rtl8188eu/hal/rtl8188e_hal_init.c
Larry Finger 5105d48231 rtl8188eu: P_opulate new kernel branch
Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
2014-11-28 11:08:37 -06:00

706 lines
22 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _HAL_INIT_C_
#include <linux/firmware.h>
#include <linux/vmalloc.h>
#include <drv_types.h>
#include <rtw_efuse.h>
#include <phy.h>
#include <rtl8188e_hal.h>
#include <rtw_iol.h>
void iol_mode_enable(struct adapter *padapter, u8 enable)
{
u8 reg_0xf0 = 0;
if (enable) {
/* Enable initial offload */
reg_0xf0 = usb_read8(padapter, REG_SYS_CFG);
usb_write8(padapter, REG_SYS_CFG, reg_0xf0|SW_OFFLOAD_EN);
if (!padapter->bFWReady) {
DBG_88E("bFWReady == false call reset 8051...\n");
_8051Reset88E(padapter);
}
} else {
/* disable initial offload */
reg_0xf0 = usb_read8(padapter, REG_SYS_CFG);
usb_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN);
}
}
s32 iol_execute(struct adapter *padapter, u8 control)
{
s32 status = _FAIL;
u8 reg_0x88 = 0;
u32 start = 0, passing_time = 0;
control = control&0x0f;
reg_0x88 = usb_read8(padapter, REG_HMEBOX_E0);
usb_write8(padapter, REG_HMEBOX_E0, reg_0x88|control);
start = jiffies;
while ((reg_0x88 = usb_read8(padapter, REG_HMEBOX_E0)) & control &&
(passing_time = rtw_get_passing_time_ms(start)) < 1000) {
;
}
reg_0x88 = usb_read8(padapter, REG_HMEBOX_E0);
status = (reg_0x88 & control) ? _FAIL : _SUCCESS;
if (reg_0x88 & control<<4)
status = _FAIL;
return status;
}
static s32 iol_InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy)
{
s32 rst = _SUCCESS;
iol_mode_enable(padapter, 1);
usb_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
rst = iol_execute(padapter, CMD_INIT_LLT);
iol_mode_enable(padapter, 0);
return rst;
}
s32 rtl8188e_iol_efuse_patch(struct adapter *padapter)
{
s32 result = _SUCCESS;
DBG_88E("==> %s\n", __func__);
if (rtw_IOL_applied(padapter)) {
iol_mode_enable(padapter, 1);
result = iol_execute(padapter, CMD_READ_EFUSE_MAP);
if (result == _SUCCESS)
result = iol_execute(padapter, CMD_EFUSE_PATCH);
iol_mode_enable(padapter, 0);
}
return result;
}
#define MAX_REG_BOLCK_SIZE 196
void _8051Reset88E(struct adapter *padapter)
{
u8 u1bTmp;
u1bTmp = usb_read8(padapter, REG_SYS_FUNC_EN+1);
usb_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
usb_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp|(BIT2));
DBG_88E("=====> _8051Reset88E(): 8051 reset success .\n");
}
void rtl8188e_InitializeFirmwareVars(struct adapter *padapter)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);
/* Init Fw LPS related. */
padapter->pwrctrlpriv.bFwCurrentInPSMode = false;
/* Init H2C counter. by tynli. 2009.12.09. */
pHalData->LastHMEBoxNum = 0;
}
static void rtl8188e_free_hal_data(struct adapter *padapter)
{
kfree(padapter->HalData);
padapter->HalData = NULL;
}
static struct HAL_VERSION ReadChipVersion8188E(struct adapter *padapter)
{
u32 value32;
struct HAL_VERSION ChipVersion;
struct hal_data_8188e *pHalData;
pHalData = GET_HAL_DATA(padapter);
value32 = usb_read32(padapter, REG_SYS_CFG);
ChipVersion.ICType = CHIP_8188E;
ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
ChipVersion.RFType = RF_TYPE_1T1R;
ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /* IC version (CUT) */
/* For regulator mode. by tynli. 2011.01.14 */
pHalData->RegulatorMode = ((value32 & TRP_BT_EN) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
ChipVersion.ROMVer = 0; /* ROM code version. */
dump_chip_info(ChipVersion);
pHalData->VersionID = ChipVersion;
if (IS_1T2R(ChipVersion)) {
pHalData->rf_type = RF_1T2R;
pHalData->NumTotalRFPath = 2;
} else if (IS_2T2R(ChipVersion)) {
pHalData->rf_type = RF_2T2R;
pHalData->NumTotalRFPath = 2;
} else{
pHalData->rf_type = RF_1T1R;
pHalData->NumTotalRFPath = 1;
}
MSG_88E("RF_Type is %x!!\n", pHalData->rf_type);
return ChipVersion;
}
static void rtl8188e_read_chip_version(struct adapter *padapter)
{
ReadChipVersion8188E(padapter);
}
static void rtl8188e_SetHalODMVar(struct adapter *Adapter, enum hal_odm_variable eVariable, void *pValue1, bool bSet)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
struct odm_dm_struct *podmpriv = &pHalData->odmpriv;
switch (eVariable) {
case HAL_ODM_STA_INFO:
{
struct sta_info *psta = (struct sta_info *)pValue1;
if (bSet) {
DBG_88E("### Set STA_(%d) info\n", psta->mac_id);
ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, psta);
ODM_RAInfo_Init(podmpriv, psta->mac_id);
} else {
DBG_88E("### Clean STA_(%d) info\n", psta->mac_id);
ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, NULL);
}
}
break;
case HAL_ODM_P2P_STATE:
ODM_CmnInfoUpdate(podmpriv, ODM_CMNINFO_WIFI_DIRECT, bSet);
break;
case HAL_ODM_WIFI_DISPLAY_STATE:
ODM_CmnInfoUpdate(podmpriv, ODM_CMNINFO_WIFI_DISPLAY, bSet);
break;
default:
break;
}
}
static void hal_notch_filter_8188e(struct adapter *adapter, bool enable)
{
if (enable) {
DBG_88E("Enable notch filter\n");
usb_write8(adapter, rOFDM0_RxDSP+1, usb_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
} else {
DBG_88E("Disable notch filter\n");
usb_write8(adapter, rOFDM0_RxDSP+1, usb_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
}
}
void rtl8188e_set_hal_ops(struct hal_ops *pHalFunc)
{
pHalFunc->free_hal_data = &rtl8188e_free_hal_data;
pHalFunc->dm_init = &rtl8188e_init_dm_priv;
pHalFunc->read_chip_version = &rtl8188e_read_chip_version;
pHalFunc->set_bwmode_handler = &phy_set_bw_mode;
pHalFunc->set_channel_handler = &phy_sw_chnl;
pHalFunc->hal_dm_watchdog = &rtl8188e_HalDmWatchDog;
pHalFunc->Add_RateATid = &rtl8188e_Add_RateATid;
pHalFunc->AntDivBeforeLinkHandler = &AntDivBeforeLink8188E;
pHalFunc->AntDivCompareHandler = &AntDivCompare8188E;
pHalFunc->read_rfreg = &phy_query_rf_reg;
pHalFunc->write_rfreg = &phy_set_rf_reg;
pHalFunc->sreset_init_value = &sreset_init_value;
pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status;
pHalFunc->SetHalODMVarHandler = &rtl8188e_SetHalODMVar;
pHalFunc->hal_notch_filter = &hal_notch_filter_8188e;
}
u8 GetEEPROMSize8188E(struct adapter *padapter)
{
u8 size = 0;
u32 cr;
cr = usb_read16(padapter, REG_9346CR);
/* 6: EEPROM used is 93C46, 4: boot from E-Fuse. */
size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
MSG_88E("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
return size;
}
/* */
/* */
/* LLT R/W/Init function */
/* */
/* */
static s32 _LLTWrite(struct adapter *padapter, u32 address, u32 data)
{
s32 status = _SUCCESS;
s32 count = 0;
u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
u16 LLTReg = REG_LLT_INIT;
usb_write32(padapter, LLTReg, value);
/* polling */
do {
value = usb_read32(padapter, LLTReg);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
break;
if (count > POLLING_LLT_THRESHOLD) {
RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling write LLT done at address %d!\n", address));
status = _FAIL;
break;
}
} while (count++);
return status;
}
s32 InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy)
{
s32 status = _FAIL;
u32 i;
u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER;/* 176, 22k */
if (rtw_IOL_applied(padapter)) {
status = iol_InitLLTTable(padapter, txpktbuf_bndy);
} else {
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
status = _LLTWrite(padapter, i, i + 1);
if (_SUCCESS != status)
return status;
}
/* end of list */
status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF);
if (_SUCCESS != status)
return status;
/* Make the other pages as ring buffer */
/* This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */
/* Otherwise used as local loopback buffer. */
for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
status = _LLTWrite(padapter, i, (i + 1));
if (_SUCCESS != status)
return status;
}
/* Let last entry point to the start entry of ring buffer */
status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
if (_SUCCESS != status) {
return status;
}
}
return status;
}
void
Hal_InitPGData88E(struct adapter *padapter)
{
struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
if (!pEEPROM->bautoload_fail_flag) { /* autoload OK. */
if (!is_boot_from_eeprom(padapter)) {
/* Read EFUSE real map to shadow. */
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI);
}
} else {/* autoload fail */
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
/* update to default value 0xFF */
if (!is_boot_from_eeprom(padapter))
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI);
}
}
void
Hal_EfuseParseIDCode88E(
struct adapter *padapter,
u8 *hwinfo
)
{
struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
u16 EEPROMId;
/* Checl 0x8129 again for making sure autoload status!! */
EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
if (EEPROMId != RTL_EEPROM_ID) {
DBG_88E("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
pEEPROM->bautoload_fail_flag = true;
} else {
pEEPROM->bautoload_fail_flag = false;
}
DBG_88E("EEPROM ID = 0x%04x\n", EEPROMId);
}
static void Hal_ReadPowerValueFromPROM_8188E(struct txpowerinfo24g *pwrInfo24G, u8 *PROMContent, bool AutoLoadFail)
{
u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_88E, group, TxCount = 0;
memset(pwrInfo24G, 0, sizeof(struct txpowerinfo24g));
if (AutoLoadFail) {
for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
/* 2.4G default value */
for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
}
for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
if (TxCount == 0) {
pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
} else {
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
}
}
}
return;
}
for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
/* 2.4G default value */
for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++];
if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
}
for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++];
if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
}
for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
if (TxCount == 0) {
pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
if (PROMContent[eeAddr] == 0xFF) {
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF;
} else {
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
if (PROMContent[eeAddr] == 0xFF) {
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
} else {
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
}
pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
eeAddr++;
} else {
if (PROMContent[eeAddr] == 0xFF) {
pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
} else {
pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
}
if (PROMContent[eeAddr] == 0xFF) {
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
} else {
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
eeAddr++;
if (PROMContent[eeAddr] == 0xFF) {
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
} else {
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
}
if (PROMContent[eeAddr] == 0xFF) {
pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
} else {
pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
}
eeAddr++;
}
}
}
}
static u8 Hal_GetChnlGroup88E(u8 chnl, u8 *pGroup)
{
u8 bIn24G = true;
if (chnl <= 14) {
bIn24G = true;
if (chnl < 3) /* Channel 1-2 */
*pGroup = 0;
else if (chnl < 6) /* Channel 3-5 */
*pGroup = 1;
else if (chnl < 9) /* Channel 6-8 */
*pGroup = 2;
else if (chnl < 12) /* Channel 9-11 */
*pGroup = 3;
else if (chnl < 14) /* Channel 12-13 */
*pGroup = 4;
else if (chnl == 14) /* Channel 14 */
*pGroup = 5;
} else {
bIn24G = false;
if (chnl <= 40)
*pGroup = 0;
else if (chnl <= 48)
*pGroup = 1;
else if (chnl <= 56)
*pGroup = 2;
else if (chnl <= 64)
*pGroup = 3;
else if (chnl <= 104)
*pGroup = 4;
else if (chnl <= 112)
*pGroup = 5;
else if (chnl <= 120)
*pGroup = 5;
else if (chnl <= 128)
*pGroup = 6;
else if (chnl <= 136)
*pGroup = 7;
else if (chnl <= 144)
*pGroup = 8;
else if (chnl <= 153)
*pGroup = 9;
else if (chnl <= 161)
*pGroup = 10;
else if (chnl <= 177)
*pGroup = 11;
}
return bIn24G;
}
void Hal_ReadPowerSavingMode88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
{
if (AutoLoadFail) {
padapter->pwrctrlpriv.bHWPowerdown = false;
padapter->pwrctrlpriv.bSupportRemoteWakeup = false;
} else {
/* hw power down mode selection , 0:rf-off / 1:power down */
if (padapter->registrypriv.hwpdn_mode == 2)
padapter->pwrctrlpriv.bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_88E] & BIT4);
else
padapter->pwrctrlpriv.bHWPowerdown = padapter->registrypriv.hwpdn_mode;
/* decide hw if support remote wakeup function */
/* if hw supported, 8051 (SIE) will generate WeakUP signal(D+/D- toggle) when autoresume */
padapter->pwrctrlpriv.bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1) ? true : false;
DBG_88E("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) , bSupportRemoteWakeup(%x)\n", __func__,
padapter->pwrctrlpriv.bHWPwrPindetect, padapter->pwrctrlpriv.bHWPowerdown , padapter->pwrctrlpriv.bSupportRemoteWakeup);
DBG_88E("### PS params => power_mgnt(%x), usbss_enable(%x) ###\n", padapter->registrypriv.power_mgnt, padapter->registrypriv.usbss_enable);
}
}
void Hal_ReadTxPowerInfo88E(struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);
struct txpowerinfo24g pwrInfo24G;
u8 rfPath, ch, group;
u8 bIn24G, TxCount;
Hal_ReadPowerValueFromPROM_8188E(&pwrInfo24G, PROMContent, AutoLoadFail);
if (!AutoLoadFail)
pHalData->bTXPowerDataReadFromEEPORM = true;
for (rfPath = 0; rfPath < pHalData->NumTotalRFPath; rfPath++) {
for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
bIn24G = Hal_GetChnlGroup88E(ch, &group);
if (bIn24G) {
pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
if (ch == 14)
pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][4];
else
pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
}
if (bIn24G) {
DBG_88E("======= Path %d, Channel %d =======\n", rfPath, ch);
DBG_88E("Index24G_CCK_Base[%d][%d] = 0x%x\n", rfPath, ch , pHalData->Index24G_CCK_Base[rfPath][ch]);
DBG_88E("Index24G_BW40_Base[%d][%d] = 0x%x\n", rfPath, ch , pHalData->Index24G_BW40_Base[rfPath][ch]);
}
}
for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
DBG_88E("======= TxCount %d =======\n", TxCount);
DBG_88E("CCK_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->CCK_24G_Diff[rfPath][TxCount]);
DBG_88E("OFDM_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->OFDM_24G_Diff[rfPath][TxCount]);
DBG_88E("BW20_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->BW20_24G_Diff[rfPath][TxCount]);
DBG_88E("BW40_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->BW40_24G_Diff[rfPath][TxCount]);
}
}
/* 2010/10/19 MH Add Regulator recognize for CU. */
if (!AutoLoadFail) {
pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x7); /* bit0~2 */
if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); /* bit0~2 */
} else {
pHalData->EEPROMRegulatory = 0;
}
DBG_88E("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory);
}
void Hal_EfuseParseXtal_8188E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter);
if (!AutoLoadFail) {
pHalData->CrystalCap = hwinfo[EEPROM_XTAL_88E];
if (pHalData->CrystalCap == 0xFF)
pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
} else {
pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
}
DBG_88E("CrystalCap: 0x%2x\n", pHalData->CrystalCap);
}
void Hal_EfuseParseBoardType88E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter);
if (!AutoLoadFail)
pHalData->BoardType = ((hwinfo[EEPROM_RF_BOARD_OPTION_88E]&0xE0)>>5);
else
pHalData->BoardType = 0;
DBG_88E("Board Type: 0x%2x\n", pHalData->BoardType);
}
void Hal_EfuseParseEEPROMVer88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);
if (!AutoLoadFail) {
pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_88E];
if (pHalData->EEPROMVersion == 0xFF)
pHalData->EEPROMVersion = EEPROM_Default_Version;
} else {
pHalData->EEPROMVersion = 1;
}
RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
pHalData->EEPROMVersion));
}
void rtl8188e_EfuseParseChnlPlan(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
{
padapter->mlmepriv.ChannelPlan =
hal_com_get_channel_plan(padapter,
hwinfo ? hwinfo[EEPROM_ChannelPlan_88E] : 0xFF,
padapter->registrypriv.channel_plan,
RT_CHANNEL_DOMAIN_WORLD_WIDE_13, AutoLoadFail);
DBG_88E("mlmepriv.ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan);
}
void Hal_EfuseParseCustomerID88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);
if (!AutoLoadFail) {
pHalData->EEPROMCustomerID = hwinfo[EEPROM_CUSTOMERID_88E];
} else {
pHalData->EEPROMCustomerID = 0;
pHalData->EEPROMSubCustomerID = 0;
}
DBG_88E("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID);
}
void Hal_ReadAntennaDiversity88E(struct adapter *pAdapter, u8 *PROMContent, bool AutoLoadFail)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter);
struct registry_priv *registry_par = &pAdapter->registrypriv;
if (!AutoLoadFail) {
/* Antenna Diversity setting. */
if (registry_par->antdiv_cfg == 2) { /* 2:By EFUSE */
pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x18)>>3;
if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION&0x18)>>3;
} else {
pHalData->AntDivCfg = registry_par->antdiv_cfg; /* 0:OFF , 1:ON, 2:By EFUSE */
}
if (registry_par->antdiv_type == 0) {
/* If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead. */
pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_88E];
if (pHalData->TRxAntDivType == 0xFF)
pHalData->TRxAntDivType = CG_TRX_HW_ANTDIV; /* For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port) */
} else {
pHalData->TRxAntDivType = registry_par->antdiv_type;
}
if (pHalData->TRxAntDivType == CG_TRX_HW_ANTDIV || pHalData->TRxAntDivType == CGCS_RX_HW_ANTDIV)
pHalData->AntDivCfg = 1; /* 0xC1[3] is ignored. */
} else {
pHalData->AntDivCfg = 0;
pHalData->TRxAntDivType = pHalData->TRxAntDivType; /* The value in the driver setting of device manager. */
}
DBG_88E("EEPROM : AntDivCfg = %x, TRxAntDivType = %x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType);
}
void Hal_ReadThermalMeter_88E(struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
/* ThermalMeter from EEPROM */
if (!AutoloadFail)
pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_88E];
else
pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;
if (pHalData->EEPROMThermalMeter == 0xff || AutoloadFail) {
pHalData->bAPKThermalMeterIgnore = true;
pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;
}
DBG_88E("ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter);
}