u16 *)val); break; case HW_VAR_FIFO_CLEARN_UP: { struct pwrctrl_priv *pwrpriv = &Adapter->pwrctrlpriv; u8 trycnt = 100; /* pause tx */ rtw_write8(Adapter, REG_TXPAUSE, 0xff); /* keep sn */ Adapter->xmitpriv.nqos_ssn = rtw_read16(Adapter, REG_NQOS_SEQ); if (!pwrpriv->bkeepfwalive) { /* RX DMA stop */ rtw_write32(Adapter, REG_RXPKT_NUM, (rtw_read32(Adapter, REG_RXPKT_NUM)|RW_RELEASE_EN)); do { if (!(rtw_read32(Adapter, REG_RXPKT_NUM)&RXDMA_IDLE)) break; } while (trycnt--); if (trycnt == 0) DBG_88E("Stop RX DMA failed......\n"); /* RQPN Load 0 */ rtw_write16(Adapter, REG_RQPN_NPQ, 0x0); rtw_write32(Adapter, REG_RQPN, 0x80000000); rtw_mdelay_os(10); } } break; case HW_VAR_CHECK_TXBUF: break; case HW_VAR_APFM_ON_MAC: haldata->bMacPwrCtrlOn = *val; DBG_88E("%s: bMacPwrCtrlOn=%d\n", __func__, haldata->bMacPwrCtrlOn); break; case HW_VAR_TX_RPT_MAX_MACID: { u8 maxMacid = *val; DBG_88E("### MacID(%d),Set Max Tx RPT MID(%d)\n", maxMacid, maxMacid+1); rtw_write8(Adapter, REG_TX_RPT_CTRL+1, maxMacid+1); } break; case HW_VAR_H2C_MEDIA_STATUS_RPT: rtl8188e_set_FwMediaStatus_cmd(Adapter , (*(__le16 *)val)); break; case HW_VAR_BCN_VALID: /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */ rtw_write8(Adapter, REG_TDECTRL+2, rtw_read8(Adapter, REG_TDECTRL+2) | BIT0); break; default: break; } } static void GetHwReg8188EU(struct adapter *Adapter, u8 variable, u8 *val) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); struct odm_dm_struct *podmpriv = &haldata->odmpriv; switch (variable) { case HW_VAR_BASIC_RATE: *((u16 *)(val)) = haldata->BasicRateSet; case HW_VAR_TXPAUSE: val[0] = rtw_read8(Adapter, REG_TXPAUSE); break; case HW_VAR_BCN_VALID: /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */ val[0] = (BIT0 & rtw_read8(Adapter, REG_TDECTRL+2)) ? true : false; break; case HW_VAR_DM_FLAG: val[0] = podmpriv->SupportAbility; break; case HW_VAR_RF_TYPE: val[0] = haldata->rf_type; break; case HW_VAR_FWLPS_RF_ON: { /* When we halt NIC, we should check if FW LPS is leave. */ if (Adapter->pwrctrlpriv.rf_pwrstate == rf_off) { /* If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */ /* because Fw is unload. */ val[0] = true; } else { u32 valRCR; valRCR = rtw_read32(Adapter, REG_RCR); valRCR &= 0x00070000; if (valRCR) val[0] = false; else val[0] = true; } } break; case HW_VAR_CURRENT_ANTENNA: val[0] = haldata->CurAntenna; break; case HW_VAR_EFUSE_BYTES: /* To get EFUE total used bytes, added by Roger, 2008.12.22. */ *((u16 *)(val)) = haldata->EfuseUsedBytes; break; case HW_VAR_APFM_ON_MAC: *val = haldata->bMacPwrCtrlOn; break; case HW_VAR_CHK_HI_QUEUE_EMPTY: *val = ((rtw_read32(Adapter, REG_HGQ_INFORMATION)&0x0000ff00) == 0) ? true : false; break; default: break; } } /* */ /* Description: */ /* Query setting of specified variable. */ /* */ static u8 GetHalDefVar8188EUsb( struct adapter *Adapter, enum hal_def_variable eVariable, void *pValue ) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); u8 bResult = _SUCCESS; switch (eVariable) { case HAL_DEF_UNDERCORATEDSMOOTHEDPWDB: { struct mlme_priv *pmlmepriv = &Adapter->mlmepriv; struct sta_priv *pstapriv = &Adapter->stapriv; struct sta_info *psta; psta = rtw_get_stainfo(pstapriv, pmlmepriv->cur_network.network.MacAddress); if (psta) *((int *)pValue) = psta->rssi_stat.UndecoratedSmoothedPWDB; } break; case HAL_DEF_IS_SUPPORT_ANT_DIV: *((u8 *)pValue) = (haldata->AntDivCfg == 0) ? false : true; break; case HAL_DEF_CURRENT_ANTENNA: *((u8 *)pValue) = haldata->CurAntenna; break; case HAL_DEF_DRVINFO_SZ: *((u32 *)pValue) = DRVINFO_SZ; break; case HAL_DEF_MAX_RECVBUF_SZ: *((u32 *)pValue) = MAX_RECVBUF_SZ; break; case HAL_DEF_RX_PACKET_OFFSET: *((u32 *)pValue) = RXDESC_SIZE + DRVINFO_SZ; break; case HAL_DEF_DBG_DM_FUNC: *((u32 *)pValue) = haldata->odmpriv.SupportAbility; break; case HAL_DEF_RA_DECISION_RATE: { u8 MacID = *((u8 *)pValue); *((u8 *)pValue) = ODM_RA_GetDecisionRate_8188E(&(haldata->odmpriv), MacID); } break; case HAL_DEF_RA_SGI: { u8 MacID = *((u8 *)pValue); *((u8 *)pValue) = ODM_RA_GetShortGI_8188E(&(haldata->odmpriv), MacID); } break; case HAL_DEF_PT_PWR_STATUS: { u8 MacID = *((u8 *)pValue); *((u8 *)pValue) = ODM_RA_GetHwPwrStatus_8188E(&(haldata->odmpriv), MacID); } break; case HW_VAR_MAX_RX_AMPDU_FACTOR: *((u32 *)pValue) = MAX_AMPDU_FACTOR_64K; break; case HW_DEF_RA_INFO_DUMP: { u8 entry_id = *((u8 *)pValue); if (check_fwstate(&Adapter->mlmepriv, _FW_LINKED)) { DBG_88E("============ RA status check ===================\n"); DBG_88E("Mac_id:%d , RateID = %d, RAUseRate = 0x%08x, RateSGI = %d, DecisionRate = 0x%02x ,PTStage = %d\n", entry_id, haldata->odmpriv.RAInfo[entry_id].RateID, haldata->odmpriv.RAInfo[entry_id].RAUseRate, haldata->odmpriv.RAInfo[entry_id].RateSGI, haldata->odmpriv.RAInfo[entry_id].DecisionRate, haldata->odmpriv.RAInfo[entry_id].PTStage); } } break; case HW_DEF_ODM_DBG_FLAG: { struct odm_dm_struct *dm_ocm = &(haldata->odmpriv); pr_info("dm_ocm->DebugComponents = 0x%llx\n", dm_ocm->DebugComponents); } break; case HAL_DEF_DBG_DUMP_RXPKT: *((u8 *)pValue) = haldata->bDumpRxPkt; break; case HAL_DEF_DBG_DUMP_TXPKT: *((u8 *)pValue) = haldata->bDumpTxPkt; break; default: bResult = _FAIL; break; } return bResult; } /* */ /* Description: */ /* Change default setting of specified variable. */ /* */ static u8 SetHalDefVar8188EUsb(struct adapter *Adapter, enum hal_def_variable eVariable, void *pValue) { struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter); u8 bResult = _SUCCESS; switch (eVariable) { case HAL_DEF_DBG_DM_FUNC: { u8 dm_func = *((u8 *)pValue); struct odm_dm_struct *podmpriv = &haldata->odmpriv; if (dm_func == 0) { /* disable all dynamic func */ podmpriv->SupportAbility = DYNAMIC_FUNC_DISABLE; DBG_88E("==> Disable all dynamic function...\n"); } else if (dm_func == 1) {/* disable DIG */ podmpriv->SupportAbility &= (~DYNAMIC_BB_DIG); DBG_88E("==> Disable DIG...\n"); } else if (dm_func == 2) {/* disable High power */ podmpriv->SupportAbility &= (~DYNAMIC_BB_DYNAMIC_TXPWR); } else if (dm_func == 3) {/* disable tx power tracking */ podmpriv->SupportAbility &= (~DYNAMIC_RF_CALIBRATION); DBG_88E("==> Disable tx power tracking...\n"); } else if (dm_func == 5) {/* disable antenna diversity */ podmpriv->SupportAbility &= (~DYNAMIC_BB_ANT_DIV); } else if (dm_func == 6) {/* turn on all dynamic func */ if (!(podmpriv->SupportAbility & DYNAMIC_BB_DIG)) { struct rtw_dig *pDigTable = &podmpriv->DM_DigTable; pDigTable->CurIGValue = rtw_read8(Adapter, 0xc50); } podmpriv->SupportAbility = DYNAMIC_ALL_FUNC_ENABLE; DBG_88E("==> Turn on all dynamic function...\n"); } } break; case HAL_DEF_DBG_DUMP_RXPKT: haldata->bDumpRxPkt = *((u8 *)pValue); break; case HAL_DEF_DBG_DUMP_TXPKT: haldata->bDumpTxPkt = *((u8 *)pValue); break; case HW_DEF_FA_CNT_DUMP: { u8 bRSSIDump = *((u8 *)pValue); struct odm_dm_struct *dm_ocm = &(haldata->odmpriv); if (bRSSIDump) dm_ocm->DebugComponents = ODM_COMP_DIG|ODM_COMP_FA_CNT ; else dm_ocm->DebugComponents = 0; } break; case HW_DEF_ODM_DBG_FLAG: { u64 DebugComponents = *((u64 *)pValue); struct odm_dm_struct *dm_ocm = &(haldata->odmpriv); dm_ocm->DebugComponents = DebugComponents; } break; default: bResult = _FAIL; break; } return bResult; } static void UpdateHalRAMask8188EUsb(struct adapter *adapt, u32 mac_id, u8 rssi_level) { u8 init_rate = 0; u8 networkType, raid; u32 mask, rate_bitmap; u8 shortGIrate = false; int supportRateNum = 0; struct sta_info *psta; struct hal_data_8188e *haldata = GET_HAL_DATA(adapt); struct mlme_ext_priv *pmlmeext = &adapt->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct wlan_bssid_ex *cur_network = &(pmlmeinfo->network); if (mac_id >= NUM_STA) /* CAM_SIZE */ return; psta = pmlmeinfo->FW_sta_info[mac_id].psta; if (psta == NULL) return; switch (mac_id) { case 0:/* for infra mode */ supportRateNum = rtw_get_rateset_len(cur_network->SupportedRates); networkType = judge_network_type(adapt, cur_network->SupportedRates, supportRateNum) & 0xf; raid = networktype_to_raid(networkType); mask = update_supported_rate(cur_network->SupportedRates, supportRateNum); mask |= (pmlmeinfo->HT_enable) ? update_MSC_rate(&(pmlmeinfo->HT_caps)) : 0; if (support_short_GI(adapt, &(pmlmeinfo->HT_caps))) shortGIrate = true; break; case 1:/* for broadcast/multicast */ supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates); if (pmlmeext->cur_wireless_mode & WIRELESS_11B) networkType = WIRELESS_11B; else networkType = WIRELESS_11G; raid = networktype_to_raid(networkType); mask = update_basic_rate(cur_network->SupportedRates, supportRateNum); break; default: /* for each sta in IBSS */ supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates); networkType = judge_network_type(adapt, pmlmeinfo->FW_sta_info[mac_id].SupportedRates, supportRateNum) & 0xf; raid = networktype_to_raid(networkType); mask = update_supported_rate(cur_network->SupportedRates, supportRateNum); /* todo: support HT in IBSS */ break; } rate_bitmap = 0x0fffffff; rate_bitmap = ODM_Get_Rate_Bitmap(&haldata->odmpriv, mac_id, mask, rssi_level); DBG_88E("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n", __func__, mac_id, networkType, mask, rssi_level, rate_bitmap); mask &= rate_bitmap; init_rate = get_highest_rate_idx(mask)&0x3f; if (haldata->fw_ractrl) { u8 arg; arg = mac_id & 0x1f;/* MACID */ arg |= BIT(7); if (shortGIrate) arg |= BIT(5); mask |= ((raid << 28) & 0xf0000000); DBG_88E("update raid entry, mask=0x%x, arg=0x%x\n", mask, arg); psta->ra_mask = mask; mask |= ((raid << 28) & 0xf0000000); /* to do ,for 8188E-SMIC */ rtl8188e_set_raid_cmd(adapt, mask); } else { ODM_RA_UpdateRateInfo_8188E(&(haldata->odmpriv), mac_id, raid, mask, shortGIrate ); } /* set ra_id */ psta->raid = raid; psta->init_rate = init_rate; } static void SetBeaconRelatedRegisters8188EUsb(struct adapter *adapt) { u32 value32; struct mlme_ext_priv *pmlmeext = &(adapt->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); u32 bcn_ctrl_reg = REG_BCN_CTRL; /* reset TSF, enable update TSF, correcting TSF On Beacon */ /* BCN interval */ rtw_write16(adapt, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval); rtw_write8(adapt, REG_ATIMWND, 0x02);/* 2ms */ _InitBeaconParameters(adapt); rtw_write8(adapt, REG_SLOT, 0x09); value32 = rtw_read32(adapt, REG_TCR); value32 &= ~TSFRST; rtw_write32(adapt, REG_TCR, value32); value32 |= TSFRST; rtw_write32(adapt, REG_TCR, value32); /* NOTE: Fix test chip's bug (about contention windows's randomness) */ rtw_write8(adapt, REG_RXTSF_OFFSET_CCK, 0x50); rtw_write8(adapt, REG_RXTSF_OFFSET_OFDM, 0x50); _BeaconFunctionEnable(adapt, true, true); ResumeTxBeacon(adapt); rtw_write8(adapt, bcn_ctrl_reg, rtw_read8(adapt, bcn_ctrl_reg)|BIT(1)); } static void rtl8188eu_init_default_value(struct adapter *adapt) { struct hal_data_8188e *haldata; struct pwrctrl_priv *pwrctrlpriv; u8 i; haldata = GET_HAL_DATA(adapt); pwrctrlpriv = &adapt->pwrctrlpriv; /* init default value */ haldata->fw_ractrl = false; if (!pwrctrlpriv->bkeepfwalive) haldata->LastHMEBoxNum = 0; /* init dm default value */ haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = false; haldata->odmpriv.RFCalibrateInfo.TM_Trigger = 0;/* for IQK */ haldata->pwrGroupCnt = 0; haldata->PGMaxGroup = 13; haldata->odmpriv.RFCalibrateInfo.ThermalValue_HP_index = 0; for (i = 0; i < HP_THERMAL_NUM; i++) haldata->odmpriv.RFCalibrateInfo.ThermalValue_HP[i] = 0; } static u8 rtl8188eu_ps_func(struct adapter *Adapter, enum hal_intf_ps_func efunc_id, u8 *val) { u8 bResult = true; return bResult; } void rtl8188eu_set_hal_ops(struct adapter *adapt) { struct hal_ops *halfunc = &adapt->HalFunc; adapt->HalData = rtw_zmalloc(sizeof(struct hal_data_8188e)); if (adapt->HalData == NULL) DBG_88E("cant not alloc memory for HAL DATA\n"); adapt->hal_data_sz = sizeof(struct hal_data_8188e); halfunc->hal_power_on = rtl8188eu_InitPowerOn; halfunc->hal_init = &rtl8188eu_hal_init; halfunc->hal_deinit = &rtl8188eu_hal_deinit; halfunc->inirp_init = &rtl8188eu_inirp_init; halfunc->inirp_deinit = &rtl8188eu_inirp_deinit; halfunc->init_xmit_priv = &rtl8188eu_init_xmit_priv; halfunc->free_xmit_priv = &rtl8188eu_free_xmit_priv; halfunc->init_recv_priv = &rtl8188eu_init_recv_priv; halfunc->free_recv_priv = &rtl8188eu_free_recv_priv; halfunc->InitSwLeds = &rtl8188eu_InitSwLeds; halfunc->DeInitSwLeds = &rtl8188eu_DeInitSwLeds; halfunc->init_default_value = &rtl8188eu_init_default_value; halfunc->intf_chip_configure = &rtl8188eu_interface_configure; halfunc->read_adapter_info = &ReadAdapterInfo8188EU; halfunc->SetHwRegHandler = &SetHwReg8188EU; halfunc->GetHwRegHandler = &GetHwReg8188EU; halfunc->GetHalDefVarHandler = &GetHalDefVar8188EUsb; halfunc->SetHalDefVarHandler = &SetHalDefVar8188EUsb; halfunc->UpdateRAMaskHandler = &UpdateHalRAMask8188EUsb; halfunc->SetBeaconRelatedRegistersHandler = &SetBeaconRelatedRegisters8188EUsb; halfunc->hal_xmit = &rtl8188eu_hal_xmit; halfunc->mgnt_xmit = &rtl8188eu_mgnt_xmit; halfunc->interface_ps_func = &rtl8188eu_ps_func; rtl8188e_set_hal_ops(halfunc); }