/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _HAL_INIT_C_ #include #include #include #include #if defined(CONFIG_IOL) #ifdef CONFIG_USB_HCI #include #endif static void iol_mode_enable(PADAPTER padapter, u8 enable) { u8 reg_0xf0 = 0; if (enable) { //Enable initial offload reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG); //DBG_871X("%s reg_0xf0:0x%02x, write 0x%02x\n", __func__, reg_0xf0, reg_0xf0|SW_OFFLOAD_EN); rtw_write8(padapter, REG_SYS_CFG, reg_0xf0|SW_OFFLOAD_EN); if (padapter->bFWReady == _FALSE) { printk("bFWReady == _FALSE call reset 8051...\n"); _8051Reset88E(padapter); } } else { //disable initial offload reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG); //DBG_871X("%s reg_0xf0:0x%02x, write 0x%02x\n", __func__, reg_0xf0, reg_0xf0& ~SW_OFFLOAD_EN); rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN); } } static s32 iol_execute(PADAPTER padapter, u8 control) { s32 status = _FAIL; u8 reg_0x88 = 0,reg_1c7=0; u32 start = 0, passing_time = 0; u32 t1,t2; control = control&0x0f; reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0); //DBG_871X("%s reg_0x88:0x%02x, write 0x%02x\n", __func__, reg_0x88, reg_0x88|control); rtw_write8(padapter, REG_HMEBOX_E0, reg_0x88|control); t1 = start = rtw_get_current_time(); while ( //(reg_1c7 = rtw_read8(padapter, 0x1c7) >1) && (reg_0x88=rtw_read8(padapter, REG_HMEBOX_E0)) & control && (passing_time=rtw_get_passing_time_ms(start))<1000 ) { //DBG_871X("%s polling reg_0x88:0x%02x,reg_0x1c7:0x%02x\n", __func__, reg_0x88,rtw_read8(padapter, 0x1c7) ); //rtw_udelay_os(100); } reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0); status = (reg_0x88 & control)?_FAIL:_SUCCESS; if (reg_0x88 & control<<4) status = _FAIL; t2= rtw_get_current_time(); //printk("==> step iol_execute : %5u reg-0x1c0= 0x%02x\n",rtw_get_time_interval_ms(t1,t2),rtw_read8(padapter, 0x1c0)); //DBG_871X("%s in %u ms, reg_0x88:0x%02x\n", __func__, passing_time, reg_0x88); return status; } static s32 iol_InitLLTTable( PADAPTER padapter, u8 txpktbuf_bndy ) { s32 rst = _SUCCESS; iol_mode_enable(padapter, 1); //DBG_871X("%s txpktbuf_bndy:%u\n", __func__, txpktbuf_bndy); rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy); rst = iol_execute(padapter, CMD_INIT_LLT); iol_mode_enable(padapter, 0); return rst; } static void efuse_phymap_to_logical(u8 * phymap, u16 _offset, u16 _size_byte, u8 *pbuf) { u8 *efuseTbl = NULL; u8 rtemp8; u16 eFuse_Addr = 0; u8 offset, wren; u16 i, j; u16 **eFuseWord = NULL; u16 efuse_utilized = 0; u8 efuse_usage = 0; u8 u1temp = 0; efuseTbl = (u8*)rtw_zmalloc(EFUSE_MAP_LEN_88E); if (efuseTbl == NULL) { DBG_871X("%s: alloc efuseTbl fail!\n", __func__); goto exit; } eFuseWord= (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16)); if (eFuseWord == NULL) { DBG_871X("%s: alloc eFuseWord fail!\n", __func__); goto exit; } // 0. Refresh efuse init map as all oxFF. for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) eFuseWord[i][j] = 0xFFFF; // // 1. Read the first byte to check if efuse is empty!!! // // rtemp8 = *(phymap+eFuse_Addr); if (rtemp8 != 0xFF) { efuse_utilized++; //printk("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8); eFuse_Addr++; } else { DBG_871X("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, rtemp8); goto exit; } // // 2. Read real efuse content. Filter PG header and every section data. // while ((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8)); // Check PG header for section num. if ((rtemp8 & 0x1F ) == 0x0F) //extended header { u1temp =( (rtemp8 & 0xE0) >> 5); //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0)); //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x\n", u1temp)); rtemp8 = *(phymap+eFuse_Addr); //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8)); if ((rtemp8 & 0x0F) == 0x0F) { eFuse_Addr++; rtemp8 = *(phymap+eFuse_Addr); if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { eFuse_Addr++; } continue; } else { offset = ((rtemp8 & 0xF0) >> 1) | u1temp; wren = (rtemp8 & 0x0F); eFuse_Addr++; } } else { offset = ((rtemp8 >> 4) & 0x0f); wren = (rtemp8 & 0x0f); } if (offset < EFUSE_MAX_SECTION_88E) { // Get word enable value from PG header //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren)); for (i=0; i= EFUSE_REAL_CONTENT_LEN_88E) break; //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr)); rtemp8 = *(phymap+eFuse_Addr); eFuse_Addr++; //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8)); efuse_utilized++; eFuseWord[offset][i] |= (((u2Byte)rtemp8 << 8) & 0xff00); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; } wren >>= 1; } } // Read next PG header rtemp8 = *(phymap+eFuse_Addr); //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8)); if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { efuse_utilized++; eFuse_Addr++; } } // // 3. Collect 16 sections and 4 word unit into Efuse map. // for (i=0; i> 8) & 0xff); } } // // 4. Copy from Efuse map to output pointer memory!!! // for (i=0; i<_size_byte; i++) { pbuf[i] = efuseTbl[_offset+i]; } // // 5. Calculate Efuse utilization. // efuse_usage = (u1Byte)((efuse_utilized*100)/EFUSE_REAL_CONTENT_LEN_88E); //Adapter->HalFunc.SetHwRegHandler(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_utilized); exit: if (efuseTbl) rtw_mfree(efuseTbl, EFUSE_MAP_LEN_88E); if (eFuseWord) rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16)); } void efuse_read_phymap_from_txpktbuf( ADAPTER *adapter, int bcnhead, //beacon head, where FW store len(2-byte) and efuse physical map. u8 *content, //buffer to store efuse physical map u16 *size //for efuse content: the max byte to read. will update to byte read ) { u16 dbg_addr = 0; u32 start = 0, passing_time = 0; u8 reg_0x143 = 0; u8 reg_0x106 = 0; u32 lo32 = 0, hi32 = 0; u16 len = 0, count = 0; int i = 0; u16 limit = *size; u8 *pos = content; if (bcnhead<0) //if not valid bcnhead = rtw_read8(adapter, REG_TDECTRL+1); DBG_871X("%s bcnhead:%d\n", __func__, bcnhead); //reg_0x106 = rtw_read8(adapter, REG_PKT_BUFF_ACCESS_CTRL); //DBG_871X("%s reg_0x106:0x%02x, write 0x%02x\n", __func__, reg_0x106, 0x69); rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT); //DBG_871X("%s reg_0x106:0x%02x\n", __func__, rtw_read8(adapter, 0x106)); dbg_addr = bcnhead*128/8; //8-bytes addressing while (1) { //DBG_871X("%s dbg_addr:0x%x\n", __func__, dbg_addr+i); rtw_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr+i); //DBG_871X("%s write reg_0x143:0x00\n", __func__); rtw_write8(adapter, REG_TXPKTBUF_DBG, 0); start = rtw_get_current_time(); while (!(reg_0x143=rtw_read8(adapter, REG_TXPKTBUF_DBG))//dbg //while (rtw_read8(adapter, REG_TXPKTBUF_DBG) & BIT0 && (passing_time=rtw_get_passing_time_ms(start))<1000 ) { DBG_871X("%s polling reg_0x143:0x%02x, reg_0x106:0x%02x\n", __func__, reg_0x143, rtw_read8(adapter, 0x106)); rtw_usleep_os(100); } lo32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L); hi32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H); if (i==0) { u8 lenc[2]; u16 lenbak, aaabak; u16 aaa; lenc[0] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L); lenc[1] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+1); aaabak = le16_to_cpup((u16*)lenc); lenbak = le16_to_cpu(*((u16*)lenc)); aaa = le16_to_cpup((u16*)&lo32); len = le16_to_cpu(*((u16*)&lo32)); limit = (len-2=count+2)?2:limit-count); count+= (limit>=count+2)?2:limit-count; pos=content+count; } else { _rtw_memcpy(pos, ((u8*)&lo32), (limit>=count+4)?4:limit-count); count+=(limit>=count+4)?4:limit-count; pos=content+count; } if (limit>count && len-2>count) { _rtw_memcpy(pos, (u8*)&hi32, (limit>=count+4)?4:limit-count); count+=(limit>=count+4)?4:limit-count; pos=content+count; } if (limit<=count || len-2<=count) break; i++; } rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS); DBG_871X("%s read count:%u\n", __func__, count); *size = count; } static s32 iol_read_efuse( PADAPTER padapter, u8 txpktbuf_bndy, u16 offset, u16 size_byte, u8 *logical_map ) { s32 status = _FAIL; u8 reg_0x106 = 0; u8 physical_map[512]; u16 size = 512; int i; rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy); _rtw_memset(physical_map, 0xFF, 512); ///reg_0x106 = rtw_read8(padapter, REG_PKT_BUFF_ACCESS_CTRL); //DBG_871X("%s reg_0x106:0x%02x, write 0x%02x\n", __func__, reg_0x106, 0x69); rtw_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT); //DBG_871X("%s reg_0x106:0x%02x\n", __func__, rtw_read8(padapter, 0x106)); status = iol_execute(padapter, CMD_READ_EFUSE_MAP); if (status == _SUCCESS) efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size); efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map); return status; } s32 rtl8188e_iol_efuse_patch(PADAPTER padapter) { s32 result = _SUCCESS; printk("==> %s\n",__func__); if (rtw_IOL_applied(padapter)){ iol_mode_enable(padapter, 1); result = iol_execute(padapter, CMD_READ_EFUSE_MAP); if (result == _SUCCESS) result = iol_execute(padapter, CMD_EFUSE_PATCH); iol_mode_enable(padapter, 0); } return result; } static s32 iol_ioconfig( PADAPTER padapter, u8 iocfg_bndy ) { s32 rst = _SUCCESS; //DBG_871X("%s iocfg_bndy:%u\n", __func__, iocfg_bndy); rtw_write8(padapter, REG_TDECTRL+1, iocfg_bndy); rst = iol_execute(padapter, CMD_IOCONFIG); return rst; } int rtl8188e_IOL_exec_cmds_sync(ADAPTER *adapter, struct xmit_frame *xmit_frame, u32 max_wating_ms,u32 bndy_cnt) { u32 start_time = rtw_get_current_time(); u32 passing_time_ms; u8 polling_ret,i; int ret = _FAIL; u32 t1,t2; //printk("===> %s ,bndy_cnt = %d\n",__func__,bndy_cnt); if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS) goto exit; #ifdef CONFIG_USB_HCI { struct pkt_attrib *pattrib = &xmit_frame->attrib; if (rtw_usb_bulk_size_boundary(adapter,TXDESC_SIZE+pattrib->last_txcmdsz)) { if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS) goto exit; } } #endif //CONFIG_USB_HCI //rtw_IOL_cmd_buf_dump(adapter,xmit_frame->attrib.pktlen+TXDESC_OFFSET,xmit_frame->buf_addr); //rtw_hal_mgnt_xmit(adapter, xmit_frame); //rtw_dump_xframe_sync(adapter, xmit_frame); dump_mgntframe_and_wait(adapter, xmit_frame, max_wating_ms); t1= rtw_get_current_time(); iol_mode_enable(adapter, 1); for (i=0;i %s : %5u\n",__func__,rtw_get_time_interval_ms(t1,t2)); exit: //restore BCN_HEAD rtw_write8(adapter, REG_TDECTRL+1, 0); return ret; } void rtw_IOL_cmd_tx_pkt_buf_dump(ADAPTER *Adapter,int data_len) { u32 fifo_data,reg_140; u32 addr,rstatus,loop=0; u16 data_cnts = (data_len/8)+1; u8 *pbuf =rtw_zvmalloc(data_len+10); printk("###### %s ######\n",__func__); rtw_write8(Adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT); if (pbuf){ for (addr=0;addr< data_cnts;addr++){ //printk("==> addr:0x%02x\n",addr); rtw_write32(Adapter,0x140,addr); rtw_usleep_os(2); loop=0; do{ rstatus=(reg_140=rtw_read32(Adapter,REG_PKTBUF_DBG_CTRL)&BIT24); //printk("rstatus = %02x, reg_140:0x%08x\n",rstatus,reg_140); if (rstatus){ fifo_data = rtw_read32(Adapter,REG_PKTBUF_DBG_DATA_L); //printk("fifo_data_144:0x%08x\n",fifo_data); _rtw_memcpy(pbuf+(addr*8),&fifo_data , 4); fifo_data = rtw_read32(Adapter,REG_PKTBUF_DBG_DATA_H); //printk("fifo_data_148:0x%08x\n",fifo_data); _rtw_memcpy(pbuf+(addr*8+4), &fifo_data, 4); } rtw_usleep_os(2); }while ( !rstatus && (loop++ <10)); } rtw_IOL_cmd_buf_dump(Adapter,data_len,pbuf); rtw_vmfree(pbuf, data_len+10); } printk("###### %s ######\n",__func__); } #endif /* defined(CONFIG_IOL) */ static void _FWDownloadEnable( IN PADAPTER padapter, IN BOOLEAN enable ) { u8 tmp; if (enable) { // MCU firmware download enable. tmp = rtw_read8(padapter, REG_MCUFWDL); rtw_write8(padapter, REG_MCUFWDL, tmp|0x01); // 8051 reset tmp = rtw_read8(padapter, REG_MCUFWDL+2); rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7); } else { // MCU firmware download disable. tmp = rtw_read8(padapter, REG_MCUFWDL); rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe); // Reserved for fw extension. rtw_write8(padapter, REG_MCUFWDL+1, 0x00); } } #define MAX_REG_BOLCK_SIZE 196 static int _BlockWrite( IN PADAPTER padapter, IN void * buffer, IN u32 buffSize ) { int ret = _SUCCESS; u32 blockSize_p1 = 4; // (Default) Phase #1 : PCI muse use 4-byte write to download FW u32 blockSize_p2 = 8; // Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. u32 blockSize_p3 = 1; // Phase #3 : Use 1-byte, the remnant of FW image. u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0; u32 remainSize_p1 = 0, remainSize_p2 = 0; u8 *bufferPtr = (u8*)buffer; u32 i=0, offset=0; #ifdef CONFIG_PCI_HCI u8 remainFW[4] = {0, 0, 0, 0}; u8 *p = NULL; #endif #ifdef CONFIG_USB_HCI blockSize_p1 = MAX_REG_BOLCK_SIZE; #endif //3 Phase #1 blockCount_p1 = buffSize / blockSize_p1; remainSize_p1 = buffSize % blockSize_p1; if (blockCount_p1) { RT_TRACE(_module_hal_init_c_, _drv_notice_, ("_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n", buffSize, blockSize_p1, blockCount_p1, remainSize_p1)); } for (i = 0; i < blockCount_p1; i++) { #ifdef CONFIG_USB_HCI ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1)); #else ret = rtw_write32(padapter, (FW_8188E_START_ADDRESS + i * blockSize_p1), le32_to_cpu(*((u32*)(bufferPtr + i * blockSize_p1)))); #endif if (ret == _FAIL) goto exit; } #ifdef CONFIG_PCI_HCI p = (u8*)((u32*)(bufferPtr + blockCount_p1 * blockSize_p1)); if (remainSize_p1) { switch (remainSize_p1) { case 0: break; case 3: remainFW[2]=*(p+2); case 2: remainFW[1]=*(p+1); case 1: remainFW[0]=*(p); ret = rtw_write32(padapter, (FW_8188E_START_ADDRESS + blockCount_p1 * blockSize_p1), le32_to_cpu(*(u32*)remainFW)); } return ret; } #endif //3 Phase #2 if (remainSize_p1) { offset = blockCount_p1 * blockSize_p1; blockCount_p2 = remainSize_p1/blockSize_p2; remainSize_p2 = remainSize_p1%blockSize_p2; if (blockCount_p2) { RT_TRACE(_module_hal_init_c_, _drv_notice_, ("_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n", (buffSize-offset), blockSize_p2 ,blockCount_p2, remainSize_p2)); } #ifdef CONFIG_USB_HCI for (i = 0; i < blockCount_p2; i++) { ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + offset + i*blockSize_p2), blockSize_p2, (bufferPtr + offset + i*blockSize_p2)); if (ret == _FAIL) goto exit; } #endif } //3 Phase #3 if (remainSize_p2) { offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2); blockCount_p3 = remainSize_p2 / blockSize_p3; RT_TRACE(_module_hal_init_c_, _drv_notice_, ("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n", (buffSize-offset), blockSize_p3, blockCount_p3)); for (i = 0 ; i < blockCount_p3 ; i++){ ret =rtw_write8(padapter, (FW_8188E_START_ADDRESS + offset + i), *(bufferPtr + offset + i)); if (ret == _FAIL) goto exit; } } exit: return ret; } static int _PageWrite( IN PADAPTER padapter, IN u32 page, IN void * buffer, IN u32 size ) { u8 value8; u8 u8Page = (u8) (page & 0x07) ; value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page ; rtw_write8(padapter, REG_MCUFWDL+2,value8); return _BlockWrite(padapter,buffer,size); } static void _FillDummy( u8* pFwBuf, u32* pFwLen ) { u32 FwLen = *pFwLen; u8 remain = (u8)(FwLen%4); remain = (remain==0)?0:(4-remain); while (remain>0) { pFwBuf[FwLen] = 0; FwLen++; remain--; } *pFwLen = FwLen; } static int _WriteFW( IN PADAPTER padapter, IN void * buffer, IN u32 size ) { // Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. // We can remove _ReadChipVersion from ReadpadapterInfo8192C later. int ret = _SUCCESS; u32 pageNums,remainSize ; u32 page, offset; u8 *bufferPtr = (u8*)buffer; #ifdef CONFIG_PCI_HCI // 20100120 Joseph: Add for 88CE normal chip. // Fill in zero to make firmware image to dword alignment. // _FillDummy(bufferPtr, &size); #endif pageNums = size / MAX_PAGE_SIZE ; //RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); remainSize = size % MAX_PAGE_SIZE; for (page = 0; page < pageNums; page++) { offset = page * MAX_PAGE_SIZE; ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_PAGE_SIZE); if (ret == _FAIL) goto exit; } if (remainSize) { offset = pageNums * MAX_PAGE_SIZE; page = pageNums; ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize); if (ret == _FAIL) goto exit; } RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n")); exit: return ret; } void _8051Reset88E(PADAPTER padapter) { u8 u1bTmp; u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1); rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2)); rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp|(BIT2)); DBG_871X("=====> _8051Reset88E(): 8051 reset success .\n"); } static s32 _FWFreeToGo(PADAPTER padapter) { u32 counter = 0; u32 value32; u8 value8; // polling CheckSum report do { value32 = rtw_read32(padapter, REG_MCUFWDL); if (value32 & FWDL_ChkSum_rpt) break; } while (counter++ < POLLING_READY_TIMEOUT_COUNT); if (counter >= POLLING_READY_TIMEOUT_COUNT) { DBG_871X("%s: chksum report fail! REG_MCUFWDL:0x%08x\n", __func__, value32); return _FAIL; } DBG_871X("%s: Checksum report OK! REG_MCUFWDL:0x%08x\n", __func__, value32); value32 = rtw_read32(padapter, REG_MCUFWDL); value32 |= MCUFWDL_RDY; value32 &= ~WINTINI_RDY; rtw_write32(padapter, REG_MCUFWDL, value32); _8051Reset88E(padapter); // polling for FW ready counter = 0; do { value32 = rtw_read32(padapter, REG_MCUFWDL); if (value32 & WINTINI_RDY) { DBG_871X("%s: Polling FW ready success!! REG_MCUFWDL:0x%08x\n", __func__, value32); return _SUCCESS; } rtw_udelay_os(5); } while (counter++ < POLLING_READY_TIMEOUT_COUNT); DBG_871X ("%s: Polling FW ready fail!! REG_MCUFWDL:0x%08x\n", __func__, value32); return _FAIL; } #define IS_FW_81xxC(padapter) (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0) #ifdef CONFIG_FILE_FWIMG extern char *rtw_fw_file_path; u8 FwBuffer8188E[FW_8188E_SIZE]; #endif //CONFIG_FILE_FWIMG #ifdef CONFIG_WOWLAN // // Description: // Download 8192C firmware code. // // s32 rtl8188e_FirmwareDownload(PADAPTER padapter, BOOLEAN bUsedWoWLANFw) #else s32 rtl8188e_FirmwareDownload(PADAPTER padapter) #endif { s32 rtStatus = _SUCCESS; u8 writeFW_retry = 0; u32 fwdl_start_time; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); u8 *FwImage; u32 FwImageLen; u8 *pFwImageFileName; #ifdef CONFIG_WOWLAN u8 *FwImageWoWLAN; u32 FwImageWoWLANLen; #endif u8 *pucMappedFile = NULL; PRT_FIRMWARE_8188E pFirmware = NULL; PRT_8188E_FIRMWARE_HDR pFwHdr = NULL; u8 *pFirmwareBuf; u32 FirmwareLen; RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __func__)); pFirmware = (PRT_FIRMWARE_8188E)rtw_zmalloc(sizeof(RT_FIRMWARE_8188E)); if (!pFirmware) { rtStatus = _FAIL; goto Exit; } FwImage = (u8*)Rtl8188E_FwImageArray; FwImageLen = Rtl8188E_FWImgArrayLength; #ifdef CONFIG_WOWLAN FwImageWoWLAN = (u8*)Rtl8188E_FwWoWImageArray; FwImageWoWLANLen = Rtl8188E_FwWoWImgArrayLength; #endif //CONFIG_WOWLAN // RT_TRACE(_module_hal_init_c_, _drv_err_, ("rtl8723a_FirmwareDownload: %s\n", pFwImageFileName)); #ifdef CONFIG_FILE_FWIMG if (rtw_is_file_readable(rtw_fw_file_path) == _TRUE) { DBG_871X("%s accquire FW from file:%s\n", __func__, rtw_fw_file_path); pFirmware->eFWSource = FW_SOURCE_IMG_FILE; } else #endif //CONFIG_FILE_FWIMG { pFirmware->eFWSource = FW_SOURCE_HEADER_FILE; } switch (pFirmware->eFWSource) { case FW_SOURCE_IMG_FILE: #ifdef CONFIG_FILE_FWIMG rtStatus = rtw_retrive_from_file(rtw_fw_file_path, FwBuffer8188E, FW_8188E_SIZE); pFirmware->ulFwLength = rtStatus>=0?rtStatus:0; pFirmware->szFwBuffer = FwBuffer8188E; #endif //CONFIG_FILE_FWIMG break; case FW_SOURCE_HEADER_FILE: if (FwImageLen > FW_8188E_SIZE) { rtStatus = _FAIL; RT_TRACE(_module_hal_init_c_, _drv_err_, ("Firmware size exceed 0x%X. Check it.\n", FW_8188E_SIZE) ); goto Exit; } pFirmware->szFwBuffer = FwImage; pFirmware->ulFwLength = FwImageLen; #ifdef CONFIG_WOWLAN if (bUsedWoWLANFw){ pFirmware->szWoWLANFwBuffer = FwImageWoWLAN; pFirmware->ulWoWLANFwLength = FwImageWoWLANLen; } #endif //CONFIG_WOWLAN break; } #ifdef CONFIG_WOWLAN if (bUsedWoWLANFw) { pFirmwareBuf = pFirmware->szWoWLANFwBuffer; FirmwareLen = pFirmware->ulWoWLANFwLength; pFwHdr = (PRT_8188E_FIRMWARE_HDR)pFirmware->szWoWLANFwBuffer; } else #endif { pFirmwareBuf = pFirmware->szFwBuffer; FirmwareLen = pFirmware->ulFwLength; DBG_871X_LEVEL(_drv_info_, "+%s: !bUsedWoWLANFw, FmrmwareLen:%d+\n", __func__, FirmwareLen); // To Check Fw header. Added by tynli. 2009.12.04. pFwHdr = (PRT_8188E_FIRMWARE_HDR)pFirmware->szFwBuffer; } pHalData->FirmwareVersion = le16_to_cpu(pFwHdr->Version); pHalData->FirmwareSubVersion = pFwHdr->Subversion; pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature); DBG_871X ("%s: fw_ver=%d fw_subver=%d sig=0x%x\n", __func__, pHalData->FirmwareVersion, pHalData->FirmwareSubVersion, pHalData->FirmwareSignature); if (IS_FW_HEADER_EXIST(pFwHdr)) { // Shift 32 bytes for FW header pFirmwareBuf = pFirmwareBuf + 32; FirmwareLen = FirmwareLen - 32; } // Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, // or it will cause download Fw fail. 2010.02.01. by tynli. if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) //8051 RAM code { rtw_write8(padapter, REG_MCUFWDL, 0x00); _8051Reset88E(padapter); } _FWDownloadEnable(padapter, _TRUE); fwdl_start_time = rtw_get_current_time(); while (1) { //reset the FWDL chksum rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt); rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen); if (rtStatus == _SUCCESS ||(rtw_get_passing_time_ms(fwdl_start_time) > 500 && writeFW_retry++ >= 3) ) break; DBG_871X("%s writeFW_retry:%u, time after fwdl_start_time:%ums\n", __func__ , writeFW_retry , rtw_get_passing_time_ms(fwdl_start_time) ); } _FWDownloadEnable(padapter, _FALSE); if (_SUCCESS != rtStatus){ DBG_871X("DL Firmware failed!\n"); goto Exit; } rtStatus = _FWFreeToGo(padapter); if (_SUCCESS != rtStatus) { DBG_871X("DL Firmware failed!\n"); goto Exit; } RT_TRACE(_module_hal_init_c_, _drv_info_, ("Firmware is ready to run!\n")); Exit: if (pFirmware) rtw_mfree((u8*)pFirmware, sizeof(RT_FIRMWARE_8188E)); //RT_TRACE(COMP_INIT, DBG_LOUD, (" <=== FirmwareDownload91C()\n")); #ifdef CONFIG_WOWLAN if (padapter->pwrctrlpriv.wowlan_mode) rtl8188e_InitializeFirmwareVars(padapter); else DBG_871X_LEVEL(_drv_always_, "%s: wowland_mode:%d wowlan_wake_reason:%d\n", __func__, padapter->pwrctrlpriv.wowlan_mode, padapter->pwrctrlpriv.wowlan_wake_reason); #endif return rtStatus; } #ifdef CONFIG_WOWLAN void rtl8188e_InitializeFirmwareVars(PADAPTER padapter) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); struct pwrctrl_priv *pwrpriv; pwrpriv = &padapter->pwrctrlpriv; // Init Fw LPS related. padapter->pwrctrlpriv.bFwCurrentInPSMode = _FALSE; // Init H2C counter. by tynli. 2009.12.09. pHalData->LastHMEBoxNum = 0; } //=========================================== // // Description: Prepare some information to Fw for WoWLAN. // (1) Download wowlan Fw. // (2) Download RSVD page packets. // (3) Enable AP offload if needed. // // 2011.04.12 by tynli. // void SetFwRelatedForWoWLAN8188ES( IN PADAPTER padapter, IN u8 bHostIsGoingtoSleep ) { int status=_FAIL; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); u8 bRecover = _FALSE; // // 1. Before WoWLAN we need to re-download WoWLAN Fw. // status = rtl8188e_FirmwareDownload(padapter, bHostIsGoingtoSleep); if (status != _SUCCESS) { DBG_871X("ConfigFwRelatedForWoWLAN8188ES(): Re-Download Firmware failed!!\n"); return; } else { DBG_871X("ConfigFwRelatedForWoWLAN8188ES(): Re-Download Firmware Success !!\n"); } // // 2. Re-Init the variables about Fw related setting. // rtl8188e_InitializeFirmwareVars(padapter); } #else void rtl8188e_InitializeFirmwareVars(PADAPTER padapter) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); // Init Fw LPS related. padapter->pwrctrlpriv.bFwCurrentInPSMode = _FALSE; // Init H2C counter. by tynli. 2009.12.09. pHalData->LastHMEBoxNum = 0; // pHalData->H2CQueueHead = 0; // pHalData->H2CQueueTail = 0; // pHalData->H2CStopInsertQueue = FALSE; } #endif //CONFIG_WOWLAN static void rtl8188e_free_hal_data(PADAPTER padapter) { _func_enter_; if (padapter->HalData) { rtw_mfree(padapter->HalData, sizeof(HAL_DATA_TYPE)); padapter->HalData = NULL; } _func_exit_; } //=========================================================== // Efuse related code //=========================================================== enum{ VOLTAGE_V25 = 0x03, LDOE25_SHIFT = 28 , }; static BOOLEAN hal_EfusePgPacketWrite2ByteHeader( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest); static BOOLEAN hal_EfusePgPacketWrite1ByteHeader( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest); static BOOLEAN hal_EfusePgPacketWriteData( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest); static void hal_EfusePowerSwitch_RTL8188E( IN PADAPTER pAdapter, IN u8 bWrite, IN u8 PwrState) { u8 tempval; u16 tmpV16; if (PwrState == _TRUE) { rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); // 1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid tmpV16 = rtw_read16(pAdapter,REG_SYS_ISO_CTRL); if ( ! (tmpV16 & PWC_EV12V ) ){ tmpV16 |= PWC_EV12V ; rtw_write16(pAdapter,REG_SYS_ISO_CTRL,tmpV16); } // Reset: 0x0000h[28], default valid tmpV16 = rtw_read16(pAdapter,REG_SYS_FUNC_EN); if ( !(tmpV16 & FEN_ELDR) ){ tmpV16 |= FEN_ELDR ; rtw_write16(pAdapter,REG_SYS_FUNC_EN,tmpV16); } // Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid tmpV16 = rtw_read16(pAdapter,REG_SYS_CLKR); if ( (!(tmpV16 & LOADER_CLK_EN) ) ||(!(tmpV16 & ANA8M) ) ){ tmpV16 |= (LOADER_CLK_EN |ANA8M ) ; rtw_write16(pAdapter,REG_SYS_CLKR,tmpV16); } if (bWrite == _TRUE) { // Enable LDO 2.5V before read/write action tempval = rtw_read8(pAdapter, EFUSE_TEST+3); tempval &= 0x0F; tempval |= (VOLTAGE_V25 << 4); rtw_write8(pAdapter, EFUSE_TEST+3, (tempval | 0x80)); } } else { rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF); if (bWrite == _TRUE){ // Disable LDO 2.5V after read/write action tempval = rtw_read8(pAdapter, EFUSE_TEST+3); rtw_write8(pAdapter, EFUSE_TEST+3, (tempval & 0x7F)); } } } static void rtl8188e_EfusePowerSwitch( IN PADAPTER pAdapter, IN u8 bWrite, IN u8 PwrState) { hal_EfusePowerSwitch_RTL8188E(pAdapter, bWrite, PwrState); } static bool efuse_read_phymap( PADAPTER Adapter, u8 *pbuf, //buffer to store efuse physical map u16 *size //the max byte to read. will update to byte read ) { u8 *pos = pbuf; u16 limit = *size; u16 addr = 0; bool reach_end = _FALSE; // // Refresh efuse init map as all 0xFF. // _rtw_memset(pbuf, 0xFF, limit); // // Read physical efuse content. // while (addr < limit) { ReadEFuseByte(Adapter, addr, pos, _FALSE); if (*pos != 0xFF) { pos++; addr++; } else { reach_end = _TRUE; break; } } *size = addr; return reach_end; } static void Hal_EfuseReadEFuse88E( PADAPTER Adapter, u16 _offset, u16 _size_byte, u8 *pbuf, IN BOOLEAN bPseudoTest ) { //u8 efuseTbl[EFUSE_MAP_LEN_88E]; u8 *efuseTbl = NULL; u8 rtemp8[1]; u16 eFuse_Addr = 0; u8 offset, wren; u16 i, j; //u16 eFuseWord[EFUSE_MAX_SECTION_88E][EFUSE_MAX_WORD_UNIT]; u16 **eFuseWord = NULL; u16 efuse_utilized = 0; u8 efuse_usage = 0; u8 u1temp = 0; // // Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. // if ((_offset + _size_byte)>EFUSE_MAP_LEN_88E) {// total E-Fuse table is 512bytes DBG_8192C("Hal_EfuseReadEFuse88E(): Invalid offset(%#x) with read bytes(%#x)!!\n",_offset, _size_byte); goto exit; } efuseTbl = (u8*)rtw_zmalloc(EFUSE_MAP_LEN_88E); if (efuseTbl == NULL) { DBG_871X("%s: alloc efuseTbl fail!\n", __func__); goto exit; } eFuseWord= (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16)); if (eFuseWord == NULL) { DBG_871X("%s: alloc eFuseWord fail!\n", __func__); goto exit; } // 0. Refresh efuse init map as all oxFF. for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) eFuseWord[i][j] = 0xFFFF; // // 1. Read the first byte to check if efuse is empty!!! // // ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); if (*rtemp8 != 0xFF) { efuse_utilized++; //DBG_8192C("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8); eFuse_Addr++; } else { DBG_871X("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8); goto exit; } // // 2. Read real efuse content. Filter PG header and every section data. // while ((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8)); // Check PG header for section num. if ((*rtemp8 & 0x1F ) == 0x0F) //extended header { u1temp =( (*rtemp8 & 0xE0) >> 5); //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0)); //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x\n", u1temp)); ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8)); if ((*rtemp8 & 0x0F) == 0x0F) { eFuse_Addr++; ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { eFuse_Addr++; } continue; } else { offset = ((*rtemp8 & 0xF0) >> 1) | u1temp; wren = (*rtemp8 & 0x0F); eFuse_Addr++; } } else { offset = ((*rtemp8 >> 4) & 0x0f); wren = (*rtemp8 & 0x0f); } if (offset < EFUSE_MAX_SECTION_88E) { // Get word enable value from PG header //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren)); for (i=0; i= EFUSE_REAL_CONTENT_LEN_88E) break; //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr)); ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); eFuse_Addr++; //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8)); efuse_utilized++; eFuseWord[offset][i] |= (((u2Byte)*rtemp8 << 8) & 0xff00); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; } wren >>= 1; } } // Read next PG header ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); //RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8)); if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { efuse_utilized++; eFuse_Addr++; } } // // 3. Collect 16 sections and 4 word unit into Efuse map. // for (i=0; i> 8) & 0xff); } } // // 4. Copy from Efuse map to output pointer memory!!! // for (i=0; i<_size_byte; i++) { pbuf[i] = efuseTbl[_offset+i]; } // // 5. Calculate Efuse utilization. // efuse_usage = (u1Byte)((eFuse_Addr*100)/EFUSE_REAL_CONTENT_LEN_88E); rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr); exit: if (efuseTbl) rtw_mfree(efuseTbl, EFUSE_MAP_LEN_88E); if (eFuseWord) rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16)); } static BOOLEAN Hal_EfuseSwitchToBank( IN PADAPTER pAdapter, IN u8 bank, IN BOOLEAN bPseudoTest ) { BOOLEAN bRet = _FALSE; u32 value32=0; //RTPRINT(FEEPROM, EFUSE_PG, ("Efuse switch bank to %d\n", bank)); if (bPseudoTest) { fakeEfuseBank = bank; bRet = _TRUE; } else { if (IS_HARDWARE_TYPE_8723A(pAdapter) && INCLUDE_MULTI_FUNC_BT(pAdapter)) { value32 = rtw_read32(pAdapter, EFUSE_TEST); bRet = _TRUE; switch (bank) { case 0: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0); break; case 1: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0); break; case 2: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1); break; case 3: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2); break; default: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0); bRet = _FALSE; break; } rtw_write32(pAdapter, EFUSE_TEST, value32); } else bRet = _TRUE; } return bRet; } static void ReadEFuseByIC( PADAPTER Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, IN BOOLEAN bPseudoTest ) { #ifdef DBG_IOL_READ_EFUSE_MAP u8 logical_map[512]; #endif #ifdef CONFIG_IOL_READ_EFUSE_MAP if (!bPseudoTest )//&& rtw_IOL_applied(Adapter)) { int ret = _FAIL; if (rtw_IOL_applied(Adapter)) { rtw_hal_power_on(Adapter); iol_mode_enable(Adapter, 1); #ifdef DBG_IOL_READ_EFUSE_MAP iol_read_efuse(Adapter, 0, _offset, _size_byte, logical_map); #else ret = iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf); #endif iol_mode_enable(Adapter, 0); if (_SUCCESS == ret) goto exit; } } #endif Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest); exit: #ifdef DBG_IOL_READ_EFUSE_MAP if (_rtw_memcmp(logical_map, Adapter->eeprompriv.efuse_eeprom_data, 0x130) == _FALSE) { int i; DBG_871X("%s compare first 0x130 byte fail\n", __func__); for (i=0;i<512;i++) { if (i%16==0) DBG_871X("0x%03x: ", i); DBG_871X("%02x ", logical_map[i]); if (i%16==15) DBG_871X("\n"); } DBG_871X("\n"); } #endif return; } static void ReadEFuse_Pseudo ( PADAPTER Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, IN BOOLEAN bPseudoTest ) { Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest); } static void rtl8188e_ReadEFuse( PADAPTER Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, IN BOOLEAN bPseudoTest ) { if (bPseudoTest) { ReadEFuse_Pseudo (Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest); } else { ReadEFuseByIC(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest); } } //Do not support BT void Hal_EFUSEGetEfuseDefinition88E( IN PADAPTER pAdapter, IN u1Byte efuseType, IN u1Byte type, OUT void * pOut ) { switch (type) { case TYPE_EFUSE_MAX_SECTION: { u8* pMax_section; pMax_section = (u8*)pOut; *pMax_section = EFUSE_MAX_SECTION_88E; } break; case TYPE_EFUSE_REAL_CONTENT_LEN: { u16* pu2Tmp; pu2Tmp = (u16*)pOut; *pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E; } break; case TYPE_EFUSE_CONTENT_LEN_BANK: { u16* pu2Tmp; pu2Tmp = (u16*)pOut; *pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E; } break; case TYPE_AVAILABLE_EFUSE_BYTES_BANK: { u16* pu2Tmp; pu2Tmp = (u16*)pOut; *pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E); } break; case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: { u16* pu2Tmp; pu2Tmp = (u16*)pOut; *pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E); } break; case TYPE_EFUSE_MAP_LEN: { u16* pu2Tmp; pu2Tmp = (u16*)pOut; *pu2Tmp = (u16)EFUSE_MAP_LEN_88E; } break; case TYPE_EFUSE_PROTECT_BYTES_BANK: { u8* pu1Tmp; pu1Tmp = (u8*)pOut; *pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E); } break; default: { u8* pu1Tmp; pu1Tmp = (u8*)pOut; *pu1Tmp = 0; } break; } } void Hal_EFUSEGetEfuseDefinition_Pseudo88E( IN PADAPTER pAdapter, IN u8 efuseType, IN u8 type, OUT void * pOut ) { switch (type) { case TYPE_EFUSE_MAX_SECTION: { u8* pMax_section; pMax_section = (pu1Byte)pOut; *pMax_section = EFUSE_MAX_SECTION_88E; } break; case TYPE_EFUSE_REAL_CONTENT_LEN: { u16* pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E; } break; case TYPE_EFUSE_CONTENT_LEN_BANK: { u16* pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E; } break; case TYPE_AVAILABLE_EFUSE_BYTES_BANK: { u16* pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E); } break; case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: { u16* pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E); } break; case TYPE_EFUSE_MAP_LEN: { u16* pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = (u2Byte)EFUSE_MAP_LEN_88E; } break; case TYPE_EFUSE_PROTECT_BYTES_BANK: { u8* pu1Tmp; pu1Tmp = (u8*)pOut; *pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E); } break; default: { u8* pu1Tmp; pu1Tmp = (u8*)pOut; *pu1Tmp = 0; } break; } } static void rtl8188e_EFUSE_GetEfuseDefinition( IN PADAPTER pAdapter, IN u8 efuseType, IN u8 type, OUT void *pOut, IN BOOLEAN bPseudoTest ) { if (bPseudoTest) { Hal_EFUSEGetEfuseDefinition_Pseudo88E(pAdapter, efuseType, type, pOut); } else { Hal_EFUSEGetEfuseDefinition88E(pAdapter, efuseType, type, pOut); } } static u8 Hal_EfuseWordEnableDataWrite( IN PADAPTER pAdapter, IN u16 efuse_addr, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { u16 tmpaddr = 0; u16 start_addr = efuse_addr; u8 badworden = 0x0F; u8 tmpdata[8]; _rtw_memset((void *)tmpdata, 0xff, PGPKT_DATA_SIZE); //RT_TRACE(COMP_EFUSE, DBG_LOUD, ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr)); if (!(word_en&BIT0)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter,start_addr++, data[0], bPseudoTest); efuse_OneByteWrite(pAdapter,start_addr++, data[1], bPseudoTest); efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[0], bPseudoTest); efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[1], bPseudoTest); if ((data[0]!=tmpdata[0])||(data[1]!=tmpdata[1])){ badworden &= (~BIT0); } } if (!(word_en&BIT1)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter,start_addr++, data[2], bPseudoTest); efuse_OneByteWrite(pAdapter,start_addr++, data[3], bPseudoTest); efuse_OneByteRead(pAdapter,tmpaddr , &tmpdata[2], bPseudoTest); efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[3], bPseudoTest); if ((data[2]!=tmpdata[2])||(data[3]!=tmpdata[3])){ badworden &=( ~BIT1); } } if (!(word_en&BIT2)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter,start_addr++, data[4], bPseudoTest); efuse_OneByteWrite(pAdapter,start_addr++, data[5], bPseudoTest); efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[4], bPseudoTest); efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[5], bPseudoTest); if ((data[4]!=tmpdata[4])||(data[5]!=tmpdata[5])){ badworden &=( ~BIT2); } } if (!(word_en&BIT3)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter,start_addr++, data[6], bPseudoTest); efuse_OneByteWrite(pAdapter,start_addr++, data[7], bPseudoTest); efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[6], bPseudoTest); efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[7], bPseudoTest); if ((data[6]!=tmpdata[6])||(data[7]!=tmpdata[7])){ badworden &=( ~BIT3); } } return badworden; } static u8 Hal_EfuseWordEnableDataWrite_Pseudo ( IN PADAPTER pAdapter, IN u16 efuse_addr, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { u8 ret=0; ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest); return ret; } static u8 rtl8188e_Efuse_WordEnableDataWrite( IN PADAPTER pAdapter, IN u16 efuse_addr, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { u8 ret=0; if (bPseudoTest) { ret = Hal_EfuseWordEnableDataWrite_Pseudo (pAdapter, efuse_addr, word_en, data, bPseudoTest); } else { ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest); } return ret; } static u16 hal_EfuseGetCurrentSize_8188e(IN PADAPTER pAdapter, IN BOOLEAN bPseudoTest) { int bContinual = _TRUE; u16 efuse_addr = 0; u8 hoffset=0,hworden=0; u8 efuse_data,word_cnts=0; if (bPseudoTest) { efuse_addr = (u16)(fakeEfuseUsedBytes); } else { rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr); } //RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), start_efuse_addr = %d\n", efuse_addr)); while ( bContinual && efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest) && AVAILABLE_EFUSE_ADDR(efuse_addr)) { if (efuse_data!=0xFF) { if ((efuse_data&0x1F) == 0x0F) //extended header { hoffset = efuse_data; efuse_addr++; efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest); if ((efuse_data & 0x0F) == 0x0F) { efuse_addr++; continue; } else { hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } } else { hoffset = (efuse_data>>4) & 0x0F; hworden = efuse_data & 0x0F; } word_cnts = Efuse_CalculateWordCnts(hworden); //read next header efuse_addr = efuse_addr + (word_cnts*2)+1; } else { bContinual = _FALSE ; } } if (bPseudoTest) { fakeEfuseUsedBytes = efuse_addr; //RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", fakeEfuseUsedBytes)); } else { rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr); //RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", efuse_addr)); } return efuse_addr; } static u16 Hal_EfuseGetCurrentSize_Pseudo (IN PADAPTER pAdapter, IN BOOLEAN bPseudoTest) { u16 ret=0; ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest); return ret; } static u16 rtl8188e_EfuseGetCurrentSize( IN PADAPTER pAdapter, IN u8 efuseType, IN BOOLEAN bPseudoTest) { u16 ret=0; if (bPseudoTest) { ret = Hal_EfuseGetCurrentSize_Pseudo (pAdapter, bPseudoTest); } else { ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest); } return ret; } static int hal_EfusePgPacketRead_8188e( IN PADAPTER pAdapter, IN u8 offset, IN u8 *data, IN BOOLEAN bPseudoTest) { u8 ReadState = PG_STATE_HEADER; int bContinual = _TRUE; int bDataEmpty = _TRUE ; u8 efuse_data,word_cnts = 0; u16 efuse_addr = 0; u8 hoffset = 0,hworden = 0; u8 tmpidx = 0; u8 tmpdata[8]; u8 max_section = 0; u8 tmp_header = 0; EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, (void *)&max_section, bPseudoTest); if (data==NULL) return _FALSE; if (offset>max_section) return _FALSE; _rtw_memset((void *)data, 0xff, sizeof(u8)*PGPKT_DATA_SIZE); _rtw_memset((void *)tmpdata, 0xff, sizeof(u8)*PGPKT_DATA_SIZE); // // Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. // Skip dummy parts to prevent unexpected data read from Efuse. // By pass right now. 2009.02.19. // while (bContinual && AVAILABLE_EFUSE_ADDR(efuse_addr) ) { //------- Header Read ------------- if (ReadState & PG_STATE_HEADER) { if (efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest)&&(efuse_data!=0xFF)) { if (EXT_HEADER(efuse_data)) { tmp_header = efuse_data; efuse_addr++; efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest); if (!ALL_WORDS_DISABLED(efuse_data)) { hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } else { DBG_8192C("Error, All words disabled\n"); efuse_addr++; continue; } } else { hoffset = (efuse_data>>4) & 0x0F; hworden = efuse_data & 0x0F; } word_cnts = Efuse_CalculateWordCnts(hworden); bDataEmpty = _TRUE ; if (hoffset==offset) { for (tmpidx = 0;tmpidx< word_cnts*2 ;tmpidx++) { if (efuse_OneByteRead(pAdapter, efuse_addr+1+tmpidx ,&efuse_data, bPseudoTest) ) { tmpdata[tmpidx] = efuse_data; if (efuse_data!=0xff) { bDataEmpty = _FALSE; } } } if (bDataEmpty==_FALSE){ ReadState = PG_STATE_DATA; }else{//read next header efuse_addr = efuse_addr + (word_cnts*2)+1; ReadState = PG_STATE_HEADER; } } else{//read next header efuse_addr = efuse_addr + (word_cnts*2)+1; ReadState = PG_STATE_HEADER; } } else{ bContinual = _FALSE ; } } //------- Data section Read ------------- else if (ReadState & PG_STATE_DATA) { efuse_WordEnableDataRead(hworden,tmpdata,data); efuse_addr = efuse_addr + (word_cnts*2)+1; ReadState = PG_STATE_HEADER; } } if ( (data[0]==0xff) &&(data[1]==0xff) && (data[2]==0xff) && (data[3]==0xff) && (data[4]==0xff) &&(data[5]==0xff) && (data[6]==0xff) && (data[7]==0xff)) return _FALSE; else return _TRUE; } static int Hal_EfusePgPacketRead( IN PADAPTER pAdapter, IN u8 offset, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret=0; ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest); return ret; } static int Hal_EfusePgPacketRead_Pseudo ( IN PADAPTER pAdapter, IN u8 offset, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret=0; ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest); return ret; } static int rtl8188e_Efuse_PgPacketRead( IN PADAPTER pAdapter, IN u8 offset, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret=0; if (bPseudoTest) { ret = Hal_EfusePgPacketRead_Pseudo (pAdapter, offset, data, bPseudoTest); } else { ret = Hal_EfusePgPacketRead(pAdapter, offset, data, bPseudoTest); } return ret; } static BOOLEAN hal_EfuseFixHeaderProcess( IN PADAPTER pAdapter, IN u8 efuseType, IN PPGPKT_STRUCT pFixPkt, IN u16 *pAddr, IN BOOLEAN bPseudoTest ) { u8 originaldata[8], badworden=0; u16 efuse_addr=*pAddr; u32 PgWriteSuccess=0; _rtw_memset((void *)originaldata, 0xff, 8); if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest)) { //check if data exist badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pFixPkt->word_en, originaldata, bPseudoTest); if (badworden != 0xf) // write fail { PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest); if (!PgWriteSuccess) return _FALSE; else efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest); } else { efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) +1; } } else { efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) +1; } *pAddr = efuse_addr; return _TRUE; } static BOOLEAN hal_EfusePgPacketWrite2ByteHeader( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest) { BOOLEAN bRet=_FALSE, bContinual=_TRUE; u16 efuse_addr=*pAddr, efuse_max_available_len=0; u8 pg_header=0, tmp_header=0, pg_header_temp=0; u8 repeatcnt=0; //RTPRINT(FEEPROM, EFUSE_PG, ("Wirte 2byte header\n")); EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (void *)&efuse_max_available_len, bPseudoTest); while (efuse_addr < efuse_max_available_len) { pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F; //RTPRINT(FEEPROM, EFUSE_PG, ("pg_header = 0x%x\n", pg_header)); efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); while (tmp_header == 0xFF) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { //RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for pg_header!!\n")); return _FALSE; } efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); } //to write ext_header if (tmp_header == pg_header) { efuse_addr++; pg_header_temp = pg_header; pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); while (tmp_header == 0xFF) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { //RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for ext_header!!\n")); return _FALSE; } efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); } if ((tmp_header & 0x0F) == 0x0F) //word_en PG fail { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { //RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for word_en!!\n")); return _FALSE; } else { efuse_addr++; continue; } } else if (pg_header != tmp_header) //offset PG fail { PGPKT_STRUCT fixPkt; //RTPRINT(FEEPROM, EFUSE_PG, ("Error condition for offset PG fail, need to cover the existed data\n")); fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1); fixPkt.word_en = tmp_header & 0x0F; fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en); if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest)) return _FALSE; } else { bRet = _TRUE; break; } } else if ((tmp_header & 0x1F) == 0x0F) //wrong extended header { efuse_addr+=2; continue; } } *pAddr = efuse_addr; return bRet; } static BOOLEAN hal_EfusePgPacketWrite1ByteHeader( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest) { BOOLEAN bRet=_FALSE; u8 pg_header=0, tmp_header=0; u16 efuse_addr=*pAddr; u8 repeatcnt=0; //RTPRINT(FEEPROM, EFUSE_PG, ("Wirte 1byte header\n")); pg_header = ((pTargetPkt->offset << 4) & 0xf0) |pTargetPkt->word_en; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); while (tmp_header == 0xFF) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { return _FALSE; } efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest); } if (pg_header == tmp_header) { bRet = _TRUE; } else { PGPKT_STRUCT fixPkt; //RTPRINT(FEEPROM, EFUSE_PG, ("Error condition for fixed PG packet, need to cover the existed data\n")); fixPkt.offset = (tmp_header>>4) & 0x0F; fixPkt.word_en = tmp_header & 0x0F; fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en); if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest)) return _FALSE; } *pAddr = efuse_addr; return bRet; } static BOOLEAN hal_EfusePgPacketWriteData( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest) { BOOLEAN bRet=_FALSE; u16 efuse_addr=*pAddr; u8 badworden=0; u32 PgWriteSuccess=0; badworden = 0x0f; badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest); if (badworden == 0x0F) { // write ok //RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgPacketWriteData ok!!\n")); return _TRUE; } else { //RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgPacketWriteData Fail!!\n")); //reorganize other pg packet PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest); if (!PgWriteSuccess) return _FALSE; else return _TRUE; } return bRet; } static BOOLEAN hal_EfusePgPacketWriteHeader( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest) { BOOLEAN bRet=_FALSE; if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE) { bRet = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest); } else { bRet = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest); } return bRet; } static BOOLEAN wordEnMatched( IN PPGPKT_STRUCT pTargetPkt, IN PPGPKT_STRUCT pCurPkt, IN u8 *pWden ) { u8 match_word_en = 0x0F; // default all words are disabled u8 i; // check if the same words are enabled both target and current PG packet if ( ((pTargetPkt->word_en & BIT0) == 0) && ((pCurPkt->word_en & BIT0) == 0) ) { match_word_en &= ~BIT0; // enable word 0 } if ( ((pTargetPkt->word_en & BIT1) == 0) && ((pCurPkt->word_en & BIT1) == 0) ) { match_word_en &= ~BIT1; // enable word 1 } if ( ((pTargetPkt->word_en & BIT2) == 0) && ((pCurPkt->word_en & BIT2) == 0) ) { match_word_en &= ~BIT2; // enable word 2 } if ( ((pTargetPkt->word_en & BIT3) == 0) && ((pCurPkt->word_en & BIT3) == 0) ) { match_word_en &= ~BIT3; // enable word 3 } *pWden = match_word_en; if (match_word_en != 0xf) return _TRUE; else return _FALSE; } static BOOLEAN hal_EfuseCheckIfDatafollowed( IN PADAPTER pAdapter, IN u8 word_cnts, IN u16 startAddr, IN BOOLEAN bPseudoTest ) { BOOLEAN bRet=_FALSE; u8 i, efuse_data; for (i=0; i<(word_cnts*2) ; i++) { if (efuse_OneByteRead(pAdapter, (startAddr+i) ,&efuse_data, bPseudoTest)&&(efuse_data != 0xFF)) bRet = _TRUE; } return bRet; } static BOOLEAN hal_EfusePartialWriteCheck( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest ) { BOOLEAN bRet=_FALSE; u8 i, efuse_data=0, cur_header=0; u8 new_wden=0, matched_wden=0, badworden=0; u16 startAddr=0, efuse_max_available_len=0, efuse_max=0; PGPKT_STRUCT curPkt; EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (void *)&efuse_max_available_len, bPseudoTest); EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_REAL_CONTENT_LEN, (void *)&efuse_max, bPseudoTest); if (efuseType == EFUSE_WIFI) { if (bPseudoTest) { startAddr = (u16)(fakeEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN); } else { rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr); startAddr%=EFUSE_REAL_CONTENT_LEN; } } else { if (bPseudoTest) { startAddr = (u16)(fakeBTEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN); } else { startAddr = (u16)(BTEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN); } } //RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePartialWriteCheck(), startAddr=%d\n", startAddr)); while (1) { if (startAddr >= efuse_max_available_len) { bRet = _FALSE; break; } if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data!=0xFF)) { if (EXT_HEADER(efuse_data)) { cur_header = efuse_data; startAddr++; efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest); if (ALL_WORDS_DISABLED(efuse_data)) { //RTPRINT(FEEPROM, EFUSE_PG, ("Error condition, all words disabled")); bRet = _FALSE; break; } else { curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); curPkt.word_en = efuse_data & 0x0F; } } else { cur_header = efuse_data; curPkt.offset = (cur_header>>4) & 0x0F; curPkt.word_en = cur_header & 0x0F; } curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en); // if same header is found but no data followed // write some part of data followed by the header. if ( (curPkt.offset == pTargetPkt->offset) && (!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr+1, bPseudoTest)) && wordEnMatched(pTargetPkt, &curPkt, &matched_wden) ) { //RTPRINT(FEEPROM, EFUSE_PG, ("Need to partial write data by the previous wrote header\n")); // Here to write partial data badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest); if (badworden != 0x0F) { u32 PgWriteSuccess=0; // if write fail on some words, write these bad words again PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest); if (!PgWriteSuccess) { bRet = _FALSE; // write fail, return break; } } // partial write ok, update the target packet for later use for (i=0; i<4; i++) { if ((matched_wden & (0x1<word_en |= (0x1<word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en); } // read from next header startAddr = startAddr + (curPkt.word_cnts*2) +1; } else { // not used header, 0xff *pAddr = startAddr; //RTPRINT(FEEPROM, EFUSE_PG, ("Started from unused header offset=%d\n", startAddr)); bRet = _TRUE; break; } } return bRet; } static BOOLEAN hal_EfusePgCheckAvailableAddr( IN PADAPTER pAdapter, IN u8 efuseType, IN BOOLEAN bPseudoTest ) { u16 efuse_max_available_len=0; //Change to check TYPE_EFUSE_MAP_LEN ,beacuse 8188E raw 256,logic map over 256. EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&efuse_max_available_len, _FALSE); //EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (void *)&efuse_max_available_len, bPseudoTest); //RTPRINT(FEEPROM, EFUSE_PG, ("efuse_max_available_len = %d\n", efuse_max_available_len)); if (Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= efuse_max_available_len) { //RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgCheckAvailableAddr error!!\n")); return _FALSE; } return _TRUE; } static void hal_EfuseConstructPGPkt( IN u8 offset, IN u8 word_en, IN u8 *pData, IN PPGPKT_STRUCT pTargetPkt ) { _rtw_memset((void *)pTargetPkt->data, 0xFF, sizeof(u8)*8); pTargetPkt->offset = offset; pTargetPkt->word_en= word_en; efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data); pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en); //RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseConstructPGPkt(), targetPkt, offset=%d, word_en=0x%x, word_cnts=%d\n", pTargetPkt->offset, pTargetPkt->word_en, pTargetPkt->word_cnts)); } static BOOLEAN hal_EfusePgPacketWrite_BT( IN PADAPTER pAdapter, IN u8 offset, IN u8 word_en, IN u8 *pData, IN BOOLEAN bPseudoTest ) { PGPKT_STRUCT targetPkt; u16 startAddr=0; u8 efuseType=EFUSE_BT; if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest)) return _FALSE; hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt); if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; return _TRUE; } static BOOLEAN hal_EfusePgPacketWrite_8188e( IN PADAPTER pAdapter, IN u8 offset, IN u8 word_en, IN u8 *pData, IN BOOLEAN bPseudoTest ) { PGPKT_STRUCT targetPkt; u16 startAddr=0; u8 efuseType=EFUSE_WIFI; if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest)) return _FALSE; hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt); if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; return _TRUE; } static int Hal_EfusePgPacketWrite_Pseudo (IN PADAPTER pAdapter, IN u8 offset, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret; ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest); return ret; } static int Hal_EfusePgPacketWrite(IN PADAPTER pAdapter, IN u8 offset, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret=0; ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest); return ret; } static int rtl8188e_Efuse_PgPacketWrite(IN PADAPTER pAdapter, IN u8 offset, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret; if (bPseudoTest) { ret = Hal_EfusePgPacketWrite_Pseudo (pAdapter, offset, word_en, data, bPseudoTest); } else { ret = Hal_EfusePgPacketWrite(pAdapter, offset, word_en, data, bPseudoTest); } return ret; } static HAL_VERSION ReadChipVersion8188E( IN PADAPTER padapter ) { u32 value32; HAL_VERSION ChipVersion; HAL_DATA_TYPE *pHalData; pHalData = GET_HAL_DATA(padapter); value32 = rtw_read32(padapter, REG_SYS_CFG); ChipVersion.ICType = CHIP_8188E ; ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP); ChipVersion.RFType = RF_TYPE_1T1R; ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC); ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; // IC version (CUT) // For regulator mode. by tynli. 2011.01.14 pHalData->RegulatorMode = ((value32 & TRP_BT_EN) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR); ChipVersion.ROMVer = 0; // ROM code version. pHalData->MultiFunc = RT_MULTI_FUNC_NONE; //#if DBG #if 1 dump_chip_info(ChipVersion); #endif pHalData->VersionID = ChipVersion; if (IS_1T2R(ChipVersion)){ pHalData->rf_type = RF_1T2R; pHalData->NumTotalRFPath = 2; } else if (IS_2T2R(ChipVersion)){ pHalData->rf_type = RF_2T2R; pHalData->NumTotalRFPath = 2; } else{ pHalData->rf_type = RF_1T1R; pHalData->NumTotalRFPath = 1; } MSG_8192C("RF_Type is %x!!\n", pHalData->rf_type); return ChipVersion; } static void rtl8188e_read_chip_version(PADAPTER padapter) { ReadChipVersion8188E(padapter); } void rtl8188e_GetHalODMVar( PADAPTER Adapter, HAL_ODM_VARIABLE eVariable, void * pValue1, BOOLEAN bSet) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PDM_ODM_T podmpriv = &pHalData->odmpriv; switch (eVariable){ case HAL_ODM_STA_INFO: break; default: break; } } void rtl8188e_SetHalODMVar( PADAPTER Adapter, HAL_ODM_VARIABLE eVariable, void * pValue1, BOOLEAN bSet) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PDM_ODM_T podmpriv = &pHalData->odmpriv; //_irqL irqL; switch (eVariable){ case HAL_ODM_STA_INFO: { struct sta_info *psta = (struct sta_info *)pValue1; #ifdef CONFIG_CONCURRENT_MODE //get Primary adapter's odmpriv if (Adapter->adapter_type > PRIMARY_ADAPTER){ pHalData = GET_HAL_DATA(Adapter->pbuddy_adapter); podmpriv = &pHalData->odmpriv; } #endif if (bSet){ DBG_8192C("### Set STA_(%d) info\n",psta->mac_id); ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS,psta->mac_id,psta); #if (RATE_ADAPTIVE_SUPPORT==1) ODM_RAInfo_Init(podmpriv,psta->mac_id); #endif } else{ DBG_8192C("### Clean STA_(%d) info\n",psta->mac_id); //_enter_critical_bh(&pHalData->odm_stainfo_lock, &irqL); ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS,psta->mac_id,NULL); //_exit_critical_bh(&pHalData->odm_stainfo_lock, &irqL); } } break; case HAL_ODM_P2P_STATE: ODM_CmnInfoUpdate(podmpriv,ODM_CMNINFO_WIFI_DIRECT,bSet); break; case HAL_ODM_WIFI_DISPLAY_STATE: ODM_CmnInfoUpdate(podmpriv,ODM_CMNINFO_WIFI_DISPLAY,bSet); break; default: break; } } void rtl8188e_clone_haldata(_adapter* dst_adapter, _adapter* src_adapter) { #ifdef CONFIG_SDIO_HCI HAL_DATA_TYPE *pHalData = GET_HAL_DATA(dst_adapter); //_thread_hdl_ SdioXmitThread; #ifndef CONFIG_SDIO_TX_TASKLET _sema temp_SdioXmitSema; _sema temp_SdioXmitTerminateSema; #endif //u8 SdioTxFIFOFreePage[SDIO_TX_FREE_PG_QUEUE]; _lock temp_SdioTxFIFOFreePageLock; #ifndef CONFIG_SDIO_TX_TASKLET _rtw_memcpy(&temp_SdioXmitSema, &(pHalData->SdioXmitSema), sizeof(_sema)); _rtw_memcpy(&temp_SdioXmitTerminateSema, &(pHalData->SdioXmitTerminateSema), sizeof(_sema)); #endif _rtw_memcpy(&temp_SdioTxFIFOFreePageLock, &(pHalData->SdioTxFIFOFreePageLock), sizeof(_lock)); _rtw_memcpy(dst_adapter->HalData, src_adapter->HalData, dst_adapter->hal_data_sz); #ifndef CONFIG_SDIO_TX_TASKLET _rtw_memcpy(&(pHalData->SdioXmitSema), &temp_SdioXmitSema, sizeof(_sema)); _rtw_memcpy(&(pHalData->SdioXmitTerminateSema), &temp_SdioXmitTerminateSema, sizeof(_sema)); #endif _rtw_memcpy(&(pHalData->SdioTxFIFOFreePageLock), &temp_SdioTxFIFOFreePageLock, sizeof(_lock)); #else _rtw_memcpy(dst_adapter->HalData, src_adapter->HalData, dst_adapter->hal_data_sz); #endif } void rtl8188e_start_thread(_adapter *padapter) { #ifdef CONFIG_SDIO_HCI #ifndef CONFIG_SDIO_TX_TASKLET HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); pHalData->SdioXmitThread = kthread_run(rtl8188es_xmit_thread, padapter, "RTWHALXT"); if (IS_ERR(pHalData->SdioXmitThread)) { RT_TRACE(_module_hal_xmit_c_, _drv_err_, ("%s: start rtl8188es_xmit_thread FAIL!!\n", __func__)); } #endif #endif } void rtl8188e_stop_thread(_adapter *padapter) { #ifdef CONFIG_SDIO_HCI #ifndef CONFIG_SDIO_TX_TASKLET HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); // stop xmit_buf_thread if (pHalData->SdioXmitThread ) { _rtw_up_sema(&pHalData->SdioXmitSema); _rtw_down_sema(&pHalData->SdioXmitTerminateSema); pHalData->SdioXmitThread = 0; } #endif #endif } void hal_notch_filter_8188e(_adapter *adapter, bool enable) { if (enable) { DBG_871X("Enable notch filter\n"); rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1); } else { DBG_871X("Disable notch filter\n"); rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1); } } void rtl8188e_set_hal_ops(struct hal_ops *pHalFunc) { pHalFunc->free_hal_data = &rtl8188e_free_hal_data; pHalFunc->dm_init = &rtl8188e_init_dm_priv; pHalFunc->dm_deinit = &rtl8188e_deinit_dm_priv; pHalFunc->read_chip_version = &rtl8188e_read_chip_version; pHalFunc->set_bwmode_handler = &PHY_SetBWMode8188E; pHalFunc->set_channel_handler = &PHY_SwChnl8188E; pHalFunc->hal_dm_watchdog = &rtl8188e_HalDmWatchDog; pHalFunc->Add_RateATid = &rtl8188e_Add_RateATid; #ifdef CONFIG_CONCURRENT_MODE pHalFunc->clone_haldata = &rtl8188e_clone_haldata; #endif pHalFunc->run_thread= &rtl8188e_start_thread; pHalFunc->cancel_thread= &rtl8188e_stop_thread; #ifdef CONFIG_ANTENNA_DIVERSITY pHalFunc->AntDivBeforeLinkHandler = &AntDivBeforeLink8188E; pHalFunc->AntDivCompareHandler = &AntDivCompare8188E; #endif pHalFunc->read_bbreg = &rtl8188e_PHY_QueryBBReg; pHalFunc->write_bbreg = &rtl8188e_PHY_SetBBReg; pHalFunc->read_rfreg = &rtl8188e_PHY_QueryRFReg; pHalFunc->write_rfreg = &rtl8188e_PHY_SetRFReg; // Efuse related function pHalFunc->EfusePowerSwitch = &rtl8188e_EfusePowerSwitch; pHalFunc->ReadEFuse = &rtl8188e_ReadEFuse; pHalFunc->EFUSEGetEfuseDefinition = &rtl8188e_EFUSE_GetEfuseDefinition; pHalFunc->EfuseGetCurrentSize = &rtl8188e_EfuseGetCurrentSize; pHalFunc->Efuse_PgPacketRead = &rtl8188e_Efuse_PgPacketRead; pHalFunc->Efuse_PgPacketWrite = &rtl8188e_Efuse_PgPacketWrite; pHalFunc->Efuse_WordEnableDataWrite = &rtl8188e_Efuse_WordEnableDataWrite; #ifdef DBG_CONFIG_ERROR_DETECT pHalFunc->sreset_init_value = &sreset_init_value; pHalFunc->sreset_reset_value = &sreset_reset_value; pHalFunc->silentreset = &rtl8188e_silentreset_for_specific_platform; pHalFunc->sreset_xmit_status_check = &rtl8188e_sreset_xmit_status_check; pHalFunc->sreset_linked_status_check = &rtl8188e_sreset_linked_status_check; pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status; #endif //DBG_CONFIG_ERROR_DETECT pHalFunc->GetHalODMVarHandler = &rtl8188e_GetHalODMVar; pHalFunc->SetHalODMVarHandler = &rtl8188e_SetHalODMVar; #ifdef CONFIG_XMIT_THREAD_MODE pHalFunc->xmit_thread_handler = &hal_xmit_handler; #endif #ifdef CONFIG_IOL pHalFunc->IOL_exec_cmds_sync = &rtl8188e_IOL_exec_cmds_sync; #endif pHalFunc->hal_notch_filter = &hal_notch_filter_8188e; } u8 GetEEPROMSize8188E(PADAPTER padapter) { u8 size = 0; u32 cr; cr = rtw_read16(padapter, REG_9346CR); // 6: EEPROM used is 93C46, 4: boot from E-Fuse. size = (cr & BOOT_FROM_EEPROM) ? 6 : 4; MSG_8192C("EEPROM type is %s\n", size==4 ? "E-FUSE" : "93C46"); return size; } #if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_PCI_HCI) //------------------------------------------------------------------------- // // LLT R/W/Init function // //------------------------------------------------------------------------- s32 _LLTWrite(PADAPTER padapter, u32 address, u32 data) { s32 status = _SUCCESS; s32 count = 0; u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); u16 LLTReg = REG_LLT_INIT; rtw_write32(padapter, LLTReg, value); //polling do { value = rtw_read32(padapter, LLTReg); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) { break; } if (count > POLLING_LLT_THRESHOLD) { RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling write LLT done at address %d!\n", address)); status = _FAIL; break; } } while (count++); return status; } u8 _LLTRead(PADAPTER padapter, u32 address) { s32 count = 0; u32 value = _LLT_INIT_ADDR(address) | _LLT_OP(_LLT_READ_ACCESS); u16 LLTReg = REG_LLT_INIT; rtw_write32(padapter, LLTReg, value); //polling and get value do { value = rtw_read32(padapter, LLTReg); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) { return (u8)value; } if (count > POLLING_LLT_THRESHOLD) { RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling read LLT done at address %d!\n", address)); break; } } while (count++); return 0xFF; } s32 InitLLTTable(PADAPTER padapter, u8 txpktbuf_bndy) { s32 status = _FAIL; u32 i; u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER;// 176, 22k HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); #if defined(CONFIG_IOL_LLT) if (rtw_IOL_applied(padapter)) { status = iol_InitLLTTable(padapter, txpktbuf_bndy); } else #endif { for (i = 0; i < (txpktbuf_bndy - 1); i++) { status = _LLTWrite(padapter, i, i + 1); if (_SUCCESS != status) { return status; } } // end of list status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF); if (_SUCCESS != status) { return status; } // Make the other pages as ring buffer // This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. // Otherwise used as local loopback buffer. for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) { status = _LLTWrite(padapter, i, (i + 1)); if (_SUCCESS != status) { return status; } } // Let last entry point to the start entry of ring buffer status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy); if (_SUCCESS != status) { return status; } } return status; } #endif void Hal_InitPGData88E(PADAPTER padapter) { EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter); // HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); u32 i; u16 value16; if (_FALSE == pEEPROM->bautoload_fail_flag) { // autoload OK. if (is_boot_from_eeprom(padapter)) { // Read all Content from EEPROM or EFUSE. for (i = 0; i < HWSET_MAX_SIZE_88E; i += 2) { // value16 = EF2Byte(ReadEEprom(pAdapter, (u2Byte) (i>>1))); // *((u16*)(&PROMContent[i])) = value16; } } else { // Read EFUSE real map to shadow. EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE); } } else {//autoload fail RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n")); // pHalData->AutoloadFailFlag = _TRUE; //update to default value 0xFF if (!is_boot_from_eeprom(padapter)) EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE); } } void Hal_EfuseParseIDCode88E( IN PADAPTER padapter, IN u8 *hwinfo ) { EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter); // HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); u16 EEPROMId; // Checl 0x8129 again for making sure autoload status!! EEPROMId = le16_to_cpu(*((u16*)hwinfo)); if (EEPROMId != RTL_EEPROM_ID) { DBG_8192C("EEPROM ID(%#x) is invalid!!\n", EEPROMId); pEEPROM->bautoload_fail_flag = _TRUE; } else { pEEPROM->bautoload_fail_flag = _FALSE; } DBG_871X("EEPROM ID=0x%04x\n", EEPROMId); } static void Hal_EEValueCheck( IN u8 EEType, IN void * pInValue, OUT void * pOutValue ) { switch (EEType) { case EETYPE_TX_PWR: { u8 *pIn, *pOut; pIn = (u8*)pInValue; pOut = (u8*)pOutValue; if (*pIn >= 0 && *pIn <= 63) { *pOut = *pIn; } else { RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("EETYPE_TX_PWR, value=%d is invalid, set to default=0x%x\n", *pIn, EEPROM_Default_TxPowerLevel)); *pOut = EEPROM_Default_TxPowerLevel; } } break; default: break; } } static void Hal_ReadPowerValueFromPROM_8188E( IN PTxPowerInfo24G pwrInfo24G, IN u8* PROMContent, IN BOOLEAN AutoLoadFail ) { u32 rfPath, eeAddr=EEPROM_TX_PWR_INX_88E, group,TxCount=0; _rtw_memset(pwrInfo24G, 0, sizeof(TxPowerInfo24G)); if (AutoLoadFail) { for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) { //2.4G default value for (group = 0 ; group < MAX_CHNL_GROUP_24G; group++) { pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; } for (TxCount=0;TxCountBW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF; pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF; } else { pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; } } } //pHalData->bNOPG = TRUE; return; } for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) { //2.4G default value for (group = 0 ; group < MAX_CHNL_GROUP_24G; group++) { pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++]; if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF) { pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; // pHalData->bNOPG = TRUE; } } for (group = 0 ; group < MAX_CHNL_GROUP_24G-1; group++) { pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++]; if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF) pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX; } for (TxCount=0;TxCountBW40_Diff[rfPath][TxCount] = 0; if (PROMContent[eeAddr] == 0xFF) pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF; else { pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4; if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0; } if (PROMContent[eeAddr] == 0xFF) pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF; else { pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f); if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0; } pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0; eeAddr++; } else { if (PROMContent[eeAddr] == 0xFF) pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; else { pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4; if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0; } if (PROMContent[eeAddr] == 0xFF) pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; else { pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f); if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0; } eeAddr++; if (PROMContent[eeAddr] == 0xFF) pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; else { pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4; if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0; } if (PROMContent[eeAddr] == 0xFF) pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF; else { pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f); if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0; } eeAddr++; } } } } static u8 Hal_GetChnlGroup( IN u8 chnl ) { u8 group=0; if (chnl < 3) // Cjanel 1-3 group = 0; else if (chnl < 9) // Channel 4-9 group = 1; else // Channel 10-14 group = 2; return group; } static u8 Hal_GetChnlGroup88E( IN u8 chnl, OUT u8* pGroup ) { u8 bIn24G=_TRUE; if (chnl<=14) { bIn24G=_TRUE; if (chnl < 3) // Chanel 1-2 *pGroup = 0; else if (chnl < 6) // Channel 3-5 *pGroup = 1; else if (chnl <9) // Channel 6-8 *pGroup = 2; else if (chnl <12) // Channel 9-11 *pGroup = 3; else if (chnl <14) // Channel 12-13 *pGroup = 4; else if (chnl ==14) // Channel 14 *pGroup = 5; else { //RT_TRACE(COMP_EFUSE,DBG_LOUD,("==>Hal_GetChnlGroup88E in 2.4 G, but Channel %d in Group not found\n",chnl)); } } else { bIn24G=_FALSE; if (chnl <=40) *pGroup = 0; else if (chnl <=48) *pGroup = 1; else if (chnl <=56) *pGroup = 2; else if (chnl <=64) *pGroup = 3; else if (chnl <=104) *pGroup = 4; else if (chnl <=112) *pGroup = 5; else if (chnl <=120) *pGroup = 5; else if (chnl <=128) *pGroup = 6; else if (chnl <=136) *pGroup = 7; else if (chnl <=144) *pGroup = 8; else if (chnl <=153) *pGroup = 9; else if (chnl <=161) *pGroup = 10; else if (chnl <=177) *pGroup = 11; else { //RT_TRACE(COMP_EFUSE,DBG_LOUD,("==>Hal_GetChnlGroup88E in 5G, but Channel %d in Group not found\n",chnl)); } } //RT_TRACE(COMP_EFUSE,DBG_LOUD,("<==Hal_GetChnlGroup88E, Channel = %d, bIn24G =%d,\n",chnl,bIn24G)); return bIn24G; } void Hal_ReadPowerSavingMode88E( PADAPTER padapter, IN u8* hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct pwrctrl_priv *pwrctrlpriv = &padapter->pwrctrlpriv; u8 tmpvalue; if (AutoLoadFail){ padapter->pwrctrlpriv.bHWPowerdown = _FALSE; padapter->pwrctrlpriv.bSupportRemoteWakeup = _FALSE; } else { //hw power down mode selection , 0:rf-off / 1:power down if (padapter->registrypriv.hwpdn_mode==2) padapter->pwrctrlpriv.bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_88E] & BIT4); else padapter->pwrctrlpriv.bHWPowerdown = padapter->registrypriv.hwpdn_mode; // decide hw if support remote wakeup function // if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume #ifdef CONFIG_USB_HCI padapter->pwrctrlpriv.bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1)?_TRUE :_FALSE; #endif //CONFIG_USB_HCI //if (SUPPORT_HW_RADIO_DETECT(Adapter)) //Adapter->registrypriv.usbss_enable = Adapter->pwrctrlpriv.bSupportRemoteWakeup ; DBG_8192C("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) ,bSupportRemoteWakeup(%x)\n",__func__, padapter->pwrctrlpriv.bHWPwrPindetect,padapter->pwrctrlpriv.bHWPowerdown ,padapter->pwrctrlpriv.bSupportRemoteWakeup); DBG_8192C("### PS params=> power_mgnt(%x),usbss_enable(%x) ###\n",padapter->registrypriv.power_mgnt,padapter->registrypriv.usbss_enable); } } void Hal_ReadTxPowerInfo88E( IN PADAPTER padapter, IN u8* PROMContent, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); TxPowerInfo24G pwrInfo24G; u8 rfPath, ch, group, rfPathMax=1; u8 pwr, diff,bIn24G,TxCount; Hal_ReadPowerValueFromPROM_8188E(&pwrInfo24G, PROMContent, AutoLoadFail); if (!AutoLoadFail) pHalData->bTXPowerDataReadFromEEPORM = TRUE; //for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) for (rfPath = 0 ; rfPath < pHalData->NumTotalRFPath ; rfPath++) { for (ch = 0 ; ch <= CHANNEL_MAX_NUMBER ; ch++) { bIn24G = Hal_GetChnlGroup88E(ch,&group); if (bIn24G) { pHalData->Index24G_CCK_Base[rfPath][ch]=pwrInfo24G.IndexCCK_Base[rfPath][group]; if (ch==14) pHalData->Index24G_BW40_Base[rfPath][ch]=pwrInfo24G.IndexBW40_Base[rfPath][4]; else pHalData->Index24G_BW40_Base[rfPath][ch]=pwrInfo24G.IndexBW40_Base[rfPath][group]; } if (bIn24G) { DBG_871X("======= Path %d, Channel %d =======\n",rfPath,ch ); DBG_871X("Index24G_CCK_Base[%d][%d] = 0x%x\n",rfPath,ch ,pHalData->Index24G_CCK_Base[rfPath][ch]); DBG_871X("Index24G_BW40_Base[%d][%d] = 0x%x\n",rfPath,ch ,pHalData->Index24G_BW40_Base[rfPath][ch]); } } for (TxCount=0;TxCountCCK_24G_Diff[rfPath][TxCount]=pwrInfo24G.CCK_Diff[rfPath][TxCount]; pHalData->OFDM_24G_Diff[rfPath][TxCount]=pwrInfo24G.OFDM_Diff[rfPath][TxCount]; pHalData->BW20_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW20_Diff[rfPath][TxCount]; pHalData->BW40_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW40_Diff[rfPath][TxCount]; #if DBG DBG_871X("======= TxCount %d =======\n",TxCount ); DBG_871X("CCK_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->CCK_24G_Diff[rfPath][TxCount]); DBG_871X("OFDM_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->OFDM_24G_Diff[rfPath][TxCount]); DBG_871X("BW20_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW20_24G_Diff[rfPath][TxCount]); DBG_871X("BW40_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW40_24G_Diff[rfPath][TxCount]); #endif } } // 2010/10/19 MH Add Regulator recognize for CU. if (!AutoLoadFail) { pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x7); //bit0~2 if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF) pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); //bit0~2 } else { pHalData->EEPROMRegulatory = 0; } DBG_871X("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory); } void Hal_EfuseParseXtal_8188E( IN PADAPTER pAdapter, IN u8* hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); if (!AutoLoadFail) { pHalData->CrystalCap = hwinfo[EEPROM_XTAL_88E]; if (pHalData->CrystalCap == 0xFF) pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E; } else { pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E; } DBG_871X("CrystalCap: 0x%2x\n", pHalData->CrystalCap); } void Hal_EfuseParseBoardType88E( IN PADAPTER pAdapter, IN u8* hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); if (!AutoLoadFail) pHalData->BoardType = ((hwinfo[EEPROM_RF_BOARD_OPTION_88E]&0xE0)>>5); else pHalData->BoardType = 0; DBG_871X("Board Type: 0x%2x\n", pHalData->BoardType); } void Hal_EfuseParseEEPROMVer88E( IN PADAPTER padapter, IN u8* hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); if (!AutoLoadFail){ pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_88E]; if (pHalData->EEPROMVersion == 0xFF) pHalData->EEPROMVersion = EEPROM_Default_Version; } else{ pHalData->EEPROMVersion = 1; } RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n", pHalData->EEPROMVersion)); } void rtl8188e_EfuseParseChnlPlan( IN PADAPTER padapter, IN u8* hwinfo, IN BOOLEAN AutoLoadFail ) { padapter->mlmepriv.ChannelPlan = hal_com_get_channel_plan( padapter , hwinfo?hwinfo[EEPROM_ChannelPlan_88E]:0xFF , padapter->registrypriv.channel_plan , RT_CHANNEL_DOMAIN_WORLD_WIDE_13 , AutoLoadFail ); DBG_871X("mlmepriv.ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan); } void Hal_EfuseParseCustomerID88E( IN PADAPTER padapter, IN u8* hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); if (!AutoLoadFail) { pHalData->EEPROMCustomerID = hwinfo[EEPROM_CUSTOMERID_88E]; //pHalData->EEPROMSubCustomerID = hwinfo[EEPROM_CUSTOMERID_88E]; } else { pHalData->EEPROMCustomerID = 0; pHalData->EEPROMSubCustomerID = 0; } DBG_871X("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID); //DBG_871X("EEPROM SubCustomer ID: 0x%02x\n", pHalData->EEPROMSubCustomerID); } void Hal_ReadAntennaDiversity88E( IN PADAPTER pAdapter, IN u8* PROMContent, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); struct registry_priv *registry_par = &pAdapter->registrypriv; if (!AutoLoadFail) { // Antenna Diversity setting. if (registry_par->antdiv_cfg == 2)// 2:By EFUSE { pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x18)>>3; if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF) pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION&0x18)>>3;; } else { pHalData->AntDivCfg = registry_par->antdiv_cfg ; // 0:OFF , 1:ON, 2:By EFUSE } if (registry_par->antdiv_type == 0)// If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead. { pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_88E]; if (pHalData->TRxAntDivType == 0xFF) pHalData->TRxAntDivType = CG_TRX_HW_ANTDIV; // For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port) } else{ pHalData->TRxAntDivType = registry_par->antdiv_type ; } if (pHalData->TRxAntDivType == CG_TRX_HW_ANTDIV || pHalData->TRxAntDivType == CGCS_RX_HW_ANTDIV) pHalData->AntDivCfg = 1; // 0xC1[3] is ignored. } else { pHalData->AntDivCfg = 0; pHalData->TRxAntDivType = pHalData->TRxAntDivType; // The value in the driver setting of device manager. } DBG_871X("EEPROM : AntDivCfg = %x, TRxAntDivType = %x\n",pHalData->AntDivCfg, pHalData->TRxAntDivType); } void Hal_ReadThermalMeter_88E( IN PADAPTER Adapter, IN u8* PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u1Byte tempval; // // ThermalMeter from EEPROM // if (!AutoloadFail) pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_88E]; else pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E; // pHalData->EEPROMThermalMeter = (tempval&0x1f); //[4:0] if (pHalData->EEPROMThermalMeter == 0xff || AutoloadFail) { pHalData->bAPKThermalMeterIgnore = _TRUE; pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E; } //pHalData->ThermalMeter[0] = pHalData->EEPROMThermalMeter; DBG_871X("ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter); } void Hal_InitChannelPlan( IN PADAPTER padapter ) { } BOOLEAN HalDetectPwrDownMode88E(PADAPTER Adapter) { u8 tmpvalue = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct pwrctrl_priv *pwrctrlpriv = &Adapter->pwrctrlpriv; EFUSE_ShadowRead(Adapter, 1, EEPROM_RF_FEATURE_OPTION_88E, (u32 *)&tmpvalue); // 2010/08/25 MH INF priority > PDN Efuse value. if (tmpvalue & BIT(4) && pwrctrlpriv->reg_pdnmode) { pHalData->pwrdown = _TRUE; } else { pHalData->pwrdown = _FALSE; } DBG_8192C("HalDetectPwrDownMode(): PDN=%d\n", pHalData->pwrdown); return pHalData->pwrdown; } // HalDetectPwrDownMode #ifdef CONFIG_WOWLAN void Hal_DetectWoWMode(PADAPTER pAdapter) { pAdapter->pwrctrlpriv.bSupportRemoteWakeup = _TRUE; DBG_871X("%s\n", __func__); } #endif #ifdef CONFIG_RF_GAIN_OFFSET void Hal_ReadRFGainOffset( IN PADAPTER Adapter, IN u8* PROMContent, IN BOOLEAN AutoloadFail) { u8 buff[EFUSE_MAX_SIZE]; u32 res; // // BB_RF Gain Offset from EEPROM // res = rtw_efuse_access(Adapter, _FALSE, 0, EFUSE_MAX_SIZE, buff); if (!AutoloadFail && res != _FAIL) Adapter->eeprompriv.EEPROMRFGainOffset = buff[EEPROM_RF_GAIN_OFFSET_88E]; else Adapter->eeprompriv.EEPROMRFGainOffset = EEPROM_Default_RFGainOffset; DBG_871X("EEPRORFGainOffset = 0x%02x\n", Adapter->eeprompriv.EEPROMRFGainOffset); } #endif //CONFIG_RF_GAIN_OFFSET //==================================================================================== // // 20100209 Joseph: // This function is used only for 92C to set REG_BCN_CTRL(0x550) register. // We just reserve the value of the register in variable pHalData->RegBcnCtrlVal and then operate // the value of the register via atomic operation. // This prevents from race condition when setting this register. // The value of pHalData->RegBcnCtrlVal is initialized in HwConfigureRTL8192CE() function. // void SetBcnCtrlReg( PADAPTER padapter, u8 SetBits, u8 ClearBits) { PHAL_DATA_TYPE pHalData; pHalData = GET_HAL_DATA(padapter); pHalData->RegBcnCtrlVal |= SetBits; pHalData->RegBcnCtrlVal &= ~ClearBits; rtw_write8(padapter, REG_BCN_CTRL, (u8)pHalData->RegBcnCtrlVal); }