rtl8188eu/hal_com.c
Larry Finger 4de1397841 rtl8188eu: Flatten hap/
Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
2021-07-22 18:57:16 -05:00

10540 lines
292 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2007 - 2016 Realtek Corporation. All rights reserved. */
#define _HAL_COM_C_
#include <drv_types.h>
#include "hal_com_h2c.h"
#include "hal_data.h"
#ifdef RTW_HALMAC
#include "../../hal/hal_halmac.h"
#endif
void rtw_dump_fw_info(void *sel, _adapter *adapter)
{
HAL_DATA_TYPE *hal_data = NULL;
if (!adapter)
return;
hal_data = GET_HAL_DATA(adapter);
if (adapter->bFWReady)
RTW_PRINT_SEL(sel, "FW VER -%d.%d\n", hal_data->firmware_version, hal_data->firmware_sub_version);
else
RTW_PRINT_SEL(sel, "FW not ready\n");
}
/* #define CONFIG_GTK_OL_DBG */
/*#define DBG_SEC_CAM_MOVE*/
#ifdef DBG_SEC_CAM_MOVE
void rtw_hal_move_sta_gk_to_dk(_adapter *adapter)
{
struct mlme_priv *pmlmepriv = &adapter->mlmepriv;
int cam_id, index = 0;
u8 *addr = NULL;
if (check_fwstate(pmlmepriv, WIFI_AP_STATE) == true)
return;
addr = get_bssid(pmlmepriv);
if (addr == NULL) {
RTW_INFO("%s: get bssid MAC addr fail!!\n", __func__);
return;
}
rtw_clean_dk_section(adapter);
do {
cam_id = rtw_camid_search(adapter, addr, index, 1);
if (cam_id == -1)
RTW_INFO("%s: cam_id: %d, key_id:%d\n", __func__, cam_id, index);
else
rtw_sec_cam_swap(adapter, cam_id, index);
index++;
} while (index < 4);
}
void rtw_hal_read_sta_dk_key(_adapter *adapter, u8 key_id)
{
struct security_priv *psecuritypriv = &adapter->securitypriv;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
unsigned long irqL;
u8 get_key[16];
memset(get_key, 0, sizeof(get_key));
if (key_id > 4) {
RTW_INFO("%s [ERROR] gtk_keyindex:%d invalid\n", __func__, key_id);
rtw_warn_on(1);
return;
}
rtw_sec_read_cam_ent(adapter, key_id, NULL, NULL, get_key);
/*update key into related sw variable*/
_enter_critical_bh(&cam_ctl->lock, &irqL);
if (_rtw_camid_is_gk(adapter, key_id)) {
RTW_INFO("[HW KEY] -Key-id:%d "KEY_FMT"\n", key_id, KEY_ARG(get_key));
RTW_INFO("[cam_cache KEY] - Key-id:%d "KEY_FMT"\n", key_id, KEY_ARG(&dvobj->cam_cache[key_id].key));
}
_exit_critical_bh(&cam_ctl->lock, &irqL);
}
#endif
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
char rtw_phy_para_file_path[PATH_LENGTH_MAX];
#endif
void dump_chip_info(HAL_VERSION ChipVersion)
{
int cnt = 0;
u8 buf[128] = {0};
if (IS_8188E(ChipVersion))
cnt += sprintf((buf + cnt), "Chip Version Info: CHIP_8188E_");
else if (IS_8188F(ChipVersion))
cnt += sprintf((buf + cnt), "Chip Version Info: CHIP_8188F_");
else if (IS_8812_SERIES(ChipVersion))
cnt += sprintf((buf + cnt), "Chip Version Info: CHIP_8812_");
else if (IS_8192E(ChipVersion))
cnt += sprintf((buf + cnt), "Chip Version Info: CHIP_8192E_");
else if (IS_8821_SERIES(ChipVersion))
cnt += sprintf((buf + cnt), "Chip Version Info: CHIP_8821_");
else if (IS_8723B_SERIES(ChipVersion))
cnt += sprintf((buf + cnt), "Chip Version Info: CHIP_8723B_");
else if (IS_8703B_SERIES(ChipVersion))
cnt += sprintf((buf + cnt), "Chip Version Info: CHIP_8703B_");
else if (IS_8723D_SERIES(ChipVersion))
cnt += sprintf((buf + cnt), "Chip Version Info: CHIP_8723D_");
else if (IS_8814A_SERIES(ChipVersion))
cnt += sprintf((buf + cnt), "Chip Version Info: CHIP_8814A_");
else if (IS_8822B_SERIES(ChipVersion))
cnt += sprintf((buf + cnt), "Chip Version Info: CHIP_8822B_");
else if (IS_8821C_SERIES(ChipVersion))
cnt += sprintf((buf + cnt), "Chip Version Info: CHIP_8821C_");
else
cnt += sprintf((buf + cnt), "Chip Version Info: CHIP_UNKNOWN_");
cnt += sprintf((buf + cnt), "%s_", IS_NORMAL_CHIP(ChipVersion) ? "Normal_Chip" : "Test_Chip");
if (IS_CHIP_VENDOR_TSMC(ChipVersion))
cnt += sprintf((buf + cnt), "%s_", "TSMC");
else if (IS_CHIP_VENDOR_UMC(ChipVersion))
cnt += sprintf((buf + cnt), "%s_", "UMC");
else if (IS_CHIP_VENDOR_SMIC(ChipVersion))
cnt += sprintf((buf + cnt), "%s_", "SMIC");
if (IS_A_CUT(ChipVersion))
cnt += sprintf((buf + cnt), "A_CUT_");
else if (IS_B_CUT(ChipVersion))
cnt += sprintf((buf + cnt), "B_CUT_");
else if (IS_C_CUT(ChipVersion))
cnt += sprintf((buf + cnt), "C_CUT_");
else if (IS_D_CUT(ChipVersion))
cnt += sprintf((buf + cnt), "D_CUT_");
else if (IS_E_CUT(ChipVersion))
cnt += sprintf((buf + cnt), "E_CUT_");
else if (IS_F_CUT(ChipVersion))
cnt += sprintf((buf + cnt), "F_CUT_");
else if (IS_I_CUT(ChipVersion))
cnt += sprintf((buf + cnt), "I_CUT_");
else if (IS_J_CUT(ChipVersion))
cnt += sprintf((buf + cnt), "J_CUT_");
else if (IS_K_CUT(ChipVersion))
cnt += sprintf((buf + cnt), "K_CUT_");
else
cnt += sprintf((buf + cnt), "UNKNOWN_CUT(%d)_", ChipVersion.CUTVersion);
if (IS_1T1R(ChipVersion))
cnt += sprintf((buf + cnt), "1T1R_");
else if (IS_1T2R(ChipVersion))
cnt += sprintf((buf + cnt), "1T2R_");
else if (IS_2T2R(ChipVersion))
cnt += sprintf((buf + cnt), "2T2R_");
else if (IS_3T3R(ChipVersion))
cnt += sprintf((buf + cnt), "3T3R_");
else if (IS_3T4R(ChipVersion))
cnt += sprintf((buf + cnt), "3T4R_");
else if (IS_4T4R(ChipVersion))
cnt += sprintf((buf + cnt), "4T4R_");
else
cnt += sprintf((buf + cnt), "UNKNOWN_RFTYPE(%d)_", ChipVersion.RFType);
cnt += sprintf((buf + cnt), "RomVer(%d)\n", ChipVersion.ROMVer);
RTW_INFO("%s", buf);
}
void rtw_hal_config_rftype(PADAPTER padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (IS_1T1R(pHalData->version_id)) {
pHalData->rf_type = RF_1T1R;
pHalData->NumTotalRFPath = 1;
} else if (IS_2T2R(pHalData->version_id)) {
pHalData->rf_type = RF_2T2R;
pHalData->NumTotalRFPath = 2;
} else if (IS_1T2R(pHalData->version_id)) {
pHalData->rf_type = RF_1T2R;
pHalData->NumTotalRFPath = 2;
} else if (IS_3T3R(pHalData->version_id)) {
pHalData->rf_type = RF_3T3R;
pHalData->NumTotalRFPath = 3;
} else if (IS_4T4R(pHalData->version_id)) {
pHalData->rf_type = RF_4T4R;
pHalData->NumTotalRFPath = 4;
} else {
pHalData->rf_type = RF_1T1R;
pHalData->NumTotalRFPath = 1;
}
RTW_INFO("%s RF_Type is %d TotalTxPath is %d\n", __func__, pHalData->rf_type, pHalData->NumTotalRFPath);
}
#define EEPROM_CHANNEL_PLAN_BY_HW_MASK 0x80
/*
* Description:
* Use hardware(efuse), driver parameter(registry) and default channel plan
* to decide which one should be used.
*
* Parameters:
* padapter pointer of adapter
* hw_alpha2 country code from HW (efuse/eeprom/mapfile)
* hw_chplan channel plan from HW (efuse/eeprom/mapfile)
* BIT[7] software configure mode; 0:Enable, 1:disable
* BIT[6:0] Channel Plan
* sw_alpha2 country code from HW (registry/module param)
* sw_chplan channel plan from SW (registry/module param)
* def_chplan channel plan used when HW/SW both invalid
* AutoLoadFail efuse autoload fail or not
*
* Return:
* Final channel plan decision
*
*/
u8 hal_com_config_channel_plan(
PADAPTER padapter,
char *hw_alpha2,
u8 hw_chplan,
char *sw_alpha2,
u8 sw_chplan,
u8 def_chplan,
bool AutoLoadFail
)
{
PHAL_DATA_TYPE pHalData;
u8 force_hw_chplan = false;
int chplan = -1;
const struct country_chplan *country_ent = NULL, *ent;
pHalData = GET_HAL_DATA(padapter);
/* treat 0xFF as invalid value, bypass hw_chplan & force_hw_chplan parsing */
if (hw_chplan == 0xFF)
goto chk_hw_country_code;
if (AutoLoadFail == true)
goto chk_sw_config;
#ifndef CONFIG_FORCE_SW_CHANNEL_PLAN
if (hw_chplan & EEPROM_CHANNEL_PLAN_BY_HW_MASK)
force_hw_chplan = true;
#endif
hw_chplan &= (~EEPROM_CHANNEL_PLAN_BY_HW_MASK);
chk_hw_country_code:
if (hw_alpha2 && !IS_ALPHA2_NO_SPECIFIED(hw_alpha2)) {
ent = rtw_get_chplan_from_country(hw_alpha2);
if (ent) {
/* get chplan from hw country code, by pass hw chplan setting */
country_ent = ent;
chplan = ent->chplan;
goto chk_sw_config;
} else
RTW_PRINT("%s unsupported hw_alpha2:\"%c%c\"\n", __func__, hw_alpha2[0], hw_alpha2[1]);
}
if (rtw_is_channel_plan_valid(hw_chplan))
chplan = hw_chplan;
else if (force_hw_chplan == true) {
RTW_PRINT("%s unsupported hw_chplan:0x%02X\n", __func__, hw_chplan);
/* hw infomaton invalid, refer to sw information */
force_hw_chplan = false;
}
chk_sw_config:
if (force_hw_chplan == true)
goto done;
if (sw_alpha2 && !IS_ALPHA2_NO_SPECIFIED(sw_alpha2)) {
ent = rtw_get_chplan_from_country(sw_alpha2);
if (ent) {
/* get chplan from sw country code, by pass sw chplan setting */
country_ent = ent;
chplan = ent->chplan;
goto done;
} else
RTW_PRINT("%s unsupported sw_alpha2:\"%c%c\"\n", __func__, sw_alpha2[0], sw_alpha2[1]);
}
if (rtw_is_channel_plan_valid(sw_chplan)) {
/* cancel hw_alpha2 because chplan is specified by sw_chplan*/
country_ent = NULL;
chplan = sw_chplan;
} else if (sw_chplan != RTW_CHPLAN_MAX)
RTW_PRINT("%s unsupported sw_chplan:0x%02X\n", __func__, sw_chplan);
done:
if (chplan == -1) {
RTW_PRINT("%s use def_chplan:0x%02X\n", __func__, def_chplan);
chplan = def_chplan;
} else if (country_ent) {
RTW_PRINT("%s country code:\"%c%c\" with chplan:0x%02X\n", __func__
, country_ent->alpha2[0], country_ent->alpha2[1], country_ent->chplan);
} else
RTW_PRINT("%s chplan:0x%02X\n", __func__, chplan);
padapter->mlmepriv.country_ent = country_ent;
pHalData->bDisableSWChannelPlan = force_hw_chplan;
return chplan;
}
bool
HAL_IsLegalChannel(
PADAPTER Adapter,
u32 Channel
)
{
bool bLegalChannel = true;
if (Channel > 14) {
if (is_supported_5g(Adapter->registrypriv.wireless_mode) == false) {
bLegalChannel = false;
RTW_INFO("Channel > 14 but wireless_mode do not support 5G\n");
}
} else if ((Channel <= 14) && (Channel >= 1)) {
if (IsSupported24G(Adapter->registrypriv.wireless_mode) == false) {
bLegalChannel = false;
RTW_INFO("(Channel <= 14) && (Channel >=1) but wireless_mode do not support 2.4G\n");
}
} else {
bLegalChannel = false;
RTW_INFO("Channel is Invalid !!!\n");
}
return bLegalChannel;
}
u8 MRateToHwRate(u8 rate)
{
u8 ret = DESC_RATE1M;
switch (rate) {
case MGN_1M:
ret = DESC_RATE1M;
break;
case MGN_2M:
ret = DESC_RATE2M;
break;
case MGN_5_5M:
ret = DESC_RATE5_5M;
break;
case MGN_11M:
ret = DESC_RATE11M;
break;
case MGN_6M:
ret = DESC_RATE6M;
break;
case MGN_9M:
ret = DESC_RATE9M;
break;
case MGN_12M:
ret = DESC_RATE12M;
break;
case MGN_18M:
ret = DESC_RATE18M;
break;
case MGN_24M:
ret = DESC_RATE24M;
break;
case MGN_36M:
ret = DESC_RATE36M;
break;
case MGN_48M:
ret = DESC_RATE48M;
break;
case MGN_54M:
ret = DESC_RATE54M;
break;
case MGN_MCS0:
ret = DESC_RATEMCS0;
break;
case MGN_MCS1:
ret = DESC_RATEMCS1;
break;
case MGN_MCS2:
ret = DESC_RATEMCS2;
break;
case MGN_MCS3:
ret = DESC_RATEMCS3;
break;
case MGN_MCS4:
ret = DESC_RATEMCS4;
break;
case MGN_MCS5:
ret = DESC_RATEMCS5;
break;
case MGN_MCS6:
ret = DESC_RATEMCS6;
break;
case MGN_MCS7:
ret = DESC_RATEMCS7;
break;
case MGN_MCS8:
ret = DESC_RATEMCS8;
break;
case MGN_MCS9:
ret = DESC_RATEMCS9;
break;
case MGN_MCS10:
ret = DESC_RATEMCS10;
break;
case MGN_MCS11:
ret = DESC_RATEMCS11;
break;
case MGN_MCS12:
ret = DESC_RATEMCS12;
break;
case MGN_MCS13:
ret = DESC_RATEMCS13;
break;
case MGN_MCS14:
ret = DESC_RATEMCS14;
break;
case MGN_MCS15:
ret = DESC_RATEMCS15;
break;
case MGN_MCS16:
ret = DESC_RATEMCS16;
break;
case MGN_MCS17:
ret = DESC_RATEMCS17;
break;
case MGN_MCS18:
ret = DESC_RATEMCS18;
break;
case MGN_MCS19:
ret = DESC_RATEMCS19;
break;
case MGN_MCS20:
ret = DESC_RATEMCS20;
break;
case MGN_MCS21:
ret = DESC_RATEMCS21;
break;
case MGN_MCS22:
ret = DESC_RATEMCS22;
break;
case MGN_MCS23:
ret = DESC_RATEMCS23;
break;
case MGN_MCS24:
ret = DESC_RATEMCS24;
break;
case MGN_MCS25:
ret = DESC_RATEMCS25;
break;
case MGN_MCS26:
ret = DESC_RATEMCS26;
break;
case MGN_MCS27:
ret = DESC_RATEMCS27;
break;
case MGN_MCS28:
ret = DESC_RATEMCS28;
break;
case MGN_MCS29:
ret = DESC_RATEMCS29;
break;
case MGN_MCS30:
ret = DESC_RATEMCS30;
break;
case MGN_MCS31:
ret = DESC_RATEMCS31;
break;
case MGN_VHT1SS_MCS0:
ret = DESC_RATEVHTSS1MCS0;
break;
case MGN_VHT1SS_MCS1:
ret = DESC_RATEVHTSS1MCS1;
break;
case MGN_VHT1SS_MCS2:
ret = DESC_RATEVHTSS1MCS2;
break;
case MGN_VHT1SS_MCS3:
ret = DESC_RATEVHTSS1MCS3;
break;
case MGN_VHT1SS_MCS4:
ret = DESC_RATEVHTSS1MCS4;
break;
case MGN_VHT1SS_MCS5:
ret = DESC_RATEVHTSS1MCS5;
break;
case MGN_VHT1SS_MCS6:
ret = DESC_RATEVHTSS1MCS6;
break;
case MGN_VHT1SS_MCS7:
ret = DESC_RATEVHTSS1MCS7;
break;
case MGN_VHT1SS_MCS8:
ret = DESC_RATEVHTSS1MCS8;
break;
case MGN_VHT1SS_MCS9:
ret = DESC_RATEVHTSS1MCS9;
break;
case MGN_VHT2SS_MCS0:
ret = DESC_RATEVHTSS2MCS0;
break;
case MGN_VHT2SS_MCS1:
ret = DESC_RATEVHTSS2MCS1;
break;
case MGN_VHT2SS_MCS2:
ret = DESC_RATEVHTSS2MCS2;
break;
case MGN_VHT2SS_MCS3:
ret = DESC_RATEVHTSS2MCS3;
break;
case MGN_VHT2SS_MCS4:
ret = DESC_RATEVHTSS2MCS4;
break;
case MGN_VHT2SS_MCS5:
ret = DESC_RATEVHTSS2MCS5;
break;
case MGN_VHT2SS_MCS6:
ret = DESC_RATEVHTSS2MCS6;
break;
case MGN_VHT2SS_MCS7:
ret = DESC_RATEVHTSS2MCS7;
break;
case MGN_VHT2SS_MCS8:
ret = DESC_RATEVHTSS2MCS8;
break;
case MGN_VHT2SS_MCS9:
ret = DESC_RATEVHTSS2MCS9;
break;
case MGN_VHT3SS_MCS0:
ret = DESC_RATEVHTSS3MCS0;
break;
case MGN_VHT3SS_MCS1:
ret = DESC_RATEVHTSS3MCS1;
break;
case MGN_VHT3SS_MCS2:
ret = DESC_RATEVHTSS3MCS2;
break;
case MGN_VHT3SS_MCS3:
ret = DESC_RATEVHTSS3MCS3;
break;
case MGN_VHT3SS_MCS4:
ret = DESC_RATEVHTSS3MCS4;
break;
case MGN_VHT3SS_MCS5:
ret = DESC_RATEVHTSS3MCS5;
break;
case MGN_VHT3SS_MCS6:
ret = DESC_RATEVHTSS3MCS6;
break;
case MGN_VHT3SS_MCS7:
ret = DESC_RATEVHTSS3MCS7;
break;
case MGN_VHT3SS_MCS8:
ret = DESC_RATEVHTSS3MCS8;
break;
case MGN_VHT3SS_MCS9:
ret = DESC_RATEVHTSS3MCS9;
break;
case MGN_VHT4SS_MCS0:
ret = DESC_RATEVHTSS4MCS0;
break;
case MGN_VHT4SS_MCS1:
ret = DESC_RATEVHTSS4MCS1;
break;
case MGN_VHT4SS_MCS2:
ret = DESC_RATEVHTSS4MCS2;
break;
case MGN_VHT4SS_MCS3:
ret = DESC_RATEVHTSS4MCS3;
break;
case MGN_VHT4SS_MCS4:
ret = DESC_RATEVHTSS4MCS4;
break;
case MGN_VHT4SS_MCS5:
ret = DESC_RATEVHTSS4MCS5;
break;
case MGN_VHT4SS_MCS6:
ret = DESC_RATEVHTSS4MCS6;
break;
case MGN_VHT4SS_MCS7:
ret = DESC_RATEVHTSS4MCS7;
break;
case MGN_VHT4SS_MCS8:
ret = DESC_RATEVHTSS4MCS8;
break;
case MGN_VHT4SS_MCS9:
ret = DESC_RATEVHTSS4MCS9;
break;
default:
break;
}
return ret;
}
u8 hw_rate_to_m_rate(u8 rate)
{
u8 ret_rate = MGN_1M;
switch (rate) {
case DESC_RATE1M:
ret_rate = MGN_1M;
break;
case DESC_RATE2M:
ret_rate = MGN_2M;
break;
case DESC_RATE5_5M:
ret_rate = MGN_5_5M;
break;
case DESC_RATE11M:
ret_rate = MGN_11M;
break;
case DESC_RATE6M:
ret_rate = MGN_6M;
break;
case DESC_RATE9M:
ret_rate = MGN_9M;
break;
case DESC_RATE12M:
ret_rate = MGN_12M;
break;
case DESC_RATE18M:
ret_rate = MGN_18M;
break;
case DESC_RATE24M:
ret_rate = MGN_24M;
break;
case DESC_RATE36M:
ret_rate = MGN_36M;
break;
case DESC_RATE48M:
ret_rate = MGN_48M;
break;
case DESC_RATE54M:
ret_rate = MGN_54M;
break;
case DESC_RATEMCS0:
ret_rate = MGN_MCS0;
break;
case DESC_RATEMCS1:
ret_rate = MGN_MCS1;
break;
case DESC_RATEMCS2:
ret_rate = MGN_MCS2;
break;
case DESC_RATEMCS3:
ret_rate = MGN_MCS3;
break;
case DESC_RATEMCS4:
ret_rate = MGN_MCS4;
break;
case DESC_RATEMCS5:
ret_rate = MGN_MCS5;
break;
case DESC_RATEMCS6:
ret_rate = MGN_MCS6;
break;
case DESC_RATEMCS7:
ret_rate = MGN_MCS7;
break;
case DESC_RATEMCS8:
ret_rate = MGN_MCS8;
break;
case DESC_RATEMCS9:
ret_rate = MGN_MCS9;
break;
case DESC_RATEMCS10:
ret_rate = MGN_MCS10;
break;
case DESC_RATEMCS11:
ret_rate = MGN_MCS11;
break;
case DESC_RATEMCS12:
ret_rate = MGN_MCS12;
break;
case DESC_RATEMCS13:
ret_rate = MGN_MCS13;
break;
case DESC_RATEMCS14:
ret_rate = MGN_MCS14;
break;
case DESC_RATEMCS15:
ret_rate = MGN_MCS15;
break;
case DESC_RATEMCS16:
ret_rate = MGN_MCS16;
break;
case DESC_RATEMCS17:
ret_rate = MGN_MCS17;
break;
case DESC_RATEMCS18:
ret_rate = MGN_MCS18;
break;
case DESC_RATEMCS19:
ret_rate = MGN_MCS19;
break;
case DESC_RATEMCS20:
ret_rate = MGN_MCS20;
break;
case DESC_RATEMCS21:
ret_rate = MGN_MCS21;
break;
case DESC_RATEMCS22:
ret_rate = MGN_MCS22;
break;
case DESC_RATEMCS23:
ret_rate = MGN_MCS23;
break;
case DESC_RATEMCS24:
ret_rate = MGN_MCS24;
break;
case DESC_RATEMCS25:
ret_rate = MGN_MCS25;
break;
case DESC_RATEMCS26:
ret_rate = MGN_MCS26;
break;
case DESC_RATEMCS27:
ret_rate = MGN_MCS27;
break;
case DESC_RATEMCS28:
ret_rate = MGN_MCS28;
break;
case DESC_RATEMCS29:
ret_rate = MGN_MCS29;
break;
case DESC_RATEMCS30:
ret_rate = MGN_MCS30;
break;
case DESC_RATEMCS31:
ret_rate = MGN_MCS31;
break;
case DESC_RATEVHTSS1MCS0:
ret_rate = MGN_VHT1SS_MCS0;
break;
case DESC_RATEVHTSS1MCS1:
ret_rate = MGN_VHT1SS_MCS1;
break;
case DESC_RATEVHTSS1MCS2:
ret_rate = MGN_VHT1SS_MCS2;
break;
case DESC_RATEVHTSS1MCS3:
ret_rate = MGN_VHT1SS_MCS3;
break;
case DESC_RATEVHTSS1MCS4:
ret_rate = MGN_VHT1SS_MCS4;
break;
case DESC_RATEVHTSS1MCS5:
ret_rate = MGN_VHT1SS_MCS5;
break;
case DESC_RATEVHTSS1MCS6:
ret_rate = MGN_VHT1SS_MCS6;
break;
case DESC_RATEVHTSS1MCS7:
ret_rate = MGN_VHT1SS_MCS7;
break;
case DESC_RATEVHTSS1MCS8:
ret_rate = MGN_VHT1SS_MCS8;
break;
case DESC_RATEVHTSS1MCS9:
ret_rate = MGN_VHT1SS_MCS9;
break;
case DESC_RATEVHTSS2MCS0:
ret_rate = MGN_VHT2SS_MCS0;
break;
case DESC_RATEVHTSS2MCS1:
ret_rate = MGN_VHT2SS_MCS1;
break;
case DESC_RATEVHTSS2MCS2:
ret_rate = MGN_VHT2SS_MCS2;
break;
case DESC_RATEVHTSS2MCS3:
ret_rate = MGN_VHT2SS_MCS3;
break;
case DESC_RATEVHTSS2MCS4:
ret_rate = MGN_VHT2SS_MCS4;
break;
case DESC_RATEVHTSS2MCS5:
ret_rate = MGN_VHT2SS_MCS5;
break;
case DESC_RATEVHTSS2MCS6:
ret_rate = MGN_VHT2SS_MCS6;
break;
case DESC_RATEVHTSS2MCS7:
ret_rate = MGN_VHT2SS_MCS7;
break;
case DESC_RATEVHTSS2MCS8:
ret_rate = MGN_VHT2SS_MCS8;
break;
case DESC_RATEVHTSS2MCS9:
ret_rate = MGN_VHT2SS_MCS9;
break;
case DESC_RATEVHTSS3MCS0:
ret_rate = MGN_VHT3SS_MCS0;
break;
case DESC_RATEVHTSS3MCS1:
ret_rate = MGN_VHT3SS_MCS1;
break;
case DESC_RATEVHTSS3MCS2:
ret_rate = MGN_VHT3SS_MCS2;
break;
case DESC_RATEVHTSS3MCS3:
ret_rate = MGN_VHT3SS_MCS3;
break;
case DESC_RATEVHTSS3MCS4:
ret_rate = MGN_VHT3SS_MCS4;
break;
case DESC_RATEVHTSS3MCS5:
ret_rate = MGN_VHT3SS_MCS5;
break;
case DESC_RATEVHTSS3MCS6:
ret_rate = MGN_VHT3SS_MCS6;
break;
case DESC_RATEVHTSS3MCS7:
ret_rate = MGN_VHT3SS_MCS7;
break;
case DESC_RATEVHTSS3MCS8:
ret_rate = MGN_VHT3SS_MCS8;
break;
case DESC_RATEVHTSS3MCS9:
ret_rate = MGN_VHT3SS_MCS9;
break;
case DESC_RATEVHTSS4MCS0:
ret_rate = MGN_VHT4SS_MCS0;
break;
case DESC_RATEVHTSS4MCS1:
ret_rate = MGN_VHT4SS_MCS1;
break;
case DESC_RATEVHTSS4MCS2:
ret_rate = MGN_VHT4SS_MCS2;
break;
case DESC_RATEVHTSS4MCS3:
ret_rate = MGN_VHT4SS_MCS3;
break;
case DESC_RATEVHTSS4MCS4:
ret_rate = MGN_VHT4SS_MCS4;
break;
case DESC_RATEVHTSS4MCS5:
ret_rate = MGN_VHT4SS_MCS5;
break;
case DESC_RATEVHTSS4MCS6:
ret_rate = MGN_VHT4SS_MCS6;
break;
case DESC_RATEVHTSS4MCS7:
ret_rate = MGN_VHT4SS_MCS7;
break;
case DESC_RATEVHTSS4MCS8:
ret_rate = MGN_VHT4SS_MCS8;
break;
case DESC_RATEVHTSS4MCS9:
ret_rate = MGN_VHT4SS_MCS9;
break;
default:
RTW_INFO("hw_rate_to_m_rate(): Non supported Rate [%x]!!!\n", rate);
break;
}
return ret_rate;
}
void HalSetBrateCfg(
PADAPTER Adapter,
u8 *mBratesOS,
u16 *pBrateCfg)
{
u8 i, is_brate, brate;
for (i = 0; i < NDIS_802_11_LENGTH_RATES_EX; i++) {
is_brate = mBratesOS[i] & IEEE80211_BASIC_RATE_MASK;
brate = mBratesOS[i] & 0x7f;
if (is_brate) {
switch (brate) {
case IEEE80211_CCK_RATE_1MB:
*pBrateCfg |= RATE_1M;
break;
case IEEE80211_CCK_RATE_2MB:
*pBrateCfg |= RATE_2M;
break;
case IEEE80211_CCK_RATE_5MB:
*pBrateCfg |= RATE_5_5M;
break;
case IEEE80211_CCK_RATE_11MB:
*pBrateCfg |= RATE_11M;
break;
case IEEE80211_OFDM_RATE_6MB:
*pBrateCfg |= RATE_6M;
break;
case IEEE80211_OFDM_RATE_9MB:
*pBrateCfg |= RATE_9M;
break;
case IEEE80211_OFDM_RATE_12MB:
*pBrateCfg |= RATE_12M;
break;
case IEEE80211_OFDM_RATE_18MB:
*pBrateCfg |= RATE_18M;
break;
case IEEE80211_OFDM_RATE_24MB:
*pBrateCfg |= RATE_24M;
break;
case IEEE80211_OFDM_RATE_36MB:
*pBrateCfg |= RATE_36M;
break;
case IEEE80211_OFDM_RATE_48MB:
*pBrateCfg |= RATE_48M;
break;
case IEEE80211_OFDM_RATE_54MB:
*pBrateCfg |= RATE_54M;
break;
}
}
}
}
static void
_OneOutPipeMapping(
PADAPTER pAdapter
)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(pAdapter);
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];/* VO */
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0];/* VI */
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[0];/* BE */
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[0];/* BK */
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];/* BCN */
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];/* MGT */
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];/* HIGH */
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];/* TXCMD */
}
static void
_TwoOutPipeMapping(
PADAPTER pAdapter,
bool bWIFICfg
)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(pAdapter);
if (bWIFICfg) { /* WMM */
/* BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA */
/* { 0, 1, 0, 1, 0, 0, 0, 0, 0 }; */
/* 0:ep_0 num, 1:ep_1 num */
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[1];/* VO */
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0];/* VI */
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[1];/* BE */
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[0];/* BK */
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];/* BCN */
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];/* MGT */
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];/* HIGH */
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];/* TXCMD */
} else { /* typical setting */
/* BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA */
/* { 1, 1, 0, 0, 0, 0, 0, 0, 0 }; */
/* 0:ep_0 num, 1:ep_1 num */
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];/* VO */
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0];/* VI */
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[1];/* BE */
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[1];/* BK */
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];/* BCN */
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];/* MGT */
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];/* HIGH */
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];/* TXCMD */
}
}
static void _ThreeOutPipeMapping(
PADAPTER pAdapter,
bool bWIFICfg
)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(pAdapter);
if (bWIFICfg) { /* for WMM */
/* BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA */
/* { 1, 2, 1, 0, 0, 0, 0, 0, 0 }; */
/* 0:H, 1:N, 2:L */
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];/* VO */
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1];/* VI */
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2];/* BE */
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[1];/* BK */
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];/* BCN */
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];/* MGT */
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];/* HIGH */
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];/* TXCMD */
} else { /* typical setting */
/* BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA */
/* { 2, 2, 1, 0, 0, 0, 0, 0, 0 }; */
/* 0:H, 1:N, 2:L */
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];/* VO */
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1];/* VI */
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2];/* BE */
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[2];/* BK */
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];/* BCN */
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];/* MGT */
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];/* HIGH */
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];/* TXCMD */
}
}
static void _FourOutPipeMapping(
PADAPTER pAdapter,
bool bWIFICfg
)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(pAdapter);
if (bWIFICfg) { /* for WMM */
/* BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA */
/* { 1, 2, 1, 0, 0, 0, 0, 0, 0 }; */
/* 0:H, 1:N, 2:L ,3:E */
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];/* VO */
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1];/* VI */
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2];/* BE */
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[1];/* BK */
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];/* BCN */
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];/* MGT */
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[3];/* HIGH */
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];/* TXCMD */
} else { /* typical setting */
/* BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA */
/* { 2, 2, 1, 0, 0, 0, 0, 0, 0 }; */
/* 0:H, 1:N, 2:L */
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];/* VO */
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1];/* VI */
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2];/* BE */
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[2];/* BK */
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];/* BCN */
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];/* MGT */
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[3];/* HIGH */
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];/* TXCMD */
}
}
bool
Hal_MappingOutPipe(
PADAPTER pAdapter,
u8 NumOutPipe
)
{
struct registry_priv *pregistrypriv = &pAdapter->registrypriv;
bool bWIFICfg = (pregistrypriv->wifi_spec) ? true : false;
bool result = true;
switch (NumOutPipe) {
case 2:
_TwoOutPipeMapping(pAdapter, bWIFICfg);
break;
case 3:
case 4:
_ThreeOutPipeMapping(pAdapter, bWIFICfg);
break;
case 1:
_OneOutPipeMapping(pAdapter);
break;
default:
result = false;
break;
}
return result;
}
void rtw_hal_reqtxrpt(_adapter *padapter, u8 macid)
{
if (padapter->hal_func.reqtxrpt)
padapter->hal_func.reqtxrpt(padapter, macid);
}
void rtw_hal_dump_macaddr(void *sel, _adapter *adapter)
{
int i;
_adapter *iface;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
u8 mac_addr[ETH_ALEN];
#ifdef CONFIG_MI_WITH_MBSSID_CAM
rtw_mbid_cam_dump(sel, __func__, adapter);
#else
for (i = 0; i < dvobj->iface_nums; i++) {
iface = dvobj->padapters[i];
if (iface) {
rtw_hal_get_macaddr_port(iface, mac_addr);
RTW_INFO(ADPT_FMT"- hw port(%d) mac_addr ="MAC_FMT"\n",
ADPT_ARG(iface), iface->hw_port, MAC_ARG(mac_addr));
}
}
#endif
}
void rtw_restore_mac_addr(_adapter *adapter)
{
#ifdef CONFIG_MI_WITH_MBSSID_CAM
_adapter *iface;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
rtw_mbid_cam_restore(adapter);
#else
int i;
_adapter *iface;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
for (i = 0; i < dvobj->iface_nums; i++) {
iface = dvobj->padapters[i];
if (iface)
rtw_hal_set_macaddr_port(iface, adapter_mac_addr(iface));
}
#endif
if (1)
rtw_hal_dump_macaddr(RTW_DBGDUMP, adapter);
}
void rtw_init_hal_com_default_value(PADAPTER Adapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
struct registry_priv *regsty = adapter_to_regsty(Adapter);
pHalData->AntDetection = 1;
pHalData->antenna_test = false;
pHalData->u1ForcedIgiLb = regsty->force_igi_lb;
}
#ifdef CONFIG_FW_C2H_REG
void c2h_evt_clear(_adapter *adapter)
{
rtw_write8(adapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE);
}
s32 c2h_evt_read_88xx(_adapter *adapter, u8 *buf)
{
s32 ret = _FAIL;
int i;
u8 trigger;
if (buf == NULL)
goto exit;
trigger = rtw_read8(adapter, REG_C2HEVT_CLEAR);
if (trigger == C2H_EVT_HOST_CLOSE) {
goto exit; /* Not ready */
} else if (trigger != C2H_EVT_FW_CLOSE) {
goto clear_evt; /* Not a valid value */
}
memset(buf, 0, C2H_REG_LEN);
/* Read ID, LEN, SEQ */
SET_C2H_ID_88XX(buf, rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL));
SET_C2H_SEQ_88XX(buf, rtw_read8(adapter, REG_C2HEVT_CMD_SEQ_88XX));
SET_C2H_PLEN_88XX(buf, rtw_read8(adapter, REG_C2HEVT_CMD_LEN_88XX));
if (0) {
RTW_INFO("%s id=0x%02x, seq=%u, plen=%u, trigger=0x%02x\n", __func__
, C2H_ID_88XX(buf), C2H_SEQ_88XX(buf), C2H_PLEN_88XX(buf), trigger);
}
/* Read the content */
for (i = 0; i < C2H_PLEN_88XX(buf); i++)
*(C2H_PAYLOAD_88XX(buf) + i) = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL + 2 + i);
RTW_DBG_DUMP("payload:\n", C2H_PAYLOAD_88XX(buf), C2H_PLEN_88XX(buf));
ret = _SUCCESS;
clear_evt:
/*
* Clear event to notify FW we have read the command.
* If this field isn't clear, the FW won't update the next command message.
*/
c2h_evt_clear(adapter);
exit:
return ret;
}
#endif /* CONFIG_FW_C2H_REG */
#ifdef CONFIG_FW_C2H_PKT
#ifndef DBG_C2H_PKT_PRE_HDL
#define DBG_C2H_PKT_PRE_HDL 0
#endif
#ifndef DBG_C2H_PKT_HDL
#define DBG_C2H_PKT_HDL 0
#endif
void rtw_hal_c2h_pkt_pre_hdl(_adapter *adapter, u8 *buf, u16 len)
{
#ifdef RTW_HALMAC
/* TODO: extract hal_mac IC's code here*/
#else
u8 parse_fail = 0;
u8 hdl_here = 0;
s32 ret = _FAIL;
u8 id, seq, plen;
u8 *payload;
if (rtw_hal_c2h_pkt_hdr_parse(adapter, buf, len, &id, &seq, &plen, &payload) != _SUCCESS) {
parse_fail = 1;
goto exit;
}
hdl_here = rtw_hal_c2h_id_handle_directly(adapter, id, seq, plen, payload) == true ? 1 : 0;
if (hdl_here)
ret = rtw_hal_c2h_handler(adapter, id, seq, plen, payload);
else
ret = rtw_c2h_packet_wk_cmd(adapter, buf, len);
exit:
if (parse_fail)
RTW_ERR("%s parse fail, buf=%p, len=:%u\n", __func__, buf, len);
else if (ret != _SUCCESS || DBG_C2H_PKT_PRE_HDL > 0) {
RTW_PRINT("%s: id=0x%02x, seq=%u, plen=%u, %s %s\n", __func__, id, seq, plen
, hdl_here ? "handle" : "enqueue"
, ret == _SUCCESS ? "ok" : "fail"
);
if (DBG_C2H_PKT_PRE_HDL >= 2)
RTW_PRINT_DUMP("dump: ", buf, len);
}
#endif
}
void rtw_hal_c2h_pkt_hdl(_adapter *adapter, u8 *buf, u16 len)
{
#ifdef RTW_HALMAC
adapter->hal_func.hal_mac_c2h_handler(adapter, buf, len);
#else
u8 parse_fail = 0;
u8 bypass = 0;
s32 ret = _FAIL;
u8 id, seq, plen;
u8 *payload;
if (rtw_hal_c2h_pkt_hdr_parse(adapter, buf, len, &id, &seq, &plen, &payload) != _SUCCESS) {
parse_fail = 1;
goto exit;
}
#ifdef CONFIG_WOWLAN
if (adapter_to_pwrctl(adapter)->wowlan_mode == true) {
bypass = 1;
ret = _SUCCESS;
goto exit;
}
#endif
ret = rtw_hal_c2h_handler(adapter, id, seq, plen, payload);
exit:
if (parse_fail)
RTW_ERR("%s parse fail, buf=%p, len=:%u\n", __func__, buf, len);
else if (ret != _SUCCESS || bypass || DBG_C2H_PKT_HDL > 0) {
RTW_PRINT("%s: id=0x%02x, seq=%u, plen=%u, %s %s\n", __func__, id, seq, plen
, !bypass ? "handle" : "bypass"
, ret == _SUCCESS ? "ok" : "fail"
);
if (DBG_C2H_PKT_HDL >= 2)
RTW_PRINT_DUMP("dump: ", buf, len);
}
#endif
}
#endif /* CONFIG_FW_C2H_PKT */
void c2h_iqk_offload(_adapter *adapter, u8 *data, u8 len)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct submit_ctx *iqk_sctx = &hal_data->iqk_sctx;
RTW_INFO("IQK offload finish in %dms\n", rtw_get_passing_time_ms(iqk_sctx->submit_time));
if (0)
RTW_INFO_DUMP("C2H_IQK_FINISH: ", data, len);
rtw_sctx_done(&iqk_sctx);
}
int c2h_iqk_offload_wait(_adapter *adapter, u32 timeout_ms)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct submit_ctx *iqk_sctx = &hal_data->iqk_sctx;
iqk_sctx->submit_time = jiffies;
iqk_sctx->timeout_ms = timeout_ms;
iqk_sctx->status = RTW_SCTX_SUBMITTED;
return rtw_sctx_wait(iqk_sctx, __func__);
}
#define GET_C2H_MAC_HIDDEN_RPT_UUID_X(_data) LE_BITS_TO_1BYTE(((u8 *)(_data)) + 0, 0, 8)
#define GET_C2H_MAC_HIDDEN_RPT_UUID_Y(_data) LE_BITS_TO_1BYTE(((u8 *)(_data)) + 1, 0, 8)
#define GET_C2H_MAC_HIDDEN_RPT_UUID_Z(_data) LE_BITS_TO_1BYTE(((u8 *)(_data)) + 2, 0, 5)
#define GET_C2H_MAC_HIDDEN_RPT_UUID_CRC(_data) LE_BITS_TO_2BYTE(((u8 *)(_data)) + 2, 5, 11)
#define GET_C2H_MAC_HIDDEN_RPT_HCI_TYPE(_data) LE_BITS_TO_1BYTE(((u8 *)(_data)) + 4, 0, 4)
#define GET_C2H_MAC_HIDDEN_RPT_PACKAGE_TYPE(_data) LE_BITS_TO_1BYTE(((u8 *)(_data)) + 4, 4, 3)
#define GET_C2H_MAC_HIDDEN_RPT_TR_SWITCH(_data) LE_BITS_TO_1BYTE(((u8 *)(_data)) + 4, 7, 1)
#define GET_C2H_MAC_HIDDEN_RPT_WL_FUNC(_data) LE_BITS_TO_1BYTE(((u8 *)(_data)) + 5, 0, 4)
#define GET_C2H_MAC_HIDDEN_RPT_HW_STYPE(_data) LE_BITS_TO_1BYTE(((u8 *)(_data)) + 5, 4, 4)
#define GET_C2H_MAC_HIDDEN_RPT_BW(_data) LE_BITS_TO_1BYTE(((u8 *)(_data)) + 6, 0, 3)
#define GET_C2H_MAC_HIDDEN_RPT_FAB(_data) LE_BITS_TO_1BYTE(((u8 *)(_data)) + 6, 3, 2)
#define GET_C2H_MAC_HIDDEN_RPT_ANT_NUM(_data) LE_BITS_TO_1BYTE(((u8 *)(_data)) + 6, 5, 3)
#define GET_C2H_MAC_HIDDEN_RPT_80211_PROTOCOL(_data) LE_BITS_TO_1BYTE(((u8 *)(_data)) + 7, 2, 2)
#define GET_C2H_MAC_HIDDEN_RPT_NIC_ROUTER(_data) LE_BITS_TO_1BYTE(((u8 *)(_data)) + 7, 6, 2)
#ifndef DBG_C2H_MAC_HIDDEN_RPT_HANDLE
#define DBG_C2H_MAC_HIDDEN_RPT_HANDLE 0
#endif
#ifdef CONFIG_RTW_MAC_HIDDEN_RPT
int c2h_mac_hidden_rpt_hdl(_adapter *adapter, u8 *data, u8 len)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
int ret = _FAIL;
u32 uuid;
u8 uuid_x;
u8 uuid_y;
u8 uuid_z;
u16 uuid_crc;
u8 hci_type;
u8 package_type;
u8 tr_switch;
u8 wl_func;
u8 hw_stype;
u8 bw;
u8 fab;
u8 ant_num;
u8 protocol;
u8 nic;
int i;
if (len < MAC_HIDDEN_RPT_LEN) {
RTW_WARN("%s len(%u) < %d\n", __func__, len, MAC_HIDDEN_RPT_LEN);
goto exit;
}
uuid_x = GET_C2H_MAC_HIDDEN_RPT_UUID_X(data);
uuid_y = GET_C2H_MAC_HIDDEN_RPT_UUID_Y(data);
uuid_z = GET_C2H_MAC_HIDDEN_RPT_UUID_Z(data);
uuid_crc = GET_C2H_MAC_HIDDEN_RPT_UUID_CRC(data);
hci_type = GET_C2H_MAC_HIDDEN_RPT_HCI_TYPE(data);
package_type = GET_C2H_MAC_HIDDEN_RPT_PACKAGE_TYPE(data);
tr_switch = GET_C2H_MAC_HIDDEN_RPT_TR_SWITCH(data);
wl_func = GET_C2H_MAC_HIDDEN_RPT_WL_FUNC(data);
hw_stype = GET_C2H_MAC_HIDDEN_RPT_HW_STYPE(data);
bw = GET_C2H_MAC_HIDDEN_RPT_BW(data);
fab = GET_C2H_MAC_HIDDEN_RPT_FAB(data);
ant_num = GET_C2H_MAC_HIDDEN_RPT_ANT_NUM(data);
protocol = GET_C2H_MAC_HIDDEN_RPT_80211_PROTOCOL(data);
nic = GET_C2H_MAC_HIDDEN_RPT_NIC_ROUTER(data);
if (DBG_C2H_MAC_HIDDEN_RPT_HANDLE) {
for (i = 0; i < len; i++)
RTW_PRINT("%s: 0x%02X\n", __func__, *(data + i));
RTW_PRINT("uuid x:0x%02x y:0x%02x z:0x%x crc:0x%x\n", uuid_x, uuid_y, uuid_z, uuid_crc);
RTW_PRINT("hci_type:0x%x\n", hci_type);
RTW_PRINT("package_type:0x%x\n", package_type);
RTW_PRINT("tr_switch:0x%x\n", tr_switch);
RTW_PRINT("wl_func:0x%x\n", wl_func);
RTW_PRINT("hw_stype:0x%x\n", hw_stype);
RTW_PRINT("bw:0x%x\n", bw);
RTW_PRINT("fab:0x%x\n", fab);
RTW_PRINT("ant_num:0x%x\n", ant_num);
RTW_PRINT("protocol:0x%x\n", protocol);
RTW_PRINT("nic:0x%x\n", nic);
}
/*
* NOTICE:
* for now, the following is common info/format
* if there is any hal difference need to export
* some IC dependent code will need to be implement
*/
hal_data->PackageType = package_type;
hal_spec->wl_func &= mac_hidden_wl_func_to_hal_wl_func(wl_func);
hal_spec->bw_cap &= mac_hidden_max_bw_to_hal_bw_cap(bw);
hal_spec->tx_nss_num = rtw_min(hal_spec->tx_nss_num, ant_num);
hal_spec->rx_nss_num = rtw_min(hal_spec->rx_nss_num, ant_num);
hal_spec->proto_cap &= mac_hidden_proto_to_hal_proto_cap(protocol);
hal_spec->hci_type = hci_type;
/* TODO: tr_switch */
/* TODO: fab */
ret = _SUCCESS;
exit:
return ret;
}
int c2h_mac_hidden_rpt_2_hdl(_adapter *adapter, u8 *data, u8 len)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
int ret = _FAIL;
int i;
if (len < MAC_HIDDEN_RPT_2_LEN) {
RTW_WARN("%s len(%u) < %d\n", __func__, len, MAC_HIDDEN_RPT_2_LEN);
goto exit;
}
if (DBG_C2H_MAC_HIDDEN_RPT_HANDLE) {
for (i = 0; i < len; i++)
RTW_PRINT("%s: 0x%02X\n", __func__, *(data + i));
}
ret = _SUCCESS;
exit:
return ret;
}
int hal_read_mac_hidden_rpt(_adapter *adapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter);
int ret = _FAIL;
int ret_fwdl;
u8 mac_hidden_rpt[MAC_HIDDEN_RPT_LEN + MAC_HIDDEN_RPT_2_LEN] = {0};
u32 start = jiffies;
u32 cnt = 0;
u32 timeout_ms = 800;
u32 min_cnt = 10;
u8 id = C2H_DEFEATURE_RSVD;
int i;
u8 hci_type = rtw_get_intf_type(adapter);
if ((hci_type == RTW_USB || hci_type == RTW_PCIE)
&& !rtw_is_hw_init_completed(adapter))
rtw_hal_power_on(adapter);
/* inform FW mac hidden rpt from reg is needed */
rtw_write8(adapter, REG_C2HEVT_MSG_NORMAL, C2H_DEFEATURE_RSVD);
/* download FW */
pHalData->not_xmitframe_fw_dl = 1;
ret_fwdl = rtw_hal_fw_dl(adapter, false);
pHalData->not_xmitframe_fw_dl = 0;
if (ret_fwdl != _SUCCESS)
goto mac_hidden_rpt_hdl;
/* polling for data ready */
start = jiffies;
do {
cnt++;
id = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL);
if (id == C2H_MAC_HIDDEN_RPT || RTW_CANNOT_IO(adapter))
break;
rtw_msleep_os(10);
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (id == C2H_MAC_HIDDEN_RPT) {
/* read data */
for (i = 0; i < MAC_HIDDEN_RPT_LEN + MAC_HIDDEN_RPT_2_LEN; i++)
mac_hidden_rpt[i] = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL + 2 + i);
}
/* inform FW mac hidden rpt has read */
rtw_write8(adapter, REG_C2HEVT_MSG_NORMAL, C2H_DBG);
mac_hidden_rpt_hdl:
c2h_mac_hidden_rpt_hdl(adapter, mac_hidden_rpt, MAC_HIDDEN_RPT_LEN);
c2h_mac_hidden_rpt_2_hdl(adapter, mac_hidden_rpt + MAC_HIDDEN_RPT_LEN, MAC_HIDDEN_RPT_2_LEN);
if (ret_fwdl == _SUCCESS && id == C2H_MAC_HIDDEN_RPT)
ret = _SUCCESS;
exit:
if ((hci_type == RTW_USB || hci_type == RTW_PCIE)
&& !rtw_is_hw_init_completed(adapter))
rtw_hal_power_off(adapter);
RTW_INFO("%s %s! (%u, %dms), fwdl:%d, id:0x%02x\n", __func__
, (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), ret_fwdl, id);
return ret;
}
#endif /* CONFIG_RTW_MAC_HIDDEN_RPT */
int c2h_defeature_dbg_hdl(_adapter *adapter, u8 *data, u8 len)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
int ret = _FAIL;
int i;
if (len < DEFEATURE_DBG_LEN) {
RTW_WARN("%s len(%u) < %d\n", __func__, len, DEFEATURE_DBG_LEN);
goto exit;
}
for (i = 0; i < len; i++)
RTW_PRINT("%s: 0x%02X\n", __func__, *(data + i));
ret = _SUCCESS;
exit:
return ret;
}
#ifndef DBG_CUSTOMER_STR_RPT_HANDLE
#define DBG_CUSTOMER_STR_RPT_HANDLE 0
#endif
#ifdef CONFIG_RTW_CUSTOMER_STR
s32 rtw_hal_h2c_customer_str_req(_adapter *adapter)
{
u8 h2c_data[H2C_CUSTOMER_STR_REQ_LEN] = {0};
SET_H2CCMD_CUSTOMER_STR_REQ_EN(h2c_data, 1);
return rtw_hal_fill_h2c_cmd(adapter, H2C_CUSTOMER_STR_REQ, H2C_CUSTOMER_STR_REQ_LEN, h2c_data);
}
#define C2H_CUSTOMER_STR_RPT_BYTE0(_data) ((u8 *)(_data))
#define C2H_CUSTOMER_STR_RPT_2_BYTE8(_data) ((u8 *)(_data))
int c2h_customer_str_rpt_hdl(_adapter *adapter, u8 *data, u8 len)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
int ret = _FAIL;
int i;
if (len < CUSTOMER_STR_RPT_LEN) {
RTW_WARN("%s len(%u) < %d\n", __func__, len, CUSTOMER_STR_RPT_LEN);
goto exit;
}
if (DBG_CUSTOMER_STR_RPT_HANDLE)
RTW_PRINT_DUMP("customer_str_rpt: ", data, CUSTOMER_STR_RPT_LEN);
_enter_critical_mutex(&dvobj->customer_str_mutex, NULL);
if (dvobj->customer_str_sctx != NULL) {
if (dvobj->customer_str_sctx->status != RTW_SCTX_SUBMITTED)
RTW_WARN("%s invalid sctx.status:%d\n", __func__, dvobj->customer_str_sctx->status);
memcpy(dvobj->customer_str, C2H_CUSTOMER_STR_RPT_BYTE0(data), CUSTOMER_STR_RPT_LEN);
dvobj->customer_str_sctx->status = RTX_SCTX_CSTR_WAIT_RPT2;
} else
RTW_WARN("%s sctx not set\n", __func__);
_exit_critical_mutex(&dvobj->customer_str_mutex, NULL);
ret = _SUCCESS;
exit:
return ret;
}
int c2h_customer_str_rpt_2_hdl(_adapter *adapter, u8 *data, u8 len)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
int ret = _FAIL;
int i;
if (len < CUSTOMER_STR_RPT_2_LEN) {
RTW_WARN("%s len(%u) < %d\n", __func__, len, CUSTOMER_STR_RPT_2_LEN);
goto exit;
}
if (DBG_CUSTOMER_STR_RPT_HANDLE)
RTW_PRINT_DUMP("customer_str_rpt_2: ", data, CUSTOMER_STR_RPT_2_LEN);
_enter_critical_mutex(&dvobj->customer_str_mutex, NULL);
if (dvobj->customer_str_sctx != NULL) {
if (dvobj->customer_str_sctx->status != RTX_SCTX_CSTR_WAIT_RPT2)
RTW_WARN("%s rpt not ready\n", __func__);
memcpy(dvobj->customer_str + CUSTOMER_STR_RPT_LEN, C2H_CUSTOMER_STR_RPT_2_BYTE8(data), CUSTOMER_STR_RPT_2_LEN);
rtw_sctx_done(&dvobj->customer_str_sctx);
} else
RTW_WARN("%s sctx not set\n", __func__);
_exit_critical_mutex(&dvobj->customer_str_mutex, NULL);
ret = _SUCCESS;
exit:
return ret;
}
/* read customer str */
s32 rtw_hal_customer_str_read(_adapter *adapter, u8 *cs)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct submit_ctx sctx;
s32 ret = _SUCCESS;
_enter_critical_mutex(&dvobj->customer_str_mutex, NULL);
if (dvobj->customer_str_sctx != NULL)
ret = _FAIL;
else {
rtw_sctx_init(&sctx, 2 * 1000);
dvobj->customer_str_sctx = &sctx;
}
_exit_critical_mutex(&dvobj->customer_str_mutex, NULL);
if (ret == _FAIL) {
RTW_WARN("%s another handle ongoing\n", __func__);
goto exit;
}
ret = rtw_customer_str_req_cmd(adapter);
if (ret != _SUCCESS) {
RTW_WARN("%s read cmd fail\n", __func__);
_enter_critical_mutex(&dvobj->customer_str_mutex, NULL);
dvobj->customer_str_sctx = NULL;
_exit_critical_mutex(&dvobj->customer_str_mutex, NULL);
goto exit;
}
/* wait till rpt done or timeout */
rtw_sctx_wait(&sctx, __func__);
_enter_critical_mutex(&dvobj->customer_str_mutex, NULL);
dvobj->customer_str_sctx = NULL;
if (sctx.status == RTW_SCTX_DONE_SUCCESS)
memcpy(cs, dvobj->customer_str, RTW_CUSTOMER_STR_LEN);
else
ret = _FAIL;
_exit_critical_mutex(&dvobj->customer_str_mutex, NULL);
exit:
return ret;
}
s32 rtw_hal_h2c_customer_str_write(_adapter *adapter, const u8 *cs)
{
u8 h2c_data_w1[H2C_CUSTOMER_STR_W1_LEN] = {0};
u8 h2c_data_w2[H2C_CUSTOMER_STR_W2_LEN] = {0};
u8 h2c_data_w3[H2C_CUSTOMER_STR_W3_LEN] = {0};
s32 ret;
SET_H2CCMD_CUSTOMER_STR_W1_EN(h2c_data_w1, 1);
memcpy(H2CCMD_CUSTOMER_STR_W1_BYTE0(h2c_data_w1), cs, 6);
SET_H2CCMD_CUSTOMER_STR_W2_EN(h2c_data_w2, 1);
memcpy(H2CCMD_CUSTOMER_STR_W2_BYTE6(h2c_data_w2), cs + 6, 6);
SET_H2CCMD_CUSTOMER_STR_W3_EN(h2c_data_w3, 1);
memcpy(H2CCMD_CUSTOMER_STR_W3_BYTE12(h2c_data_w3), cs + 6 + 6, 4);
ret = rtw_hal_fill_h2c_cmd(adapter, H2C_CUSTOMER_STR_W1, H2C_CUSTOMER_STR_W1_LEN, h2c_data_w1);
if (ret != _SUCCESS) {
RTW_WARN("%s w1 fail\n", __func__);
goto exit;
}
ret = rtw_hal_fill_h2c_cmd(adapter, H2C_CUSTOMER_STR_W2, H2C_CUSTOMER_STR_W2_LEN, h2c_data_w2);
if (ret != _SUCCESS) {
RTW_WARN("%s w2 fail\n", __func__);
goto exit;
}
ret = rtw_hal_fill_h2c_cmd(adapter, H2C_CUSTOMER_STR_W3, H2C_CUSTOMER_STR_W3_LEN, h2c_data_w3);
if (ret != _SUCCESS) {
RTW_WARN("%s w3 fail\n", __func__);
goto exit;
}
exit:
return ret;
}
/* write customer str and check if value reported is the same as requested */
s32 rtw_hal_customer_str_write(_adapter *adapter, const u8 *cs)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct submit_ctx sctx;
s32 ret = _SUCCESS;
_enter_critical_mutex(&dvobj->customer_str_mutex, NULL);
if (dvobj->customer_str_sctx != NULL)
ret = _FAIL;
else {
rtw_sctx_init(&sctx, 2 * 1000);
dvobj->customer_str_sctx = &sctx;
}
_exit_critical_mutex(&dvobj->customer_str_mutex, NULL);
if (ret == _FAIL) {
RTW_WARN("%s another handle ongoing\n", __func__);
goto exit;
}
ret = rtw_customer_str_write_cmd(adapter, cs);
if (ret != _SUCCESS) {
RTW_WARN("%s write cmd fail\n", __func__);
_enter_critical_mutex(&dvobj->customer_str_mutex, NULL);
dvobj->customer_str_sctx = NULL;
_exit_critical_mutex(&dvobj->customer_str_mutex, NULL);
goto exit;
}
ret = rtw_customer_str_req_cmd(adapter);
if (ret != _SUCCESS) {
RTW_WARN("%s read cmd fail\n", __func__);
_enter_critical_mutex(&dvobj->customer_str_mutex, NULL);
dvobj->customer_str_sctx = NULL;
_exit_critical_mutex(&dvobj->customer_str_mutex, NULL);
goto exit;
}
/* wait till rpt done or timeout */
rtw_sctx_wait(&sctx, __func__);
_enter_critical_mutex(&dvobj->customer_str_mutex, NULL);
dvobj->customer_str_sctx = NULL;
if (sctx.status == RTW_SCTX_DONE_SUCCESS) {
if (memcmp(cs, dvobj->customer_str, RTW_CUSTOMER_STR_LEN)) {
RTW_WARN("%s read back check fail\n", __func__);
RTW_INFO_DUMP("write req: ", cs, RTW_CUSTOMER_STR_LEN);
RTW_INFO_DUMP("read back: ", dvobj->customer_str, RTW_CUSTOMER_STR_LEN);
ret = _FAIL;
}
} else
ret = _FAIL;
_exit_critical_mutex(&dvobj->customer_str_mutex, NULL);
exit:
return ret;
}
#endif /* CONFIG_RTW_CUSTOMER_STR */
u8 rtw_hal_networktype_to_raid(_adapter *adapter, struct sta_info *psta)
{
#ifdef CONFIG_GET_RAID_BY_DRV /*Just for 8188E now*/
if (IS_NEW_GENERATION_IC(adapter))
return networktype_to_raid_ex(adapter, psta);
else
return networktype_to_raid(adapter, psta);
#else
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter);
u8 bw;
bw = rtw_get_tx_bw_mode(adapter, psta);
return phydm_rate_id_mapping(&pHalData->odmpriv, psta->wireless_mode, pHalData->rf_type, bw);
#endif
}
u8 rtw_get_mgntframe_raid(_adapter *adapter, unsigned char network_type)
{
u8 raid;
if (IS_NEW_GENERATION_IC(adapter)) {
raid = (network_type & WIRELESS_11B) ? RATEID_IDX_B
: RATEID_IDX_G;
} else {
raid = (network_type & WIRELESS_11B) ? RATR_INX_WIRELESS_B
: RATR_INX_WIRELESS_G;
}
return raid;
}
void rtw_hal_update_sta_rate_mask(PADAPTER padapter, struct sta_info *psta)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(padapter);
u8 i, rf_type, tx_nss;
u64 tx_ra_bitmap;
if (psta == NULL)
return;
tx_ra_bitmap = 0;
/* b/g mode ra_bitmap */
for (i = 0; i < sizeof(psta->bssrateset); i++) {
if (psta->bssrateset[i])
tx_ra_bitmap |= rtw_get_bit_value_from_ieee_value(psta->bssrateset[i] & 0x7f);
}
rtw_hal_get_hwreg(padapter, HW_VAR_RF_TYPE, (u8 *)(&rf_type));
tx_nss = rtw_min(rf_type_to_rf_tx_cnt(rf_type), hal_spec->tx_nss_num);
if (psta->htpriv.ht_option) {
/* n mode ra_bitmap */
/* Handling SMPS mode for AP MODE only*/
if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true) {
/*0:static SMPS, 1:dynamic SMPS, 3:SMPS disabled, 2:reserved*/
if (psta->htpriv.smps_cap == 0 || psta->htpriv.smps_cap == 1) {
/*operate with only one active receive chain // 11n-MCS rate <= MSC7*/
tx_nss = rtw_min(tx_nss, 1);
}
}
tx_ra_bitmap |= (rtw_ht_mcs_set_to_bitmap(psta->htpriv.ht_cap.supp_mcs_set, tx_nss) << 12);
}
psta->ra_mask = tx_ra_bitmap;
psta->init_rate = get_highest_rate_idx(tx_ra_bitmap) & 0x3f;
}
#ifndef SEC_CAM_ACCESS_TIMEOUT_MS
#define SEC_CAM_ACCESS_TIMEOUT_MS 200
#endif
#ifndef DBG_SEC_CAM_ACCESS
#define DBG_SEC_CAM_ACCESS 0
#endif
u32 rtw_sec_read_cam(_adapter *adapter, u8 addr)
{
_mutex *mutex = &adapter_to_dvobj(adapter)->cam_ctl.sec_cam_access_mutex;
u32 rdata;
u32 cnt = 0;
u32 start = 0, end = 0;
u8 timeout = 0;
u8 sr = 0;
_enter_critical_mutex(mutex, NULL);
rtw_write32(adapter, REG_CAMCMD, CAM_POLLINIG | addr);
start = jiffies;
while (1) {
if (rtw_is_surprise_removed(adapter)) {
sr = 1;
break;
}
cnt++;
if (0 == (rtw_read32(adapter, REG_CAMCMD) & CAM_POLLINIG))
break;
if (rtw_get_passing_time_ms(start) > SEC_CAM_ACCESS_TIMEOUT_MS) {
timeout = 1;
break;
}
}
end = jiffies;
rdata = rtw_read32(adapter, REG_CAMREAD);
_exit_critical_mutex(mutex, NULL);
if (DBG_SEC_CAM_ACCESS || timeout) {
RTW_INFO(FUNC_ADPT_FMT" addr:0x%02x, rdata:0x%08x, to:%u, polling:%u, %d ms\n"
, FUNC_ADPT_ARG(adapter), addr, rdata, timeout, cnt, rtw_get_time_interval_ms(start, end));
}
return rdata;
}
void rtw_sec_write_cam(_adapter *adapter, u8 addr, u32 wdata)
{
_mutex *mutex = &adapter_to_dvobj(adapter)->cam_ctl.sec_cam_access_mutex;
u32 cnt = 0;
u32 start = 0, end = 0;
u8 timeout = 0;
u8 sr = 0;
_enter_critical_mutex(mutex, NULL);
rtw_write32(adapter, REG_CAMWRITE, wdata);
rtw_write32(adapter, REG_CAMCMD, CAM_POLLINIG | CAM_WRITE | addr);
start = jiffies;
while (1) {
if (rtw_is_surprise_removed(adapter)) {
sr = 1;
break;
}
cnt++;
if (0 == (rtw_read32(adapter, REG_CAMCMD) & CAM_POLLINIG))
break;
if (rtw_get_passing_time_ms(start) > SEC_CAM_ACCESS_TIMEOUT_MS) {
timeout = 1;
break;
}
}
end = jiffies;
_exit_critical_mutex(mutex, NULL);
if (DBG_SEC_CAM_ACCESS || timeout) {
RTW_INFO(FUNC_ADPT_FMT" addr:0x%02x, wdata:0x%08x, to:%u, polling:%u, %d ms\n"
, FUNC_ADPT_ARG(adapter), addr, wdata, timeout, cnt, rtw_get_time_interval_ms(start, end));
}
}
void rtw_sec_read_cam_ent(_adapter *adapter, u8 id, u8 *ctrl, u8 *mac, u8 *key)
{
unsigned int val, addr;
u8 i;
u32 rdata;
u8 begin = 0;
u8 end = 5; /* TODO: consider other key length accordingly */
if (!ctrl && !mac && !key) {
rtw_warn_on(1);
goto exit;
}
/* TODO: check id range */
if (!ctrl && !mac)
begin = 2; /* read from key */
if (!key && !mac)
end = 0; /* read to ctrl */
else if (!key)
end = 2; /* read to mac */
for (i = begin; i <= end; i++) {
rdata = rtw_sec_read_cam(adapter, (id << 3) | i);
switch (i) {
case 0:
if (ctrl)
memcpy(ctrl, (u8 *)(&rdata), 2);
if (mac)
memcpy(mac, ((u8 *)(&rdata)) + 2, 2);
break;
case 1:
if (mac)
memcpy(mac + 2, (u8 *)(&rdata), 4);
break;
default:
if (key)
memcpy(key + (i - 2) * 4, (u8 *)(&rdata), 4);
break;
}
}
exit:
return;
}
void rtw_sec_write_cam_ent(_adapter *adapter, u8 id, u16 ctrl, u8 *mac, u8 *key)
{
unsigned int i;
int j;
u8 addr;
u32 wdata;
/* TODO: consider other key length accordingly */
j = 7;
for (; j >= 0; j--) {
switch (j) {
case 0:
wdata = (ctrl | (mac[0] << 16) | (mac[1] << 24));
break;
case 1:
wdata = (mac[2] | (mac[3] << 8) | (mac[4] << 16) | (mac[5] << 24));
break;
case 6:
case 7:
wdata = 0;
break;
default:
i = (j - 2) << 2;
wdata = (key[i] | (key[i + 1] << 8) | (key[i + 2] << 16) | (key[i + 3] << 24));
break;
}
addr = (id << 3) + j;
rtw_sec_write_cam(adapter, addr, wdata);
}
}
void rtw_sec_clr_cam_ent(_adapter *adapter, u8 id)
{
u8 addr;
addr = (id << 3);
rtw_sec_write_cam(adapter, addr, 0);
}
bool rtw_sec_read_cam_is_gk(_adapter *adapter, u8 id)
{
bool res;
u16 ctrl;
rtw_sec_read_cam_ent(adapter, id, (u8 *)&ctrl, NULL, NULL);
res = (ctrl & BIT6) ? true : false;
return res;
}
#ifdef CONFIG_MBSSID_CAM
void rtw_mbid_cam_init(struct dvobj_priv *dvobj)
{
struct mbid_cam_ctl_t *mbid_cam_ctl = &dvobj->mbid_cam_ctl;
spin_lock_init(&mbid_cam_ctl->lock);
mbid_cam_ctl->bitmap = 0;
ATOMIC_SET(&mbid_cam_ctl->mbid_entry_num, 0);
memset(&dvobj->mbid_cam_cache, 0, sizeof(dvobj->mbid_cam_cache));
}
void rtw_mbid_cam_deinit(struct dvobj_priv *dvobj)
{
}
void rtw_mbid_cam_reset(_adapter *adapter)
{
unsigned long irqL;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct mbid_cam_ctl_t *mbid_cam_ctl = &dvobj->mbid_cam_ctl;
_enter_critical_bh(&mbid_cam_ctl->lock, &irqL);
mbid_cam_ctl->bitmap = 0;
memset(&dvobj->mbid_cam_cache, 0, sizeof(dvobj->mbid_cam_cache));
_exit_critical_bh(&mbid_cam_ctl->lock, &irqL);
ATOMIC_SET(&mbid_cam_ctl->mbid_entry_num, 0);
}
static u8 _rtw_mbid_cam_search_by_macaddr(_adapter *adapter, u8 *mac_addr)
{
u8 i;
u8 cam_id = INVALID_CAM_ID;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
for (i = 0; i < TOTAL_MBID_CAM_NUM; i++) {
if (mac_addr && !memcmp(dvobj->mbid_cam_cache[i].mac_addr, mac_addr, ETH_ALEN) == true) {
cam_id = i;
break;
}
}
RTW_INFO("%s mac:"MAC_FMT" - cam_id:%d\n", __func__, MAC_ARG(mac_addr), cam_id);
return cam_id;
}
u8 rtw_mbid_cam_search_by_macaddr(_adapter *adapter, u8 *mac_addr)
{
unsigned long irqL;
u8 cam_id = INVALID_CAM_ID;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct mbid_cam_ctl_t *mbid_cam_ctl = &dvobj->mbid_cam_ctl;
_enter_critical_bh(&mbid_cam_ctl->lock, &irqL);
cam_id = _rtw_mbid_cam_search_by_macaddr(adapter, mac_addr);
_exit_critical_bh(&mbid_cam_ctl->lock, &irqL);
return cam_id;
}
static u8 _rtw_mbid_cam_search_by_ifaceid(_adapter *adapter, u8 iface_id)
{
u8 i;
u8 cam_id = INVALID_CAM_ID;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
for (i = 0; i < TOTAL_MBID_CAM_NUM; i++) {
if (iface_id == dvobj->mbid_cam_cache[i].iface_id) {
cam_id = i;
break;
}
}
if (cam_id != INVALID_CAM_ID)
RTW_INFO("%s iface_id:%d mac:"MAC_FMT" - cam_id:%d\n",
__func__, iface_id, MAC_ARG(dvobj->mbid_cam_cache[cam_id].mac_addr), cam_id);
return cam_id;
}
u8 rtw_mbid_cam_search_by_ifaceid(_adapter *adapter, u8 iface_id)
{
unsigned long irqL;
u8 cam_id = INVALID_CAM_ID;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct mbid_cam_ctl_t *mbid_cam_ctl = &dvobj->mbid_cam_ctl;
_enter_critical_bh(&mbid_cam_ctl->lock, &irqL);
cam_id = _rtw_mbid_cam_search_by_ifaceid(adapter, iface_id);
_exit_critical_bh(&mbid_cam_ctl->lock, &irqL);
return cam_id;
}
u8 rtw_get_max_mbid_cam_id(_adapter *adapter)
{
unsigned long irqL;
s8 i;
u8 cam_id = INVALID_CAM_ID;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct mbid_cam_ctl_t *mbid_cam_ctl = &dvobj->mbid_cam_ctl;
_enter_critical_bh(&mbid_cam_ctl->lock, &irqL);
for (i = (TOTAL_MBID_CAM_NUM - 1); i >= 0; i--) {
if (mbid_cam_ctl->bitmap & BIT(i)) {
cam_id = i;
break;
}
}
_exit_critical_bh(&mbid_cam_ctl->lock, &irqL);
/*RTW_INFO("%s max cam_id:%d\n", __func__, cam_id);*/
return cam_id;
}
inline u8 rtw_get_mbid_cam_entry_num(_adapter *adapter)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct mbid_cam_ctl_t *mbid_cam_ctl = &dvobj->mbid_cam_ctl;
return ATOMIC_READ(&mbid_cam_ctl->mbid_entry_num);
}
static inline void mbid_cam_cache_init(_adapter *adapter, struct mbid_cam_cache *pmbid_cam, u8 *mac_addr)
{
if (adapter && pmbid_cam && mac_addr) {
memcpy(pmbid_cam->mac_addr, mac_addr, ETH_ALEN);
pmbid_cam->iface_id = adapter->iface_id;
}
}
static inline void mbid_cam_cache_clr(struct mbid_cam_cache *pmbid_cam)
{
if (pmbid_cam) {
memset(pmbid_cam->mac_addr, 0, ETH_ALEN);
pmbid_cam->iface_id = CONFIG_IFACE_NUMBER;
}
}
u8 rtw_mbid_camid_alloc(_adapter *adapter, u8 *mac_addr)
{
unsigned long irqL;
u8 cam_id = INVALID_CAM_ID, i;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct mbid_cam_ctl_t *mbid_cam_ctl = &dvobj->mbid_cam_ctl;
u8 entry_num = ATOMIC_READ(&mbid_cam_ctl->mbid_entry_num);
if (entry_num >= TOTAL_MBID_CAM_NUM) {
RTW_INFO(FUNC_ADPT_FMT" failed !! MBSSID number :%d over TOTAL_CAM_ENTRY(8)\n", FUNC_ADPT_ARG(adapter), entry_num);
rtw_warn_on(1);
}
if (INVALID_CAM_ID != rtw_mbid_cam_search_by_macaddr(adapter, mac_addr))
goto exit;
_enter_critical_bh(&mbid_cam_ctl->lock, &irqL);
for (i = 0; i < TOTAL_MBID_CAM_NUM; i++) {
if (!(mbid_cam_ctl->bitmap & BIT(i))) {
mbid_cam_ctl->bitmap |= BIT(i);
cam_id = i;
break;
}
}
if ((cam_id != INVALID_CAM_ID) && (mac_addr))
mbid_cam_cache_init(adapter, &dvobj->mbid_cam_cache[cam_id], mac_addr);
_exit_critical_bh(&mbid_cam_ctl->lock, &irqL);
if (cam_id != INVALID_CAM_ID) {
ATOMIC_INC(&mbid_cam_ctl->mbid_entry_num);
RTW_INFO("%s mac:"MAC_FMT" - cam_id:%d\n", __func__, MAC_ARG(mac_addr), cam_id);
#ifdef DBG_MBID_CAM_DUMP
rtw_mbid_cam_cache_dump(RTW_DBGDUMP, __func__, adapter);
#endif
} else
RTW_INFO("%s [WARN] "MAC_FMT" - invalid cam_id:%d\n", __func__, MAC_ARG(mac_addr), cam_id);
exit:
return cam_id;
}
u8 rtw_mbid_cam_info_change(_adapter *adapter, u8 *mac_addr)
{
unsigned long irqL;
u8 entry_id = INVALID_CAM_ID;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct mbid_cam_ctl_t *mbid_cam_ctl = &dvobj->mbid_cam_ctl;
_enter_critical_bh(&mbid_cam_ctl->lock, &irqL);
entry_id = _rtw_mbid_cam_search_by_ifaceid(adapter, adapter->iface_id);
if (entry_id != INVALID_CAM_ID)
mbid_cam_cache_init(adapter, &dvobj->mbid_cam_cache[entry_id], mac_addr);
_exit_critical_bh(&mbid_cam_ctl->lock, &irqL);
return entry_id;
}
u8 rtw_mbid_cam_assign(_adapter *adapter, u8 *mac_addr, u8 camid)
{
unsigned long irqL;
u8 ret = false;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct mbid_cam_ctl_t *mbid_cam_ctl = &dvobj->mbid_cam_ctl;
if ((camid >= TOTAL_MBID_CAM_NUM) || (camid == INVALID_CAM_ID)) {
RTW_INFO(FUNC_ADPT_FMT" failed !! invlaid mbid_canid :%d\n", FUNC_ADPT_ARG(adapter), camid);
rtw_warn_on(1);
}
if (INVALID_CAM_ID != rtw_mbid_cam_search_by_macaddr(adapter, mac_addr))
goto exit;
_enter_critical_bh(&mbid_cam_ctl->lock, &irqL);
if (!(mbid_cam_ctl->bitmap & BIT(camid))) {
if (mac_addr) {
mbid_cam_ctl->bitmap |= BIT(camid);
mbid_cam_cache_init(adapter, &dvobj->mbid_cam_cache[camid], mac_addr);
ret = true;
}
}
_exit_critical_bh(&mbid_cam_ctl->lock, &irqL);
if (ret == true) {
ATOMIC_INC(&mbid_cam_ctl->mbid_entry_num);
RTW_INFO("%s mac:"MAC_FMT" - cam_id:%d\n", __func__, MAC_ARG(mac_addr), camid);
#ifdef DBG_MBID_CAM_DUMP
rtw_mbid_cam_cache_dump(RTW_DBGDUMP, __func__, adapter);
#endif
} else
RTW_INFO("%s [WARN] mac:"MAC_FMT" - cam_id:%d assigned failed\n", __func__, MAC_ARG(mac_addr), camid);
exit:
return ret;
}
void rtw_mbid_camid_clean(_adapter *adapter, u8 mbss_canid)
{
unsigned long irqL;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct mbid_cam_ctl_t *mbid_cam_ctl = &dvobj->mbid_cam_ctl;
if ((mbss_canid >= TOTAL_MBID_CAM_NUM) || (mbss_canid == INVALID_CAM_ID)) {
RTW_INFO(FUNC_ADPT_FMT" failed !! invlaid mbid_canid :%d\n", FUNC_ADPT_ARG(adapter), mbss_canid);
rtw_warn_on(1);
}
_enter_critical_bh(&mbid_cam_ctl->lock, &irqL);
mbid_cam_cache_clr(&dvobj->mbid_cam_cache[mbss_canid]);
mbid_cam_ctl->bitmap &= (~BIT(mbss_canid));
_exit_critical_bh(&mbid_cam_ctl->lock, &irqL);
ATOMIC_DEC(&mbid_cam_ctl->mbid_entry_num);
RTW_INFO("%s - cam_id:%d\n", __func__, mbss_canid);
}
int rtw_mbid_cam_cache_dump(void *sel, const char *fun_name, _adapter *adapter)
{
unsigned long irqL;
u8 i;
_adapter *iface;
u8 iface_id;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct mbid_cam_ctl_t *mbid_cam_ctl = &dvobj->mbid_cam_ctl;
u8 entry_num = ATOMIC_READ(&mbid_cam_ctl->mbid_entry_num);
u8 max_cam_id = rtw_get_max_mbid_cam_id(adapter);
RTW_PRINT_SEL(sel, "== MBSSID CAM DUMP (%s)==\n", fun_name);
_enter_critical_bh(&mbid_cam_ctl->lock, &irqL);
RTW_PRINT_SEL(sel, "Entry numbers:%d, max_camid:%d, bitmap:0x%08x\n", entry_num, max_cam_id, mbid_cam_ctl->bitmap);
for (i = 0; i < TOTAL_MBID_CAM_NUM; i++) {
RTW_PRINT_SEL(sel, "CAM_ID = %d\t", i);
if (mbid_cam_ctl->bitmap & BIT(i)) {
iface_id = dvobj->mbid_cam_cache[i].iface_id;
RTW_PRINT_SEL(sel, "IF_ID:%d\t", iface_id);
RTW_PRINT_SEL(sel, "MAC Addr:"MAC_FMT"\t", MAC_ARG(dvobj->mbid_cam_cache[i].mac_addr));
iface = dvobj->padapters[iface_id];
if (iface) {
if (check_fwstate(&iface->mlmepriv, WIFI_STATION_STATE) == true)
RTW_PRINT_SEL(sel, "ROLE:%s\n", "STA");
else if (check_fwstate(&iface->mlmepriv, WIFI_AP_STATE) == true)
RTW_PRINT_SEL(sel, "ROLE:%s\n", "AP");
else
RTW_PRINT_SEL(sel, "ROLE:%s\n", "NONE");
}
} else
RTW_PRINT_SEL(sel, "N/A\n");
}
_exit_critical_bh(&mbid_cam_ctl->lock, &irqL);
return 0;
}
static void read_mbssid_cam(_adapter *padapter, u8 cam_addr, u8 *mac)
{
u8 poll = 1;
u8 cam_ready = false;
u32 cam_data1 = 0;
u16 cam_data2 = 0;
if (RTW_CANNOT_RUN(padapter))
return;
rtw_write32(padapter, REG_MBIDCAMCFG_2, BIT_MBIDCAM_POLL | ((cam_addr & MBIDCAM_ADDR_MASK) << MBIDCAM_ADDR_SHIFT));
do {
if (0 == (rtw_read32(padapter, REG_MBIDCAMCFG_2) & BIT_MBIDCAM_POLL)) {
cam_ready = true;
break;
}
poll++;
} while ((poll % 10) != 0 && !RTW_CANNOT_RUN(padapter));
if (cam_ready) {
cam_data1 = rtw_read32(padapter, REG_MBIDCAMCFG_1);
mac[0] = cam_data1 & 0xFF;
mac[1] = (cam_data1 >> 8) & 0xFF;
mac[2] = (cam_data1 >> 16) & 0xFF;
mac[3] = (cam_data1 >> 24) & 0xFF;
cam_data2 = rtw_read16(padapter, REG_MBIDCAMCFG_2);
mac[4] = cam_data2 & 0xFF;
mac[5] = (cam_data2 >> 8) & 0xFF;
}
}
int rtw_mbid_cam_dump(void *sel, const char *fun_name, _adapter *adapter)
{
/*unsigned long irqL;*/
u8 i;
u8 mac_addr[ETH_ALEN];
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct mbid_cam_ctl_t *mbid_cam_ctl = &dvobj->mbid_cam_ctl;
RTW_PRINT_SEL(sel, "\n== MBSSID HW-CAM DUMP (%s)==\n", fun_name);
/*_enter_critical_bh(&mbid_cam_ctl->lock, &irqL);*/
for (i = 0; i < TOTAL_MBID_CAM_NUM; i++) {
RTW_PRINT_SEL(sel, "CAM_ID = %d\t", i);
memset(mac_addr, 0, ETH_ALEN);
read_mbssid_cam(adapter, i, mac_addr);
RTW_PRINT_SEL(sel, "MAC Addr:"MAC_FMT"\n", MAC_ARG(mac_addr));
}
/*_exit_critical_bh(&mbid_cam_ctl->lock, &irqL);*/
return 0;
}
static void write_mbssid_cam(_adapter *padapter, u8 cam_addr, u8 *mac)
{
u32 cam_val[2] = {0};
cam_val[0] = (mac[3] << 24) | (mac[2] << 16) | (mac[1] << 8) | mac[0];
cam_val[1] = ((cam_addr & MBIDCAM_ADDR_MASK) << MBIDCAM_ADDR_SHIFT) | (mac[5] << 8) | mac[4];
rtw_hal_set_hwreg(padapter, HW_VAR_MBSSID_CAM_WRITE, (u8 *)cam_val);
}
static void clear_mbssid_cam(_adapter *padapter, u8 cam_addr)
{
rtw_hal_set_hwreg(padapter, HW_VAR_MBSSID_CAM_CLEAR, &cam_addr);
}
static void enable_mbssid_cam(_adapter *adapter)
{
u8 max_cam_id = rtw_get_max_mbid_cam_id(adapter);
/*enable MBSSID*/
rtw_write32(adapter, REG_RCR, rtw_read32(adapter, REG_RCR) | RCR_ENMBID);
if (max_cam_id != INVALID_CAM_ID) {
rtw_write8(adapter, REG_MBID_NUM,
((rtw_read8(adapter, REG_MBID_NUM) & 0xF8) | (max_cam_id & 0x07)));
}
}
void rtw_mbid_cam_restore(_adapter *adapter)
{
u8 i;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct mbid_cam_ctl_t *mbid_cam_ctl = &dvobj->mbid_cam_ctl;
#ifdef DBG_MBID_CAM_DUMP
rtw_mbid_cam_cache_dump(RTW_DBGDUMP, __func__, adapter);
#endif
for (i = 0; i < TOTAL_MBID_CAM_NUM; i++) {
if (mbid_cam_ctl->bitmap & BIT(i)) {
write_mbssid_cam(adapter, i, dvobj->mbid_cam_cache[i].mac_addr);
RTW_INFO("%s - cam_id:%d => mac:"MAC_FMT"\n", __func__, i, MAC_ARG(dvobj->mbid_cam_cache[i].mac_addr));
}
}
enable_mbssid_cam(adapter);
}
#endif /*CONFIG_MBSSID_CAM*/
#ifdef CONFIG_MI_WITH_MBSSID_CAM
void rtw_hal_set_macaddr_mbid(_adapter *adapter, u8 *mac_addr)
{
/*
MBID entry_id = 0~7 ,for IFACE_ID0 ~ IFACE_IDx
*/
u8 entry_id = rtw_mbid_camid_alloc(adapter, mac_addr);
if (entry_id != INVALID_CAM_ID) {
write_mbssid_cam(adapter, entry_id, mac_addr);
enable_mbssid_cam(adapter);
}
}
void rtw_hal_change_macaddr_mbid(_adapter *adapter, u8 *mac_addr)
{
u8 idx = 0;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
u8 entry_id;
if (!mac_addr) {
rtw_warn_on(1);
return;
}
entry_id = rtw_mbid_cam_info_change(adapter, mac_addr);
if (entry_id != INVALID_CAM_ID)
write_mbssid_cam(adapter, entry_id, mac_addr);
}
#endif/*#ifdef CONFIG_MI_WITH_MBSSID_CAM*/
void rtw_hal_set_macaddr_port(_adapter *adapter, u8 *val)
{
u8 idx = 0;
u32 reg_macid = 0;
if (val == NULL)
return;
RTW_INFO("%s "ADPT_FMT"- hw port(%d) mac_addr ="MAC_FMT"\n", __func__,
ADPT_ARG(adapter), adapter->hw_port, MAC_ARG(val));
switch (adapter->hw_port) {
case HW_PORT0:
default:
reg_macid = REG_MACID;
break;
case HW_PORT1:
reg_macid = REG_MACID1;
break;
}
for (idx = 0; idx < 6; idx++)
rtw_write8(GET_PRIMARY_ADAPTER(adapter), (reg_macid + idx), val[idx]);
}
void rtw_hal_get_macaddr_port(_adapter *adapter, u8 *mac_addr)
{
u8 idx = 0;
u32 reg_macid = 0;
if (mac_addr == NULL)
return;
memset(mac_addr, 0, ETH_ALEN);
switch (adapter->hw_port) {
case HW_PORT0:
default:
reg_macid = REG_MACID;
break;
case HW_PORT1:
reg_macid = REG_MACID1;
break;
}
for (idx = 0; idx < 6; idx++)
mac_addr[idx] = rtw_read8(GET_PRIMARY_ADAPTER(adapter), (reg_macid + idx));
RTW_INFO("%s "ADPT_FMT"- hw port(%d) mac_addr ="MAC_FMT"\n", __func__,
ADPT_ARG(adapter), adapter->hw_port, MAC_ARG(mac_addr));
}
void rtw_hal_set_bssid(_adapter *adapter, u8 *val)
{
u8 idx = 0;
u32 reg_bssid = 0;
switch (adapter->hw_port) {
case HW_PORT0:
default:
reg_bssid = REG_BSSID;
break;
case HW_PORT1:
reg_bssid = REG_BSSID1;
break;
}
for (idx = 0 ; idx < 6; idx++)
rtw_write8(adapter, (reg_bssid + idx), val[idx]);
RTW_INFO("%s "ADPT_FMT"- hw port -%d BSSID: "MAC_FMT"\n", __func__, ADPT_ARG(adapter), adapter->hw_port, MAC_ARG(val));
}
static void rtw_hal_get_msr(_adapter *adapter, u8 *net_type)
{
switch (adapter->hw_port) {
case HW_PORT0:
/*REG_CR - BIT[17:16]-Network Type for port 1*/
*net_type = rtw_read8(adapter, MSR) & 0x03;
break;
case HW_PORT1:
/*REG_CR - BIT[19:18]-Network Type for port 1*/
*net_type = (rtw_read8(adapter, MSR) & 0x0C) >> 2;
break;
default:
RTW_INFO("[WARN] "ADPT_FMT"- invalid hw port -%d\n",
ADPT_ARG(adapter), adapter->hw_port);
rtw_warn_on(1);
break;
}
}
void rtw_hal_set_msr(_adapter *adapter, u8 net_type)
{
u8 val8 = 0;
switch (adapter->hw_port) {
case HW_PORT0:
#if defined(CONFIG_MI_WITH_MBSSID_CAM) && defined(CONFIG_MBSSID_CAM) /*For 2 hw ports - 88E/92E/8812/8821/8723B*/
if (rtw_get_mbid_cam_entry_num(adapter)) {
if (net_type != _HW_STATE_NOLINK_)
net_type = _HW_STATE_AP_;
}
#endif
/*REG_CR - BIT[17:16]-Network Type for port 0*/
val8 = rtw_read8(adapter, MSR) & 0x0C;
val8 |= net_type;
rtw_write8(adapter, MSR, val8);
break;
case HW_PORT1:
/*REG_CR - BIT[19:18]-Network Type for port 1*/
val8 = rtw_read8(adapter, MSR) & 0x03;
val8 |= net_type << 2;
rtw_write8(adapter, MSR, val8);
break;
default:
RTW_INFO("[WARN] "ADPT_FMT"- invalid hw port -%d\n",
ADPT_ARG(adapter), adapter->hw_port);
rtw_warn_on(1);
break;
}
}
void hw_var_port_switch(_adapter *adapter)
{
#ifdef CONFIG_CONCURRENT_MODE
#ifdef CONFIG_RUNTIME_PORT_SWITCH
/*
0x102: MSR
0x550: REG_BCN_CTRL
0x551: REG_BCN_CTRL_1
0x55A: REG_ATIMWND
0x560: REG_TSFTR
0x568: REG_TSFTR1
0x570: REG_ATIMWND_1
0x610: REG_MACID
0x618: REG_BSSID
0x700: REG_MACID1
0x708: REG_BSSID1
*/
int i;
u8 msr;
u8 bcn_ctrl;
u8 bcn_ctrl_1;
u8 atimwnd[2];
u8 atimwnd_1[2];
u8 tsftr[8];
u8 tsftr_1[8];
u8 macid[6];
u8 bssid[6];
u8 macid_1[6];
u8 bssid_1[6];
u8 hw_port;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
_adapter *iface = NULL;
msr = rtw_read8(adapter, MSR);
bcn_ctrl = rtw_read8(adapter, REG_BCN_CTRL);
bcn_ctrl_1 = rtw_read8(adapter, REG_BCN_CTRL_1);
for (i = 0; i < 2; i++)
atimwnd[i] = rtw_read8(adapter, REG_ATIMWND + i);
for (i = 0; i < 2; i++)
atimwnd_1[i] = rtw_read8(adapter, REG_ATIMWND_1 + i);
for (i = 0; i < 8; i++)
tsftr[i] = rtw_read8(adapter, REG_TSFTR + i);
for (i = 0; i < 8; i++)
tsftr_1[i] = rtw_read8(adapter, REG_TSFTR1 + i);
for (i = 0; i < 6; i++)
macid[i] = rtw_read8(adapter, REG_MACID + i);
for (i = 0; i < 6; i++)
bssid[i] = rtw_read8(adapter, REG_BSSID + i);
for (i = 0; i < 6; i++)
macid_1[i] = rtw_read8(adapter, REG_MACID1 + i);
for (i = 0; i < 6; i++)
bssid_1[i] = rtw_read8(adapter, REG_BSSID1 + i);
#ifdef DBG_RUNTIME_PORT_SWITCH
RTW_INFO(FUNC_ADPT_FMT" before switch\n"
"msr:0x%02x\n"
"bcn_ctrl:0x%02x\n"
"bcn_ctrl_1:0x%02x\n"
"atimwnd:0x%04x\n"
"atimwnd_1:0x%04x\n"
"tsftr:%llu\n"
"tsftr1:%llu\n"
"macid:"MAC_FMT"\n"
"bssid:"MAC_FMT"\n"
"macid_1:"MAC_FMT"\n"
"bssid_1:"MAC_FMT"\n"
, FUNC_ADPT_ARG(adapter)
, msr
, bcn_ctrl
, bcn_ctrl_1
, *((u16 *)atimwnd)
, *((u16 *)atimwnd_1)
, *((u64 *)tsftr)
, *((u64 *)tsftr_1)
, MAC_ARG(macid)
, MAC_ARG(bssid)
, MAC_ARG(macid_1)
, MAC_ARG(bssid_1)
);
#endif /* DBG_RUNTIME_PORT_SWITCH */
/* disable bcn function, disable update TSF */
rtw_write8(adapter, REG_BCN_CTRL, (bcn_ctrl & (~EN_BCN_FUNCTION)) | DIS_TSF_UDT);
rtw_write8(adapter, REG_BCN_CTRL_1, (bcn_ctrl_1 & (~EN_BCN_FUNCTION)) | DIS_TSF_UDT);
/* switch msr */
msr = (msr & 0xf0) | ((msr & 0x03) << 2) | ((msr & 0x0c) >> 2);
rtw_write8(adapter, MSR, msr);
/* write port0 */
rtw_write8(adapter, REG_BCN_CTRL, bcn_ctrl_1 & ~EN_BCN_FUNCTION);
for (i = 0; i < 2; i++)
rtw_write8(adapter, REG_ATIMWND + i, atimwnd_1[i]);
for (i = 0; i < 8; i++)
rtw_write8(adapter, REG_TSFTR + i, tsftr_1[i]);
for (i = 0; i < 6; i++)
rtw_write8(adapter, REG_MACID + i, macid_1[i]);
for (i = 0; i < 6; i++)
rtw_write8(adapter, REG_BSSID + i, bssid_1[i]);
/* write port1 */
rtw_write8(adapter, REG_BCN_CTRL_1, bcn_ctrl & ~EN_BCN_FUNCTION);
for (i = 0; i < 2; i++)
rtw_write8(adapter, REG_ATIMWND_1 + i, atimwnd[i]);
for (i = 0; i < 8; i++)
rtw_write8(adapter, REG_TSFTR1 + i, tsftr[i]);
for (i = 0; i < 6; i++)
rtw_write8(adapter, REG_MACID1 + i, macid[i]);
for (i = 0; i < 6; i++)
rtw_write8(adapter, REG_BSSID1 + i, bssid[i]);
/* write bcn ctl */
rtw_write8(adapter, REG_BCN_CTRL, bcn_ctrl_1);
rtw_write8(adapter, REG_BCN_CTRL_1, bcn_ctrl);
if (adapter->iface_id == IFACE_ID0)
iface = dvobj->padapters[IFACE_ID1];
else if (adapter->iface_id == IFACE_ID1)
iface = dvobj->padapters[IFACE_ID0];
if (adapter->hw_port == HW_PORT0) {
adapter->hw_port = HW_PORT1;
iface->hw_port = HW_PORT0;
RTW_PRINT("port switch - port0("ADPT_FMT"), port1("ADPT_FMT")\n",
ADPT_ARG(iface), ADPT_ARG(adapter));
} else {
adapter->hw_port = HW_PORT0;
iface->hw_port = HW_PORT1;
RTW_PRINT("port switch - port0("ADPT_FMT"), port1("ADPT_FMT")\n",
ADPT_ARG(adapter), ADPT_ARG(iface));
}
#ifdef DBG_RUNTIME_PORT_SWITCH
msr = rtw_read8(adapter, MSR);
bcn_ctrl = rtw_read8(adapter, REG_BCN_CTRL);
bcn_ctrl_1 = rtw_read8(adapter, REG_BCN_CTRL_1);
for (i = 0; i < 2; i++)
atimwnd[i] = rtw_read8(adapter, REG_ATIMWND + i);
for (i = 0; i < 2; i++)
atimwnd_1[i] = rtw_read8(adapter, REG_ATIMWND_1 + i);
for (i = 0; i < 8; i++)
tsftr[i] = rtw_read8(adapter, REG_TSFTR + i);
for (i = 0; i < 8; i++)
tsftr_1[i] = rtw_read8(adapter, REG_TSFTR1 + i);
for (i = 0; i < 6; i++)
macid[i] = rtw_read8(adapter, REG_MACID + i);
for (i = 0; i < 6; i++)
bssid[i] = rtw_read8(adapter, REG_BSSID + i);
for (i = 0; i < 6; i++)
macid_1[i] = rtw_read8(adapter, REG_MACID1 + i);
for (i = 0; i < 6; i++)
bssid_1[i] = rtw_read8(adapter, REG_BSSID1 + i);
RTW_INFO(FUNC_ADPT_FMT" after switch\n"
"msr:0x%02x\n"
"bcn_ctrl:0x%02x\n"
"bcn_ctrl_1:0x%02x\n"
"atimwnd:%u\n"
"atimwnd_1:%u\n"
"tsftr:%llu\n"
"tsftr1:%llu\n"
"macid:"MAC_FMT"\n"
"bssid:"MAC_FMT"\n"
"macid_1:"MAC_FMT"\n"
"bssid_1:"MAC_FMT"\n"
, FUNC_ADPT_ARG(adapter)
, msr
, bcn_ctrl
, bcn_ctrl_1
, *((u16 *)atimwnd)
, *((u16 *)atimwnd_1)
, *((u64 *)tsftr)
, *((u64 *)tsftr_1)
, MAC_ARG(macid)
, MAC_ARG(bssid)
, MAC_ARG(macid_1)
, MAC_ARG(bssid_1)
);
#endif /* DBG_RUNTIME_PORT_SWITCH */
#endif /* CONFIG_RUNTIME_PORT_SWITCH */
#endif /* CONFIG_CONCURRENT_MODE */
}
const char *const _h2c_msr_role_str[] = {
"RSVD",
"STA",
"AP",
"GC",
"GO",
"TDLS",
"ADHOC",
"INVALID",
};
#ifdef CONFIG_FW_MULTI_PORT_SUPPORT
s32 rtw_hal_set_default_port_id_cmd(_adapter *adapter, u8 mac_id)
{
s32 ret = _SUCCESS;
u8 parm[H2C_DEFAULT_PORT_ID_LEN] = {0};
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
SET_H2CCMD_DFTPID_PORT_ID(parm, adapter->hw_port);
SET_H2CCMD_DFTPID_MAC_ID(parm, mac_id);
RTW_DBG_DUMP("DFT port id parm:", parm, H2C_DEFAULT_PORT_ID_LEN);
RTW_INFO("%s port_id :%d, mad_id:%d\n", __func__, adapter->hw_port, mac_id);
ret = rtw_hal_fill_h2c_cmd(adapter, H2C_DEFAULT_PORT_ID, H2C_DEFAULT_PORT_ID_LEN, parm);
dvobj->default_port_id = adapter->hw_port;
return ret;
}
s32 rtw_set_default_port_id(_adapter *adapter)
{
s32 ret = _SUCCESS;
struct sta_info *psta;
struct mlme_priv *pmlmepriv = &adapter->mlmepriv;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
if (adapter->hw_port == dvobj->default_port_id)
return ret;
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true) {
psta = rtw_get_stainfo(&adapter->stapriv, get_bssid(pmlmepriv));
if (psta)
ret = rtw_hal_set_default_port_id_cmd(adapter, psta->mac_id);
} else if (check_fwstate(pmlmepriv, WIFI_AP_STATE) == true) {
} else {
}
return ret;
}
s32 rtw_set_ps_rsvd_page(_adapter *adapter)
{
s32 ret = _SUCCESS;
u16 media_status_rpt = RT_MEDIA_CONNECT;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
if (adapter->hw_port == dvobj->default_port_id)
return ret;
rtw_hal_set_hwreg(adapter, HW_VAR_H2C_FW_JOINBSSRPT,
(u8 *)&media_status_rpt);
return ret;
}
#endif
/*
* rtw_hal_set_FwMediaStatusRpt_cmd -
*
* @adapter:
* @opmode: 0:disconnect, 1:connect
* @miracast: 0:it's not in miracast scenario. 1:it's in miracast scenario
* @miracast_sink: 0:source. 1:sink
* @role: The role of this macid. 0:rsvd. 1:STA. 2:AP. 3:GC. 4:GO. 5:TDLS
* @macid:
* @macid_ind: 0:update Media Status to macid. 1:update Media Status from macid to macid_end
* @macid_end:
*/
s32 rtw_hal_set_FwMediaStatusRpt_cmd(_adapter *adapter, bool opmode, bool miracast, bool miracast_sink, u8 role, u8 macid, bool macid_ind, u8 macid_end)
{
struct macid_ctl_t *macid_ctl = &adapter->dvobj->macid_ctl;
u8 parm[H2C_MEDIA_STATUS_RPT_LEN] = {0};
int i;
s32 ret;
SET_H2CCMD_MSRRPT_PARM_OPMODE(parm, opmode);
SET_H2CCMD_MSRRPT_PARM_MACID_IND(parm, macid_ind);
SET_H2CCMD_MSRRPT_PARM_MIRACAST(parm, miracast);
SET_H2CCMD_MSRRPT_PARM_MIRACAST_SINK(parm, miracast_sink);
SET_H2CCMD_MSRRPT_PARM_ROLE(parm, role);
SET_H2CCMD_MSRRPT_PARM_MACID(parm, macid);
SET_H2CCMD_MSRRPT_PARM_MACID_END(parm, macid_end);
#ifdef CONFIG_FW_MULTI_PORT_SUPPORT
SET_H2CCMD_MSRRPT_PARM_PORT_NUM(parm, adapter->hw_port);
#endif
RTW_DBG_DUMP("MediaStatusRpt parm:", parm, H2C_MEDIA_STATUS_RPT_LEN);
#ifdef CONFIG_DFS_MASTER
/* workaround for TXPAUSE cleared issue by FW's MediaStatusRpt handling */
if (macid_ind == 0 && macid == 1
&& !rtw_odm_dfs_domain_unknown(adapter)
) {
u8 parm0_bak = parm[0];
SET_H2CCMD_MSRRPT_PARM_MACID_IND(&parm0_bak, 0);
if (macid_ctl->h2c_msr[macid] == parm0_bak) {
ret = _SUCCESS;
goto post_action;
}
}
#endif
ret = rtw_hal_fill_h2c_cmd(adapter, H2C_MEDIA_STATUS_RPT, H2C_MEDIA_STATUS_RPT_LEN, parm);
if (ret != _SUCCESS)
goto exit;
#ifdef CONFIG_DFS_MASTER
post_action:
#endif
if (rtw_get_chip_type(adapter) == RTL8188E) {
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
/* 8188E FW doesn't set macid no link, driver does it by self */
if (opmode)
rtw_hal_set_hwreg(adapter, HW_VAR_MACID_LINK, &macid);
else
rtw_hal_set_hwreg(adapter, HW_VAR_MACID_NOLINK, &macid);
/* for 8188E RA */
#if (RATE_ADAPTIVE_SUPPORT == 1)
if (hal_data->fw_ractrl == false) {
u8 max_macid;
max_macid = rtw_search_max_mac_id(adapter);
rtw_hal_set_hwreg(adapter, HW_VAR_TX_RPT_MAX_MACID, &max_macid);
}
#endif
}
SET_H2CCMD_MSRRPT_PARM_MACID_IND(parm, 0);
if (macid_ind == 0)
macid_end = macid;
for (i = macid; macid <= macid_end; macid++) {
rtw_macid_ctl_set_h2c_msr(macid_ctl, macid, parm[0]);
if (!opmode) {
rtw_macid_ctl_set_bw(macid_ctl, macid, CHANNEL_WIDTH_20);
rtw_macid_ctl_set_vht_en(macid_ctl, macid, 0);
rtw_macid_ctl_set_rate_bmp0(macid_ctl, macid, 0);
rtw_macid_ctl_set_rate_bmp1(macid_ctl, macid, 0);
}
}
if (!opmode)
rtw_update_tx_rate_bmp(adapter_to_dvobj(adapter));
exit:
return ret;
}
inline s32 rtw_hal_set_FwMediaStatusRpt_single_cmd(_adapter *adapter, bool opmode, bool miracast, bool miracast_sink, u8 role, u8 macid)
{
return rtw_hal_set_FwMediaStatusRpt_cmd(adapter, opmode, miracast, miracast_sink, role, macid, 0, 0);
}
inline s32 rtw_hal_set_FwMediaStatusRpt_range_cmd(_adapter *adapter, bool opmode, bool miracast, bool miracast_sink, u8 role, u8 macid, u8 macid_end)
{
return rtw_hal_set_FwMediaStatusRpt_cmd(adapter, opmode, miracast, miracast_sink, role, macid, 1, macid_end);
}
static void rtw_hal_set_FwRsvdPage_cmd(PADAPTER padapter, PRSVDPAGE_LOC rsvdpageloc)
{
struct hal_ops *pHalFunc = &padapter->hal_func;
u8 u1H2CRsvdPageParm[H2C_RSVDPAGE_LOC_LEN] = {0};
u8 ret = 0;
RTW_INFO("RsvdPageLoc: ProbeRsp=%d PsPoll=%d Null=%d QoSNull=%d BTNull=%d\n",
rsvdpageloc->LocProbeRsp, rsvdpageloc->LocPsPoll,
rsvdpageloc->LocNullData, rsvdpageloc->LocQosNull,
rsvdpageloc->LocBTQosNull);
SET_H2CCMD_RSVDPAGE_LOC_PROBE_RSP(u1H2CRsvdPageParm, rsvdpageloc->LocProbeRsp);
SET_H2CCMD_RSVDPAGE_LOC_PSPOLL(u1H2CRsvdPageParm, rsvdpageloc->LocPsPoll);
SET_H2CCMD_RSVDPAGE_LOC_NULL_DATA(u1H2CRsvdPageParm, rsvdpageloc->LocNullData);
SET_H2CCMD_RSVDPAGE_LOC_QOS_NULL_DATA(u1H2CRsvdPageParm, rsvdpageloc->LocQosNull);
SET_H2CCMD_RSVDPAGE_LOC_BT_QOS_NULL_DATA(u1H2CRsvdPageParm, rsvdpageloc->LocBTQosNull);
ret = rtw_hal_fill_h2c_cmd(padapter,
H2C_RSVD_PAGE,
H2C_RSVDPAGE_LOC_LEN,
u1H2CRsvdPageParm);
}
#ifdef CONFIG_GPIO_WAKEUP
void rtw_hal_switch_gpio_wl_ctrl(_adapter *padapter, u8 index, u8 enable)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
if (IS_8723D_SERIES(pHalData->version_id) || IS_8822B_SERIES(pHalData->version_id))
rtw_hal_set_hwreg(padapter, HW_SET_GPIO_WL_CTRL, (u8 *)(&enable));
/*
* Switch GPIO_13, GPIO_14 to wlan control, or pull GPIO_13,14 MUST fail.
* It happended at 8723B/8192E/8821A. New IC will check multi function GPIO,
* and implement HAL function.
* TODO: GPIO_8 multi function?
*/
if (index == 13 || index == 14)
rtw_hal_set_hwreg(padapter, HW_SET_GPIO_WL_CTRL, (u8 *)(&enable));
}
void rtw_hal_set_output_gpio(_adapter *padapter, u8 index, u8 outputval)
{
if (index <= 7) {
/* config GPIO mode */
rtw_write8(padapter, REG_GPIO_PIN_CTRL + 3,
rtw_read8(padapter, REG_GPIO_PIN_CTRL + 3) & ~BIT(index));
/* config GPIO Sel */
/* 0: input */
/* 1: output */
rtw_write8(padapter, REG_GPIO_PIN_CTRL + 2,
rtw_read8(padapter, REG_GPIO_PIN_CTRL + 2) | BIT(index));
/* set output value */
if (outputval) {
rtw_write8(padapter, REG_GPIO_PIN_CTRL + 1,
rtw_read8(padapter, REG_GPIO_PIN_CTRL + 1) | BIT(index));
} else {
rtw_write8(padapter, REG_GPIO_PIN_CTRL + 1,
rtw_read8(padapter, REG_GPIO_PIN_CTRL + 1) & ~BIT(index));
}
} else if (index <= 15) {
/* 88C Series: */
/* index: 11~8 transform to 3~0 */
/* 8723 Series: */
/* index: 12~8 transform to 4~0 */
index -= 8;
/* config GPIO mode */
rtw_write8(padapter, REG_GPIO_PIN_CTRL_2 + 3,
rtw_read8(padapter, REG_GPIO_PIN_CTRL_2 + 3) & ~BIT(index));
/* config GPIO Sel */
/* 0: input */
/* 1: output */
rtw_write8(padapter, REG_GPIO_PIN_CTRL_2 + 2,
rtw_read8(padapter, REG_GPIO_PIN_CTRL_2 + 2) | BIT(index));
/* set output value */
if (outputval) {
rtw_write8(padapter, REG_GPIO_PIN_CTRL_2 + 1,
rtw_read8(padapter, REG_GPIO_PIN_CTRL_2 + 1) | BIT(index));
} else {
rtw_write8(padapter, REG_GPIO_PIN_CTRL_2 + 1,
rtw_read8(padapter, REG_GPIO_PIN_CTRL_2 + 1) & ~BIT(index));
}
} else {
RTW_INFO("%s: invalid GPIO%d=%d\n",
__func__, index, outputval);
}
}
#endif
static void rtw_hal_set_FwAoacRsvdPage_cmd(PADAPTER padapter, PRSVDPAGE_LOC rsvdpageloc)
{
struct hal_ops *pHalFunc = &padapter->hal_func;
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
u8 res = 0, count = 0, ret = 0;
#ifdef CONFIG_WOWLAN
u8 u1H2CAoacRsvdPageParm[H2C_AOAC_RSVDPAGE_LOC_LEN] = {0};
RTW_INFO("AOACRsvdPageLoc: RWC=%d ArpRsp=%d NbrAdv=%d GtkRsp=%d GtkInfo=%d ProbeReq=%d NetworkList=%d\n",
rsvdpageloc->LocRemoteCtrlInfo, rsvdpageloc->LocArpRsp,
rsvdpageloc->LocNbrAdv, rsvdpageloc->LocGTKRsp,
rsvdpageloc->LocGTKInfo, rsvdpageloc->LocProbeReq,
rsvdpageloc->LocNetList);
if (check_fwstate(pmlmepriv, _FW_LINKED)) {
SET_H2CCMD_AOAC_RSVDPAGE_LOC_REMOTE_WAKE_CTRL_INFO(u1H2CAoacRsvdPageParm, rsvdpageloc->LocRemoteCtrlInfo);
SET_H2CCMD_AOAC_RSVDPAGE_LOC_ARP_RSP(u1H2CAoacRsvdPageParm, rsvdpageloc->LocArpRsp);
/* SET_H2CCMD_AOAC_RSVDPAGE_LOC_NEIGHBOR_ADV(u1H2CAoacRsvdPageParm, rsvdpageloc->LocNbrAdv); */
#ifdef CONFIG_GTK_OL
SET_H2CCMD_AOAC_RSVDPAGE_LOC_GTK_RSP(u1H2CAoacRsvdPageParm, rsvdpageloc->LocGTKRsp);
SET_H2CCMD_AOAC_RSVDPAGE_LOC_GTK_INFO(u1H2CAoacRsvdPageParm, rsvdpageloc->LocGTKInfo);
SET_H2CCMD_AOAC_RSVDPAGE_LOC_GTK_EXT_MEM(u1H2CAoacRsvdPageParm, rsvdpageloc->LocGTKEXTMEM);
#endif /* CONFIG_GTK_OL */
ret = rtw_hal_fill_h2c_cmd(padapter,
H2C_AOAC_RSVD_PAGE,
H2C_AOAC_RSVDPAGE_LOC_LEN,
u1H2CAoacRsvdPageParm);
RTW_INFO("AOAC Report=%d\n", rsvdpageloc->LocAOACReport);
memset(&u1H2CAoacRsvdPageParm, 0, sizeof(u1H2CAoacRsvdPageParm));
SET_H2CCMD_AOAC_RSVDPAGE_LOC_AOAC_REPORT(u1H2CAoacRsvdPageParm,
rsvdpageloc->LocAOACReport);
ret = rtw_hal_fill_h2c_cmd(padapter,
H2C_AOAC_RSVDPAGE3,
H2C_AOAC_RSVDPAGE_LOC_LEN,
u1H2CAoacRsvdPageParm);
pwrpriv->wowlan_aoac_rpt_loc = rsvdpageloc->LocAOACReport;
}
#ifdef CONFIG_PNO_SUPPORT
else {
if (!pwrpriv->wowlan_in_resume) {
RTW_INFO("NLO_INFO=%d\n", rsvdpageloc->LocPNOInfo);
memset(&u1H2CAoacRsvdPageParm, 0,
sizeof(u1H2CAoacRsvdPageParm));
SET_H2CCMD_AOAC_RSVDPAGE_LOC_NLO_INFO(u1H2CAoacRsvdPageParm,
rsvdpageloc->LocPNOInfo);
ret = rtw_hal_fill_h2c_cmd(padapter,
H2C_AOAC_RSVDPAGE3,
H2C_AOAC_RSVDPAGE_LOC_LEN,
u1H2CAoacRsvdPageParm);
}
}
#endif /* CONFIG_PNO_SUPPORT */
#endif /* CONFIG_WOWLAN */
}
/*#define DBG_GET_RSVD_PAGE*/
int rtw_hal_get_rsvd_page(_adapter *adapter, u32 page_offset,
u32 page_num, u8 *buffer, u32 buffer_size)
{
u32 addr = 0, size = 0, count = 0;
u32 page_size = 0, data_low = 0, data_high = 0;
u16 txbndy = 0, offset = 0;
u8 i = 0;
bool rst = false;
rtw_hal_get_def_var(adapter, HAL_DEF_TX_PAGE_SIZE, &page_size);
addr = page_offset * page_size;
size = page_num * page_size;
if (buffer_size < size) {
RTW_ERR("%s buffer_size(%d) < get page total size(%d)\n",
__func__, buffer_size, size);
return rst;
}
#ifdef RTW_HALMAC
if (rtw_halmac_dump_fifo(adapter_to_dvobj(adapter), 2, addr, size, buffer) < 0)
rst = false;
else
rst = true;
#else
txbndy = rtw_read8(adapter, REG_TDECTRL + 1);
offset = (txbndy + page_offset) << 4;
count = (buffer_size / 8) + 1;
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, 0x69);
for (i = 0 ; i < count ; i++) {
rtw_write32(adapter, REG_PKTBUF_DBG_CTRL, offset + i);
data_low = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L);
data_high = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H);
memcpy(buffer + (i * 8),
&data_low, sizeof(data_low));
memcpy(buffer + ((i * 8) + 4),
&data_high, sizeof(data_high));
}
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, 0x0);
rst = true;
#endif /*RTW_HALMAC*/
#ifdef DBG_GET_RSVD_PAGE
RTW_INFO("%s [page_offset:%d , page_num:%d][start_addr:0x%04x , size:%d]\n",
__func__, page_offset, page_num, addr, size);
RTW_INFO_DUMP("\n", buffer, size);
RTW_INFO(" ==================================================\n");
#endif
return rst;
}
void rtw_dump_rsvd_page(void *sel, _adapter *adapter, u8 page_offset, u8 page_num)
{
u32 page_size = 0;
u8 *buffer = NULL;
u32 buf_size = 0;
if (page_num == 0)
return;
RTW_PRINT_SEL(sel, "======= RSVG PAGE DUMP =======\n");
RTW_PRINT_SEL(sel, "page_offset:%d, page_num:%d\n", page_offset, page_num);
rtw_hal_get_def_var(adapter, HAL_DEF_TX_PAGE_SIZE, &page_size);
if (page_size) {
buf_size = page_size * page_num;
buffer = rtw_zvmalloc(buf_size);
if (buffer) {
rtw_hal_get_rsvd_page(adapter, page_offset, page_num, buffer, buf_size);
_RTW_DUMP_SEL(sel, buffer, buf_size);
rtw_vmfree(buffer, buf_size);
} else
RTW_PRINT_SEL(sel, "ERROR - rsvd_buf mem allocate failed\n");
} else
RTW_PRINT_SEL(sel, "ERROR - Tx page size is zero ??\n");
RTW_PRINT_SEL(sel, "==========================\n");
}
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
static void rtw_hal_force_enable_rxdma(_adapter *adapter)
{
RTW_INFO("%s: Set 0x690=0x00\n", __func__);
rtw_write8(adapter, REG_WOW_CTRL,
(rtw_read8(adapter, REG_WOW_CTRL) & 0xf0));
RTW_PRINT("%s: Release RXDMA\n", __func__);
rtw_write32(adapter, REG_RXPKT_NUM,
(rtw_read32(adapter, REG_RXPKT_NUM) & (~RW_RELEASE_EN)));
}
static void rtw_hal_disable_tx_report(_adapter *adapter)
{
rtw_write8(adapter, REG_TX_RPT_CTRL,
((rtw_read8(adapter, REG_TX_RPT_CTRL) & ~BIT(1))) & ~BIT(5));
RTW_INFO("disable TXRPT:0x%02x\n", rtw_read8(adapter, REG_TX_RPT_CTRL));
}
static void rtw_hal_enable_tx_report(_adapter *adapter)
{
rtw_write8(adapter, REG_TX_RPT_CTRL,
((rtw_read8(adapter, REG_TX_RPT_CTRL) | BIT(1))) | BIT(5));
RTW_INFO("enable TX_RPT:0x%02x\n", rtw_read8(adapter, REG_TX_RPT_CTRL));
}
static void rtw_hal_release_rx_dma(_adapter *adapter)
{
u32 val32 = 0;
val32 = rtw_read32(adapter, REG_RXPKT_NUM);
rtw_write32(adapter, REG_RXPKT_NUM, (val32 & (~RW_RELEASE_EN)));
RTW_INFO("%s, [0x%04x]: 0x%08x\n",
__func__, REG_RXPKT_NUM, (val32 & (~RW_RELEASE_EN)));
}
static u8 rtw_hal_pause_rx_dma(_adapter *adapter)
{
PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter);
u8 ret = 0;
s8 trycnt = 100;
u32 tmp = 0;
int res = 0;
/* RX DMA stop */
RTW_PRINT("Pause DMA\n");
rtw_write32(adapter, REG_RXPKT_NUM,
(rtw_read32(adapter, REG_RXPKT_NUM) | RW_RELEASE_EN));
do {
if ((rtw_read32(adapter, REG_RXPKT_NUM) & RXDMA_IDLE)) {
/* stop interface before leave */
if (hal->usb_intf_start) {
rtw_intf_stop(adapter);
RTW_ENABLE_FUNC(adapter, DF_RX_BIT);
RTW_ENABLE_FUNC(adapter, DF_TX_BIT);
}
RTW_PRINT("RX_DMA_IDLE is true\n");
ret = _SUCCESS;
break;
}
else {
/* to avoid interface start repeatedly */
if (false == hal->usb_intf_start)
rtw_intf_start(adapter);
}
} while (trycnt--);
if (trycnt < 0) {
tmp = rtw_read16(adapter, REG_RXPKT_NUM + 3);
RTW_PRINT("Stop RX DMA failed......\n");
RTW_PRINT("%s, RXPKT_NUM: 0x%04x\n",
__func__, tmp);
tmp = rtw_read16(adapter, REG_RXPKT_NUM + 2);
if (tmp & BIT(3))
RTW_PRINT("%s, RX DMA has req\n",
__func__);
else
RTW_PRINT("%s, RX DMA no req\n",
__func__);
ret = _FAIL;
}
return ret;
}
#endif /* CONFIG_WOWLAN || CONFIG_AP_WOWLAN */
#ifdef CONFIG_WOWLAN
/*
* rtw_hal_check_wow_ctrl
* chk_type: true means to check enable, if 0x690 & bit1, WOW enable successful
* false means to check disable, if 0x690 & bit1, WOW disable fail
*/
static u8 rtw_hal_check_wow_ctrl(_adapter *adapter, u8 chk_type)
{
u8 mstatus = 0;
u8 trycnt = 25;
u8 res = false;
mstatus = rtw_read8(adapter, REG_WOW_CTRL);
RTW_INFO("%s mstatus:0x%02x\n", __func__, mstatus);
if (chk_type) {
while (!(mstatus & BIT1) && trycnt > 1) {
mstatus = rtw_read8(adapter, REG_WOW_CTRL);
RTW_PRINT("Loop index: %d :0x%02x\n",
trycnt, mstatus);
trycnt--;
rtw_msleep_os(20);
}
if (mstatus & BIT1)
res = true;
else
res = false;
} else {
while (mstatus & BIT1 && trycnt > 1) {
mstatus = rtw_read8(adapter, REG_WOW_CTRL);
RTW_PRINT("Loop index: %d :0x%02x\n",
trycnt, mstatus);
trycnt--;
rtw_msleep_os(20);
}
if (mstatus & BIT1)
res = false;
else
res = true;
}
RTW_PRINT("%s check_type: %d res: %d trycnt: %d\n",
__func__, chk_type, res, (25 - trycnt));
return res;
}
#ifdef CONFIG_PNO_SUPPORT
static u8 rtw_hal_check_pno_enabled(_adapter *adapter)
{
struct pwrctrl_priv *ppwrpriv = adapter_to_pwrctl(adapter);
u8 res = 0, count = 0;
u8 ret = false;
if (ppwrpriv->wowlan_pno_enable && ppwrpriv->wowlan_in_resume == false) {
res = rtw_read8(adapter, REG_PNO_STATUS);
while (!(res & BIT(7)) && count < 25) {
RTW_INFO("[%d] cmd: 0x81 REG_PNO_STATUS: 0x%02x\n",
count, res);
res = rtw_read8(adapter, REG_PNO_STATUS);
count++;
rtw_msleep_os(2);
}
if (res & BIT(7))
ret = true;
else
ret = false;
RTW_INFO("cmd: 0x81 REG_PNO_STATUS: ret(%d)\n", ret);
}
return ret;
}
#endif
static void rtw_hal_backup_rate(_adapter *adapter)
{
RTW_INFO("%s\n", __func__);
/* backup data rate to register 0x8b for wowlan FW */
rtw_write8(adapter, 0x8d, 1);
rtw_write8(adapter, 0x8c, 0);
rtw_write8(adapter, 0x8f, 0x40);
rtw_write8(adapter, 0x8b, rtw_read8(adapter, 0x2f0));
}
#ifdef CONFIG_GTK_OL
static void rtw_hal_fw_sync_cam_id(_adapter *adapter)
{
struct mlme_priv *pmlmepriv = &adapter->mlmepriv;
int cam_id, index = 0;
u8 *addr = NULL;
if (check_fwstate(pmlmepriv, WIFI_AP_STATE) == true)
return;
addr = get_bssid(pmlmepriv);
if (addr == NULL) {
RTW_INFO("%s: get bssid MAC addr fail!!\n", __func__);
return;
}
rtw_clean_dk_section(adapter);
do {
cam_id = rtw_camid_search(adapter, addr, index, 1);
if (cam_id == -1)
RTW_INFO("%s: cam_id: %d, key_id:%d\n", __func__, cam_id, index);
else
rtw_sec_cam_swap(adapter, cam_id, index);
index++;
} while (index < 4);
rtw_write8(adapter, REG_SECCFG, 0xcc);
}
static void rtw_dump_aoac_rpt(_adapter *adapter)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter);
struct aoac_report *paoac_rpt = &pwrctl->wowlan_aoac_rpt;
RTW_INFO_DUMP("[AOAC-RPT] IV -", paoac_rpt->iv, 8);
RTW_INFO_DUMP("[AOAC-RPT] Replay counter of EAPOL key - ",
paoac_rpt->replay_counter_eapol_key, 8);
RTW_INFO_DUMP("[AOAC-RPT] Group key - ", paoac_rpt->group_key, 32);
RTW_INFO("[AOAC-RPT] Key Index - %d\n", paoac_rpt->key_index);
RTW_INFO("[AOAC-RPT] Security Type - %d\n", paoac_rpt->security_type);
}
static void rtw_hal_get_aoac_rpt(_adapter *adapter)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter);
struct aoac_report *paoac_rpt = &pwrctl->wowlan_aoac_rpt;
u32 page_offset = 0, page_number = 0;
u32 page_size = 0, buf_size = 0;
u8 *buffer = NULL;
u8 i = 0, tmp = 0;
int ret = -1;
/* read aoac report from rsvd page */
page_offset = pwrctl->wowlan_aoac_rpt_loc;
page_number = 1;
rtw_hal_get_def_var(adapter, HAL_DEF_TX_PAGE_SIZE, &page_size);
buf_size = page_size * page_number;
buffer = rtw_zvmalloc(buf_size);
if (NULL == buffer) {
RTW_ERR("%s buffer allocate failed size(%d)\n",
__func__, buf_size);
return;
}
RTW_INFO("Get AOAC Report from rsvd page_offset:%d\n", page_offset);
ret = rtw_hal_get_rsvd_page(adapter, page_offset,
page_number, buffer, buf_size);
if (ret == false) {
RTW_ERR("%s get aoac report failed\n", __func__);
rtw_warn_on(1);
goto _exit;
}
memset(paoac_rpt, 0, sizeof(struct aoac_report));
memcpy(paoac_rpt, buffer, sizeof(struct aoac_report));
for (i = 0 ; i < 4 ; i++) {
tmp = paoac_rpt->replay_counter_eapol_key[i];
paoac_rpt->replay_counter_eapol_key[i] =
paoac_rpt->replay_counter_eapol_key[7 - i];
paoac_rpt->replay_counter_eapol_key[7 - i] = tmp;
}
/* rtw_dump_aoac_rpt(adapter); */
_exit:
if (buffer)
rtw_vmfree(buffer, buf_size);
}
static void rtw_hal_update_gtk_offload_info(_adapter *adapter)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter);
struct aoac_report *paoac_rpt = &pwrctl->wowlan_aoac_rpt;
struct mlme_priv *pmlmepriv = &adapter->mlmepriv;
struct security_priv *psecuritypriv = &adapter->securitypriv;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
unsigned long irqL;
u8 get_key[16];
u8 gtk_id = 0, offset = 0, i = 0, sz = 0;
u64 replay_count = 0;
if (check_fwstate(pmlmepriv, WIFI_AP_STATE) == true)
return;
memset(get_key, 0, sizeof(get_key));
memcpy(&replay_count,
paoac_rpt->replay_counter_eapol_key, 8);
/*read gtk key index*/
gtk_id = paoac_rpt->key_index;
if (gtk_id == 5 || gtk_id == 0) {
RTW_INFO("%s no rekey event happened.\n", __func__);
} else if (gtk_id > 0 && gtk_id < 4) {
RTW_INFO("%s update security key.\n", __func__);
/*read key from sec-cam,for DK ,keyindex is equal to cam-id*/
rtw_sec_read_cam_ent(adapter, gtk_id,
NULL, NULL, get_key);
rtw_clean_hw_dk_cam(adapter);
if (_rtw_camid_is_gk(adapter, gtk_id)) {
_enter_critical_bh(&cam_ctl->lock, &irqL);
memcpy(&dvobj->cam_cache[gtk_id].key,
get_key, 16);
_exit_critical_bh(&cam_ctl->lock, &irqL);
} else {
struct setkey_parm parm_gtk;
parm_gtk.algorithm = paoac_rpt->security_type;
parm_gtk.keyid = gtk_id;
memcpy(parm_gtk.key, get_key, 16);
setkey_hdl(adapter, (u8 *)&parm_gtk);
}
/*update key into related sw variable and sec-cam cache*/
psecuritypriv->dot118021XGrpKeyid = gtk_id;
memcpy(&psecuritypriv->dot118021XGrpKey[gtk_id],
get_key, 16);
/* update SW TKIP TX/RX MIC value */
if (psecuritypriv->dot118021XGrpPrivacy == _TKIP_) {
offset = RTW_KEK_LEN + RTW_TKIP_MIC_LEN;
memcpy(
&psecuritypriv->dot118021XGrptxmickey[gtk_id],
&(paoac_rpt->group_key[offset]),
RTW_TKIP_MIC_LEN);
offset = RTW_KEK_LEN;
memcpy(
&psecuritypriv->dot118021XGrprxmickey[gtk_id],
&(paoac_rpt->group_key[offset]),
RTW_TKIP_MIC_LEN);
}
/* Update broadcast RX IV */
if (psecuritypriv->dot118021XGrpPrivacy == _AES_) {
sz = sizeof(psecuritypriv->iv_seq[0]);
for (i = 0 ; i < 4 ; i++)
memset(psecuritypriv->iv_seq[i], 0, sz);
}
RTW_PRINT("GTK (%d) "KEY_FMT"\n", gtk_id,
KEY_ARG(psecuritypriv->dot118021XGrpKey[gtk_id].skey));
}
rtw_clean_dk_section(adapter);
rtw_write8(adapter, REG_SECCFG, 0x0c);
#ifdef CONFIG_GTK_OL_DBG
/* if (gtk_keyindex != 5) */
dump_sec_cam(RTW_DBGDUMP, adapter);
dump_sec_cam_cache(RTW_DBGDUMP, adapter);
#endif
}
static void rtw_hal_update_tx_iv(_adapter *adapter)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter);
struct aoac_report *paoac_rpt = &pwrctl->wowlan_aoac_rpt;
struct sta_info *psta;
struct mlme_ext_priv *pmlmeext = &(adapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct security_priv *psecpriv = &adapter->securitypriv;
u16 val16 = 0;
u32 val32 = 0;
u64 txiv = 0;
u8 *pval = NULL;
psta = rtw_get_stainfo(&adapter->stapriv,
get_my_bssid(&pmlmeinfo->network));
/* Update TX iv data. */
pval = (u8 *)&paoac_rpt->iv;
if (psecpriv->dot11PrivacyAlgrthm == _TKIP_) {
val16 = ((u16)(paoac_rpt->iv[2]) << 0) +
((u16)(paoac_rpt->iv[0]) << 8);
val32 = ((u32)(paoac_rpt->iv[4]) << 0) +
((u32)(paoac_rpt->iv[5]) << 8) +
((u32)(paoac_rpt->iv[6]) << 16) +
((u32)(paoac_rpt->iv[7]) << 24);
} else if (psecpriv->dot11PrivacyAlgrthm == _AES_) {
val16 = ((u16)(paoac_rpt->iv[0]) << 0) +
((u16)(paoac_rpt->iv[1]) << 8);
val32 = ((u32)(paoac_rpt->iv[4]) << 0) +
((u32)(paoac_rpt->iv[5]) << 8) +
((u32)(paoac_rpt->iv[6]) << 16) +
((u32)(paoac_rpt->iv[7]) << 24);
}
if (psta) {
txiv = val16 + ((u64)val32 << 16);
if (txiv != 0)
psta->dot11txpn.val = txiv;
}
}
static void rtw_hal_update_sw_security_info(_adapter *adapter)
{
rtw_hal_update_tx_iv(adapter);
rtw_hal_update_gtk_offload_info(adapter);
}
#endif /*CONFIG_GTK_OL*/
static u8 rtw_hal_set_keep_alive_cmd(_adapter *adapter, u8 enable, u8 pkt_type)
{
struct hal_ops *pHalFunc = &adapter->hal_func;
u8 u1H2CKeepAliveParm[H2C_KEEP_ALIVE_CTRL_LEN] = {0};
u8 adopt = 1, check_period = 5;
u8 ret = _FAIL;
SET_H2CCMD_KEEPALIVE_PARM_ENABLE(u1H2CKeepAliveParm, enable);
SET_H2CCMD_KEEPALIVE_PARM_ADOPT(u1H2CKeepAliveParm, adopt);
SET_H2CCMD_KEEPALIVE_PARM_PKT_TYPE(u1H2CKeepAliveParm, pkt_type);
SET_H2CCMD_KEEPALIVE_PARM_CHECK_PERIOD(u1H2CKeepAliveParm, check_period);
#ifdef CONFIG_FW_MULTI_PORT_SUPPORT
SET_H2CCMD_KEEPALIVE_PARM_PORT_NUM(u1H2CKeepAliveParm, adapter->hw_port);
RTW_INFO("%s(): enable = %d, port = %d\n", __func__, enable, adapter->hw_port);
#else
RTW_INFO("%s(): enable = %d\n", __func__, enable);
#endif
ret = rtw_hal_fill_h2c_cmd(adapter,
H2C_KEEP_ALIVE,
H2C_KEEP_ALIVE_CTRL_LEN,
u1H2CKeepAliveParm);
return ret;
}
static u8 rtw_hal_set_disconnect_decision_cmd(_adapter *adapter, u8 enable)
{
struct hal_ops *pHalFunc = &adapter->hal_func;
u8 u1H2CDisconDecisionParm[H2C_DISCON_DECISION_LEN] = {0};
u8 adopt = 1, check_period = 10, trypkt_num = 0;
u8 ret = _FAIL;
SET_H2CCMD_DISCONDECISION_PARM_ENABLE(u1H2CDisconDecisionParm, enable);
SET_H2CCMD_DISCONDECISION_PARM_ADOPT(u1H2CDisconDecisionParm, adopt);
SET_H2CCMD_DISCONDECISION_PARM_CHECK_PERIOD(u1H2CDisconDecisionParm, check_period);
SET_H2CCMD_DISCONDECISION_PARM_TRY_PKT_NUM(u1H2CDisconDecisionParm, trypkt_num);
#ifdef CONFIG_FW_MULTI_PORT_SUPPORT
SET_H2CCMD_DISCONDECISION_PORT_NUM(u1H2CDisconDecisionParm, adapter->hw_port);
RTW_INFO("%s(): enable = %d, port = %d\n", __func__, enable, adapter->hw_port);
#else
RTW_INFO("%s(): enable = %d\n", __func__, enable);
#endif
ret = rtw_hal_fill_h2c_cmd(adapter,
H2C_DISCON_DECISION,
H2C_DISCON_DECISION_LEN,
u1H2CDisconDecisionParm);
return ret;
}
static u8 rtw_hal_set_wowlan_ctrl_cmd(_adapter *adapter, u8 enable, u8 change_unit)
{
struct security_priv *psecpriv = &adapter->securitypriv;
struct pwrctrl_priv *ppwrpriv = adapter_to_pwrctl(adapter);
struct hal_ops *pHalFunc = &adapter->hal_func;
u8 u1H2CWoWlanCtrlParm[H2C_WOWLAN_LEN] = {0};
u8 discont_wake = 1, gpionum = 0, gpio_dur = 0;
u8 hw_unicast = 0, gpio_pulse_cnt = 0, gpio_pulse_en = 0;
u8 sdio_wakeup_enable = 1;
u8 gpio_high_active = 0;
u8 magic_pkt = 0;
u8 gpio_unit = 0; /*0: 64ns, 1: 8ms*/
u8 ret = _FAIL;
#ifdef CONFIG_GPIO_WAKEUP
gpio_high_active = ppwrpriv->is_high_active;
gpionum = WAKEUP_GPIO_IDX;
sdio_wakeup_enable = 0;
#endif /* CONFIG_GPIO_WAKEUP */
if (!ppwrpriv->wowlan_pno_enable)
magic_pkt = enable;
if (psecpriv->dot11PrivacyAlgrthm == _WEP40_ || psecpriv->dot11PrivacyAlgrthm == _WEP104_)
hw_unicast = 1;
else
hw_unicast = 0;
RTW_INFO("%s(): enable=%d change_unit=%d\n", __func__,
enable, change_unit);
/* time = (gpio_dur/2) * gpio_unit, default:256 ms */
if (enable && change_unit) {
gpio_dur = 0x40;
gpio_unit = 1;
gpio_pulse_en = 1;
}
#ifdef CONFIG_PLATFORM_ARM_RK3188
if (enable) {
gpio_pulse_en = 1;
gpio_pulse_cnt = 0x04;
}
#endif
SET_H2CCMD_WOWLAN_FUNC_ENABLE(u1H2CWoWlanCtrlParm, enable);
SET_H2CCMD_WOWLAN_PATTERN_MATCH_ENABLE(u1H2CWoWlanCtrlParm, enable);
SET_H2CCMD_WOWLAN_MAGIC_PKT_ENABLE(u1H2CWoWlanCtrlParm, magic_pkt);
SET_H2CCMD_WOWLAN_UNICAST_PKT_ENABLE(u1H2CWoWlanCtrlParm, hw_unicast);
SET_H2CCMD_WOWLAN_ALL_PKT_DROP(u1H2CWoWlanCtrlParm, 0);
SET_H2CCMD_WOWLAN_GPIO_ACTIVE(u1H2CWoWlanCtrlParm, gpio_high_active);
#ifdef CONFIG_GTK_OL
/* GTK rekey only for AES, if GTK rekey is TKIP, then wake up*/
if (psecpriv->binstallKCK_KEK == true)
SET_H2CCMD_WOWLAN_REKEY_WAKE_UP(u1H2CWoWlanCtrlParm, 0);
else
SET_H2CCMD_WOWLAN_REKEY_WAKE_UP(u1H2CWoWlanCtrlParm, 1);
#else
SET_H2CCMD_WOWLAN_REKEY_WAKE_UP(u1H2CWoWlanCtrlParm, enable);
#endif
SET_H2CCMD_WOWLAN_DISCONNECT_WAKE_UP(u1H2CWoWlanCtrlParm, discont_wake);
SET_H2CCMD_WOWLAN_GPIONUM(u1H2CWoWlanCtrlParm, gpionum);
SET_H2CCMD_WOWLAN_DATAPIN_WAKE_UP(u1H2CWoWlanCtrlParm, sdio_wakeup_enable);
SET_H2CCMD_WOWLAN_GPIO_DURATION(u1H2CWoWlanCtrlParm, gpio_dur);
SET_H2CCMD_WOWLAN_CHANGE_UNIT(u1H2CWoWlanCtrlParm, gpio_unit);
SET_H2CCMD_WOWLAN_GPIO_PULSE_EN(u1H2CWoWlanCtrlParm, gpio_pulse_en);
SET_H2CCMD_WOWLAN_GPIO_PULSE_COUNT(u1H2CWoWlanCtrlParm, gpio_pulse_cnt);
ret = rtw_hal_fill_h2c_cmd(adapter,
H2C_WOWLAN,
H2C_WOWLAN_LEN,
u1H2CWoWlanCtrlParm);
return ret;
}
static u8 rtw_hal_set_remote_wake_ctrl_cmd(_adapter *adapter, u8 enable)
{
struct hal_ops *pHalFunc = &adapter->hal_func;
struct security_priv *psecuritypriv = &(adapter->securitypriv);
struct pwrctrl_priv *ppwrpriv = adapter_to_pwrctl(adapter);
struct registry_priv *pregistrypriv = &adapter->registrypriv;
u8 u1H2CRemoteWakeCtrlParm[H2C_REMOTE_WAKE_CTRL_LEN] = {0};
u8 ret = _FAIL, count = 0;
RTW_INFO("%s(): enable=%d\n", __func__, enable);
if (!ppwrpriv->wowlan_pno_enable) {
SET_H2CCMD_REMOTE_WAKECTRL_ENABLE(
u1H2CRemoteWakeCtrlParm, enable);
SET_H2CCMD_REMOTE_WAKE_CTRL_ARP_OFFLOAD_EN(
u1H2CRemoteWakeCtrlParm, 1);
#ifdef CONFIG_GTK_OL
if (psecuritypriv->binstallKCK_KEK == true) {
SET_H2CCMD_REMOTE_WAKE_CTRL_GTK_OFFLOAD_EN(
u1H2CRemoteWakeCtrlParm, 1);
} else {
RTW_INFO("no kck kek\n");
SET_H2CCMD_REMOTE_WAKE_CTRL_GTK_OFFLOAD_EN(
u1H2CRemoteWakeCtrlParm, 0);
}
#endif /* CONFIG_GTK_OL */
if (pregistrypriv->default_patterns_en == false) {
SET_H2CCMD_REMOTE_WAKE_CTRL_FW_UNICAST_EN(
u1H2CRemoteWakeCtrlParm, enable);
/*
* filter NetBios name service pkt to avoid being waked-up
* by this kind of unicast pkt this exceptional modification
* is used for match competitor's behavior
*/
SET_H2CCMD_REMOTE_WAKE_CTRL_NBNS_FILTER_EN(
u1H2CRemoteWakeCtrlParm, enable);
}
if ((psecuritypriv->dot11PrivacyAlgrthm == _AES_) ||
(psecuritypriv->dot11PrivacyAlgrthm == _TKIP_) ||
(psecuritypriv->dot11PrivacyAlgrthm == _NO_PRIVACY_)) {
SET_H2CCMD_REMOTE_WAKE_CTRL_ARP_ACTION(
u1H2CRemoteWakeCtrlParm, 0);
} else {
SET_H2CCMD_REMOTE_WAKE_CTRL_ARP_ACTION(
u1H2CRemoteWakeCtrlParm, 1);
}
if (psecuritypriv->dot11PrivacyAlgrthm == _TKIP_) {
SET_H2CCMD_REMOTE_WAKE_CTRL_TKIP_OFFLOAD_EN(
u1H2CRemoteWakeCtrlParm, enable);
if (IS_HARDWARE_TYPE_8188E(adapter)) {
SET_H2CCMD_REMOTE_WAKE_CTRL_TKIP_OFFLOAD_EN(
u1H2CRemoteWakeCtrlParm, 0);
SET_H2CCMD_REMOTE_WAKE_CTRL_ARP_ACTION(
u1H2CRemoteWakeCtrlParm, 1);
}
}
SET_H2CCMD_REMOTE_WAKE_CTRL_FW_PARSING_UNTIL_WAKEUP(
u1H2CRemoteWakeCtrlParm, 1);
}
#ifdef CONFIG_PNO_SUPPORT
else {
SET_H2CCMD_REMOTE_WAKECTRL_ENABLE(
u1H2CRemoteWakeCtrlParm, enable);
SET_H2CCMD_REMOTE_WAKE_CTRL_NLO_OFFLOAD_EN(
u1H2CRemoteWakeCtrlParm, enable);
}
#endif
#ifdef CONFIG_P2P_WOWLAN
if (ppwrpriv->wowlan_p2p_mode) {
RTW_INFO("P2P OFFLOAD ENABLE\n");
SET_H2CCMD_REMOTE_WAKE_CTRL_P2P_OFFLAD_EN(u1H2CRemoteWakeCtrlParm, 1);
} else {
RTW_INFO("P2P OFFLOAD DISABLE\n");
SET_H2CCMD_REMOTE_WAKE_CTRL_P2P_OFFLAD_EN(u1H2CRemoteWakeCtrlParm, 0);
}
#endif /* CONFIG_P2P_WOWLAN */
ret = rtw_hal_fill_h2c_cmd(adapter,
H2C_REMOTE_WAKE_CTRL,
H2C_REMOTE_WAKE_CTRL_LEN,
u1H2CRemoteWakeCtrlParm);
return ret;
}
static u8 rtw_hal_set_global_info_cmd(_adapter *adapter, u8 group_alg, u8 pairwise_alg)
{
struct hal_ops *pHalFunc = &adapter->hal_func;
u8 ret = _FAIL;
u8 u1H2CAOACGlobalInfoParm[H2C_AOAC_GLOBAL_INFO_LEN] = {0};
RTW_INFO("%s(): group_alg=%d pairwise_alg=%d\n",
__func__, group_alg, pairwise_alg);
SET_H2CCMD_AOAC_GLOBAL_INFO_PAIRWISE_ENC_ALG(u1H2CAOACGlobalInfoParm,
pairwise_alg);
SET_H2CCMD_AOAC_GLOBAL_INFO_GROUP_ENC_ALG(u1H2CAOACGlobalInfoParm,
group_alg);
ret = rtw_hal_fill_h2c_cmd(adapter,
H2C_AOAC_GLOBAL_INFO,
H2C_AOAC_GLOBAL_INFO_LEN,
u1H2CAOACGlobalInfoParm);
return ret;
}
#ifdef CONFIG_PNO_SUPPORT
static u8 rtw_hal_set_scan_offload_info_cmd(_adapter *adapter,
PRSVDPAGE_LOC rsvdpageloc, u8 enable)
{
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
struct hal_ops *pHalFunc = &adapter->hal_func;
u8 u1H2CScanOffloadInfoParm[H2C_SCAN_OFFLOAD_CTRL_LEN] = {0};
u8 res = 0, count = 0, ret = _FAIL;
RTW_INFO("%s: loc_probe_packet:%d, loc_scan_info: %d loc_ssid_info:%d\n",
__func__, rsvdpageloc->LocProbePacket,
rsvdpageloc->LocScanInfo, rsvdpageloc->LocSSIDInfo);
SET_H2CCMD_AOAC_NLO_FUN_EN(u1H2CScanOffloadInfoParm, enable);
SET_H2CCMD_AOAC_NLO_IPS_EN(u1H2CScanOffloadInfoParm, enable);
SET_H2CCMD_AOAC_RSVDPAGE_LOC_SCAN_INFO(u1H2CScanOffloadInfoParm,
rsvdpageloc->LocScanInfo);
SET_H2CCMD_AOAC_RSVDPAGE_LOC_PROBE_PACKET(u1H2CScanOffloadInfoParm,
rsvdpageloc->LocProbePacket);
/*
SET_H2CCMD_AOAC_RSVDPAGE_LOC_SSID_INFO(u1H2CScanOffloadInfoParm,
rsvdpageloc->LocSSIDInfo);
*/
ret = rtw_hal_fill_h2c_cmd(adapter,
H2C_D0_SCAN_OFFLOAD_INFO,
H2C_SCAN_OFFLOAD_CTRL_LEN,
u1H2CScanOffloadInfoParm);
return ret;
}
#endif /* CONFIG_PNO_SUPPORT */
void rtw_hal_set_fw_wow_related_cmd(_adapter *padapter, u8 enable)
{
struct security_priv *psecpriv = &padapter->securitypriv;
struct pwrctrl_priv *ppwrpriv = adapter_to_pwrctl(padapter);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct sta_info *psta = NULL;
u16 media_status_rpt;
u8 pkt_type = 0;
u8 ret = _SUCCESS;
RTW_PRINT("+%s()+: enable=%d\n", __func__, enable);
rtw_hal_set_wowlan_ctrl_cmd(padapter, enable, false);
if (enable) {
rtw_hal_set_global_info_cmd(padapter,
psecpriv->dot118021XGrpPrivacy,
psecpriv->dot11PrivacyAlgrthm);
if (!(ppwrpriv->wowlan_pno_enable)) {
rtw_hal_set_disconnect_decision_cmd(padapter, enable);
#ifdef CONFIG_ARP_KEEP_ALIVE
if ((psecpriv->dot11PrivacyAlgrthm == _WEP40_) ||
(psecpriv->dot11PrivacyAlgrthm == _WEP104_))
pkt_type = 0;
else
pkt_type = 1;
#else
pkt_type = 0;
#endif /* CONFIG_ARP_KEEP_ALIVE */
rtw_hal_set_keep_alive_cmd(padapter, enable, pkt_type);
}
rtw_hal_set_remote_wake_ctrl_cmd(padapter, enable);
#ifdef CONFIG_PNO_SUPPORT
rtw_hal_check_pno_enabled(padapter);
#endif /* CONFIG_PNO_SUPPORT */
} else {
rtw_hal_set_remote_wake_ctrl_cmd(padapter, enable);
}
RTW_PRINT("-%s()-\n", __func__);
}
#endif /* CONFIG_WOWLAN */
#ifdef CONFIG_AP_WOWLAN
static u8 rtw_hal_set_ap_wowlan_ctrl_cmd(_adapter *adapter, u8 enable)
{
struct security_priv *psecpriv = &adapter->securitypriv;
struct pwrctrl_priv *ppwrpriv = adapter_to_pwrctl(adapter);
struct hal_ops *pHalFunc = &adapter->hal_func;
u8 u1H2CAPWoWlanCtrlParm[H2C_AP_WOW_GPIO_CTRL_LEN] = {0};
u8 gpionum = 0, gpio_dur = 0;
u8 gpio_pulse = enable;
u8 sdio_wakeup_enable = 1;
u8 gpio_high_active = 0;
u8 ret = _FAIL;
#ifdef CONFIG_GPIO_WAKEUP
gpio_high_active = ppwrpriv->is_high_active;
gpionum = WAKEUP_GPIO_IDX;
sdio_wakeup_enable = 0;
#endif /*CONFIG_GPIO_WAKEUP*/
RTW_INFO("%s(): enable=%d\n", __func__, enable);
SET_H2CCMD_AP_WOW_GPIO_CTRL_INDEX(u1H2CAPWoWlanCtrlParm,
gpionum);
SET_H2CCMD_AP_WOW_GPIO_CTRL_PLUS(u1H2CAPWoWlanCtrlParm,
gpio_pulse);
SET_H2CCMD_AP_WOW_GPIO_CTRL_HIGH_ACTIVE(u1H2CAPWoWlanCtrlParm,
gpio_high_active);
SET_H2CCMD_AP_WOW_GPIO_CTRL_EN(u1H2CAPWoWlanCtrlParm,
enable);
SET_H2CCMD_AP_WOW_GPIO_CTRL_DURATION(u1H2CAPWoWlanCtrlParm,
gpio_dur);
ret = rtw_hal_fill_h2c_cmd(adapter,
H2C_AP_WOW_GPIO_CTRL,
H2C_AP_WOW_GPIO_CTRL_LEN,
u1H2CAPWoWlanCtrlParm);
return ret;
}
static u8 rtw_hal_set_ap_offload_ctrl_cmd(_adapter *adapter, u8 enable)
{
struct hal_ops *pHalFunc = &adapter->hal_func;
u8 u1H2CAPOffloadCtrlParm[H2C_WOWLAN_LEN] = {0};
u8 ret = _FAIL;
RTW_INFO("%s(): bFuncEn=%d\n", __func__, enable);
SET_H2CCMD_AP_WOWLAN_EN(u1H2CAPOffloadCtrlParm, enable);
ret = rtw_hal_fill_h2c_cmd(adapter,
H2C_AP_OFFLOAD,
H2C_AP_OFFLOAD_LEN,
u1H2CAPOffloadCtrlParm);
return ret;
}
static u8 rtw_hal_set_ap_ps_cmd(_adapter *adapter, u8 enable)
{
struct hal_ops *pHalFunc = &adapter->hal_func;
u8 ap_ps_parm[H2C_AP_PS_LEN] = {0};
u8 ret = _FAIL;
RTW_INFO("%s(): enable=%d\n" , __func__ , enable);
SET_H2CCMD_AP_WOW_PS_EN(ap_ps_parm, enable);
SET_H2CCMD_AP_WOW_PS_32K_EN(ap_ps_parm, enable);
SET_H2CCMD_AP_WOW_PS_RF(ap_ps_parm, enable);
if (enable)
SET_H2CCMD_AP_WOW_PS_DURATION(ap_ps_parm, 0x32);
else
SET_H2CCMD_AP_WOW_PS_DURATION(ap_ps_parm, 0x0);
ret = rtw_hal_fill_h2c_cmd(adapter, H2C_SAP_PS_,
H2C_AP_PS_LEN, ap_ps_parm);
return ret;
}
static void rtw_hal_set_ap_rsvdpage_loc_cmd(PADAPTER padapter,
PRSVDPAGE_LOC rsvdpageloc)
{
struct hal_ops *pHalFunc = &padapter->hal_func;
u8 rsvdparm[H2C_AOAC_RSVDPAGE_LOC_LEN] = {0};
u8 ret = _FAIL, header = 0;
if (pHalFunc->fill_h2c_cmd == NULL) {
RTW_INFO("%s: Please hook fill_h2c_cmd first!\n", __func__);
return;
}
header = rtw_read8(padapter, REG_BCNQ_BDNY);
RTW_INFO("%s: beacon: %d, probeRsp: %d, header:0x%02x\n", __func__,
rsvdpageloc->LocApOffloadBCN,
rsvdpageloc->LocProbeRsp,
header);
SET_H2CCMD_AP_WOWLAN_RSVDPAGE_LOC_BCN(rsvdparm,
rsvdpageloc->LocApOffloadBCN + header);
ret = rtw_hal_fill_h2c_cmd(padapter, H2C_BCN_RSVDPAGE,
H2C_BCN_RSVDPAGE_LEN, rsvdparm);
if (ret == _FAIL)
RTW_INFO("%s: H2C_BCN_RSVDPAGE cmd fail\n", __func__);
rtw_msleep_os(10);
memset(&rsvdparm, 0, sizeof(rsvdparm));
SET_H2CCMD_AP_WOWLAN_RSVDPAGE_LOC_ProbeRsp(rsvdparm,
rsvdpageloc->LocProbeRsp + header);
ret = rtw_hal_fill_h2c_cmd(padapter, H2C_PROBERSP_RSVDPAGE,
H2C_PROBERSP_RSVDPAGE_LEN, rsvdparm);
if (ret == _FAIL)
RTW_INFO("%s: H2C_PROBERSP_RSVDPAGE cmd fail\n", __func__);
rtw_msleep_os(10);
}
static void rtw_hal_set_fw_ap_wow_related_cmd(_adapter *padapter, u8 enable)
{
rtw_hal_set_ap_offload_ctrl_cmd(padapter, enable);
rtw_hal_set_ap_wowlan_ctrl_cmd(padapter, enable);
rtw_hal_set_ap_ps_cmd(padapter, enable);
}
static void rtw_hal_ap_wow_enable(_adapter *padapter)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
struct security_priv *psecuritypriv = &padapter->securitypriv;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct hal_ops *pHalFunc = &padapter->hal_func;
struct sta_info *psta = NULL;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
#ifdef DBG_CHECK_FW_PS_STATE
struct dvobj_priv *psdpriv = padapter->dvobj;
struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
#endif /*DBG_CHECK_FW_PS_STATE*/
int res;
u16 media_status_rpt;
RTW_INFO("%s, WOWLAN_AP_ENABLE\n", __func__);
#ifdef DBG_CHECK_FW_PS_STATE
if (rtw_fw_ps_state(padapter) == _FAIL) {
pdbgpriv->dbg_enwow_dload_fw_fail_cnt++;
RTW_PRINT("wowlan enable no leave 32k\n");
}
#endif /*DBG_CHECK_FW_PS_STATE*/
/* 1. Download WOWLAN FW*/
rtw_hal_fw_dl(padapter, true);
media_status_rpt = RT_MEDIA_CONNECT;
rtw_hal_set_hwreg(padapter, HW_VAR_H2C_FW_JOINBSSRPT,
(u8 *)&media_status_rpt);
issue_beacon(padapter, 0);
rtw_msleep_os(2);
if (IS_HARDWARE_TYPE_8188E(padapter))
rtw_hal_disable_tx_report(padapter);
/* RX DMA stop */
res = rtw_hal_pause_rx_dma(padapter);
if (res == _FAIL)
RTW_PRINT("[WARNING] pause RX DMA fail\n");
/* 5. Set Enable WOWLAN H2C command. */
RTW_PRINT("Set Enable AP WOWLan cmd\n");
rtw_hal_set_fw_ap_wow_related_cmd(padapter, 1);
rtw_write8(padapter, REG_MCUTST_WOWLAN, 0);
rtw_mi_intf_stop(padapter);
/* Invoid SE0 reset signal during suspending*/
rtw_write8(padapter, REG_RSV_CTRL, 0x20);
if (IS_8188F(pHalData->version_id) == false)
rtw_write8(padapter, REG_RSV_CTRL, 0x60);
}
static void rtw_hal_ap_wow_disable(_adapter *padapter)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
struct hal_ops *pHalFunc = &padapter->hal_func;
#ifdef DBG_CHECK_FW_PS_STATE
struct dvobj_priv *psdpriv = padapter->dvobj;
struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
#endif /*DBG_CHECK_FW_PS_STATE*/
u16 media_status_rpt;
u8 val8;
RTW_INFO("%s, WOWLAN_AP_DISABLE\n", __func__);
/* 1. Read wakeup reason*/
pwrctl->wowlan_wake_reason = rtw_read8(padapter, REG_MCUTST_WOWLAN);
RTW_PRINT("wakeup_reason: 0x%02x\n",
pwrctl->wowlan_wake_reason);
rtw_hal_set_fw_ap_wow_related_cmd(padapter, 0);
rtw_msleep_os(2);
#ifdef DBG_CHECK_FW_PS_STATE
if (rtw_fw_ps_state(padapter) == _FAIL) {
pdbgpriv->dbg_diswow_dload_fw_fail_cnt++;
RTW_PRINT("wowlan enable no leave 32k\n");
}
#endif /*DBG_CHECK_FW_PS_STATE*/
if (IS_HARDWARE_TYPE_8188E(padapter))
rtw_hal_enable_tx_report(padapter);
rtw_hal_force_enable_rxdma(padapter);
rtw_hal_fw_dl(padapter, false);
#ifdef CONFIG_GPIO_WAKEUP
val8 = (pwrctl->is_high_active == 0) ? 1 : 0;
RTW_PRINT("Set Wake GPIO to default(%d).\n", val8);
rtw_hal_set_output_gpio(padapter, WAKEUP_GPIO_IDX, val8);
rtw_hal_switch_gpio_wl_ctrl(padapter, WAKEUP_GPIO_IDX, false);
#endif
media_status_rpt = RT_MEDIA_CONNECT;
rtw_hal_set_hwreg(padapter, HW_VAR_H2C_FW_JOINBSSRPT,
(u8 *)&media_status_rpt);
issue_beacon(padapter, 0);
}
#endif /*CONFIG_AP_WOWLAN*/
#ifdef CONFIG_P2P_WOWLAN
static int update_hidden_ssid(u8 *ies, u32 ies_len, u8 hidden_ssid_mode)
{
u8 *ssid_ie;
sint ssid_len_ori;
int len_diff = 0;
ssid_ie = rtw_get_ie(ies, WLAN_EID_SSID, &ssid_len_ori, ies_len);
/* RTW_INFO("%s hidden_ssid_mode:%u, ssid_ie:%p, ssid_len_ori:%d\n", __func__, hidden_ssid_mode, ssid_ie, ssid_len_ori); */
if (ssid_ie && ssid_len_ori > 0) {
switch (hidden_ssid_mode) {
case 1: {
u8 *next_ie = ssid_ie + 2 + ssid_len_ori;
u32 remain_len = 0;
remain_len = ies_len - (next_ie - ies);
ssid_ie[1] = 0;
memcpy(ssid_ie + 2, next_ie, remain_len);
len_diff -= ssid_len_ori;
break;
}
case 2:
memset(&ssid_ie[2], 0, ssid_len_ori);
break;
default:
break;
}
}
return len_diff;
}
static void rtw_hal_construct_P2PBeacon(_adapter *padapter, u8 *pframe, u32 *pLength)
{
/* struct xmit_frame *pmgntframe; */
/* struct pkt_attrib *pattrib; */
/* unsigned char *pframe; */
struct rtw_ieee80211_hdr *pwlanhdr;
__le16 *fctrl;
unsigned int rate_len;
struct xmit_priv *pxmitpriv = &(padapter->xmitpriv);
u32 pktlen;
/* #if defined (CONFIG_AP_MODE) && defined (CONFIG_NATIVEAP_MLME) */
/* unsigned long irqL;
* struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
* #endif */ /* #if defined (CONFIG_AP_MODE) && defined (CONFIG_NATIVEAP_MLME) */
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network);
u8 bc_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
#ifdef CONFIG_P2P
struct wifidirect_info *pwdinfo = &(padapter->wdinfo);
#endif /* CONFIG_P2P */
/* for debug */
u8 *dbgbuf = pframe;
u8 dbgbufLen = 0, index = 0;
RTW_INFO("%s\n", __func__);
/* #if defined (CONFIG_AP_MODE) && defined (CONFIG_NATIVEAP_MLME) */
/* _enter_critical_bh(&pmlmepriv->bcn_update_lock, &irqL);
* #endif */ /* #if defined (CONFIG_AP_MODE) && defined (CONFIG_NATIVEAP_MLME) */
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
fctrl = &(pwlanhdr->frame_ctl);
*(fctrl) = 0;
memcpy(pwlanhdr->addr1, bc_addr, ETH_ALEN);
memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN);
memcpy(pwlanhdr->addr3, get_my_bssid(cur_network), ETH_ALEN);
SetSeqNum(pwlanhdr, 0/*pmlmeext->mgnt_seq*/);
/* pmlmeext->mgnt_seq++; */
set_frame_sub_type(pframe, WIFI_BEACON);
pframe += sizeof(struct rtw_ieee80211_hdr_3addr);
pktlen = sizeof(struct rtw_ieee80211_hdr_3addr);
if ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE) {
/* RTW_INFO("ie len=%d\n", cur_network->IELength); */
#ifdef CONFIG_P2P
/* for P2P : Primary Device Type & Device Name */
u32 wpsielen = 0, insert_len = 0;
u8 *wpsie = NULL;
wpsie = rtw_get_wps_ie(cur_network->IEs + _FIXED_IE_LENGTH_, cur_network->IELength - _FIXED_IE_LENGTH_, NULL, &wpsielen);
if (rtw_p2p_chk_role(pwdinfo, P2P_ROLE_GO) && wpsie && wpsielen > 0) {
uint wps_offset, remainder_ielen;
u8 *premainder_ie, *pframe_wscie;
wps_offset = (uint)(wpsie - cur_network->IEs);
premainder_ie = wpsie + wpsielen;
remainder_ielen = cur_network->IELength - wps_offset - wpsielen;
#ifdef CONFIG_IOCTL_CFG80211
if (pwdinfo->driver_interface == DRIVER_CFG80211) {
if (pmlmepriv->wps_beacon_ie && pmlmepriv->wps_beacon_ie_len > 0) {
memcpy(pframe, cur_network->IEs, wps_offset);
pframe += wps_offset;
pktlen += wps_offset;
memcpy(pframe, pmlmepriv->wps_beacon_ie, pmlmepriv->wps_beacon_ie_len);
pframe += pmlmepriv->wps_beacon_ie_len;
pktlen += pmlmepriv->wps_beacon_ie_len;
/* copy remainder_ie to pframe */
memcpy(pframe, premainder_ie, remainder_ielen);
pframe += remainder_ielen;
pktlen += remainder_ielen;
} else {
memcpy(pframe, cur_network->IEs, cur_network->IELength);
pframe += cur_network->IELength;
pktlen += cur_network->IELength;
}
} else
#endif /* CONFIG_IOCTL_CFG80211 */
{
pframe_wscie = pframe + wps_offset;
memcpy(pframe, cur_network->IEs, wps_offset + wpsielen);
pframe += (wps_offset + wpsielen);
pktlen += (wps_offset + wpsielen);
/* now pframe is end of wsc ie, insert Primary Device Type & Device Name */
/* Primary Device Type */
/* Type: */
*(u16 *)(pframe + insert_len) = cpu_to_be16(WPS_ATTR_PRIMARY_DEV_TYPE);
insert_len += 2;
/* Length: */
*(u16 *)(pframe + insert_len) = cpu_to_be16(0x0008);
insert_len += 2;
/* Value: */
/* Category ID */
*(u16 *)(pframe + insert_len) = cpu_to_be16(WPS_PDT_CID_MULIT_MEDIA);
insert_len += 2;
/* OUI */
*(u32 *)(pframe + insert_len) = cpu_to_be32(WPSOUI);
insert_len += 4;
/* Sub Category ID */
*(u16 *)(pframe + insert_len) = cpu_to_be16(WPS_PDT_SCID_MEDIA_SERVER);
insert_len += 2;
/* Device Name */
/* Type: */
*(u16 *)(pframe + insert_len) = cpu_to_be16(WPS_ATTR_DEVICE_NAME);
insert_len += 2;
/* Length: */
*(u16 *)(pframe + insert_len) = cpu_to_be16(pwdinfo->device_name_len);
insert_len += 2;
/* Value: */
memcpy(pframe + insert_len, pwdinfo->device_name, pwdinfo->device_name_len);
insert_len += pwdinfo->device_name_len;
/* update wsc ie length */
*(pframe_wscie + 1) = (wpsielen - 2) + insert_len;
/* pframe move to end */
pframe += insert_len;
pktlen += insert_len;
/* copy remainder_ie to pframe */
memcpy(pframe, premainder_ie, remainder_ielen);
pframe += remainder_ielen;
pktlen += remainder_ielen;
}
} else
#endif /* CONFIG_P2P */
{
int len_diff;
memcpy(pframe, cur_network->IEs, cur_network->IELength);
len_diff = update_hidden_ssid(
pframe + _BEACON_IE_OFFSET_
, cur_network->IELength - _BEACON_IE_OFFSET_
, pmlmeinfo->hidden_ssid_mode
);
pframe += (cur_network->IELength + len_diff);
pktlen += (cur_network->IELength + len_diff);
}
#ifdef CONFIG_P2P
if (rtw_p2p_chk_role(pwdinfo, P2P_ROLE_GO)) {
u32 len;
#ifdef CONFIG_IOCTL_CFG80211
if (pwdinfo->driver_interface == DRIVER_CFG80211) {
len = pmlmepriv->p2p_beacon_ie_len;
if (pmlmepriv->p2p_beacon_ie && len > 0)
memcpy(pframe, pmlmepriv->p2p_beacon_ie, len);
} else
#endif /* CONFIG_IOCTL_CFG80211 */
{
len = build_beacon_p2p_ie(pwdinfo, pframe);
}
pframe += len;
pktlen += len;
#ifdef CONFIG_WFD
len = rtw_append_beacon_wfd_ie(padapter, pframe);
pframe += len;
pktlen += len;
#endif
}
#endif /* CONFIG_P2P */
goto _issue_bcn;
}
/* below for ad-hoc mode */
/* timestamp will be inserted by hardware */
pframe += 8;
pktlen += 8;
/* beacon interval: 2 bytes */
memcpy(pframe, (unsigned char *)(rtw_get_beacon_interval_from_ie(cur_network->IEs)), 2);
pframe += 2;
pktlen += 2;
/* capability info: 2 bytes */
memcpy(pframe, (unsigned char *)(rtw_get_capability_from_ie(cur_network->IEs)), 2);
pframe += 2;
pktlen += 2;
/* SSID */
pframe = rtw_set_ie(pframe, _SSID_IE_, cur_network->Ssid.SsidLength, cur_network->Ssid.Ssid, &pktlen);
/* supported rates... */
rate_len = rtw_get_rateset_len(cur_network->SupportedRates);
pframe = rtw_set_ie(pframe, _SUPPORTEDRATES_IE_, ((rate_len > 8) ? 8 : rate_len), cur_network->SupportedRates, &pktlen);
/* DS parameter set */
pframe = rtw_set_ie(pframe, _DSSET_IE_, 1, (unsigned char *)&(cur_network->Configuration.DSConfig), &pktlen);
/* if( (pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) */
{
u8 erpinfo = 0;
u32 ATIMWindow;
/* IBSS Parameter Set... */
/* ATIMWindow = cur->Configuration.ATIMWindow; */
ATIMWindow = 0;
pframe = rtw_set_ie(pframe, _IBSS_PARA_IE_, 2, (unsigned char *)(&ATIMWindow), &pktlen);
/* ERP IE */
pframe = rtw_set_ie(pframe, _ERPINFO_IE_, 1, &erpinfo, &pktlen);
}
/* EXTERNDED SUPPORTED RATE */
if (rate_len > 8)
pframe = rtw_set_ie(pframe, _EXT_SUPPORTEDRATES_IE_, (rate_len - 8), (cur_network->SupportedRates + 8), &pktlen);
/* todo:HT for adhoc */
_issue_bcn:
/* #if defined (CONFIG_AP_MODE) && defined (CONFIG_NATIVEAP_MLME) */
/* pmlmepriv->update_bcn = false;
*
* _exit_critical_bh(&pmlmepriv->bcn_update_lock, &irqL);
* #endif */ /* #if defined (CONFIG_AP_MODE) && defined (CONFIG_NATIVEAP_MLME) */
*pLength = pktlen;
}
static int get_reg_classes_full_count(struct p2p_channels channel_list)
{
int cnt = 0;
int i;
for (i = 0; i < channel_list.reg_classes; i++)
cnt += channel_list.reg_class[i].channels;
return cnt;
}
static void rtw_hal_construct_P2PProbeRsp(_adapter *padapter, u8 *pframe, u32 *pLength)
{
/* struct xmit_frame *pmgntframe; */
/* struct pkt_attrib *pattrib; */
/* unsigned char *pframe; */
struct rtw_ieee80211_hdr *pwlanhdr;
__le16 *fctrl;
unsigned char *mac;
struct xmit_priv *pxmitpriv = &(padapter->xmitpriv);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
/* WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network); */
u16 beacon_interval = 100;
u16 capInfo = 0;
struct wifidirect_info *pwdinfo = &(padapter->wdinfo);
u8 wpsie[255] = { 0x00 };
u32 wpsielen = 0, p2pielen = 0;
u32 pktlen;
#ifdef CONFIG_WFD
u32 wfdielen = 0;
#endif
#ifdef CONFIG_INTEL_WIDI
u8 zero_array_check[L2SDTA_SERVICE_VE_LEN] = { 0x00 };
#endif /* CONFIG_INTEL_WIDI */
/* for debug */
u8 *dbgbuf = pframe;
u8 dbgbufLen = 0, index = 0;
RTW_INFO("%s\n", __func__);
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
mac = adapter_mac_addr(padapter);
fctrl = &(pwlanhdr->frame_ctl);
*(fctrl) = 0;
/* DA filled by FW */
memset(pwlanhdr->addr1, 0, ETH_ALEN);
memcpy(pwlanhdr->addr2, mac, ETH_ALEN);
/* Use the device address for BSSID field. */
memcpy(pwlanhdr->addr3, mac, ETH_ALEN);
SetSeqNum(pwlanhdr, 0);
set_frame_sub_type(fctrl, WIFI_PROBERSP);
pktlen = sizeof(struct rtw_ieee80211_hdr_3addr);
pframe += pktlen;
/* timestamp will be inserted by hardware */
pframe += 8;
pktlen += 8;
/* beacon interval: 2 bytes */
memcpy(pframe, (unsigned char *) &beacon_interval, 2);
pframe += 2;
pktlen += 2;
/* capability info: 2 bytes */
/* ESS and IBSS bits must be 0 (defined in the 3.1.2.1.1 of WiFi Direct Spec) */
capInfo |= cap_ShortPremble;
capInfo |= cap_ShortSlot;
memcpy(pframe, (unsigned char *) &capInfo, 2);
pframe += 2;
pktlen += 2;
/* SSID */
pframe = rtw_set_ie(pframe, _SSID_IE_, 7, pwdinfo->p2p_wildcard_ssid, &pktlen);
/* supported rates... */
/* Use the OFDM rate in the P2P probe response frame. ( 6(B), 9(B), 12, 18, 24, 36, 48, 54 ) */
pframe = rtw_set_ie(pframe, _SUPPORTEDRATES_IE_, 8, pwdinfo->support_rate, &pktlen);
/* DS parameter set */
pframe = rtw_set_ie(pframe, _DSSET_IE_, 1, (unsigned char *)&pwdinfo->listen_channel, &pktlen);
#ifdef CONFIG_IOCTL_CFG80211
if (pwdinfo->driver_interface == DRIVER_CFG80211) {
if (pmlmepriv->wps_probe_resp_ie != NULL && pmlmepriv->p2p_probe_resp_ie != NULL) {
/* WPS IE */
memcpy(pframe, pmlmepriv->wps_probe_resp_ie, pmlmepriv->wps_probe_resp_ie_len);
pktlen += pmlmepriv->wps_probe_resp_ie_len;
pframe += pmlmepriv->wps_probe_resp_ie_len;
/* P2P IE */
memcpy(pframe, pmlmepriv->p2p_probe_resp_ie, pmlmepriv->p2p_probe_resp_ie_len);
pktlen += pmlmepriv->p2p_probe_resp_ie_len;
pframe += pmlmepriv->p2p_probe_resp_ie_len;
}
} else
#endif /* CONFIG_IOCTL_CFG80211 */
{
/* Todo: WPS IE */
/* Noted by Albert 20100907 */
/* According to the WPS specification, all the WPS attribute is presented by Big Endian. */
wpsielen = 0;
/* WPS OUI */
*(u32 *)(wpsie) = cpu_to_be32(WPSOUI);
wpsielen += 4;
/* WPS version */
/* Type: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_ATTR_VER1);
wpsielen += 2;
/* Length: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(0x0001);
wpsielen += 2;
/* Value: */
wpsie[wpsielen++] = WPS_VERSION_1; /* Version 1.0 */
#ifdef CONFIG_INTEL_WIDI
/* Commented by Kurt */
/* Appended WiDi info. only if we did issued_probereq_widi(), and then we saved ven. ext. in pmlmepriv->sa_ext. */
if (!memcmp(pmlmepriv->sa_ext, zero_array_check, L2SDTA_SERVICE_VE_LEN) == false
|| pmlmepriv->num_p2p_sdt != 0) {
/* Sec dev type */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_ATTR_SEC_DEV_TYPE_LIST);
wpsielen += 2;
/* Length: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(0x0008);
wpsielen += 2;
/* Value: */
/* Category ID */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_PDT_CID_DISPLAYS);
wpsielen += 2;
/* OUI */
*(u32 *)(wpsie + wpsielen) = cpu_to_be32(INTEL_DEV_TYPE_OUI);
wpsielen += 4;
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_PDT_SCID_WIDI_CONSUMER_SINK);
wpsielen += 2;
if (!memcmp(pmlmepriv->sa_ext, zero_array_check, L2SDTA_SERVICE_VE_LEN) == false) {
/* Vendor Extension */
memcpy(wpsie + wpsielen, pmlmepriv->sa_ext, L2SDTA_SERVICE_VE_LEN);
wpsielen += L2SDTA_SERVICE_VE_LEN;
}
}
#endif /* CONFIG_INTEL_WIDI */
/* WiFi Simple Config State */
/* Type: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_ATTR_SIMPLE_CONF_STATE);
wpsielen += 2;
/* Length: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(0x0001);
wpsielen += 2;
/* Value: */
wpsie[wpsielen++] = WPS_WSC_STATE_NOT_CONFIG; /* Not Configured. */
/* Response Type */
/* Type: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_ATTR_RESP_TYPE);
wpsielen += 2;
/* Length: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(0x0001);
wpsielen += 2;
/* Value: */
wpsie[wpsielen++] = WPS_RESPONSE_TYPE_8021X;
/* UUID-E */
/* Type: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_ATTR_UUID_E);
wpsielen += 2;
/* Length: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(0x0010);
wpsielen += 2;
/* Value: */
if (pwdinfo->external_uuid == 0) {
memset(wpsie + wpsielen, 0x0, 16);
memcpy(wpsie + wpsielen, mac, ETH_ALEN);
} else
memcpy(wpsie + wpsielen, pwdinfo->uuid, 0x10);
wpsielen += 0x10;
/* Manufacturer */
/* Type: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_ATTR_MANUFACTURER);
wpsielen += 2;
/* Length: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(0x0007);
wpsielen += 2;
/* Value: */
memcpy(wpsie + wpsielen, "Realtek", 7);
wpsielen += 7;
/* Model Name */
/* Type: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_ATTR_MODEL_NAME);
wpsielen += 2;
/* Length: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(0x0006);
wpsielen += 2;
/* Value: */
memcpy(wpsie + wpsielen, "8192CU", 6);
wpsielen += 6;
/* Model Number */
/* Type: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_ATTR_MODEL_NUMBER);
wpsielen += 2;
/* Length: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(0x0001);
wpsielen += 2;
/* Value: */
wpsie[wpsielen++] = 0x31; /* character 1 */
/* Serial Number */
/* Type: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_ATTR_SERIAL_NUMBER);
wpsielen += 2;
/* Length: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(ETH_ALEN);
wpsielen += 2;
/* Value: */
memcpy(wpsie + wpsielen, "123456" , ETH_ALEN);
wpsielen += ETH_ALEN;
/* Primary Device Type */
/* Type: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_ATTR_PRIMARY_DEV_TYPE);
wpsielen += 2;
/* Length: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(0x0008);
wpsielen += 2;
/* Value: */
/* Category ID */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_PDT_CID_MULIT_MEDIA);
wpsielen += 2;
/* OUI */
*(u32 *)(wpsie + wpsielen) = cpu_to_be32(WPSOUI);
wpsielen += 4;
/* Sub Category ID */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_PDT_SCID_MEDIA_SERVER);
wpsielen += 2;
/* Device Name */
/* Type: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_ATTR_DEVICE_NAME);
wpsielen += 2;
/* Length: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(pwdinfo->device_name_len);
wpsielen += 2;
/* Value: */
memcpy(wpsie + wpsielen, pwdinfo->device_name, pwdinfo->device_name_len);
wpsielen += pwdinfo->device_name_len;
/* Config Method */
/* Type: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_ATTR_CONF_METHOD);
wpsielen += 2;
/* Length: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(0x0002);
wpsielen += 2;
/* Value: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(pwdinfo->supported_wps_cm);
wpsielen += 2;
pframe = rtw_set_ie(pframe, _VENDOR_SPECIFIC_IE_, wpsielen, (unsigned char *) wpsie, &pktlen);
p2pielen = build_probe_resp_p2p_ie(pwdinfo, pframe);
pframe += p2pielen;
pktlen += p2pielen;
}
#ifdef CONFIG_WFD
wfdielen = rtw_append_probe_resp_wfd_ie(padapter, pframe);
pframe += wfdielen;
pktlen += wfdielen;
#endif
*pLength = pktlen;
}
static void rtw_hal_construct_P2PNegoRsp(_adapter *padapter, u8 *pframe, u32 *pLength)
{
unsigned char category = RTW_WLAN_CATEGORY_PUBLIC;
u8 action = P2P_PUB_ACTION_ACTION;
u32 p2poui = cpu_to_be32(P2POUI);
u8 oui_subtype = P2P_GO_NEGO_RESP;
u8 wpsie[255] = { 0x00 }, p2pie[255] = { 0x00 };
u8 p2pielen = 0, i;
uint wpsielen = 0;
u16 wps_devicepassword_id = 0x0000;
uint wps_devicepassword_id_len = 0;
u8 channel_cnt_24g = 0, channel_cnt_5gl = 0, channel_cnt_5gh;
u16 len_channellist_attr = 0;
u32 pktlen;
u8 dialogToken = 0;
/* struct xmit_frame *pmgntframe; */
/* struct pkt_attrib *pattrib; */
/* unsigned char *pframe; */
struct rtw_ieee80211_hdr *pwlanhdr;
__le16 *fctrl;
struct xmit_priv *pxmitpriv = &(padapter->xmitpriv);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct wifidirect_info *pwdinfo = &(padapter->wdinfo);
/* WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network); */
#ifdef CONFIG_WFD
u32 wfdielen = 0;
#endif
/* for debug */
u8 *dbgbuf = pframe;
u8 dbgbufLen = 0, index = 0;
RTW_INFO("%s\n", __func__);
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
fctrl = &(pwlanhdr->frame_ctl);
*(fctrl) = 0;
/* RA, filled by FW */
memset(pwlanhdr->addr1, 0, ETH_ALEN);
memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN);
memcpy(pwlanhdr->addr3, adapter_mac_addr(padapter), ETH_ALEN);
SetSeqNum(pwlanhdr, 0);
set_frame_sub_type(pframe, WIFI_ACTION);
pktlen = sizeof(struct rtw_ieee80211_hdr_3addr);
pframe += pktlen;
pframe = rtw_set_fixed_ie(pframe, 1, &(category), &(pktlen));
pframe = rtw_set_fixed_ie(pframe, 1, &(action), &(pktlen));
pframe = rtw_set_fixed_ie(pframe, 4, (unsigned char *) &(p2poui), &(pktlen));
pframe = rtw_set_fixed_ie(pframe, 1, &(oui_subtype), &(pktlen));
/* dialog token, filled by FW */
pframe = rtw_set_fixed_ie(pframe, 1, &(dialogToken), &(pktlen));
memset(wpsie, 0x00, 255);
wpsielen = 0;
/* WPS Section */
wpsielen = 0;
/* WPS OUI */
*(u32 *)(wpsie) = cpu_to_be32(WPSOUI);
wpsielen += 4;
/* WPS version */
/* Type: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_ATTR_VER1);
wpsielen += 2;
/* Length: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(0x0001);
wpsielen += 2;
/* Value: */
wpsie[wpsielen++] = WPS_VERSION_1; /* Version 1.0 */
/* Device Password ID */
/* Type: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_ATTR_DEVICE_PWID);
wpsielen += 2;
/* Length: */
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(0x0002);
wpsielen += 2;
/* Value: */
if (wps_devicepassword_id == WPS_DPID_USER_SPEC)
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_DPID_REGISTRAR_SPEC);
else if (wps_devicepassword_id == WPS_DPID_REGISTRAR_SPEC)
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_DPID_USER_SPEC);
else
*(u16 *)(wpsie + wpsielen) = cpu_to_be16(WPS_DPID_PBC);
wpsielen += 2;
pframe = rtw_set_ie(pframe, _VENDOR_SPECIFIC_IE_, wpsielen, (unsigned char *) wpsie, &pktlen);
/* P2P IE Section. */
/* P2P OUI */
p2pielen = 0;
p2pie[p2pielen++] = 0x50;
p2pie[p2pielen++] = 0x6F;
p2pie[p2pielen++] = 0x9A;
p2pie[p2pielen++] = 0x09; /* WFA P2P v1.0 */
/* Commented by Albert 20100908 */
/* According to the P2P Specification, the group negoitation response frame should contain 9 P2P attributes */
/* 1. Status */
/* 2. P2P Capability */
/* 3. Group Owner Intent */
/* 4. Configuration Timeout */
/* 5. Operating Channel */
/* 6. Intended P2P Interface Address */
/* 7. Channel List */
/* 8. Device Info */
/* 9. Group ID ( Only GO ) */
/* ToDo: */
/* P2P Status */
/* Type: */
p2pie[p2pielen++] = P2P_ATTR_STATUS;
/* Length: */
*(u16 *)(p2pie + p2pielen) = cpu_to_le16(0x0001);
p2pielen += 2;
/* Value, filled by FW */
p2pie[p2pielen++] = 1;
/* P2P Capability */
/* Type: */
p2pie[p2pielen++] = P2P_ATTR_CAPABILITY;
/* Length: */
*(u16 *)(p2pie + p2pielen) = cpu_to_le16(0x0002);
p2pielen += 2;
/* Value: */
/* Device Capability Bitmap, 1 byte */
if (rtw_p2p_chk_role(pwdinfo, P2P_ROLE_CLIENT)) {
/* Commented by Albert 2011/03/08 */
/* According to the P2P specification */
/* if the sending device will be client, the P2P Capability should be reserved of group negotation response frame */
p2pie[p2pielen++] = 0;
} else {
/* Be group owner or meet the error case */
p2pie[p2pielen++] = DMP_P2P_DEVCAP_SUPPORT;
}
/* Group Capability Bitmap, 1 byte */
if (pwdinfo->persistent_supported)
p2pie[p2pielen++] = P2P_GRPCAP_CROSS_CONN | P2P_GRPCAP_PERSISTENT_GROUP;
else
p2pie[p2pielen++] = P2P_GRPCAP_CROSS_CONN;
/* Group Owner Intent */
/* Type: */
p2pie[p2pielen++] = P2P_ATTR_GO_INTENT;
/* Length: */
*(u16 *)(p2pie + p2pielen) = cpu_to_le16(0x0001);
p2pielen += 2;
/* Value: */
if (pwdinfo->peer_intent & 0x01) {
/* Peer's tie breaker bit is 1, our tie breaker bit should be 0 */
p2pie[p2pielen++] = (pwdinfo->intent << 1);
} else {
/* Peer's tie breaker bit is 0, our tie breaker bit should be 1 */
p2pie[p2pielen++] = ((pwdinfo->intent << 1) | BIT(0));
}
/* Configuration Timeout */
/* Type: */
p2pie[p2pielen++] = P2P_ATTR_CONF_TIMEOUT;
/* Length: */
*(u16 *)(p2pie + p2pielen) = cpu_to_le16(0x0002);
p2pielen += 2;
/* Value: */
p2pie[p2pielen++] = 200; /* 2 seconds needed to be the P2P GO */
p2pie[p2pielen++] = 200; /* 2 seconds needed to be the P2P Client */
/* Operating Channel */
/* Type: */
p2pie[p2pielen++] = P2P_ATTR_OPERATING_CH;
/* Length: */
*(u16 *)(p2pie + p2pielen) = cpu_to_le16(0x0005);
p2pielen += 2;
/* Value: */
/* Country String */
p2pie[p2pielen++] = 'X';
p2pie[p2pielen++] = 'X';
/* The third byte should be set to 0x04. */
/* Described in the "Operating Channel Attribute" section. */
p2pie[p2pielen++] = 0x04;
/* Operating Class */
if (pwdinfo->operating_channel <= 14) {
/* Operating Class */
p2pie[p2pielen++] = 0x51;
} else if ((pwdinfo->operating_channel >= 36) && (pwdinfo->operating_channel <= 48)) {
/* Operating Class */
p2pie[p2pielen++] = 0x73;
} else {
/* Operating Class */
p2pie[p2pielen++] = 0x7c;
}
/* Channel Number */
p2pie[p2pielen++] = pwdinfo->operating_channel; /* operating channel number */
/* Intended P2P Interface Address */
/* Type: */
p2pie[p2pielen++] = P2P_ATTR_INTENDED_IF_ADDR;
/* Length: */
*(u16 *)(p2pie + p2pielen) = cpu_to_le16(ETH_ALEN);
p2pielen += 2;
/* Value: */
memcpy(p2pie + p2pielen, adapter_mac_addr(padapter), ETH_ALEN);
p2pielen += ETH_ALEN;
/* Channel List */
/* Type: */
p2pie[p2pielen++] = P2P_ATTR_CH_LIST;
/* Country String(3) */
/* + ( Operating Class (1) + Number of Channels(1) ) * Operation Classes (?) */
/* + number of channels in all classes */
len_channellist_attr = 3
+ (1 + 1) * (u16)pmlmeext->channel_list.reg_classes
+ get_reg_classes_full_count(pmlmeext->channel_list);
#ifdef CONFIG_CONCURRENT_MODE
if (rtw_mi_buddy_check_fwstate(padapter, _FW_LINKED))
*(u16 *)(p2pie + p2pielen) = cpu_to_le16(5 + 1);
else
*(u16 *)(p2pie + p2pielen) = cpu_to_le16(len_channellist_attr);
#else
*(u16 *)(p2pie + p2pielen) = cpu_to_le16(len_channellist_attr);
#endif
p2pielen += 2;
/* Value: */
/* Country String */
p2pie[p2pielen++] = 'X';
p2pie[p2pielen++] = 'X';
/* The third byte should be set to 0x04. */
/* Described in the "Operating Channel Attribute" section. */
p2pie[p2pielen++] = 0x04;
/* Channel Entry List */
#ifdef CONFIG_CONCURRENT_MODE
if (rtw_mi_check_status(padapter, MI_LINKED)) {
u8 union_ch = rtw_mi_get_union_chan(padapter);
/* Operating Class */
if (union_ch > 14) {
if (union_ch >= 149)
p2pie[p2pielen++] = 0x7c;
else
p2pie[p2pielen++] = 0x73;
} else
p2pie[p2pielen++] = 0x51;
/* Number of Channels */
/* Just support 1 channel and this channel is AP's channel */
p2pie[p2pielen++] = 1;
/* Channel List */
p2pie[p2pielen++] = union_ch;
} else {
int i, j;
for (j = 0; j < pmlmeext->channel_list.reg_classes; j++) {
/* Operating Class */
p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].reg_class;
/* Number of Channels */
p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].channels;
/* Channel List */
for (i = 0; i < pmlmeext->channel_list.reg_class[j].channels; i++)
p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].channel[i];
}
}
#else /* CONFIG_CONCURRENT_MODE */
{
int i, j;
for (j = 0; j < pmlmeext->channel_list.reg_classes; j++) {
/* Operating Class */
p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].reg_class;
/* Number of Channels */
p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].channels;
/* Channel List */
for (i = 0; i < pmlmeext->channel_list.reg_class[j].channels; i++)
p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].channel[i];
}
}
#endif /* CONFIG_CONCURRENT_MODE */
/* Device Info */
/* Type: */
p2pie[p2pielen++] = P2P_ATTR_DEVICE_INFO;
/* Length: */
/* 21->P2P Device Address (6bytes) + Config Methods (2bytes) + Primary Device Type (8bytes) */
/* + NumofSecondDevType (1byte) + WPS Device Name ID field (2bytes) + WPS Device Name Len field (2bytes) */
*(u16 *)(p2pie + p2pielen) = cpu_to_le16(21 + pwdinfo->device_name_len);
p2pielen += 2;
/* Value: */
/* P2P Device Address */
memcpy(p2pie + p2pielen, adapter_mac_addr(padapter), ETH_ALEN);
p2pielen += ETH_ALEN;
/* Config Method */
/* This field should be big endian. Noted by P2P specification. */
*(u16 *)(p2pie + p2pielen) = cpu_to_be16(pwdinfo->supported_wps_cm);
p2pielen += 2;
/* Primary Device Type */
/* Category ID */
*(u16 *)(p2pie + p2pielen) = cpu_to_be16(WPS_PDT_CID_MULIT_MEDIA);
p2pielen += 2;
/* OUI */
*(u32 *)(p2pie + p2pielen) = cpu_to_be32(WPSOUI);
p2pielen += 4;
/* Sub Category ID */
*(u16 *)(p2pie + p2pielen) = cpu_to_be16(WPS_PDT_SCID_MEDIA_SERVER);
p2pielen += 2;
/* Number of Secondary Device Types */
p2pie[p2pielen++] = 0x00; /* No Secondary Device Type List */
/* Device Name */
/* Type: */
*(u16 *)(p2pie + p2pielen) = cpu_to_be16(WPS_ATTR_DEVICE_NAME);
p2pielen += 2;
/* Length: */
*(u16 *)(p2pie + p2pielen) = cpu_to_be16(pwdinfo->device_name_len);
p2pielen += 2;
/* Value: */
memcpy(p2pie + p2pielen, pwdinfo->device_name , pwdinfo->device_name_len);
p2pielen += pwdinfo->device_name_len;
if (rtw_p2p_chk_role(pwdinfo, P2P_ROLE_GO)) {
/* Group ID Attribute */
/* Type: */
p2pie[p2pielen++] = P2P_ATTR_GROUP_ID;
/* Length: */
*(u16 *)(p2pie + p2pielen) = cpu_to_le16(ETH_ALEN + pwdinfo->nego_ssidlen);
p2pielen += 2;
/* Value: */
/* p2P Device Address */
memcpy(p2pie + p2pielen , pwdinfo->device_addr, ETH_ALEN);
p2pielen += ETH_ALEN;
/* SSID */
memcpy(p2pie + p2pielen, pwdinfo->nego_ssid, pwdinfo->nego_ssidlen);
p2pielen += pwdinfo->nego_ssidlen;
}
pframe = rtw_set_ie(pframe, _VENDOR_SPECIFIC_IE_, p2pielen, (unsigned char *) p2pie, &pktlen);
#ifdef CONFIG_WFD
wfdielen = build_nego_resp_wfd_ie(pwdinfo, pframe);
pframe += wfdielen;
pktlen += wfdielen;
#endif
*pLength = pktlen;
}
static void rtw_hal_construct_P2PInviteRsp(_adapter *padapter, u8 *pframe, u32 *pLength)
{
unsigned char category = RTW_WLAN_CATEGORY_PUBLIC;
u8 action = P2P_PUB_ACTION_ACTION;
u32 p2poui = cpu_to_be32(P2POUI);
u8 oui_subtype = P2P_INVIT_RESP;
u8 p2pie[255] = { 0x00 };
u8 p2pielen = 0, i;
u8 channel_cnt_24g = 0, channel_cnt_5gl = 0, channel_cnt_5gh = 0;
u16 len_channellist_attr = 0;
u32 pktlen;
u8 dialogToken = 0;
#ifdef CONFIG_WFD
u32 wfdielen = 0;
#endif
/* struct xmit_frame *pmgntframe; */
/* struct pkt_attrib *pattrib; */
/* unsigned char *pframe; */
struct rtw_ieee80211_hdr *pwlanhdr;
__le16 *fctrl;
struct xmit_priv *pxmitpriv = &(padapter->xmitpriv);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct wifidirect_info *pwdinfo = &(padapter->wdinfo);
/* for debug */
u8 *dbgbuf = pframe;
u8 dbgbufLen = 0, index = 0;
RTW_INFO("%s\n", __func__);
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
fctrl = &(pwlanhdr->frame_ctl);
*(fctrl) = 0;
/* RA fill by FW */
memset(pwlanhdr->addr1, 0, ETH_ALEN);
memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN);
/* BSSID fill by FW */
memset(pwlanhdr->addr3, 0, ETH_ALEN);
SetSeqNum(pwlanhdr, 0);
set_frame_sub_type(pframe, WIFI_ACTION);
pframe += sizeof(struct rtw_ieee80211_hdr_3addr);
pktlen = sizeof(struct rtw_ieee80211_hdr_3addr);
pframe = rtw_set_fixed_ie(pframe, 1, &(category), &(pktlen));
pframe = rtw_set_fixed_ie(pframe, 1, &(action), &(pktlen));
pframe = rtw_set_fixed_ie(pframe, 4, (unsigned char *) &(p2poui), &(pktlen));
pframe = rtw_set_fixed_ie(pframe, 1, &(oui_subtype), &(pktlen));
/* dialog token, filled by FW */
pframe = rtw_set_fixed_ie(pframe, 1, &(dialogToken), &(pktlen));
/* P2P IE Section. */
/* P2P OUI */
p2pielen = 0;
p2pie[p2pielen++] = 0x50;
p2pie[p2pielen++] = 0x6F;
p2pie[p2pielen++] = 0x9A;
p2pie[p2pielen++] = 0x09; /* WFA P2P v1.0 */
/* Commented by Albert 20101005 */
/* According to the P2P Specification, the P2P Invitation response frame should contain 5 P2P attributes */
/* 1. Status */
/* 2. Configuration Timeout */
/* 3. Operating Channel ( Only GO ) */
/* 4. P2P Group BSSID ( Only GO ) */
/* 5. Channel List */
/* P2P Status */
/* Type: */
p2pie[p2pielen++] = P2P_ATTR_STATUS;
/* Length: */
*(u16 *)(p2pie + p2pielen) = cpu_to_le16(0x0001);
p2pielen += 2;
/* Value: filled by FW, defult value is FAIL INFO UNAVAILABLE */
p2pie[p2pielen++] = P2P_STATUS_FAIL_INFO_UNAVAILABLE;
/* Configuration Timeout */
/* Type: */
p2pie[p2pielen++] = P2P_ATTR_CONF_TIMEOUT;
/* Length: */
*(u16 *)(p2pie + p2pielen) = cpu_to_le16(0x0002);
p2pielen += 2;
/* Value: */
p2pie[p2pielen++] = 200; /* 2 seconds needed to be the P2P GO */
p2pie[p2pielen++] = 200; /* 2 seconds needed to be the P2P Client */
/* due to defult value is FAIL INFO UNAVAILABLE, so the following IE is not needed */
pframe = rtw_set_ie(pframe, _VENDOR_SPECIFIC_IE_, p2pielen, (unsigned char *) p2pie, &pktlen);
#ifdef CONFIG_WFD
wfdielen = build_invitation_resp_wfd_ie(pwdinfo, pframe);
pframe += wfdielen;
pktlen += wfdielen;
#endif
*pLength = pktlen;
}
static void rtw_hal_construct_P2PProvisionDisRsp(_adapter *padapter, u8 *pframe, u32 *pLength)
{
unsigned char category = RTW_WLAN_CATEGORY_PUBLIC;
u8 action = P2P_PUB_ACTION_ACTION;
u8 dialogToken = 0;
u32 p2poui = cpu_to_be32(P2POUI);
u8 oui_subtype = P2P_PROVISION_DISC_RESP;
u8 wpsie[100] = { 0x00 };
u8 wpsielen = 0;
u32 pktlen;
#ifdef CONFIG_WFD
u32 wfdielen = 0;
#endif
/* struct xmit_frame *pmgntframe; */
/* struct pkt_attrib *pattrib; */
/* unsigned char *pframe; */
struct rtw_ieee80211_hdr *pwlanhdr;
__le16 *fctrl;
struct xmit_priv *pxmitpriv = &(padapter->xmitpriv);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct wifidirect_info *pwdinfo = &(padapter->wdinfo);
/* for debug */
u8 *dbgbuf = pframe;
u8 dbgbufLen = 0, index = 0;
RTW_INFO("%s\n", __func__);
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
fctrl = &(pwlanhdr->frame_ctl);
*(fctrl) = 0;
/* RA filled by FW */
memset(pwlanhdr->addr1, 0, ETH_ALEN);
memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN);
memcpy(pwlanhdr->addr3, adapter_mac_addr(padapter), ETH_ALEN);
SetSeqNum(pwlanhdr, 0);
set_frame_sub_type(pframe, WIFI_ACTION);
pframe += sizeof(struct rtw_ieee80211_hdr_3addr);
pktlen = sizeof(struct rtw_ieee80211_hdr_3addr);
pframe = rtw_set_fixed_ie(pframe, 1, &(category), &(pktlen));
pframe = rtw_set_fixed_ie(pframe, 1, &(action), &(pktlen));
pframe = rtw_set_fixed_ie(pframe, 4, (unsigned char *) &(p2poui), &(pktlen));
pframe = rtw_set_fixed_ie(pframe, 1, &(oui_subtype), &(pktlen));
/* dialog token, filled by FW */
pframe = rtw_set_fixed_ie(pframe, 1, &(dialogToken), &(pktlen));
wpsielen = 0;
/* WPS OUI */
/* *(u32*) ( wpsie ) = cpu_to_be32( WPSOUI ); */
RTW_PUT_BE32(wpsie, WPSOUI);
wpsielen += 4;
/* Config Method */
/* Type: */
/* *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_CONF_METHOD ); */
RTW_PUT_BE16(wpsie + wpsielen, WPS_ATTR_CONF_METHOD);
wpsielen += 2;
/* Length: */
/* *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0002 ); */
RTW_PUT_BE16(wpsie + wpsielen, 0x0002);
wpsielen += 2;
/* Value: filled by FW, default value is PBC */
/* *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( config_method ); */
RTW_PUT_BE16(wpsie + wpsielen, WPS_CM_PUSH_BUTTON);
wpsielen += 2;
pframe = rtw_set_ie(pframe, _VENDOR_SPECIFIC_IE_, wpsielen, (unsigned char *) wpsie, &pktlen);
#ifdef CONFIG_WFD
wfdielen = build_provdisc_resp_wfd_ie(pwdinfo, pframe);
pframe += wfdielen;
pktlen += wfdielen;
#endif
*pLength = pktlen;
}
u8 rtw_hal_set_FwP2PRsvdPage_cmd(_adapter *adapter, PRSVDPAGE_LOC rsvdpageloc)
{
u8 u1H2CP2PRsvdPageParm[H2C_P2PRSVDPAGE_LOC_LEN] = {0};
struct hal_ops *pHalFunc = &adapter->hal_func;
u8 ret = _FAIL;
RTW_INFO("P2PRsvdPageLoc: P2PBeacon=%d P2PProbeRsp=%d NegoRsp=%d InviteRsp=%d PDRsp=%d\n",
rsvdpageloc->LocP2PBeacon, rsvdpageloc->LocP2PProbeRsp,
rsvdpageloc->LocNegoRsp, rsvdpageloc->LocInviteRsp,
rsvdpageloc->LocPDRsp);
SET_H2CCMD_RSVDPAGE_LOC_P2P_BCN(u1H2CP2PRsvdPageParm, rsvdpageloc->LocProbeRsp);
SET_H2CCMD_RSVDPAGE_LOC_P2P_PROBE_RSP(u1H2CP2PRsvdPageParm, rsvdpageloc->LocPsPoll);
SET_H2CCMD_RSVDPAGE_LOC_P2P_NEGO_RSP(u1H2CP2PRsvdPageParm, rsvdpageloc->LocNullData);
SET_H2CCMD_RSVDPAGE_LOC_P2P_INVITE_RSP(u1H2CP2PRsvdPageParm, rsvdpageloc->LocQosNull);
SET_H2CCMD_RSVDPAGE_LOC_P2P_PD_RSP(u1H2CP2PRsvdPageParm, rsvdpageloc->LocBTQosNull);
/* FillH2CCmd8723B(padapter, H2C_8723B_P2P_OFFLOAD_RSVD_PAGE, H2C_P2PRSVDPAGE_LOC_LEN, u1H2CP2PRsvdPageParm); */
ret = rtw_hal_fill_h2c_cmd(adapter,
H2C_P2P_OFFLOAD_RSVD_PAGE,
H2C_P2PRSVDPAGE_LOC_LEN,
u1H2CP2PRsvdPageParm);
return ret;
}
u8 rtw_hal_set_p2p_wowlan_offload_cmd(_adapter *adapter)
{
u8 offload_cmd[H2C_P2P_OFFLOAD_LEN] = {0};
struct wifidirect_info *pwdinfo = &(adapter->wdinfo);
struct P2P_WoWlan_Offload_t *p2p_wowlan_offload = (struct P2P_WoWlan_Offload_t *)offload_cmd;
struct hal_ops *pHalFunc = &adapter->hal_func;
u8 ret = _FAIL;
memset(p2p_wowlan_offload, 0 , sizeof(struct P2P_WoWlan_Offload_t));
RTW_INFO("%s\n", __func__);
switch (pwdinfo->role) {
case P2P_ROLE_DEVICE:
RTW_INFO("P2P_ROLE_DEVICE\n");
p2p_wowlan_offload->role = 0;
break;
case P2P_ROLE_CLIENT:
RTW_INFO("P2P_ROLE_CLIENT\n");
p2p_wowlan_offload->role = 1;
break;
case P2P_ROLE_GO:
RTW_INFO("P2P_ROLE_GO\n");
p2p_wowlan_offload->role = 2;
break;
default:
RTW_INFO("P2P_ROLE_DISABLE\n");
break;
}
p2p_wowlan_offload->Wps_Config[0] = pwdinfo->supported_wps_cm >> 8;
p2p_wowlan_offload->Wps_Config[1] = pwdinfo->supported_wps_cm;
offload_cmd = (u8 *)p2p_wowlan_offload;
RTW_INFO("p2p_wowlan_offload: %x:%x:%x\n", offload_cmd[0], offload_cmd[1], offload_cmd[2]);
ret = rtw_hal_fill_h2c_cmd(adapter,
H2C_P2P_OFFLOAD,
H2C_P2P_OFFLOAD_LEN,
offload_cmd);
return ret;
/* FillH2CCmd8723B(adapter, H2C_8723B_P2P_OFFLOAD, sizeof(struct P2P_WoWlan_Offload_t), (u8 *)p2p_wowlan_offload); */
}
#endif /* CONFIG_P2P_WOWLAN */
static void rtw_hal_construct_beacon(_adapter *padapter,
u8 *pframe, u32 *pLength)
{
struct rtw_ieee80211_hdr *pwlanhdr;
__le16 *fctrl;
u32 rate_len, pktlen;
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network);
u8 bc_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
/* RTW_INFO("%s\n", __func__); */
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
fctrl = &(pwlanhdr->frame_ctl);
*(fctrl) = 0;
memcpy(pwlanhdr->addr1, bc_addr, ETH_ALEN);
memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN);
memcpy(pwlanhdr->addr3, get_my_bssid(cur_network), ETH_ALEN);
SetSeqNum(pwlanhdr, 0/*pmlmeext->mgnt_seq*/);
/* pmlmeext->mgnt_seq++; */
set_frame_sub_type(pframe, WIFI_BEACON);
pframe += sizeof(struct rtw_ieee80211_hdr_3addr);
pktlen = sizeof(struct rtw_ieee80211_hdr_3addr);
/* timestamp will be inserted by hardware */
pframe += 8;
pktlen += 8;
/* beacon interval: 2 bytes */
memcpy(pframe, (unsigned char *)(rtw_get_beacon_interval_from_ie(cur_network->IEs)), 2);
pframe += 2;
pktlen += 2;
/* capability info: 2 bytes */
memcpy(pframe, (unsigned char *)(rtw_get_capability_from_ie(cur_network->IEs)), 2);
pframe += 2;
pktlen += 2;
if ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE) {
/* RTW_INFO("ie len=%d\n", cur_network->IELength); */
pktlen += cur_network->IELength - sizeof(NDIS_802_11_FIXED_IEs);
memcpy(pframe, cur_network->IEs + sizeof(NDIS_802_11_FIXED_IEs), pktlen);
goto _ConstructBeacon;
}
/* below for ad-hoc mode */
/* SSID */
pframe = rtw_set_ie(pframe, _SSID_IE_, cur_network->Ssid.SsidLength, cur_network->Ssid.Ssid, &pktlen);
/* supported rates... */
rate_len = rtw_get_rateset_len(cur_network->SupportedRates);
pframe = rtw_set_ie(pframe, _SUPPORTEDRATES_IE_, ((rate_len > 8) ? 8 : rate_len), cur_network->SupportedRates, &pktlen);
/* DS parameter set */
pframe = rtw_set_ie(pframe, _DSSET_IE_, 1, (unsigned char *)&(cur_network->Configuration.DSConfig), &pktlen);
if ((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) {
u32 ATIMWindow;
/* IBSS Parameter Set... */
/* ATIMWindow = cur->Configuration.ATIMWindow; */
ATIMWindow = 0;
pframe = rtw_set_ie(pframe, _IBSS_PARA_IE_, 2, (unsigned char *)(&ATIMWindow), &pktlen);
}
/* todo: ERP IE */
/* EXTERNDED SUPPORTED RATE */
if (rate_len > 8)
pframe = rtw_set_ie(pframe, _EXT_SUPPORTEDRATES_IE_, (rate_len - 8), (cur_network->SupportedRates + 8), &pktlen);
/* todo:HT for adhoc */
_ConstructBeacon:
if ((pktlen + TXDESC_SIZE) > 512) {
RTW_INFO("beacon frame too large\n");
return;
}
*pLength = pktlen;
/* RTW_INFO("%s bcn_sz=%d\n", __func__, pktlen); */
}
static void rtw_hal_construct_PSPoll(_adapter *padapter,
u8 *pframe, u32 *pLength)
{
struct rtw_ieee80211_hdr *pwlanhdr;
__le16 *fctrl;
u32 pktlen;
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
/* RTW_INFO("%s\n", __func__); */
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
/* Frame control. */
fctrl = &(pwlanhdr->frame_ctl);
*(fctrl) = 0;
SetPwrMgt(fctrl);
set_frame_sub_type(pframe, WIFI_PSPOLL);
/* AID. */
set_duration(pframe, (pmlmeinfo->aid | 0xc000));
/* BSSID. */
memcpy(pwlanhdr->addr1, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN);
/* TA. */
memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN);
*pLength = 16;
}
void rtw_hal_construct_NullFunctionData(
PADAPTER padapter,
u8 *pframe,
u32 *pLength,
u8 *StaAddr,
u8 bQoS,
u8 AC,
u8 bEosp,
u8 bForcePowerSave)
{
struct rtw_ieee80211_hdr *pwlanhdr;
__le16 *fctrl;
u32 pktlen;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct wlan_network *cur_network = &pmlmepriv->cur_network;
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
/* RTW_INFO("%s:%d\n", __func__, bForcePowerSave); */
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
fctrl = &pwlanhdr->frame_ctl;
*(fctrl) = 0;
if (bForcePowerSave)
SetPwrMgt(fctrl);
switch (cur_network->network.InfrastructureMode) {
case Ndis802_11Infrastructure:
SetToDs(fctrl);
memcpy(pwlanhdr->addr1, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN);
memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN);
memcpy(pwlanhdr->addr3, StaAddr, ETH_ALEN);
break;
case Ndis802_11APMode:
SetFrDs(fctrl);
memcpy(pwlanhdr->addr1, StaAddr, ETH_ALEN);
memcpy(pwlanhdr->addr2, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN);
memcpy(pwlanhdr->addr3, adapter_mac_addr(padapter), ETH_ALEN);
break;
case Ndis802_11IBSS:
default:
memcpy(pwlanhdr->addr1, StaAddr, ETH_ALEN);
memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN);
memcpy(pwlanhdr->addr3, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN);
break;
}
SetSeqNum(pwlanhdr, 0);
if (bQoS == true) {
struct rtw_ieee80211_hdr_3addr_qos *pwlanqoshdr;
set_frame_sub_type(pframe, WIFI_QOS_DATA_NULL);
pwlanqoshdr = (struct rtw_ieee80211_hdr_3addr_qos *)pframe;
SetPriority(&pwlanqoshdr->qc, AC);
SetEOSP(&pwlanqoshdr->qc, bEosp);
pktlen = sizeof(struct rtw_ieee80211_hdr_3addr_qos);
} else {
set_frame_sub_type(pframe, WIFI_DATA_NULL);
pktlen = sizeof(struct rtw_ieee80211_hdr_3addr);
}
*pLength = pktlen;
}
static void rtw_hal_construct_ProbeRsp(_adapter *padapter, u8 *pframe, u32 *pLength,
u8 *StaAddr, bool bHideSSID)
{
struct rtw_ieee80211_hdr *pwlanhdr;
__le16 *fctrl;
u8 *mac, *bssid;
u32 pktlen;
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network);
/*RTW_INFO("%s\n", __func__);*/
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
mac = adapter_mac_addr(padapter);
bssid = cur_network->MacAddress;
fctrl = &(pwlanhdr->frame_ctl);
*(fctrl) = 0;
memcpy(pwlanhdr->addr1, StaAddr, ETH_ALEN);
memcpy(pwlanhdr->addr2, mac, ETH_ALEN);
memcpy(pwlanhdr->addr3, bssid, ETH_ALEN);
SetSeqNum(pwlanhdr, 0);
set_frame_sub_type(fctrl, WIFI_PROBERSP);
pktlen = sizeof(struct rtw_ieee80211_hdr_3addr);
pframe += pktlen;
if (cur_network->IELength > MAX_IE_SZ)
return;
memcpy(pframe, cur_network->IEs, cur_network->IELength);
pframe += cur_network->IELength;
pktlen += cur_network->IELength;
*pLength = pktlen;
}
#ifdef CONFIG_WOWLAN
static void rtw_hal_append_tkip_mic(PADAPTER padapter,
u8 *pframe, u32 offset)
{
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct rtw_ieee80211_hdr *pwlanhdr;
struct mic_data micdata;
struct sta_info *psta = NULL;
int res = 0;
u8 *payload = (u8 *)(pframe + offset);
u8 mic[8];
u8 priority[4] = {0x0};
u8 null_key[16] = {0x0};
RTW_INFO("%s(): Add MIC, offset: %d\n", __func__, offset);
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
psta = rtw_get_stainfo(&padapter->stapriv,
get_my_bssid(&(pmlmeinfo->network)));
if (psta != NULL) {
res = !memcmp(&psta->dot11tkiptxmickey.skey[0],
null_key, 16);
if (res)
RTW_INFO("%s(): STA dot11tkiptxmickey==0\n", __func__);
rtw_secmicsetkey(&micdata, &psta->dot11tkiptxmickey.skey[0]);
}
rtw_secmicappend(&micdata, pwlanhdr->addr3, 6); /* DA */
rtw_secmicappend(&micdata, pwlanhdr->addr2, 6); /* SA */
priority[0] = 0;
rtw_secmicappend(&micdata, &priority[0], 4);
rtw_secmicappend(&micdata, payload, 36); /* payload length = 8 + 28 */
rtw_secgetmic(&micdata, &(mic[0]));
payload += 36;
memcpy(payload, &(mic[0]), 8);
}
/*
* Description:
* Construct the ARP response packet to support ARP offload.
* */
static void rtw_hal_construct_ARPRsp(
PADAPTER padapter,
u8 *pframe,
u32 *pLength,
u8 *pIPAddress
)
{
struct rtw_ieee80211_hdr *pwlanhdr;
__le16 *fctrl;
u32 pktlen;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct wlan_network *cur_network = &pmlmepriv->cur_network;
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct security_priv *psecuritypriv = &padapter->securitypriv;
static u8 ARPLLCHeader[8] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00, 0x08, 0x06};
u8 *pARPRspPkt = pframe;
/* for TKIP Cal MIC */
u8 *payload = pframe;
u8 EncryptionHeadOverhead = 0, arp_offset = 0;
/* RTW_INFO("%s:%d\n", __func__, bForcePowerSave); */
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
fctrl = &pwlanhdr->frame_ctl;
*(fctrl) = 0;
/* ------------------------------------------------------------------------- */
/* MAC Header. */
/* ------------------------------------------------------------------------- */
SetFrameType(fctrl, WIFI_DATA);
/* set_frame_sub_type(fctrl, 0); */
SetToDs(fctrl);
memcpy(pwlanhdr->addr1, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN);
memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN);
memcpy(pwlanhdr->addr3, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN);
SetSeqNum(pwlanhdr, 0);
set_duration(pwlanhdr, 0);
/* SET_80211_HDR_FRAME_CONTROL(pARPRspPkt, 0); */
/* SET_80211_HDR_TYPE_AND_SUBTYPE(pARPRspPkt, Type_Data); */
/* SET_80211_HDR_TO_DS(pARPRspPkt, 1); */
/* SET_80211_HDR_ADDRESS1(pARPRspPkt, pMgntInfo->Bssid); */
/* SET_80211_HDR_ADDRESS2(pARPRspPkt, Adapter->CurrentAddress); */
/* SET_80211_HDR_ADDRESS3(pARPRspPkt, pMgntInfo->Bssid); */
/* SET_80211_HDR_DURATION(pARPRspPkt, 0); */
/* SET_80211_HDR_FRAGMENT_SEQUENCE(pARPRspPkt, 0); */
#ifdef CONFIG_WAPI_SUPPORT
*pLength = sMacHdrLng;
#else
*pLength = 24;
#endif
switch (psecuritypriv->dot11PrivacyAlgrthm) {
case _WEP40_:
case _WEP104_:
EncryptionHeadOverhead = 4;
break;
case _TKIP_:
EncryptionHeadOverhead = 8;
break;
case _AES_:
EncryptionHeadOverhead = 8;
break;
#ifdef CONFIG_WAPI_SUPPORT
case _SMS4_:
EncryptionHeadOverhead = 18;
break;
#endif
default:
EncryptionHeadOverhead = 0;
}
if (EncryptionHeadOverhead > 0) {
memset(&(pframe[*pLength]), 0, EncryptionHeadOverhead);
*pLength += EncryptionHeadOverhead;
/* SET_80211_HDR_WEP(pARPRspPkt, 1); */ /* Suggested by CCW. */
SetPrivacy(fctrl);
}
/* ------------------------------------------------------------------------- */
/* Frame Body. */
/* ------------------------------------------------------------------------- */
arp_offset = *pLength;
pARPRspPkt = (u8 *)(pframe + arp_offset);
payload = pARPRspPkt; /* Get Payload pointer */
/* LLC header */
memcpy(pARPRspPkt, ARPLLCHeader, 8);
*pLength += 8;
/* ARP element */
pARPRspPkt += 8;
SET_ARP_PKT_HW(pARPRspPkt, 0x0100);
SET_ARP_PKT_PROTOCOL(pARPRspPkt, 0x0008); /* IP protocol */
SET_ARP_PKT_HW_ADDR_LEN(pARPRspPkt, 6);
SET_ARP_PKT_PROTOCOL_ADDR_LEN(pARPRspPkt, 4);
SET_ARP_PKT_OPERATION(pARPRspPkt, 0x0200); /* ARP response */
SET_ARP_PKT_SENDER_MAC_ADDR(pARPRspPkt, adapter_mac_addr(padapter));
SET_ARP_PKT_SENDER_IP_ADDR(pARPRspPkt, pIPAddress);
#ifdef CONFIG_ARP_KEEP_ALIVE
if (!is_zero_mac_addr(pmlmepriv->gw_mac_addr)) {
SET_ARP_PKT_TARGET_MAC_ADDR(pARPRspPkt, pmlmepriv->gw_mac_addr);
SET_ARP_PKT_TARGET_IP_ADDR(pARPRspPkt, pmlmepriv->gw_ip);
} else
#endif
{
SET_ARP_PKT_TARGET_MAC_ADDR(pARPRspPkt,
get_my_bssid(&(pmlmeinfo->network)));
SET_ARP_PKT_TARGET_IP_ADDR(pARPRspPkt,
pIPAddress);
RTW_INFO("%s Target Mac Addr:" MAC_FMT "\n", __func__,
MAC_ARG(get_my_bssid(&(pmlmeinfo->network))));
RTW_INFO("%s Target IP Addr" IP_FMT "\n", __func__,
IP_ARG(pIPAddress));
}
*pLength += 28;
if (psecuritypriv->dot11PrivacyAlgrthm == _TKIP_) {
if (IS_HARDWARE_TYPE_8188E(padapter))
rtw_hal_append_tkip_mic(padapter, pframe, arp_offset);
*pLength += 8;
}
}
#ifdef CONFIG_PNO_SUPPORT
static void rtw_hal_construct_ProbeReq(_adapter *padapter, u8 *pframe,
u32 *pLength, pno_ssid_t *ssid)
{
struct rtw_ieee80211_hdr *pwlanhdr;
__le16 *fctrl;
u32 pktlen;
unsigned char *mac;
unsigned char bssrate[NumRates];
struct xmit_priv *pxmitpriv = &(padapter->xmitpriv);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
int bssrate_len = 0;
u8 bc_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
mac = adapter_mac_addr(padapter);
fctrl = &(pwlanhdr->frame_ctl);
*(fctrl) = 0;
memcpy(pwlanhdr->addr1, bc_addr, ETH_ALEN);
memcpy(pwlanhdr->addr3, bc_addr, ETH_ALEN);
memcpy(pwlanhdr->addr2, mac, ETH_ALEN);
SetSeqNum(pwlanhdr, 0);
set_frame_sub_type(pframe, WIFI_PROBEREQ);
pktlen = sizeof(struct rtw_ieee80211_hdr_3addr);
pframe += pktlen;
if (ssid == NULL)
pframe = rtw_set_ie(pframe, _SSID_IE_, 0, NULL, &pktlen);
else {
/* RTW_INFO("%s len:%d\n", ssid->SSID, ssid->SSID_len); */
pframe = rtw_set_ie(pframe, _SSID_IE_, ssid->SSID_len, ssid->SSID, &pktlen);
}
get_rate_set(padapter, bssrate, &bssrate_len);
if (bssrate_len > 8) {
pframe = rtw_set_ie(pframe, _SUPPORTEDRATES_IE_ , 8, bssrate, &pktlen);
pframe = rtw_set_ie(pframe, _EXT_SUPPORTEDRATES_IE_ , (bssrate_len - 8), (bssrate + 8), &pktlen);
} else
pframe = rtw_set_ie(pframe, _SUPPORTEDRATES_IE_ , bssrate_len , bssrate, &pktlen);
*pLength = pktlen;
}
static void rtw_hal_construct_PNO_info(_adapter *padapter,
u8 *pframe, u32 *pLength)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
int i;
u8 *pPnoInfoPkt = pframe;
pPnoInfoPkt = (u8 *)(pframe + *pLength);
memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->ssid_num, 1);
pPnoInfoPkt += 1;
memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->hidden_ssid_num, 1);
pPnoInfoPkt += 3;
memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->fast_scan_period, 1);
pPnoInfoPkt += 4;
memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->fast_scan_iterations, 4);
pPnoInfoPkt += 4;
memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->slow_scan_period, 4);
pPnoInfoPkt += 4;
memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->ssid_length, MAX_PNO_LIST_COUNT);
pPnoInfoPkt += MAX_PNO_LIST_COUNT;
memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->ssid_cipher_info, MAX_PNO_LIST_COUNT);
pPnoInfoPkt += MAX_PNO_LIST_COUNT;
memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->ssid_channel_info, MAX_PNO_LIST_COUNT);
pPnoInfoPkt += MAX_PNO_LIST_COUNT;
memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->loc_probe_req, MAX_HIDDEN_AP);
pPnoInfoPkt += MAX_HIDDEN_AP;
/*
SSID is located at 128th Byte in NLO info Page
*/
*pLength += 128;
pPnoInfoPkt = pframe + 128;
for (i = 0; i < pwrctl->pnlo_info->ssid_num ; i++) {
memcpy(pPnoInfoPkt, &pwrctl->pno_ssid_list->node[i].SSID,
pwrctl->pnlo_info->ssid_length[i]);
*pLength += WLAN_SSID_MAXLEN;
pPnoInfoPkt += WLAN_SSID_MAXLEN;
}
}
static void rtw_hal_construct_ssid_list(_adapter *padapter,
u8 *pframe, u32 *pLength)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
u8 *pSSIDListPkt = pframe;
int i;
pSSIDListPkt = (u8 *)(pframe + *pLength);
for (i = 0; i < pwrctl->pnlo_info->ssid_num ; i++) {
memcpy(pSSIDListPkt, &pwrctl->pno_ssid_list->node[i].SSID,
pwrctl->pnlo_info->ssid_length[i]);
*pLength += WLAN_SSID_MAXLEN;
pSSIDListPkt += WLAN_SSID_MAXLEN;
}
}
static void rtw_hal_construct_scan_info(_adapter *padapter,
u8 *pframe, u32 *pLength)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
u8 *pScanInfoPkt = pframe;
int i;
pScanInfoPkt = (u8 *)(pframe + *pLength);
memcpy(pScanInfoPkt, &pwrctl->pscan_info->channel_num, 1);
*pLength += 1;
pScanInfoPkt += 1;
memcpy(pScanInfoPkt, &pwrctl->pscan_info->orig_ch, 1);
*pLength += 1;
pScanInfoPkt += 1;
memcpy(pScanInfoPkt, &pwrctl->pscan_info->orig_bw, 1);
*pLength += 1;
pScanInfoPkt += 1;
memcpy(pScanInfoPkt, &pwrctl->pscan_info->orig_40_offset, 1);
*pLength += 1;
pScanInfoPkt += 1;
memcpy(pScanInfoPkt, &pwrctl->pscan_info->orig_80_offset, 1);
*pLength += 1;
pScanInfoPkt += 1;
memcpy(pScanInfoPkt, &pwrctl->pscan_info->periodScan, 1);
*pLength += 1;
pScanInfoPkt += 1;
memcpy(pScanInfoPkt, &pwrctl->pscan_info->period_scan_time, 1);
*pLength += 1;
pScanInfoPkt += 1;
memcpy(pScanInfoPkt, &pwrctl->pscan_info->enableRFE, 1);
*pLength += 1;
pScanInfoPkt += 1;
memcpy(pScanInfoPkt, &pwrctl->pscan_info->rfe_type, 8);
*pLength += 8;
pScanInfoPkt += 8;
for (i = 0 ; i < MAX_SCAN_LIST_COUNT ; i++) {
memcpy(pScanInfoPkt,
&pwrctl->pscan_info->ssid_channel_info[i], 4);
*pLength += 4;
pScanInfoPkt += 4;
}
}
#endif /* CONFIG_PNO_SUPPORT */
#ifdef CONFIG_GTK_OL
static void rtw_hal_construct_GTKRsp(
PADAPTER padapter,
u8 *pframe,
u32 *pLength
)
{
struct rtw_ieee80211_hdr *pwlanhdr;
__le16 *fctrl;
u32 pktlen;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct wlan_network *cur_network = &pmlmepriv->cur_network;
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct security_priv *psecuritypriv = &padapter->securitypriv;
static u8 LLCHeader[8] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00, 0x88, 0x8E};
static u8 GTKbody_a[11] = {0x01, 0x03, 0x00, 0x5F, 0x02, 0x03, 0x12, 0x00, 0x10, 0x42, 0x0B};
u8 *pGTKRspPkt = pframe;
u8 EncryptionHeadOverhead = 0;
/* RTW_INFO("%s:%d\n", __func__, bForcePowerSave); */
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
fctrl = &pwlanhdr->frame_ctl;
*(fctrl) = 0;
/* ------------------------------------------------------------------------- */
/* MAC Header. */
/* ------------------------------------------------------------------------- */
SetFrameType(fctrl, WIFI_DATA);
/* set_frame_sub_type(fctrl, 0); */
SetToDs(fctrl);
memcpy(pwlanhdr->addr1,
get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN);
memcpy(pwlanhdr->addr2,
adapter_mac_addr(padapter), ETH_ALEN);
memcpy(pwlanhdr->addr3,
get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN);
SetSeqNum(pwlanhdr, 0);
set_duration(pwlanhdr, 0);
#ifdef CONFIG_WAPI_SUPPORT
*pLength = sMacHdrLng;
#else
*pLength = 24;
#endif /* CONFIG_WAPI_SUPPORT */
/* ------------------------------------------------------------------------- */
/* Security Header: leave space for it if necessary. */
/* ------------------------------------------------------------------------- */
switch (psecuritypriv->dot11PrivacyAlgrthm) {
case _WEP40_:
case _WEP104_:
EncryptionHeadOverhead = 4;
break;
case _TKIP_:
EncryptionHeadOverhead = 8;
break;
case _AES_:
EncryptionHeadOverhead = 8;
break;
#ifdef CONFIG_WAPI_SUPPORT
case _SMS4_:
EncryptionHeadOverhead = 18;
break;
#endif /* CONFIG_WAPI_SUPPORT */
default:
EncryptionHeadOverhead = 0;
}
if (EncryptionHeadOverhead > 0) {
memset(&(pframe[*pLength]), 0, EncryptionHeadOverhead);
*pLength += EncryptionHeadOverhead;
/* SET_80211_HDR_WEP(pGTKRspPkt, 1); */ /* Suggested by CCW. */
/* GTK's privacy bit is done by FW */
/* SetPrivacy(fctrl); */
}
/* ------------------------------------------------------------------------- */
/* Frame Body. */
/* ------------------------------------------------------------------------- */
pGTKRspPkt = (u8 *)(pframe + *pLength);
/* LLC header */
memcpy(pGTKRspPkt, LLCHeader, 8);
*pLength += 8;
/* GTK element */
pGTKRspPkt += 8;
/* GTK frame body after LLC, part 1 */
/* TKIP key_length = 32, AES key_length = 16 */
if (psecuritypriv->dot118021XGrpPrivacy == _TKIP_)
GTKbody_a[8] = 0x20;
/* GTK frame body after LLC, part 1 */
memcpy(pGTKRspPkt, GTKbody_a, 11);
*pLength += 11;
pGTKRspPkt += 11;
/* GTK frame body after LLC, part 2 */
memset(&(pframe[*pLength]), 0, 88);
*pLength += 88;
pGTKRspPkt += 88;
if (psecuritypriv->dot118021XGrpPrivacy == _TKIP_)
*pLength += 8;
}
#endif /* CONFIG_GTK_OL */
void rtw_hal_set_wow_fw_rsvd_page(_adapter *adapter, u8 *pframe, u16 index,
u8 tx_desc, u32 page_size, u8 *page_num, u32 *total_pkt_len,
RSVDPAGE_LOC *rsvd_page_loc)
{
struct security_priv *psecuritypriv = &adapter->securitypriv;
struct mlme_priv *pmlmepriv = &adapter->mlmepriv;
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter);
struct mlme_ext_priv *pmlmeext;
struct mlme_ext_info *pmlmeinfo;
u32 ARPLength = 0, GTKLength = 0, PNOLength = 0, ScanInfoLength = 0;
u32 SSIDLegnth = 0, ProbeReqLength = 0;
u8 CurtPktPageNum = 0;
u8 currentip[4];
u8 cur_dot11txpn[8];
#ifdef CONFIG_GTK_OL
struct sta_priv *pstapriv = &adapter->stapriv;
struct sta_info *psta;
struct security_priv *psecpriv = &adapter->securitypriv;
u8 kek[RTW_KEK_LEN];
u8 kck[RTW_KCK_LEN];
#endif /* CONFIG_GTK_OL */
#ifdef CONFIG_PNO_SUPPORT
int pno_index;
u8 ssid_num;
#endif /* CONFIG_PNO_SUPPORT */
pmlmeext = &adapter->mlmeextpriv;
pmlmeinfo = &pmlmeext->mlmext_info;
if (pwrctl->wowlan_pno_enable == false) {
/* ARP RSP * 1 page */
rtw_get_current_ip_address(adapter, currentip);
rsvd_page_loc->LocArpRsp = *page_num;
RTW_INFO("LocArpRsp: %d\n", rsvd_page_loc->LocArpRsp);
rtw_hal_construct_ARPRsp(adapter, &pframe[index],
&ARPLength, currentip);
rtw_hal_fill_fake_txdesc(adapter,
&pframe[index - tx_desc],
ARPLength, false, false, true);
CurtPktPageNum = (u8)PageNum(tx_desc + ARPLength, page_size);
*page_num += CurtPktPageNum;
index += (CurtPktPageNum * page_size);
/* 3 SEC IV * 1 page */
rtw_get_sec_iv(adapter, cur_dot11txpn,
get_my_bssid(&pmlmeinfo->network));
rsvd_page_loc->LocRemoteCtrlInfo = *page_num;
RTW_INFO("LocRemoteCtrlInfo: %d\n", rsvd_page_loc->LocRemoteCtrlInfo);
memcpy(pframe + index - tx_desc, cur_dot11txpn, _AES_IV_LEN_);
CurtPktPageNum = (u8)PageNum(_AES_IV_LEN_, page_size);
*page_num += CurtPktPageNum;
*total_pkt_len = index + _AES_IV_LEN_;
#ifdef CONFIG_GTK_OL
index += (CurtPktPageNum * page_size);
/* if the ap staion info. exists, get the kek, kck from staion info. */
psta = rtw_get_stainfo(pstapriv, get_bssid(pmlmepriv));
if (psta == NULL) {
memset(kek, 0, RTW_KEK_LEN);
memset(kck, 0, RTW_KCK_LEN);
RTW_INFO("%s, KEK, KCK download rsvd page all zero\n",
__func__);
} else {
memcpy(kek, psta->kek, RTW_KEK_LEN);
memcpy(kck, psta->kck, RTW_KCK_LEN);
}
/* 3 KEK, KCK */
rsvd_page_loc->LocGTKInfo = *page_num;
RTW_INFO("LocGTKInfo: %d\n", rsvd_page_loc->LocGTKInfo);
if (IS_HARDWARE_TYPE_8188E(adapter)) {
struct security_priv *psecpriv = NULL;
psecpriv = &adapter->securitypriv;
memcpy(pframe + index - tx_desc,
&psecpriv->dot11PrivacyAlgrthm, 1);
memcpy(pframe + index - tx_desc + 1,
&psecpriv->dot118021XGrpPrivacy, 1);
memcpy(pframe + index - tx_desc + 2,
kck, RTW_KCK_LEN);
memcpy(pframe + index - tx_desc + 2 + RTW_KCK_LEN,
kek, RTW_KEK_LEN);
CurtPktPageNum = (u8)PageNum(tx_desc + 2 + RTW_KCK_LEN + RTW_KEK_LEN, page_size);
} else {
memcpy(pframe + index - tx_desc, kck, RTW_KCK_LEN);
memcpy(pframe + index - tx_desc + RTW_KCK_LEN,
kek, RTW_KEK_LEN);
GTKLength = tx_desc + RTW_KCK_LEN + RTW_KEK_LEN;
if (psta != NULL &&
psecuritypriv->dot118021XGrpPrivacy == _TKIP_) {
memcpy(pframe + index - tx_desc + 56,
&psta->dot11tkiptxmickey, RTW_TKIP_MIC_LEN);
GTKLength += RTW_TKIP_MIC_LEN;
}
CurtPktPageNum = (u8)PageNum(GTKLength, page_size);
}
*page_num += CurtPktPageNum;
index += (CurtPktPageNum * page_size);
/* 3 GTK Response */
rsvd_page_loc->LocGTKRsp = *page_num;
RTW_INFO("LocGTKRsp: %d\n", rsvd_page_loc->LocGTKRsp);
rtw_hal_construct_GTKRsp(adapter, &pframe[index], &GTKLength);
rtw_hal_fill_fake_txdesc(adapter, &pframe[index - tx_desc],
GTKLength, false, false, true);
CurtPktPageNum = (u8)PageNum(tx_desc + GTKLength, page_size);
*page_num += CurtPktPageNum;
index += (CurtPktPageNum * page_size);
/* below page is empty for GTK extension memory */
/* 3(11) GTK EXT MEM */
rsvd_page_loc->LocGTKEXTMEM = *page_num;
RTW_INFO("LocGTKEXTMEM: %d\n", rsvd_page_loc->LocGTKEXTMEM);
CurtPktPageNum = 2;
if (page_size >= 256)
CurtPktPageNum = 1;
*page_num += CurtPktPageNum;
/* extension memory for FW */
*total_pkt_len = index + (page_size * CurtPktPageNum);
#endif /* CONFIG_GTK_OL */
index += (CurtPktPageNum * page_size);
/*Reserve 1 page for AOAC report*/
rsvd_page_loc->LocAOACReport = *page_num;
RTW_INFO("LocAOACReport: %d\n", rsvd_page_loc->LocAOACReport);
*page_num += 1;
*total_pkt_len = index + (page_size * 1);
} else {
#ifdef CONFIG_PNO_SUPPORT
if (pwrctl->wowlan_in_resume == false &&
pwrctl->pno_inited == true) {
/* Broadcast Probe Request */
rsvd_page_loc->LocProbePacket = *page_num;
RTW_INFO("loc_probe_req: %d\n",
rsvd_page_loc->LocProbePacket);
rtw_hal_construct_ProbeReq(
adapter,
&pframe[index],
&ProbeReqLength,
NULL);
rtw_hal_fill_fake_txdesc(adapter,
&pframe[index - tx_desc],
ProbeReqLength, false, false, false);
CurtPktPageNum =
(u8)PageNum(tx_desc + ProbeReqLength, page_size);
*page_num += CurtPktPageNum;
index += (CurtPktPageNum * page_size);
/* Hidden SSID Probe Request */
ssid_num = pwrctl->pnlo_info->hidden_ssid_num;
for (pno_index = 0 ; pno_index < ssid_num ; pno_index++) {
pwrctl->pnlo_info->loc_probe_req[pno_index] =
*page_num;
rtw_hal_construct_ProbeReq(
adapter,
&pframe[index],
&ProbeReqLength,
&pwrctl->pno_ssid_list->node[pno_index]);
rtw_hal_fill_fake_txdesc(adapter,
&pframe[index - tx_desc],
ProbeReqLength, false, false, false);
CurtPktPageNum =
(u8)PageNum(tx_desc + ProbeReqLength, page_size);
*page_num += CurtPktPageNum;
index += (CurtPktPageNum * page_size);
}
/* PNO INFO Page */
rsvd_page_loc->LocPNOInfo = *page_num;
RTW_INFO("LocPNOInfo: %d\n", rsvd_page_loc->LocPNOInfo);
rtw_hal_construct_PNO_info(adapter,
&pframe[index - tx_desc],
&PNOLength);
CurtPktPageNum = (u8)PageNum(PNOLength, page_size);
*page_num += CurtPktPageNum;
index += (CurtPktPageNum * page_size);
/* Scan Info Page */
rsvd_page_loc->LocScanInfo = *page_num;
RTW_INFO("LocScanInfo: %d\n", rsvd_page_loc->LocScanInfo);
rtw_hal_construct_scan_info(adapter,
&pframe[index - tx_desc],
&ScanInfoLength);
CurtPktPageNum = (u8)PageNum(ScanInfoLength, page_size);
*page_num += CurtPktPageNum;
*total_pkt_len = index + ScanInfoLength;
index += (CurtPktPageNum * page_size);
}
#endif /* CONFIG_PNO_SUPPORT */
}
}
static void rtw_hal_gate_bb(_adapter *adapter, bool stop)
{
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
u8 val8 = 0;
u16 val16 = 0;
if (stop) {
/* Pause TX*/
pwrpriv->wowlan_txpause_status = rtw_read8(adapter, REG_TXPAUSE);
rtw_write8(adapter, REG_TXPAUSE, 0xff);
val8 = rtw_read8(adapter, REG_SYS_FUNC_EN);
val8 &= ~BIT(0);
rtw_write8(adapter, REG_SYS_FUNC_EN, val8);
RTW_INFO("%s: BB gated: 0x%02x, store TXPAUSE: %02x\n",
__func__,
rtw_read8(adapter, REG_SYS_FUNC_EN),
pwrpriv->wowlan_txpause_status);
} else {
val8 = rtw_read8(adapter, REG_SYS_FUNC_EN);
val8 |= BIT(0);
rtw_write8(adapter, REG_SYS_FUNC_EN, val8);
RTW_INFO("%s: BB release: 0x%02x, recover TXPAUSE:%02x\n",
__func__, rtw_read8(adapter, REG_SYS_FUNC_EN),
pwrpriv->wowlan_txpause_status);
/* release TX*/
rtw_write8(adapter, REG_TXPAUSE, pwrpriv->wowlan_txpause_status);
}
}
static void rtw_hal_reset_mac_rx(_adapter *adapter)
{
u8 val8 = 0;
/* Set REG_CR bit1, bit3, bit7 to 0*/
val8 = rtw_read8(adapter, REG_CR);
val8 &= 0x75;
rtw_write8(adapter, REG_CR, val8);
val8 = rtw_read8(adapter, REG_CR);
/* Set REG_CR bit1, bit3, bit7 to 1*/
val8 |= 0x8a;
rtw_write8(adapter, REG_CR, val8);
RTW_INFO("0x%04x: %02x\n", REG_CR, rtw_read8(adapter, REG_CR));
}
static u8 rtw_hal_wow_pattern_generate(_adapter *adapter, u8 idx, struct rtl_wow_pattern *pwow_pattern)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter);
u8 *pattern;
u8 len = 0;
u8 *mask;
u8 mask_hw[MAX_WKFM_SIZE] = {0};
u8 content[MAX_WKFM_PATTERN_SIZE] = {0};
u8 broadcast_addr[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
u8 multicast_addr1[2] = {0x33, 0x33};
u8 multicast_addr2[3] = {0x01, 0x00, 0x5e};
u8 mask_len = 0;
u8 mac_addr[ETH_ALEN] = {0};
u16 count = 0;
int i, j;
if (pwrctl->wowlan_pattern_idx > MAX_WKFM_CAM_NUM) {
RTW_INFO("%s pattern_idx is more than MAX_FMC_NUM: %d\n",
__func__, MAX_WKFM_CAM_NUM);
return _FAIL;
}
pattern = pwrctl->patterns[idx].content;
len = pwrctl->patterns[idx].len;
mask = pwrctl->patterns[idx].mask;
memcpy(mac_addr, adapter_mac_addr(adapter), ETH_ALEN);
memset(pwow_pattern, 0, sizeof(struct rtl_wow_pattern));
mask_len = DIV_ROUND_UP(len, 8);
/* 1. setup A1 table */
if (memcmp(pattern, broadcast_addr, ETH_ALEN) == 0)
pwow_pattern->type = PATTERN_BROADCAST;
else if (memcmp(pattern, multicast_addr1, 2) == 0)
pwow_pattern->type = PATTERN_MULTICAST;
else if (memcmp(pattern, multicast_addr2, 3) == 0)
pwow_pattern->type = PATTERN_MULTICAST;
else if (memcmp(pattern, mac_addr, ETH_ALEN) == 0)
pwow_pattern->type = PATTERN_UNICAST;
else
pwow_pattern->type = PATTERN_INVALID;
/* translate mask from os to mask for hw */
/******************************************************************************
* pattern from OS uses 'ethenet frame', like this:
| 6 | 6 | 2 | 20 | Variable | 4 |
|--------+--------+------+-----------+------------+-----|
| 802.3 Mac Header | IP Header | TCP Packet | FCS |
| DA | SA | Type |
* BUT, packet catched by our HW is in '802.11 frame', begin from LLC,
| 24 or 30 | 6 | 2 | 20 | Variable | 4 |
|-------------------+--------+------+-----------+------------+-----|
| 802.11 MAC Header | LLC | IP Header | TCP Packet | FCS |
| Others | Tpye |
* Therefore, we need translate mask_from_OS to mask_to_hw.
* We should left-shift mask by 6 bits, then set the new bit[0~5] = 0,
* because new mask[0~5] means 'SA', but our HW packet begins from LLC,
* bit[0~5] corresponds to first 6 Bytes in LLC, they just don't match.
******************************************************************************/
/* Shift 6 bits */
for (i = 0; i < mask_len - 1; i++) {
mask_hw[i] = mask[i] >> 6;
mask_hw[i] |= (mask[i + 1] & 0x3F) << 2;
}
mask_hw[i] = (mask[i] >> 6) & 0x3F;
/* Set bit 0-5 to zero */
mask_hw[0] &= 0xC0;
for (i = 0; i < (MAX_WKFM_SIZE / 4); i++) {
pwow_pattern->mask[i] = mask_hw[i * 4];
pwow_pattern->mask[i] |= (mask_hw[i * 4 + 1] << 8);
pwow_pattern->mask[i] |= (mask_hw[i * 4 + 2] << 16);
pwow_pattern->mask[i] |= (mask_hw[i * 4 + 3] << 24);
}
/* To get the wake up pattern from the mask.
* We do not count first 12 bits which means
* DA[6] and SA[6] in the pattern to match HW design. */
count = 0;
for (i = 12; i < len; i++) {
if ((mask[i / 8] >> (i % 8)) & 0x01) {
content[count] = pattern[i];
count++;
}
}
pwow_pattern->crc = rtw_calc_crc(content, count);
if (pwow_pattern->crc != 0) {
if (pwow_pattern->type == PATTERN_INVALID)
pwow_pattern->type = PATTERN_VALID;
}
return _SUCCESS;
}
#ifndef CONFIG_WOW_PATTERN_HW_CAM
static void rtw_hal_set_wow_rxff_boundary(_adapter *adapter, bool wow_mode)
{
u8 val8 = 0;
u16 rxff_bndy = 0;
u32 rx_dma_buff_sz = 0;
val8 = rtw_read8(adapter, REG_FIFOPAGE + 3);
if (val8 != 0)
RTW_INFO("%s:[%04x]some PKTs in TXPKTBUF\n",
__func__, (REG_FIFOPAGE + 3));
rtw_hal_reset_mac_rx(adapter);
if (wow_mode) {
rtw_hal_get_def_var(adapter, HAL_DEF_RX_DMA_SZ_WOW,
(u8 *)&rx_dma_buff_sz);
rxff_bndy = rx_dma_buff_sz - 1;
rtw_write16(adapter, (REG_TRXFF_BNDY + 2), rxff_bndy);
RTW_INFO("%s: wow mode, 0x%04x: 0x%04x\n", __func__,
REG_TRXFF_BNDY + 2,
rtw_read16(adapter, (REG_TRXFF_BNDY + 2)));
} else {
rtw_hal_get_def_var(adapter, HAL_DEF_RX_DMA_SZ,
(u8 *)&rx_dma_buff_sz);
rxff_bndy = rx_dma_buff_sz - 1;
rtw_write16(adapter, (REG_TRXFF_BNDY + 2), rxff_bndy);
RTW_INFO("%s: normal mode, 0x%04x: 0x%04x\n", __func__,
REG_TRXFF_BNDY + 2,
rtw_read16(adapter, (REG_TRXFF_BNDY + 2)));
}
}
bool rtw_read_from_frame_mask(_adapter *adapter, u8 idx)
{
u32 data_l = 0, data_h = 0, rx_dma_buff_sz = 0, page_sz = 0;
u16 offset, rx_buf_ptr = 0;
u16 cam_start_offset = 0;
u16 ctrl_l = 0, ctrl_h = 0;
u8 count = 0, tmp = 0;
int i = 0;
bool res = true;
if (idx > MAX_WKFM_CAM_NUM) {
RTW_INFO("[Error]: %s, pattern index is out of range\n",
__func__);
return false;
}
rtw_hal_get_def_var(adapter, HAL_DEF_RX_DMA_SZ_WOW,
(u8 *)&rx_dma_buff_sz);
if (rx_dma_buff_sz == 0) {
RTW_INFO("[Error]: %s, rx_dma_buff_sz is 0!!\n", __func__);
return false;
}
rtw_hal_get_def_var(adapter, HAL_DEF_RX_PAGE_SIZE, (u8 *)&page_sz);
if (page_sz == 0) {
RTW_INFO("[Error]: %s, page_sz is 0!!\n", __func__);
return false;
}
offset = (u16)PageNum(rx_dma_buff_sz, page_sz);
cam_start_offset = offset * page_sz;
ctrl_l = 0x0;
ctrl_h = 0x0;
/* Enable RX packet buffer access */
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, RXPKT_BUF_SELECT);
/* Read the WKFM CAM */
for (i = 0; i < (WKFMCAM_ADDR_NUM / 2); i++) {
/*
* Set Rx packet buffer offset.
* RxBufer pointer increases 1, we can access 8 bytes in Rx packet buffer.
* CAM start offset (unit: 1 byte) = Index*WKFMCAM_SIZE
* RxBufer pointer addr = (CAM start offset + per entry offset of a WKFMCAM)/8
* * Index: The index of the wake up frame mask
* * WKFMCAM_SIZE: the total size of one WKFM CAM
* * per entry offset of a WKFM CAM: Addr i * 4 bytes
*/
rx_buf_ptr =
(cam_start_offset + idx * WKFMCAM_SIZE + i * 8) >> 3;
rtw_write16(adapter, REG_PKTBUF_DBG_CTRL, rx_buf_ptr);
rtw_write16(adapter, REG_RXPKTBUF_CTRL, ctrl_l);
data_l = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L);
data_h = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H);
RTW_INFO("[%d]: %08x %08x\n", i, data_h, data_l);
count = 0;
do {
tmp = rtw_read8(adapter, REG_RXPKTBUF_CTRL);
rtw_udelay_os(2);
count++;
} while (!tmp && count < 100);
if (count >= 100) {
RTW_INFO("%s count:%d\n", __func__, count);
res = false;
}
}
/* Disable RX packet buffer access */
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL,
DISABLE_TRXPKT_BUF_ACCESS);
return res;
}
bool rtw_write_to_frame_mask(_adapter *adapter, u8 idx,
struct rtl_wow_pattern *context)
{
u32 data = 0, rx_dma_buff_sz = 0, page_sz = 0;
u16 offset, rx_buf_ptr = 0;
u16 cam_start_offset = 0;
u16 ctrl_l = 0, ctrl_h = 0;
u8 count = 0, tmp = 0;
int res = 0, i = 0;
if (idx > MAX_WKFM_CAM_NUM) {
RTW_INFO("[Error]: %s, pattern index is out of range\n",
__func__);
return false;
}
rtw_hal_get_def_var(adapter, HAL_DEF_RX_DMA_SZ_WOW,
(u8 *)&rx_dma_buff_sz);
if (rx_dma_buff_sz == 0) {
RTW_INFO("[Error]: %s, rx_dma_buff_sz is 0!!\n", __func__);
return false;
}
rtw_hal_get_def_var(adapter, HAL_DEF_RX_PAGE_SIZE, (u8 *)&page_sz);
if (page_sz == 0) {
RTW_INFO("[Error]: %s, page_sz is 0!!\n", __func__);
return false;
}
offset = (u16)PageNum(rx_dma_buff_sz, page_sz);
cam_start_offset = offset * page_sz;
if (IS_HARDWARE_TYPE_8188E(adapter)) {
ctrl_l = 0x0001;
ctrl_h = 0x0001;
} else {
ctrl_l = 0x0f01;
ctrl_h = 0xf001;
}
/* Enable RX packet buffer access */
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, RXPKT_BUF_SELECT);
/* Write the WKFM CAM */
for (i = 0; i < WKFMCAM_ADDR_NUM; i++) {
/*
* Set Rx packet buffer offset.
* RxBufer pointer increases 1, we can access 8 bytes in Rx packet buffer.
* CAM start offset (unit: 1 byte) = Index*WKFMCAM_SIZE
* RxBufer pointer addr = (CAM start offset + per entry offset of a WKFMCAM)/8
* * Index: The index of the wake up frame mask
* * WKFMCAM_SIZE: the total size of one WKFM CAM
* * per entry offset of a WKFM CAM: Addr i * 4 bytes
*/
rx_buf_ptr =
(cam_start_offset + idx * WKFMCAM_SIZE + i * 4) >> 3;
rtw_write16(adapter, REG_PKTBUF_DBG_CTRL, rx_buf_ptr);
if (i == 0) {
if (context->type == PATTERN_VALID)
data = BIT(31);
else if (context->type == PATTERN_BROADCAST)
data = BIT(31) | BIT(26);
else if (context->type == PATTERN_MULTICAST)
data = BIT(31) | BIT(25);
else if (context->type == PATTERN_UNICAST)
data = BIT(31) | BIT(24);
if (context->crc != 0)
data |= context->crc;
rtw_write32(adapter, REG_PKTBUF_DBG_DATA_L, data);
rtw_write16(adapter, REG_RXPKTBUF_CTRL, ctrl_l);
} else if (i == 1) {
data = 0;
rtw_write32(adapter, REG_PKTBUF_DBG_DATA_H, data);
rtw_write16(adapter, REG_RXPKTBUF_CTRL, ctrl_h);
} else if (i == 2 || i == 4) {
data = context->mask[i - 2];
rtw_write32(adapter, REG_PKTBUF_DBG_DATA_L, data);
/* write to RX packet buffer*/
rtw_write16(adapter, REG_RXPKTBUF_CTRL, ctrl_l);
} else if (i == 3 || i == 5) {
data = context->mask[i - 2];
rtw_write32(adapter, REG_PKTBUF_DBG_DATA_H, data);
/* write to RX packet buffer*/
rtw_write16(adapter, REG_RXPKTBUF_CTRL, ctrl_h);
}
count = 0;
do {
tmp = rtw_read8(adapter, REG_RXPKTBUF_CTRL);
rtw_udelay_os(2);
count++;
} while (tmp && count < 100);
if (count >= 100)
res = false;
else
res = true;
}
/* Disable RX packet buffer access */
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL,
DISABLE_TRXPKT_BUF_ACCESS);
return res;
}
void rtw_clean_pattern(_adapter *adapter)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter);
struct rtl_wow_pattern zero_pattern;
int i = 0;
memset(&zero_pattern, 0, sizeof(struct rtl_wow_pattern));
zero_pattern.type = PATTERN_INVALID;
for (i = 0; i < MAX_WKFM_CAM_NUM; i++)
rtw_write_to_frame_mask(adapter, i, &zero_pattern);
rtw_write8(adapter, REG_WKFMCAM_NUM, 0);
}
static int rtw_hal_set_pattern(_adapter *adapter, u8 *pattern,
u8 len, u8 *mask, u8 idx)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter);
struct mlme_ext_priv *pmlmeext = NULL;
struct mlme_ext_info *pmlmeinfo = NULL;
struct rtl_wow_pattern wow_pattern;
u8 mask_hw[MAX_WKFM_SIZE] = {0};
u8 content[MAX_WKFM_PATTERN_SIZE] = {0};
u8 broadcast_addr[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
u8 multicast_addr1[2] = {0x33, 0x33};
u8 multicast_addr2[3] = {0x01, 0x00, 0x5e};
u8 res = false, index = 0, mask_len = 0;
u8 mac_addr[ETH_ALEN] = {0};
u16 count = 0;
int i, j;
if (pwrctl->wowlan_pattern_idx > MAX_WKFM_CAM_NUM) {
RTW_INFO("%s pattern_idx is more than MAX_FMC_NUM: %d\n",
__func__, MAX_WKFM_CAM_NUM);
return false;
}
pmlmeext = &adapter->mlmeextpriv;
pmlmeinfo = &pmlmeext->mlmext_info;
memcpy(mac_addr, adapter_mac_addr(adapter), ETH_ALEN);
memset(&wow_pattern, 0, sizeof(struct rtl_wow_pattern));
mask_len = DIV_ROUND_UP(len, 8);
/* 1. setup A1 table */
if (memcmp(pattern, broadcast_addr, ETH_ALEN) == 0)
wow_pattern.type = PATTERN_BROADCAST;
else if (memcmp(pattern, multicast_addr1, 2) == 0)
wow_pattern.type = PATTERN_MULTICAST;
else if (memcmp(pattern, multicast_addr2, 3) == 0)
wow_pattern.type = PATTERN_MULTICAST;
else if (memcmp(pattern, mac_addr, ETH_ALEN) == 0)
wow_pattern.type = PATTERN_UNICAST;
else
wow_pattern.type = PATTERN_INVALID;
/* translate mask from os to mask for hw */
/******************************************************************************
* pattern from OS uses 'ethenet frame', like this:
| 6 | 6 | 2 | 20 | Variable | 4 |
|--------+--------+------+-----------+------------+-----|
| 802.3 Mac Header | IP Header | TCP Packet | FCS |
| DA | SA | Type |
* BUT, packet catched by our HW is in '802.11 frame', begin from LLC,
| 24 or 30 | 6 | 2 | 20 | Variable | 4 |
|-------------------+--------+------+-----------+------------+-----|
| 802.11 MAC Header | LLC | IP Header | TCP Packet | FCS |
| Others | Tpye |
* Therefore, we need translate mask_from_OS to mask_to_hw.
* We should left-shift mask by 6 bits, then set the new bit[0~5] = 0,
* because new mask[0~5] means 'SA', but our HW packet begins from LLC,
* bit[0~5] corresponds to first 6 Bytes in LLC, they just don't match.
******************************************************************************/
/* Shift 6 bits */
for (i = 0; i < mask_len - 1; i++) {
mask_hw[i] = mask[i] >> 6;
mask_hw[i] |= (mask[i + 1] & 0x3F) << 2;
}
mask_hw[i] = (mask[i] >> 6) & 0x3F;
/* Set bit 0-5 to zero */
mask_hw[0] &= 0xC0;
for (i = 0; i < (MAX_WKFM_SIZE / 4); i++) {
wow_pattern.mask[i] = mask_hw[i * 4];
wow_pattern.mask[i] |= (mask_hw[i * 4 + 1] << 8);
wow_pattern.mask[i] |= (mask_hw[i * 4 + 2] << 16);
wow_pattern.mask[i] |= (mask_hw[i * 4 + 3] << 24);
}
/* To get the wake up pattern from the mask.
* We do not count first 12 bits which means
* DA[6] and SA[6] in the pattern to match HW design. */
count = 0;
for (i = 12; i < len; i++) {
if ((mask[i / 8] >> (i % 8)) & 0x01) {
content[count] = pattern[i];
count++;
}
}
wow_pattern.crc = rtw_calc_crc(content, count);
if (wow_pattern.crc != 0) {
if (wow_pattern.type == PATTERN_INVALID)
wow_pattern.type = PATTERN_VALID;
}
index = idx;
if (!pwrctl->bInSuspend)
index += 2;
/* write pattern */
res = rtw_write_to_frame_mask(adapter, index, &wow_pattern);
if (res == false)
RTW_INFO("%s: ERROR!! idx: %d write_to_frame_mask_cam fail\n",
__func__, idx);
return res;
}
void rtw_fill_pattern(_adapter *adapter)
{
int i = 0, total = 0, index;
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
struct rtl_wow_pattern wow_pattern;
total = pwrpriv->wowlan_pattern_idx;
if (total > MAX_WKFM_CAM_NUM)
total = MAX_WKFM_CAM_NUM;
for (i = 0 ; i < total ; i++) {
if (_SUCCESS == rtw_hal_wow_pattern_generate(adapter, i, &wow_pattern)) {
index = i;
if (!pwrpriv->bInSuspend)
index += 2;
if (rtw_write_to_frame_mask(adapter, index, &wow_pattern) == false)
RTW_INFO("%s: ERROR!! idx: %d write_to_frame_mask_cam fail\n", __func__, i);
}
}
rtw_write8(adapter, REG_WKFMCAM_NUM, total);
}
#else /*CONFIG_WOW_PATTERN_HW_CAM*/
#define WOW_CAM_ACCESS_TIMEOUT_MS 200
#define WOW_VALID_BIT BIT31
#define WOW_BC_BIT BIT26
#define WOW_MC_BIT BIT25
#define WOW_UC_BIT BIT24
static u32 _rtw_wow_pattern_read_cam(_adapter *adapter, u8 addr)
{
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
_mutex *mutex = &pwrpriv->wowlan_pattern_cam_mutex;
u32 rdata = 0;
u32 cnt = 0;
u32 start = 0;
u8 timeout = 0;
u8 rst = false;
_enter_critical_mutex(mutex, NULL);
rtw_write32(adapter, REG_WKFMCAM_CMD, BIT_WKFCAM_POLLING_V1 | BIT_WKFCAM_ADDR_V2(addr));
start = jiffies;
while (1) {
if (rtw_is_surprise_removed(adapter))
break;
cnt++;
if (0 == (rtw_read32(adapter, REG_WKFMCAM_CMD) & BIT_WKFCAM_POLLING_V1)) {
rst = _SUCCESS;
break;
}
if (rtw_get_passing_time_ms(start) > WOW_CAM_ACCESS_TIMEOUT_MS) {
timeout = 1;
break;
}
}
rdata = rtw_read32(adapter, REG_WKFMCAM_RWD);
_exit_critical_mutex(mutex, NULL);
/*RTW_INFO("%s ==> addr:0x%02x , rdata:0x%08x\n", __func__, addr, rdata);*/
if (timeout)
RTW_ERR(FUNC_ADPT_FMT" failed due to polling timeout\n", FUNC_ADPT_ARG(adapter));
return rdata;
}
void rtw_wow_pattern_read_cam_ent(_adapter *adapter, u8 id, struct rtl_wow_pattern *context)
{
int i;
u32 rdata;
memset(context, 0, sizeof(struct rtl_wow_pattern));
for (i = 4; i >= 0; i--) {
rdata = _rtw_wow_pattern_read_cam(adapter, (id << 3) | i);
switch (i) {
case 4:
if (rdata & WOW_BC_BIT)
context->type = PATTERN_BROADCAST;
else if (rdata & WOW_MC_BIT)
context->type = PATTERN_MULTICAST;
else if (rdata & WOW_UC_BIT)
context->type = PATTERN_UNICAST;
else
context->type = PATTERN_INVALID;
context->crc = rdata & 0xFFFF;
break;
default:
memcpy(&context->mask[i], (u8 *)(&rdata), 4);
break;
}
}
}
static void _rtw_wow_pattern_write_cam(_adapter *adapter, u8 addr, u32 wdata)
{
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
_mutex *mutex = &pwrpriv->wowlan_pattern_cam_mutex;
u32 cnt = 0;
u32 start = 0, end = 0;
u8 timeout = 0;
/*RTW_INFO("%s ==> addr:0x%02x , wdata:0x%08x\n", __func__, addr, wdata);*/
_enter_critical_mutex(mutex, NULL);
rtw_write32(adapter, REG_WKFMCAM_RWD, wdata);
rtw_write32(adapter, REG_WKFMCAM_CMD, BIT_WKFCAM_POLLING_V1 | BIT_WKFCAM_WE | BIT_WKFCAM_ADDR_V2(addr));
start = jiffies;
while (1) {
if (rtw_is_surprise_removed(adapter))
break;
cnt++;
if (0 == (rtw_read32(adapter, REG_WKFMCAM_CMD) & BIT_WKFCAM_POLLING_V1))
break;
if (rtw_get_passing_time_ms(start) > WOW_CAM_ACCESS_TIMEOUT_MS) {
timeout = 1;
break;
}
}
end = jiffies;
_exit_critical_mutex(mutex, NULL);
if (timeout) {
RTW_ERR(FUNC_ADPT_FMT" addr:0x%02x, wdata:0x%08x, to:%u, polling:%u, %d ms\n"
, FUNC_ADPT_ARG(adapter), addr, wdata, timeout, cnt, rtw_get_time_interval_ms(start, end));
}
}
void rtw_wow_pattern_write_cam_ent(_adapter *adapter, u8 id, struct rtl_wow_pattern *context)
{
int j;
u8 addr;
u32 wdata = 0;
for (j = 4; j >= 0; j--) {
switch (j) {
case 4:
wdata = context->crc;
if (PATTERN_BROADCAST == context->type)
wdata |= WOW_BC_BIT;
if (PATTERN_MULTICAST == context->type)
wdata |= WOW_MC_BIT;
if (PATTERN_UNICAST == context->type)
wdata |= WOW_UC_BIT;
if (PATTERN_INVALID != context->type)
wdata |= WOW_VALID_BIT;
break;
default:
wdata = context->mask[j];
break;
}
addr = (id << 3) + j;
_rtw_wow_pattern_write_cam(adapter, addr, wdata);
}
}
static u8 _rtw_wow_pattern_clean_cam(_adapter *adapter)
{
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
_mutex *mutex = &pwrpriv->wowlan_pattern_cam_mutex;
u32 cnt = 0;
u32 start = 0;
u8 timeout = 0;
u8 rst = _FAIL;
_enter_critical_mutex(mutex, NULL);
rtw_write32(adapter, REG_WKFMCAM_CMD, BIT_WKFCAM_POLLING_V1 | BIT_WKFCAM_CLR_V1);
start = jiffies;
while (1) {
if (rtw_is_surprise_removed(adapter))
break;
cnt++;
if (0 == (rtw_read32(adapter, REG_WKFMCAM_CMD) & BIT_WKFCAM_POLLING_V1)) {
rst = _SUCCESS;
break;
}
if (rtw_get_passing_time_ms(start) > WOW_CAM_ACCESS_TIMEOUT_MS) {
timeout = 1;
break;
}
}
_exit_critical_mutex(mutex, NULL);
if (timeout)
RTW_ERR(FUNC_ADPT_FMT" falied ,polling timeout\n", FUNC_ADPT_ARG(adapter));
return rst;
}
void rtw_clean_pattern(_adapter *adapter)
{
if (_FAIL == _rtw_wow_pattern_clean_cam(adapter))
RTW_ERR("rtw_clean_pattern failed\n");
}
void rtw_dump_wow_pattern(void *sel, struct rtl_wow_pattern *pwow_pattern, u8 idx)
{
int j;
RTW_PRINT_SEL(sel, "=======WOW CAM-ID[%d]=======\n", idx);
RTW_PRINT_SEL(sel, "[WOW CAM] type:%d\n", pwow_pattern->type);
RTW_PRINT_SEL(sel, "[WOW CAM] crc:0x%04x\n", pwow_pattern->crc);
for (j = 0; j < 4; j++)
RTW_PRINT_SEL(sel, "[WOW CAM] Mask:0x%08x\n", pwow_pattern->mask[j]);
}
void rtw_fill_pattern(_adapter *adapter)
{
int i = 0, total = 0;
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
struct rtl_wow_pattern wow_pattern;
total = pwrpriv->wowlan_pattern_idx;
if (total > MAX_WKFM_CAM_NUM)
total = MAX_WKFM_CAM_NUM;
for (i = 0 ; i < total ; i++) {
if (_SUCCESS == rtw_hal_wow_pattern_generate(adapter, i, &wow_pattern)) {
rtw_dump_wow_pattern(RTW_DBGDUMP, &wow_pattern, i);
rtw_wow_pattern_write_cam_ent(adapter, i, &wow_pattern);
}
}
}
#endif
void rtw_wow_pattern_cam_dump(_adapter *adapter)
{
#ifndef CONFIG_WOW_PATTERN_HW_CAM
int i;
for (i = 0 ; i < MAX_WKFM_CAM_NUM; i++) {
RTW_INFO("=======[%d]=======\n", i);
rtw_read_from_frame_mask(adapter, i);
}
#else
struct rtl_wow_pattern context;
int i;
for (i = 0 ; i < MAX_WKFM_CAM_NUM; i++) {
rtw_wow_pattern_read_cam_ent(adapter, i, &context);
rtw_dump_wow_pattern(RTW_DBGDUMP, &context, i);
}
#endif
}
static void rtw_hal_dl_pattern(_adapter *adapter, u8 mode)
{
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
switch (mode) {
case 0:
rtw_clean_pattern(adapter);
RTW_INFO("%s: total patterns: %d\n", __func__, pwrpriv->wowlan_pattern_idx);
break;
case 1:
rtw_set_default_pattern(adapter);
rtw_fill_pattern(adapter);
RTW_INFO("%s: pattern total: %d downloaded\n", __func__, pwrpriv->wowlan_pattern_idx);
break;
case 2:
rtw_clean_pattern(adapter);
rtw_wow_pattern_sw_reset(adapter);
RTW_INFO("%s: clean patterns\n", __func__);
break;
default:
RTW_INFO("%s: unknown mode\n", __func__);
break;
}
}
static void rtw_hal_wow_enable(_adapter *adapter)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter);
struct security_priv *psecuritypriv = &adapter->securitypriv;
struct mlme_priv *pmlmepriv = &adapter->mlmepriv;
struct hal_ops *pHalFunc = &adapter->hal_func;
struct sta_info *psta = NULL;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(adapter);
int res;
u16 media_status_rpt;
RTW_PRINT("%s, WOWLAN_ENABLE\n", __func__);
rtw_hal_gate_bb(adapter, true);
#ifdef CONFIG_GTK_OL
if (psecuritypriv->binstallKCK_KEK == true)
rtw_hal_fw_sync_cam_id(adapter);
#endif
/* RX DMA stop */
if (IS_HARDWARE_TYPE_8188E(adapter))
rtw_hal_disable_tx_report(adapter);
res = rtw_hal_pause_rx_dma(adapter);
if (res == _FAIL)
RTW_PRINT("[WARNING] pause RX DMA fail\n");
#ifndef CONFIG_WOW_PATTERN_HW_CAM
/* Reconfig RX_FF Boundary */
rtw_hal_set_wow_rxff_boundary(adapter, true);
#endif
/* redownload wow pattern */
rtw_hal_dl_pattern(adapter, 1);
rtw_hal_fw_dl(adapter, true);
media_status_rpt = RT_MEDIA_CONNECT;
rtw_hal_set_hwreg(adapter, HW_VAR_H2C_FW_JOINBSSRPT,
(u8 *)&media_status_rpt);
if (!pwrctl->wowlan_pno_enable) {
psta = rtw_get_stainfo(&adapter->stapriv, get_bssid(pmlmepriv));
if (psta != NULL) {
#ifdef CONFIG_FW_MULTI_PORT_SUPPORT
rtw_hal_set_default_port_id_cmd(adapter, psta->mac_id);
#endif
rtw_sta_media_status_rpt(adapter, psta, 1);
}
}
/* Set WOWLAN H2C command. */
RTW_PRINT("Set WOWLan cmd\n");
rtw_hal_set_fw_wow_related_cmd(adapter, 1);
res = rtw_hal_check_wow_ctrl(adapter, true);
if (res == false)
RTW_INFO("[Error]%s: set wowlan CMD fail!!\n", __func__);
pwrctl->wowlan_wake_reason =
rtw_read8(adapter, REG_WOWLAN_WAKE_REASON);
RTW_PRINT("wowlan_wake_reason: 0x%02x\n",
pwrctl->wowlan_wake_reason);
#ifdef CONFIG_GTK_OL_DBG
dump_sec_cam(RTW_DBGDUMP, adapter);
dump_sec_cam_cache(RTW_DBGDUMP, adapter);
#endif
/* free adapter's resource */
rtw_mi_intf_stop(adapter);
/* Invoid SE0 reset signal during suspending*/
rtw_write8(adapter, REG_RSV_CTRL, 0x20);
if (IS_8188F(pHalData->version_id) == false)
rtw_write8(adapter, REG_RSV_CTRL, 0x60);
rtw_hal_gate_bb(adapter, false);
}
#define DBG_WAKEUP_REASON
#ifdef DBG_WAKEUP_REASON
void _dbg_wake_up_reason_string(_adapter *adapter, const char *srt_res)
{
RTW_INFO(ADPT_FMT "- wake up reason - %s\n", ADPT_ARG(adapter), srt_res);
}
void _dbg_rtw_wake_up_reason(_adapter *adapter, u8 reason)
{
if (RX_PAIRWISEKEY == reason)
_dbg_wake_up_reason_string(adapter, "Rx pairwise key");
else if (RX_GTK == reason)
_dbg_wake_up_reason_string(adapter, "Rx GTK");
else if (RX_FOURWAY_HANDSHAKE == reason)
_dbg_wake_up_reason_string(adapter, "Rx four way handshake");
else if (RX_DISASSOC == reason)
_dbg_wake_up_reason_string(adapter, "Rx disassoc");
else if (RX_DEAUTH == reason)
_dbg_wake_up_reason_string(adapter, "Rx deauth");
else if (RX_ARP_REQUEST == reason)
_dbg_wake_up_reason_string(adapter, "Rx ARP request");
else if (FW_DECISION_DISCONNECT == reason)
_dbg_wake_up_reason_string(adapter, "FW detect disconnect");
else if (RX_MAGIC_PKT == reason)
_dbg_wake_up_reason_string(adapter, "Rx magic packet");
else if (RX_UNICAST_PKT == reason)
_dbg_wake_up_reason_string(adapter, "Rx unicast packet");
else if (RX_PATTERN_PKT == reason)
_dbg_wake_up_reason_string(adapter, "Rx pattern packet");
else if (RTD3_SSID_MATCH == reason)
_dbg_wake_up_reason_string(adapter, "RTD3 SSID match");
else if (RX_REALWOW_V2_WAKEUP_PKT == reason)
_dbg_wake_up_reason_string(adapter, "Rx real WOW V2 wakeup packet");
else if (RX_REALWOW_V2_ACK_LOST == reason)
_dbg_wake_up_reason_string(adapter, "Rx real WOW V2 ack lost");
else if (ENABLE_FAIL_DMA_IDLE == reason)
_dbg_wake_up_reason_string(adapter, "enable fail DMA idle");
else if (ENABLE_FAIL_DMA_PAUSE == reason)
_dbg_wake_up_reason_string(adapter, "enable fail DMA pause");
else if (AP_OFFLOAD_WAKEUP == reason)
_dbg_wake_up_reason_string(adapter, "AP offload wakeup");
else if (CLK_32K_UNLOCK == reason)
_dbg_wake_up_reason_string(adapter, "clk 32k unlock");
else if (RTIME_FAIL_DMA_IDLE == reason)
_dbg_wake_up_reason_string(adapter, "RTIME fail DMA idle");
else if (CLK_32K_LOCK == reason)
_dbg_wake_up_reason_string(adapter, "clk 32k lock");
else
_dbg_wake_up_reason_string(adapter, "unknown reasoen");
}
#endif
static void rtw_hal_wow_disable(_adapter *adapter)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter);
struct security_priv *psecuritypriv = &adapter->securitypriv;
struct mlme_priv *pmlmepriv = &adapter->mlmepriv;
struct hal_ops *pHalFunc = &adapter->hal_func;
struct sta_info *psta = NULL;
int res;
u16 media_status_rpt;
u8 val8;
RTW_PRINT("%s, WOWLAN_DISABLE\n", __func__);
if (!pwrctl->wowlan_pno_enable) {
psta = rtw_get_stainfo(&adapter->stapriv, get_bssid(pmlmepriv));
if (psta != NULL)
rtw_sta_media_status_rpt(adapter, psta, 0);
else
RTW_INFO("%s: psta is null\n", __func__);
}
if (0) {
RTW_INFO("0x630:0x%02x\n", rtw_read8(adapter, 0x630));
RTW_INFO("0x631:0x%02x\n", rtw_read8(adapter, 0x631));
RTW_INFO("0x634:0x%02x\n", rtw_read8(adapter, 0x634));
RTW_INFO("0x1c7:0x%02x\n", rtw_read8(adapter, 0x1c7));
}
pwrctl->wowlan_wake_reason = rtw_read8(adapter, REG_WOWLAN_WAKE_REASON);
RTW_PRINT("wakeup_reason: 0x%02x\n",
pwrctl->wowlan_wake_reason);
#ifdef DBG_WAKEUP_REASON
_dbg_rtw_wake_up_reason(adapter, pwrctl->wowlan_wake_reason);
#endif
rtw_hal_set_fw_wow_related_cmd(adapter, 0);
res = rtw_hal_check_wow_ctrl(adapter, false);
if (res == false) {
RTW_INFO("[Error]%s: disable WOW cmd fail\n!!", __func__);
rtw_hal_force_enable_rxdma(adapter);
}
rtw_hal_gate_bb(adapter, true);
res = rtw_hal_pause_rx_dma(adapter);
if (res == _FAIL)
RTW_PRINT("[WARNING] pause RX DMA fail\n");
/* clean HW pattern match */
rtw_hal_dl_pattern(adapter, 0);
#ifndef CONFIG_WOW_PATTERN_HW_CAM
/* config RXFF boundary to original */
rtw_hal_set_wow_rxff_boundary(adapter, false);
#endif
rtw_hal_release_rx_dma(adapter);
if (IS_HARDWARE_TYPE_8188E(adapter))
rtw_hal_enable_tx_report(adapter);
#ifdef CONFIG_GTK_OL
if (((pwrctl->wowlan_wake_reason != RX_DISASSOC) ||
(pwrctl->wowlan_wake_reason != RX_DEAUTH) ||
(pwrctl->wowlan_wake_reason != FW_DECISION_DISCONNECT)) &&
psecuritypriv->binstallKCK_KEK == true) {
rtw_hal_get_aoac_rpt(adapter);
rtw_hal_update_sw_security_info(adapter);
}
#endif /*CONFIG_GTK_OL*/
rtw_hal_fw_dl(adapter, false);
#ifdef CONFIG_GPIO_WAKEUP
val8 = (pwrctl->is_high_active == 0) ? 1 : 0;
RTW_PRINT("Set Wake GPIO to default(%d).\n", val8);
rtw_hal_set_output_gpio(adapter, WAKEUP_GPIO_IDX, val8);
rtw_hal_switch_gpio_wl_ctrl(adapter, WAKEUP_GPIO_IDX, false);
#endif
if ((pwrctl->wowlan_wake_reason != FW_DECISION_DISCONNECT) &&
(pwrctl->wowlan_wake_reason != RX_PAIRWISEKEY) &&
(pwrctl->wowlan_wake_reason != RX_DISASSOC) &&
(pwrctl->wowlan_wake_reason != RX_DEAUTH)) {
media_status_rpt = RT_MEDIA_CONNECT;
rtw_hal_set_hwreg(adapter, HW_VAR_H2C_FW_JOINBSSRPT,
(u8 *)&media_status_rpt);
if (psta != NULL) {
#ifdef CONFIG_FW_MULTI_PORT_SUPPORT
rtw_hal_set_default_port_id_cmd(adapter, psta->mac_id);
#endif
rtw_sta_media_status_rpt(adapter, psta, 1);
}
}
rtw_hal_gate_bb(adapter, false);
}
#endif /*CONFIG_WOWLAN*/
#ifdef CONFIG_P2P_WOWLAN
void rtw_hal_set_p2p_wow_fw_rsvd_page(_adapter *adapter, u8 *pframe, u16 index,
u8 tx_desc, u32 page_size, u8 *page_num, u32 *total_pkt_len,
RSVDPAGE_LOC *rsvd_page_loc)
{
u32 P2PNegoRspLength = 0, P2PInviteRspLength = 0;
u32 P2PPDRspLength = 0, P2PProbeRspLength = 0, P2PBCNLength = 0;
u8 CurtPktPageNum = 0;
/* P2P Beacon */
rsvd_page_loc->LocP2PBeacon = *page_num;
rtw_hal_construct_P2PBeacon(adapter, &pframe[index], &P2PBCNLength);
rtw_hal_fill_fake_txdesc(adapter, &pframe[index - tx_desc],
P2PBCNLength, false, false, false);
CurtPktPageNum = (u8)PageNum(tx_desc + P2PBCNLength, page_size);
*page_num += CurtPktPageNum;
index += (CurtPktPageNum * page_size);
/* P2P Probe rsp */
rsvd_page_loc->LocP2PProbeRsp = *page_num;
rtw_hal_construct_P2PProbeRsp(adapter, &pframe[index],
&P2PProbeRspLength);
rtw_hal_fill_fake_txdesc(adapter, &pframe[index - tx_desc],
P2PProbeRspLength, false, false, false);
CurtPktPageNum = (u8)PageNum(tx_desc + P2PProbeRspLength, page_size);
*page_num += CurtPktPageNum;
index += (CurtPktPageNum * page_size);
/* P2P nego rsp */
rsvd_page_loc->LocNegoRsp = *page_num;
rtw_hal_construct_P2PNegoRsp(adapter, &pframe[index],
&P2PNegoRspLength);
rtw_hal_fill_fake_txdesc(adapter, &pframe[index - tx_desc],
P2PNegoRspLength, false, false, false);
/* RTW_INFO("%s(): HW_VAR_SET_TX_CMD: QOS NULL DATA %p %d\n", */
/* __func__, &pframe[index-tx_desc], (NegoRspLength+tx_desc)); */
CurtPktPageNum = (u8)PageNum(tx_desc + P2PNegoRspLength, page_size);
*page_num += CurtPktPageNum;
index += (CurtPktPageNum * page_size);
/* P2P invite rsp */
rsvd_page_loc->LocInviteRsp = *page_num;
rtw_hal_construct_P2PInviteRsp(adapter, &pframe[index],
&P2PInviteRspLength);
rtw_hal_fill_fake_txdesc(adapter, &pframe[index - tx_desc],
P2PInviteRspLength, false, false, false);
/* RTW_INFO("%s(): HW_VAR_SET_TX_CMD: QOS NULL DATA %p %d\n", */
/* __func__, &pframe[index-tx_desc], (InviteRspLength+tx_desc)); */
CurtPktPageNum = (u8)PageNum(tx_desc + P2PInviteRspLength, page_size);
*page_num += CurtPktPageNum;
index += (CurtPktPageNum * page_size);
/* P2P provision discovery rsp */
rsvd_page_loc->LocPDRsp = *page_num;
rtw_hal_construct_P2PProvisionDisRsp(adapter,
&pframe[index], &P2PPDRspLength);
rtw_hal_fill_fake_txdesc(adapter, &pframe[index - tx_desc],
P2PPDRspLength, false, false, false);
/* RTW_INFO("%s(): HW_VAR_SET_TX_CMD: QOS NULL DATA %p %d\n", */
/* __func__, &pframe[index-tx_desc], (PDRspLength+tx_desc)); */
CurtPktPageNum = (u8)PageNum(tx_desc + P2PPDRspLength, page_size);
*page_num += CurtPktPageNum;
*total_pkt_len = index + P2PPDRspLength;
index += (CurtPktPageNum * page_size);
}
#endif /* CONFIG_P2P_WOWLAN */
#ifdef CONFIG_LPS_PG
#include "hal_halmac.h"
#define DBG_LPSPG_SEC_DUMP
#define LPS_PG_INFO_RSVD_LEN 16
#define LPS_PG_INFO_RSVD_PAGE_NUM 1
#define DBG_LPSPG_INFO_DUMP
static void rtw_hal_set_lps_pg_info_rsvd_page(_adapter *adapter)
{
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
struct sta_info *psta = rtw_get_stainfo(&adapter->stapriv, get_bssid(&adapter->mlmepriv));
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
PHAL_DATA_TYPE phal_data = GET_HAL_DATA(adapter);
u8 lps_pg_info[LPS_PG_INFO_RSVD_LEN] = {0};
#ifdef CONFIG_MBSSID_CAM
u8 cam_id = INVALID_CAM_ID;
#endif
u8 *psec_cam_id = lps_pg_info + 8;
u8 sec_cam_num = 0;
if (!psta) {
RTW_ERR("%s [ERROR] sta is NULL\n", __func__);
rtw_warn_on(1);
return;
}
/*Byte 0 - used macid*/
LPSPG_RSVD_PAGE_SET_MACID(lps_pg_info, psta->mac_id);
RTW_INFO("[LPSPG-INFO] mac_id:%d\n", psta->mac_id);
#ifdef CONFIG_MBSSID_CAM
/*Byte 1 - used BSSID CAM entry*/
cam_id = rtw_mbid_cam_search_by_ifaceid(adapter, adapter->iface_id);
if (cam_id != INVALID_CAM_ID)
LPSPG_RSVD_PAGE_SET_MBSSCAMID(lps_pg_info, cam_id);
RTW_INFO("[LPSPG-INFO] mbss_cam_id:%d\n", cam_id);
#endif
#ifdef CONFIG_WOWLAN /*&& pattern match cam used*/
/*Btye 2 - Max used Pattern Match CAM entry*/
if (pwrpriv->wowlan_mode == true &&
check_fwstate(&adapter->mlmepriv, _FW_LINKED) == true) {
LPSPG_RSVD_PAGE_SET_PMC_NUM(lps_pg_info, pwrpriv->wowlan_pattern_idx);
RTW_INFO("[LPSPG-INFO] Max Pattern Match CAM entry :%d\n", pwrpriv->wowlan_pattern_idx);
}
#endif
#ifdef CONFIG_BEAMFORMING /*&& MU BF*/
/*Btye 3 - Max MU rate table Group ID*/
LPSPG_RSVD_PAGE_SET_MU_RAID_GID(lps_pg_info, _value);
RTW_INFO("[LPSPG-INFO] Max MU rate table Group ID :%d\n", _value);
#endif
/*Btye 8 ~15 - used Security CAM entry */
sec_cam_num = rtw_get_sec_camid(adapter, 8, psec_cam_id);
/*Btye 4 - used Security CAM entry number*/
if (sec_cam_num < 8)
LPSPG_RSVD_PAGE_SET_SEC_CAM_NUM(lps_pg_info, sec_cam_num);
RTW_INFO("[LPSPG-INFO] Security CAM entry number :%d\n", sec_cam_num);
/*Btye 5 - Txbuf used page number for fw offload*/
LPSPG_RSVD_PAGE_SET_DRV_RSVDPAGE_NUM(lps_pg_info, phal_data->drv_rsvd_page_number);
RTW_INFO("[LPSPG-INFO] DRV's rsvd page numbers :%d\n", phal_data->drv_rsvd_page_number);
#ifdef DBG_LPSPG_SEC_DUMP
{
int i;
for (i = 0; i < sec_cam_num; i++)
RTW_INFO("%d = sec_cam_id:%d\n", i, psec_cam_id[i]);
}
#endif
#ifdef DBG_LPSPG_INFO_DUMP
RTW_INFO("==== DBG_LPSPG_INFO_RSVD_PAGE_DUMP====\n");
RTW_INFO(" %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
*(lps_pg_info), *(lps_pg_info + 1), *(lps_pg_info + 2), *(lps_pg_info + 3),
*(lps_pg_info + 4), *(lps_pg_info + 5), *(lps_pg_info + 6), *(lps_pg_info + 7));
RTW_INFO(" %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
*(lps_pg_info + 8), *(lps_pg_info + 9), *(lps_pg_info + 10), *(lps_pg_info + 11),
*(lps_pg_info + 12), *(lps_pg_info + 13), *(lps_pg_info + 14), *(lps_pg_info + 15));
RTW_INFO("==== DBG_LPSPG_INFO_RSVD_PAGE_DUMP====\n");
#endif
rtw_halmac_download_rsvd_page(dvobj, pwrpriv->lpspg_rsvd_page_locate, lps_pg_info, LPS_PG_INFO_RSVD_LEN);
#ifdef DBG_LPSPG_INFO_DUMP
RTW_INFO("Get LPS-PG INFO from rsvd page_offset:%d\n", pwrpriv->lpspg_rsvd_page_locate);
rtw_dump_rsvd_page(RTW_DBGDUMP, adapter, pwrpriv->lpspg_rsvd_page_locate, 1);
#endif
}
static u8 rtw_hal_set_lps_pg_info_cmd(_adapter *adapter)
{
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
struct mlme_priv *pmlmepriv = &adapter->mlmepriv;
u8 lpspg_info[H2C_LPS_PG_INFO_LEN] = {0};
u8 ret = _FAIL;
RTW_INFO("%s: loc_lpspg_info:%d\n", __func__, pwrpriv->lpspg_rsvd_page_locate);
if (_NO_PRIVACY_ != adapter->securitypriv.dot11PrivacyAlgrthm)
SET_H2CCMD_LPSPG_SEC_CAM_EN(lpspg_info, 1); /*SecurityCAM_En*/
#ifdef CONFIG_MBSSID_CAM
SET_H2CCMD_LPSPG_MBID_CAM_EN(lpspg_info, 1); /*BSSIDCAM_En*/
#endif
#if defined(CONFIG_WOWLAN) && defined(CONFIG_WOW_PATTERN_HW_CAM)
if (pwrpriv->wowlan_mode == true &&
check_fwstate(pmlmepriv, _FW_LINKED) == true) {
SET_H2CCMD_LPSPG_PMC_CAM_EN(lpspg_info, 1); /*PatternMatchCAM_En*/
}
#endif
#ifdef CONFIG_MACID_SEARCH
SET_H2CCMD_LPSPG_MACID_SEARCH_EN(lpspg_info, 1); /*MACIDSearch_En*/
#endif
#ifdef CONFIG_TX_SC
SET_H2CCMD_LPSPG_TXSC_EN(lpspg_info, 1); /*TXSC_En*/
#endif
#ifdef CONFIG_BEAMFORMING /*&& MU BF*/
SET_H2CCMD_LPSPG_MU_RATE_TB_EN(lpspg_info, 1); /*MURateTable_En*/
#endif
SET_H2CCMD_LPSPG_LOC(lpspg_info, pwrpriv->lpspg_rsvd_page_locate);
#ifdef DBG_LPSPG_INFO_DUMP
RTW_INFO("==== DBG_LPSPG_INFO_CMD_DUMP====\n");
RTW_INFO(" H2C_CMD: 0x%02x, H2C_LEN: %d\n", H2C_LPS_PG_INFO, H2C_LPS_PG_INFO_LEN);
RTW_INFO(" %02X:%02X\n", *(lpspg_info), *(lpspg_info + 1));
RTW_INFO("==== DBG_LPSPG_INFO_CMD_DUMP====\n");
#endif
ret = rtw_hal_fill_h2c_cmd(adapter,
H2C_LPS_PG_INFO,
H2C_LPS_PG_INFO_LEN,
lpspg_info);
return ret;
}
u8 rtw_hal_set_lps_pg_info(_adapter *adapter)
{
u8 ret = _FAIL;
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
if (pwrpriv->lpspg_rsvd_page_locate == 0) {
RTW_ERR("%s [ERROR] lpspg_rsvd_page_locate = 0\n", __func__);
rtw_warn_on(1);
return ret;
}
rtw_hal_set_lps_pg_info_rsvd_page(adapter);
ret = rtw_hal_set_lps_pg_info_cmd(adapter);
if (_SUCCESS == ret)
pwrpriv->blpspg_info_up = false;
return ret;
}
void rtw_hal_lps_pg_handler(_adapter *adapter, enum lps_pg_hdl_id hdl_id)
{
switch (hdl_id) {
case LPS_PG_INFO_CFG:
rtw_hal_set_lps_pg_info(adapter);
break;
case LPS_PG_REDLEMEM:
/*rtw_halmac_redl_fw();*/
break;
case LPS_PG_RESEND_H2C:
{
struct macid_ctl_t *macid_ctl = &adapter->dvobj->macid_ctl;
struct sta_info *sta;
PHAL_DATA_TYPE hal_data = GET_HAL_DATA(adapter);
int i;
for (i = 0; i < MACID_NUM_SW_LIMIT; i++) {
sta = macid_ctl->sta[i];
if (sta && !is_broadcast_mac_addr(sta->hwaddr)) {
/*rtw_dm_ra_mask_hdl(adapter, sta);*/
/*phydm_rssi_report(hal_data->odmpriv, sta->mac_id);*/
}
}
}
break;
default:
break;
}
}
#endif /*CONFIG_LPS_PG*/
/*
* Description: Fill the reserved packets that FW will use to RSVD page.
* Now we just send 4 types packet to rsvd page.
* (1)Beacon, (2)Ps-poll, (3)Null data, (4)ProbeRsp.
* Input:
* finished - false:At the first time we will send all the packets as a large packet to Hw,
* so we need to set the packet length to total lengh.
* true: At the second time, we should send the first packet (default:beacon)
* to Hw again and set the lengh in descriptor to the real beacon lengh.
* 2009.10.15 by tynli.
*
* Page Size = 128: 8188e, 8723a/b, 8192c/d,
* Page Size = 256: 8192e, 8821a
* Page Size = 512: 8812a
*/
/*#define DBG_DUMP_SET_RSVD_PAGE*/
void rtw_hal_set_fw_rsvd_page(_adapter *adapter, bool finished)
{
PHAL_DATA_TYPE pHalData;
struct xmit_frame *pcmdframe;
struct pkt_attrib *pattrib;
struct xmit_priv *pxmitpriv;
struct mlme_ext_priv *pmlmeext;
struct mlme_ext_info *pmlmeinfo;
struct pwrctrl_priv *pwrctl;
struct mlme_priv *pmlmepriv = &adapter->mlmepriv;
struct hal_ops *pHalFunc = &adapter->hal_func;
u32 BeaconLength = 0, ProbeRspLength = 0, PSPollLength = 0;
u32 NullDataLength = 0, QosNullLength = 0, BTQosNullLength = 0;
u32 ProbeReqLength = 0, NullFunctionDataLength = 0;
u8 TxDescLen = TXDESC_SIZE, TxDescOffset = TXDESC_OFFSET;
u8 TotalPageNum = 0 , CurtPktPageNum = 0 , RsvdPageNum = 0;
u8 *ReservedPagePacket;
u16 BufIndex = 0;
u32 TotalPacketLen = 0, MaxRsvdPageBufSize = 0, PageSize = 0;
RSVDPAGE_LOC RsvdPageLoc;
#ifdef DBG_CONFIG_ERROR_DETECT
struct sreset_priv *psrtpriv;
#endif /* DBG_CONFIG_ERROR_DETECT */
#ifdef CONFIG_MCC_MODE
u8 dl_mcc_page = _FAIL;
#endif /* CONFIG_MCC_MODE */
pHalData = GET_HAL_DATA(adapter);
#ifdef DBG_CONFIG_ERROR_DETECT
psrtpriv = &pHalData->srestpriv;
#endif
pxmitpriv = &adapter->xmitpriv;
pmlmeext = &adapter->mlmeextpriv;
pmlmeinfo = &pmlmeext->mlmext_info;
pwrctl = adapter_to_pwrctl(adapter);
rtw_hal_get_def_var(adapter, HAL_DEF_TX_PAGE_SIZE, (u8 *)&PageSize);
if (PageSize == 0) {
RTW_INFO("[Error]: %s, PageSize is zero!!\n", __func__);
return;
}
if (pwrctl->wowlan_mode == true || pwrctl->wowlan_ap_mode == true)
RsvdPageNum = rtw_hal_get_txbuff_rsvd_page_num(adapter, true);
else
RsvdPageNum = rtw_hal_get_txbuff_rsvd_page_num(adapter, false);
RTW_INFO("%s PageSize: %d, RsvdPageNUm: %d\n", __func__, PageSize, RsvdPageNum);
MaxRsvdPageBufSize = RsvdPageNum * PageSize;
if (MaxRsvdPageBufSize > MAX_CMDBUF_SZ) {
RTW_INFO("%s MaxRsvdPageBufSize(%d) is larger than MAX_CMDBUF_SZ(%d)",
__func__, MaxRsvdPageBufSize, MAX_CMDBUF_SZ);
rtw_warn_on(1);
return;
}
pcmdframe = rtw_alloc_cmdxmitframe(pxmitpriv);
if (pcmdframe == NULL) {
RTW_INFO("%s: alloc ReservedPagePacket fail!\n", __func__);
return;
}
ReservedPagePacket = pcmdframe->buf_addr;
memset(&RsvdPageLoc, 0, sizeof(RSVDPAGE_LOC));
/* beacon * 2 pages */
BufIndex = TxDescOffset;
rtw_hal_construct_beacon(adapter,
&ReservedPagePacket[BufIndex], &BeaconLength);
/*
* When we count the first page size, we need to reserve description size for the RSVD
* packet, it will be filled in front of the packet in TXPKTBUF.
*/
CurtPktPageNum = (u8)PageNum((TxDescLen + BeaconLength), PageSize);
/* If we don't add 1 more page, ARP offload function will fail at 8723bs.*/
if (CurtPktPageNum == 1)
CurtPktPageNum += 1;
TotalPageNum += CurtPktPageNum;
BufIndex += (CurtPktPageNum * PageSize);
if (pwrctl->wowlan_ap_mode == true) {
/* (4) probe response*/
RsvdPageLoc.LocProbeRsp = TotalPageNum;
rtw_hal_construct_ProbeRsp(
adapter, &ReservedPagePacket[BufIndex],
&ProbeRspLength,
get_my_bssid(&pmlmeinfo->network), false);
rtw_hal_fill_fake_txdesc(adapter,
&ReservedPagePacket[BufIndex - TxDescLen],
ProbeRspLength, false, false, false);
CurtPktPageNum = (u8)PageNum(TxDescLen + ProbeRspLength, PageSize);
TotalPageNum += CurtPktPageNum;
TotalPacketLen = BufIndex + ProbeRspLength;
BufIndex += (CurtPktPageNum * PageSize);
goto download_page;
}
/* ps-poll * 1 page */
RsvdPageLoc.LocPsPoll = TotalPageNum;
RTW_INFO("LocPsPoll: %d\n", RsvdPageLoc.LocPsPoll);
rtw_hal_construct_PSPoll(adapter,
&ReservedPagePacket[BufIndex], &PSPollLength);
rtw_hal_fill_fake_txdesc(adapter,
&ReservedPagePacket[BufIndex - TxDescLen],
PSPollLength, true, false, false);
CurtPktPageNum = (u8)PageNum((TxDescLen + PSPollLength), PageSize);
TotalPageNum += CurtPktPageNum;
BufIndex += (CurtPktPageNum * PageSize);
#ifdef CONFIG_BT_COEXIST
/* BT Qos null data * 1 page */
RsvdPageLoc.LocBTQosNull = TotalPageNum;
RTW_INFO("LocBTQosNull: %d\n", RsvdPageLoc.LocBTQosNull);
rtw_hal_construct_NullFunctionData(
adapter,
&ReservedPagePacket[BufIndex],
&BTQosNullLength,
get_my_bssid(&pmlmeinfo->network),
true, 0, 0, false);
rtw_hal_fill_fake_txdesc(adapter,
&ReservedPagePacket[BufIndex - TxDescLen],
BTQosNullLength, false, true, false);
CurtPktPageNum = (u8)PageNum(TxDescLen + BTQosNullLength, PageSize);
TotalPageNum += CurtPktPageNum;
BufIndex += (CurtPktPageNum * PageSize);
#endif /* CONFIG_BT_COEXIT */
#ifdef CONFIG_MCC_MODE
if (MCC_EN(adapter)) {
dl_mcc_page = rtw_hal_dl_mcc_fw_rsvd_page(adapter, ReservedPagePacket,
&BufIndex, TxDescLen, PageSize,
&TotalPageNum, &TotalPacketLen, &RsvdPageLoc);
} else
dl_mcc_page = _FAIL;
if (dl_mcc_page == _FAIL) {
#endif /* CONFIG_MCC_MODE */
/* null data * 1 page */
RsvdPageLoc.LocNullData = TotalPageNum;
RTW_INFO("LocNullData: %d\n", RsvdPageLoc.LocNullData);
rtw_hal_construct_NullFunctionData(
adapter,
&ReservedPagePacket[BufIndex],
&NullDataLength,
get_my_bssid(&pmlmeinfo->network),
false, 0, 0, false);
rtw_hal_fill_fake_txdesc(adapter,
&ReservedPagePacket[BufIndex - TxDescLen],
NullDataLength, false, false, false);
CurtPktPageNum = (u8)PageNum(TxDescLen + NullDataLength, PageSize);
TotalPageNum += CurtPktPageNum;
BufIndex += (CurtPktPageNum * PageSize);
#ifdef CONFIG_MCC_MODE
}
#endif /* CONFIG_MCC_MODE */
/* Qos null data * 1 page */
RsvdPageLoc.LocQosNull = TotalPageNum;
RTW_INFO("LocQosNull: %d\n", RsvdPageLoc.LocQosNull);
rtw_hal_construct_NullFunctionData(
adapter,
&ReservedPagePacket[BufIndex],
&QosNullLength,
get_my_bssid(&pmlmeinfo->network),
true, 0, 0, false);
rtw_hal_fill_fake_txdesc(adapter,
&ReservedPagePacket[BufIndex - TxDescLen],
QosNullLength, false, false, false);
CurtPktPageNum = (u8)PageNum(TxDescLen + QosNullLength, PageSize);
TotalPageNum += CurtPktPageNum;
TotalPacketLen = BufIndex + QosNullLength;
BufIndex += (CurtPktPageNum * PageSize);
#ifdef CONFIG_WOWLAN
if (pwrctl->wowlan_mode == true &&
pwrctl->wowlan_in_resume == false) {
rtw_hal_set_wow_fw_rsvd_page(adapter, ReservedPagePacket,
BufIndex, TxDescLen, PageSize,
&TotalPageNum, &TotalPacketLen, &RsvdPageLoc);
}
#endif /* CONFIG_WOWLAN */
#ifdef CONFIG_P2P_WOWLAN
if (pwrctl->wowlan_p2p_mode) {
rtw_hal_set_p2p_wow_fw_rsvd_page(adapter, ReservedPagePacket,
BufIndex, TxDescLen, PageSize,
&TotalPageNum, &TotalPacketLen, &RsvdPageLoc);
}
#endif /* CONFIG_P2P_WOWLAN */
#ifdef CONFIG_LPS_PG
/* must reserved last 1 x page for LPS PG Info*/
pwrctl->lpspg_rsvd_page_locate = TotalPageNum;
pwrctl->blpspg_info_up = true;
#endif
download_page:
/* RTW_INFO("%s BufIndex(%d), TxDescLen(%d), PageSize(%d)\n",__func__, BufIndex, TxDescLen, PageSize);*/
RTW_INFO("%s PageNum(%d), pktlen(%d)\n",
__func__, TotalPageNum, TotalPacketLen);
#ifdef CONFIG_LPS_PG
if ((TotalPacketLen + (LPS_PG_INFO_RSVD_PAGE_NUM * PageSize)) > MaxRsvdPageBufSize) {
pwrctl->lpspg_rsvd_page_locate = 0;
pwrctl->blpspg_info_up = false;
RTW_ERR("%s rsvd page size is not enough!!TotalPacketLen+LPS_PG_INFO_LEN %d, MaxRsvdPageBufSize %d\n",
__func__, (TotalPacketLen + (LPS_PG_INFO_RSVD_PAGE_NUM * PageSize)), MaxRsvdPageBufSize);
rtw_warn_on(1);
}
#endif
if (TotalPacketLen > MaxRsvdPageBufSize) {
RTW_ERR("%s(ERROR): rsvd page size is not enough!!TotalPacketLen %d, MaxRsvdPageBufSize %d\n",
__func__, TotalPacketLen, MaxRsvdPageBufSize);
rtw_warn_on(1);
goto error;
} else {
/* update attribute */
pattrib = &pcmdframe->attrib;
update_mgntframe_attrib(adapter, pattrib);
pattrib->qsel = QSLT_BEACON;
pattrib->pktlen = TotalPacketLen - TxDescOffset;
pattrib->last_txcmdsz = TotalPacketLen - TxDescOffset;
dump_mgntframe_and_wait(adapter, pcmdframe, 100);
}
RTW_INFO("%s: Set RSVD page location to Fw ,TotalPacketLen(%d), TotalPageNum(%d)\n",
__func__, TotalPacketLen, TotalPageNum);
#ifdef DBG_DUMP_SET_RSVD_PAGE
RTW_INFO(" ==================================================\n");
RTW_INFO_DUMP("\n", ReservedPagePacket, TotalPacketLen);
RTW_INFO(" ==================================================\n");
#endif
if (check_fwstate(pmlmepriv, _FW_LINKED) == true) {
rtw_hal_set_FwRsvdPage_cmd(adapter, &RsvdPageLoc);
#ifdef CONFIG_WOWLAN
if (pwrctl->wowlan_mode == true &&
pwrctl->wowlan_in_resume == false)
rtw_hal_set_FwAoacRsvdPage_cmd(adapter, &RsvdPageLoc);
#endif /* CONFIG_WOWLAN */
#ifdef CONFIG_AP_WOWLAN
if (pwrctl->wowlan_ap_mode == true)
rtw_hal_set_ap_rsvdpage_loc_cmd(adapter, &RsvdPageLoc);
#endif /* CONFIG_AP_WOWLAN */
} else if (pwrctl->wowlan_pno_enable) {
#ifdef CONFIG_PNO_SUPPORT
rtw_hal_set_FwAoacRsvdPage_cmd(adapter, &RsvdPageLoc);
if (pwrctl->wowlan_in_resume)
rtw_hal_set_scan_offload_info_cmd(adapter,
&RsvdPageLoc, 0);
else
rtw_hal_set_scan_offload_info_cmd(adapter,
&RsvdPageLoc, 1);
#endif /* CONFIG_PNO_SUPPORT */
}
#ifdef CONFIG_P2P_WOWLAN
if (pwrctl->wowlan_p2p_mode)
rtw_hal_set_FwP2PRsvdPage_cmd(adapter, &RsvdPageLoc);
#endif /* CONFIG_P2P_WOWLAN */
return;
error:
rtw_free_xmitframe(pxmitpriv, pcmdframe);
}
static void rtw_hal_set_hw_update_tsf(PADAPTER padapter)
{
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
#if defined(CONFIG_MI_WITH_MBSSID_CAM)
RTW_INFO("[Warn] %s "ADPT_FMT" enter func\n", __func__, ADPT_ARG(padapter));
rtw_warn_on(1);
return;
#endif
if (!pmlmeext->en_hw_update_tsf)
return;
/* check REG_RCR bit is set */
if (!(rtw_read32(padapter, REG_RCR) & RCR_CBSSID_BCN))
return;
/* enable hw update tsf function for non-AP */
if (rtw_linked_check(padapter) &&
check_fwstate(pmlmepriv, WIFI_AP_STATE) != true) {
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->hw_port == HW_PORT1)
rtw_write8(padapter, REG_BCN_CTRL_1, rtw_read8(padapter, REG_BCN_CTRL_1) & (~DIS_TSF_UDT));
else
#endif
rtw_write8(padapter, REG_BCN_CTRL, rtw_read8(padapter, REG_BCN_CTRL) & (~DIS_TSF_UDT));
}
pmlmeext->en_hw_update_tsf = false;
}
#ifdef CONFIG_TDLS
#ifdef CONFIG_TDLS_CH_SW
s32 rtw_hal_ch_sw_oper_offload(_adapter *padapter, u8 channel, u8 channel_offset, u16 bwmode)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u8 ch_sw_h2c_buf[4] = {0x00, 0x00, 0x00, 0x00};
SET_H2CCMD_CH_SW_OPER_OFFLOAD_CH_NUM(ch_sw_h2c_buf, channel);
SET_H2CCMD_CH_SW_OPER_OFFLOAD_BW_MODE(ch_sw_h2c_buf, bwmode);
switch (bwmode) {
case CHANNEL_WIDTH_40:
SET_H2CCMD_CH_SW_OPER_OFFLOAD_BW_40M_SC(ch_sw_h2c_buf, channel_offset);
break;
case CHANNEL_WIDTH_80:
SET_H2CCMD_CH_SW_OPER_OFFLOAD_BW_80M_SC(ch_sw_h2c_buf, channel_offset);
break;
case CHANNEL_WIDTH_20:
default:
break;
}
SET_H2CCMD_CH_SW_OPER_OFFLOAD_RFE_TYPE(ch_sw_h2c_buf, pHalData->rfe_type);
return rtw_hal_fill_h2c_cmd(padapter, H2C_CHNL_SWITCH_OPER_OFFLOAD, sizeof(ch_sw_h2c_buf), ch_sw_h2c_buf);
}
#endif
#endif
#ifdef CONFIG_WMMPS
void rtw_hal_update_uapsd_tid(_adapter *adapter)
{
rtw_write8(adapter, REG_WMMPS_UAPSD_TID, 0xFF);
}
#endif
#if defined(CONFIG_BT_COEXIST) && defined(CONFIG_FW_MULTI_PORT_SUPPORT)
/* For multi-port support, driver needs to inform the port ID to FW for btc operations */
s32 rtw_hal_set_wifi_port_id_cmd(_adapter *adapter)
{
u8 port_id = 0;
u8 h2c_buf[H2C_BTC_WL_PORT_ID_LEN] = {0};
SET_H2CCMD_BTC_WL_PORT_ID(h2c_buf, adapter->hw_port);
return rtw_hal_fill_h2c_cmd(adapter, H2C_BTC_WL_PORT_ID, H2C_BTC_WL_PORT_ID_LEN, h2c_buf);
}
#endif
void SetHwReg(_adapter *adapter, u8 variable, u8 *val)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
switch (variable) {
case HW_VAR_MEDIA_STATUS: {
u8 net_type = *((u8 *)val);
rtw_hal_set_msr(adapter, net_type);
}
break;
case HW_VAR_MAC_ADDR:
#ifdef CONFIG_MI_WITH_MBSSID_CAM
rtw_hal_set_macaddr_mbid(adapter, val);
#else
rtw_hal_set_macaddr_port(adapter, val);
#endif
break;
case HW_VAR_BSSID:
rtw_hal_set_bssid(adapter, val);
break;
#ifdef CONFIG_MBSSID_CAM
case HW_VAR_MBSSID_CAM_WRITE: {
u32 cmd = 0;
u32 *cam_val = (u32 *)val;
rtw_write32(adapter, REG_MBIDCAMCFG_1, cam_val[0]);
cmd = BIT_MBIDCAM_POLL | BIT_MBIDCAM_WT_EN | BIT_MBIDCAM_VALID | cam_val[1];
rtw_write32(adapter, REG_MBIDCAMCFG_2, cmd);
}
break;
case HW_VAR_MBSSID_CAM_CLEAR: {
u32 cmd;
u8 entry_id = *(u8 *)val;
rtw_write32(adapter, REG_MBIDCAMCFG_1, 0);
cmd = BIT_MBIDCAM_POLL | BIT_MBIDCAM_WT_EN | ((entry_id & MBIDCAM_ADDR_MASK) << MBIDCAM_ADDR_SHIFT);
rtw_write32(adapter, REG_MBIDCAMCFG_2, cmd);
}
break;
case HW_VAR_RCR_MBSSID_EN:
if (*((u8 *)val))
rtw_write32(adapter, REG_RCR, rtw_read32(adapter, REG_RCR) | RCR_ENMBID);
else {
u32 val32;
val32 = rtw_read32(adapter, REG_RCR);
val32 &= ~(RCR_ENMBID);
rtw_write32(adapter, REG_RCR, val32);
}
break;
#endif
case HW_VAR_PORT_SWITCH:
hw_var_port_switch(adapter);
break;
case HW_VAR_INIT_RTS_RATE: {
u16 brate_cfg = *((u16 *)val);
u8 rate_index = 0;
HAL_VERSION *hal_ver = &hal_data->version_id;
if (IS_8188E(*hal_ver)) {
while (brate_cfg > 0x1) {
brate_cfg = (brate_cfg >> 1);
rate_index++;
}
rtw_write8(adapter, REG_INIRTS_RATE_SEL, rate_index);
} else
rtw_warn_on(1);
}
break;
case HW_VAR_SEC_CFG: {
u16 reg_scr_ori;
u16 reg_scr;
reg_scr = reg_scr_ori = rtw_read16(adapter, REG_SECCFG);
reg_scr |= (SCR_CHK_KEYID | SCR_RxDecEnable | SCR_TxEncEnable);
if (_rtw_camctl_chk_cap(adapter, SEC_CAP_CHK_BMC))
reg_scr |= SCR_CHK_BMC;
if (_rtw_camctl_chk_flags(adapter, SEC_STATUS_STA_PK_GK_CONFLICT_DIS_BMC_SEARCH))
reg_scr |= SCR_NoSKMC;
if (reg_scr != reg_scr_ori)
rtw_write16(adapter, REG_SECCFG, reg_scr);
}
break;
case HW_VAR_SEC_DK_CFG: {
struct security_priv *sec = &adapter->securitypriv;
u8 reg_scr = rtw_read8(adapter, REG_SECCFG);
if (val) { /* Enable default key related setting */
reg_scr |= SCR_TXBCUSEDK;
if (sec->dot11AuthAlgrthm != dot11AuthAlgrthm_8021X)
reg_scr |= (SCR_RxUseDK | SCR_TxUseDK);
} else /* Disable default key related setting */
reg_scr &= ~(SCR_RXBCUSEDK | SCR_TXBCUSEDK | SCR_RxUseDK | SCR_TxUseDK);
rtw_write8(adapter, REG_SECCFG, reg_scr);
}
break;
case HW_VAR_ASIX_IOT:
/* enable ASIX IOT function */
if (*((u8 *)val) == true) {
/* 0xa2e[0]=0 (disable rake receiver) */
rtw_write8(adapter, rCCK0_FalseAlarmReport + 2,
rtw_read8(adapter, rCCK0_FalseAlarmReport + 2) & ~(BIT0));
/* 0xa1c=0xa0 (reset channel estimation if signal quality is bad) */
rtw_write8(adapter, rCCK0_DSPParameter2, 0xa0);
} else {
/* restore reg:0xa2e, reg:0xa1c */
rtw_write8(adapter, rCCK0_FalseAlarmReport + 2,
rtw_read8(adapter, rCCK0_FalseAlarmReport + 2) | (BIT0));
rtw_write8(adapter, rCCK0_DSPParameter2, 0x00);
}
break;
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
case HW_VAR_WOWLAN: {
struct wowlan_ioctl_param *poidparam;
poidparam = (struct wowlan_ioctl_param *)val;
switch (poidparam->subcode) {
#ifdef CONFIG_WOWLAN
case WOWLAN_PATTERN_CLEAN:
rtw_hal_dl_pattern(adapter, 2);
break;
case WOWLAN_ENABLE:
rtw_hal_wow_enable(adapter);
break;
case WOWLAN_DISABLE:
rtw_hal_wow_disable(adapter);
break;
#endif /*CONFIG_WOWLAN*/
#ifdef CONFIG_AP_WOWLAN
case WOWLAN_AP_ENABLE:
rtw_hal_ap_wow_enable(adapter);
break;
case WOWLAN_AP_DISABLE:
rtw_hal_ap_wow_disable(adapter);
break;
#endif /*CONFIG_AP_WOWLAN*/
default:
break;
}
}
break;
#endif /*defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)*/
case HW_VAR_EN_HW_UPDATE_TSF:
rtw_hal_set_hw_update_tsf(adapter);
break;
case HW_VAR_APFM_ON_MAC:
hal_data->bMacPwrCtrlOn = *val;
RTW_INFO("%s: bMacPwrCtrlOn=%d\n", __func__, hal_data->bMacPwrCtrlOn);
break;
#ifdef CONFIG_WMMPS
case HW_VAR_UAPSD_TID:
rtw_hal_update_uapsd_tid(adapter);
break;
#endif
#ifdef CONFIG_LPS_PG
case HW_VAR_LPS_PG_HANDLE:
rtw_hal_lps_pg_handler(adapter, *val);
break;
#endif
default:
if (0)
RTW_PRINT(FUNC_ADPT_FMT" variable(%d) not defined!\n",
FUNC_ADPT_ARG(adapter), variable);
break;
}
}
void GetHwReg(_adapter *adapter, u8 variable, u8 *val)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
switch (variable) {
case HW_VAR_BASIC_RATE:
*((u16 *)val) = hal_data->BasicRateSet;
break;
case HW_VAR_RF_TYPE:
*((u8 *)val) = hal_data->rf_type;
break;
case HW_VAR_MEDIA_STATUS:
rtw_hal_get_msr(adapter, val);
break;
case HW_VAR_DO_IQK:
*val = hal_data->bNeedIQK;
break;
case HW_VAR_CH_SW_NEED_TO_TAKE_CARE_IQK_INFO:
if (hal_is_band_support(adapter, BAND_ON_5G))
*val = true;
else
*val = false;
break;
case HW_VAR_APFM_ON_MAC:
*val = hal_data->bMacPwrCtrlOn;
break;
default:
if (0)
RTW_PRINT(FUNC_ADPT_FMT" variable(%d) not defined!\n",
FUNC_ADPT_ARG(adapter), variable);
break;
}
}
u8
SetHalDefVar(_adapter *adapter, HAL_DEF_VARIABLE variable, void *value)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
u8 bResult = _SUCCESS;
switch (variable) {
case HAL_DEF_DBG_DUMP_RXPKT:
hal_data->bDumpRxPkt = *((u8 *)value);
break;
case HAL_DEF_DBG_DUMP_TXPKT:
hal_data->bDumpTxPkt = *((u8 *)value);
break;
case HAL_DEF_ANT_DETECT:
hal_data->AntDetection = *((u8 *)value);
break;
case HAL_DEF_DBG_DIS_PWT:
hal_data->bDisableTXPowerTraining = *((u8 *)value);
break;
default:
RTW_PRINT("%s: [WARNING] HAL_DEF_VARIABLE(%d) not defined!\n", __func__, variable);
bResult = _FAIL;
break;
}
return bResult;
}
#ifdef CONFIG_BEAMFORMING
u8 rtw_hal_query_txbfer_rf_num(_adapter *adapter)
{
struct registry_priv *pregistrypriv = &adapter->registrypriv;
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
return 1;
}
u8 rtw_hal_query_txbfee_rf_num(_adapter *adapter)
{
struct registry_priv *pregistrypriv = &adapter->registrypriv;
struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
return 1;
}
#endif
u8
GetHalDefVar(_adapter *adapter, HAL_DEF_VARIABLE variable, void *value)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
u8 bResult = _SUCCESS;
switch (variable) {
case HAL_DEF_UNDERCORATEDSMOOTHEDPWDB: {
struct mlme_priv *pmlmepriv;
struct sta_priv *pstapriv;
struct sta_info *psta;
pmlmepriv = &adapter->mlmepriv;
pstapriv = &adapter->stapriv;
psta = rtw_get_stainfo(pstapriv, pmlmepriv->cur_network.network.MacAddress);
if (psta)
*((int *)value) = psta->rssi_stat.undecorated_smoothed_pwdb;
}
break;
case HAL_DEF_DBG_DUMP_RXPKT:
*((u8 *)value) = hal_data->bDumpRxPkt;
break;
case HAL_DEF_DBG_DUMP_TXPKT:
*((u8 *)value) = hal_data->bDumpTxPkt;
break;
case HAL_DEF_ANT_DETECT:
*((u8 *)value) = hal_data->AntDetection;
break;
case HAL_DEF_MACID_SLEEP:
*(u8 *)value = false;
break;
case HAL_DEF_TX_PAGE_SIZE:
*((u32 *)value) = PAGE_SIZE_128;
break;
case HAL_DEF_DBG_DIS_PWT:
*(u8 *)value = hal_data->bDisableTXPowerTraining;
break;
case HAL_DEF_EXPLICIT_BEAMFORMER:
case HAL_DEF_EXPLICIT_BEAMFORMEE:
case HAL_DEF_VHT_MU_BEAMFORMER:
case HAL_DEF_VHT_MU_BEAMFORMEE:
*(u8 *)value = false;
break;
#ifdef CONFIG_BEAMFORMING
case HAL_DEF_BEAMFORMER_CAP:
*(u8 *)value = rtw_hal_query_txbfer_rf_num(adapter);
break;
case HAL_DEF_BEAMFORMEE_CAP:
*(u8 *)value = rtw_hal_query_txbfee_rf_num(adapter);
break;
#endif
default:
RTW_PRINT("%s: [WARNING] HAL_DEF_VARIABLE(%d) not defined!\n", __func__, variable);
bResult = _FAIL;
break;
}
return bResult;
}
void SetHalODMVar(
PADAPTER Adapter,
HAL_ODM_VARIABLE eVariable,
void * pValue1,
bool bSet)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct PHY_DM_STRUCT *podmpriv = &pHalData->odmpriv;
/* unsigned long irqL; */
switch (eVariable) {
case HAL_ODM_STA_INFO: {
struct sta_info *psta = (struct sta_info *)pValue1;
if (bSet) {
RTW_INFO("### Set STA_(%d) info ###\n", psta->mac_id);
odm_cmn_info_ptr_array_hook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, psta);
} else {
RTW_INFO("### Clean STA_(%d) info ###\n", psta->mac_id);
/* _enter_critical_bh(&pHalData->odm_stainfo_lock, &irqL); */
psta->rssi_level = 0;
odm_cmn_info_ptr_array_hook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, NULL);
/* _exit_critical_bh(&pHalData->odm_stainfo_lock, &irqL); */
}
}
break;
case HAL_ODM_P2P_STATE:
odm_cmn_info_update(podmpriv, ODM_CMNINFO_WIFI_DIRECT, bSet);
break;
case HAL_ODM_WIFI_DISPLAY_STATE:
odm_cmn_info_update(podmpriv, ODM_CMNINFO_WIFI_DISPLAY, bSet);
break;
case HAL_ODM_REGULATION:
odm_cmn_info_init(podmpriv, ODM_CMNINFO_DOMAIN_CODE_2G, pHalData->Regulation2_4G);
odm_cmn_info_init(podmpriv, ODM_CMNINFO_DOMAIN_CODE_5G, pHalData->Regulation5G);
break;
#if defined(CONFIG_SIGNAL_DISPLAY_DBM) && defined(CONFIG_BACKGROUND_NOISE_MONITOR)
case HAL_ODM_NOISE_MONITOR: {
struct noise_info *pinfo = (struct noise_info *)pValue1;
#ifdef DBG_NOISE_MONITOR
RTW_INFO("### Noise monitor chan(%d)-bPauseDIG:%d,IGIValue:0x%02x,max_time:%d (ms) ###\n",
pinfo->chan, pinfo->bPauseDIG, pinfo->IGIValue, pinfo->max_time);
#endif
pHalData->noise[pinfo->chan] = odm_inband_noise_monitor(podmpriv, pinfo->is_pause_dig, pinfo->igi_value, pinfo->max_time);
RTW_INFO("chan_%d, noise = %d (dBm)\n", pinfo->chan, pHalData->noise[pinfo->chan]);
#ifdef DBG_NOISE_MONITOR
RTW_INFO("noise_a = %d, noise_b = %d noise_all:%d\n",
podmpriv->noise_level.noise[ODM_RF_PATH_A],
podmpriv->noise_level.noise[ODM_RF_PATH_B],
podmpriv->noise_level.noise_all);
#endif
}
break;
#endif/*#ifdef CONFIG_BACKGROUND_NOISE_MONITOR*/
case HAL_ODM_INITIAL_GAIN: {
u8 rx_gain = *((u8 *)(pValue1));
/*printk("rx_gain:%x\n",rx_gain);*/
if (rx_gain == 0xff) {/*restore rx gain*/
/*odm_write_dig(podmpriv,pDigTable->backup_ig_value);*/
odm_pause_dig(podmpriv, PHYDM_RESUME, PHYDM_PAUSE_LEVEL_0, rx_gain);
} else {
/*pDigTable->backup_ig_value = pDigTable->cur_ig_value;*/
/*odm_write_dig(podmpriv,rx_gain);*/
odm_pause_dig(podmpriv, PHYDM_PAUSE, PHYDM_PAUSE_LEVEL_0, rx_gain);
}
}
break;
case HAL_ODM_FA_CNT_DUMP:
if (*((u8 *)pValue1))
podmpriv->debug_components |= (ODM_COMP_DIG | ODM_COMP_FA_CNT);
else
podmpriv->debug_components &= ~(ODM_COMP_DIG | ODM_COMP_FA_CNT);
break;
case HAL_ODM_DBG_FLAG:
odm_cmn_info_update(podmpriv, ODM_CMNINFO_DBG_COMP, *((u64 *)pValue1));
break;
case HAL_ODM_DBG_LEVEL:
odm_cmn_info_update(podmpriv, ODM_CMNINFO_DBG_LEVEL, *((u32 *)pValue1));
break;
case HAL_ODM_RX_INFO_DUMP: {
struct false_ALARM_STATISTICS *false_alm_cnt = (struct false_ALARM_STATISTICS *)phydm_get_structure(podmpriv , PHYDMfalseALMCNT);
struct _dynamic_initial_gain_threshold_ *pDM_DigTable = &podmpriv->dm_dig_table;
void *sel;
sel = pValue1;
_RTW_PRINT_SEL(sel , "============ Rx Info dump ===================\n");
_RTW_PRINT_SEL(sel , "is_linked = %d, rssi_min = %d(%%), current_igi = 0x%x\n", podmpriv->is_linked, podmpriv->rssi_min, pDM_DigTable->cur_ig_value);
_RTW_PRINT_SEL(sel , "cnt_cck_fail = %d, cnt_ofdm_fail = %d, Total False Alarm = %d\n", false_alm_cnt->cnt_cck_fail, false_alm_cnt->cnt_ofdm_fail, false_alm_cnt->cnt_all);
if (podmpriv->is_linked) {
_RTW_PRINT_SEL(sel , "rx_rate = %s", HDATA_RATE(podmpriv->rx_rate));
_RTW_PRINT_SEL(sel , " RSSI_A = %d(%%), RSSI_B = %d(%%)\n", podmpriv->RSSI_A, podmpriv->RSSI_B);
#ifdef DBG_RX_SIGNAL_DISPLAY_RAW_DATA
rtw_dump_raw_rssi_info(Adapter, sel);
#endif
}
}
break;
case HAL_ODM_RX_Dframe_INFO: {
void *sel;
sel = pValue1;
/*_RTW_PRINT_SEL(sel , "HAL_ODM_RX_Dframe_INFO\n");*/
#ifdef DBG_RX_DFRAME_RAW_DATA
rtw_dump_rx_dframe_info(Adapter, sel);
#endif
}
break;
#ifdef CONFIG_AUTO_CHNL_SEL_NHM
case HAL_ODM_AUTO_CHNL_SEL: {
ACS_OP acs_op = *(ACS_OP *)pValue1;
rtw_phydm_func_set(Adapter, ODM_BB_NHM_CNT);
if (ACS_INIT == acs_op) {
#ifdef DBG_AUTO_CHNL_SEL_NHM
RTW_INFO("[ACS-"ADPT_FMT"] HAL_ODM_AUTO_CHNL_SEL: ACS_INIT\n", ADPT_ARG(Adapter));
#endif
odm_AutoChannelSelectInit(podmpriv);
} else if (ACS_RESET == acs_op) {
/* Reset statistics for auto channel selection mechanism.*/
#ifdef DBG_AUTO_CHNL_SEL_NHM
RTW_INFO("[ACS-"ADPT_FMT"] HAL_ODM_AUTO_CHNL_SEL: ACS_RESET\n", ADPT_ARG(Adapter));
#endif
odm_auto_channel_select_reset(podmpriv);
} else if (ACS_SELECT == acs_op) {
/* Collect NHM measurement result after current channel */
#ifdef DBG_AUTO_CHNL_SEL_NHM
RTW_INFO("[ACS-"ADPT_FMT"] HAL_ODM_AUTO_CHNL_SEL: ACS_SELECT, CH(%d)\n", ADPT_ARG(Adapter), rtw_get_acs_channel(Adapter));
#endif
odm_AutoChannelSelect(podmpriv, rtw_get_acs_channel(Adapter));
} else
RTW_INFO("[ACS-"ADPT_FMT"] HAL_ODM_AUTO_CHNL_SEL: Unexpected OP\n", ADPT_ARG(Adapter));
}
break;
#endif
#ifdef CONFIG_ANTENNA_DIVERSITY
case HAL_ODM_ANTDIV_SELECT: {
u8 antenna = (*(u8 *)pValue1);
/*switch antenna*/
odm_update_rx_idle_ant(&pHalData->odmpriv, antenna);
/*RTW_INFO("==> HAL_ODM_ANTDIV_SELECT, Ant_(%s)\n", (antenna == MAIN_ANT) ? "MAIN_ANT" : "AUX_ANT");*/
}
break;
#endif
default:
break;
}
}
void GetHalODMVar(
PADAPTER Adapter,
HAL_ODM_VARIABLE eVariable,
void * pValue1,
void * pValue2)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct PHY_DM_STRUCT *podmpriv = &pHalData->odmpriv;
switch (eVariable) {
#if defined(CONFIG_SIGNAL_DISPLAY_DBM) && defined(CONFIG_BACKGROUND_NOISE_MONITOR)
case HAL_ODM_NOISE_MONITOR: {
u8 chan = *(u8 *)pValue1;
*(s16 *)pValue2 = pHalData->noise[chan];
#ifdef DBG_NOISE_MONITOR
RTW_INFO("### Noise monitor chan(%d)-noise:%d (dBm) ###\n",
chan, pHalData->noise[chan]);
#endif
}
break;
#endif/*#ifdef CONFIG_BACKGROUND_NOISE_MONITOR*/
case HAL_ODM_DBG_FLAG:
*((u64 *)pValue1) = podmpriv->debug_components;
break;
case HAL_ODM_DBG_LEVEL:
*((u32 *)pValue1) = podmpriv->debug_level;
break;
#ifdef CONFIG_AUTO_CHNL_SEL_NHM
case HAL_ODM_AUTO_CHNL_SEL: {
#ifdef DBG_AUTO_CHNL_SEL_NHM
RTW_INFO("[ACS-"ADPT_FMT"] HAL_ODM_AUTO_CHNL_SEL: GET_BEST_CHAN\n", ADPT_ARG(Adapter));
#endif
/* Retrieve better channel from NHM mechanism */
if (IsSupported24G(Adapter->registrypriv.wireless_mode))
*((u8 *)(pValue1)) = odm_get_auto_channel_select_result(podmpriv, BAND_ON_2_4G);
if (is_supported_5g(Adapter->registrypriv.wireless_mode))
*((u8 *)(pValue2)) = odm_get_auto_channel_select_result(podmpriv, BAND_ON_5G);
}
break;
#endif
#ifdef CONFIG_ANTENNA_DIVERSITY
case HAL_ODM_ANTDIV_SELECT: {
struct _FAST_ANTENNA_TRAINNING_ *pDM_FatTable = &podmpriv->dm_fat_table;
*((u8 *)pValue1) = pDM_FatTable->rx_idle_ant;
}
break;
#endif
case HAL_ODM_INITIAL_GAIN: {
struct _dynamic_initial_gain_threshold_ *pDM_DigTable = &podmpriv->dm_dig_table;
*((u8 *)pValue1) = pDM_DigTable->cur_ig_value;
}
break;
default:
break;
}
}
u32 rtw_phydm_ability_ops(_adapter *adapter, HAL_PHYDM_OPS ops, u32 ability)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter);
struct PHY_DM_STRUCT *podmpriv = &pHalData->odmpriv;
u32 result = 0;
switch (ops) {
case HAL_PHYDM_DIS_ALL_FUNC:
podmpriv->support_ability = DYNAMIC_FUNC_DISABLE;
break;
case HAL_PHYDM_FUNC_SET:
podmpriv->support_ability |= ability;
break;
case HAL_PHYDM_FUNC_CLR:
podmpriv->support_ability &= ~(ability);
break;
case HAL_PHYDM_ABILITY_BK:
/* dm flag backup*/
podmpriv->bk_support_ability = podmpriv->support_ability;
break;
case HAL_PHYDM_ABILITY_RESTORE:
/* restore dm flag */
podmpriv->support_ability = podmpriv->bk_support_ability;
break;
case HAL_PHYDM_ABILITY_SET:
podmpriv->support_ability = ability;
break;
case HAL_PHYDM_ABILITY_GET:
result = podmpriv->support_ability;
break;
}
return result;
}
bool
eqNByte(
u8 *str1,
u8 *str2,
u32 num
)
{
if (num == 0)
return false;
while (num > 0) {
num--;
if (str1[num] != str2[num])
return false;
}
return true;
}
/*
* Description:
* Translate a character to hex digit.
* */
u32
MapCharToHexDigit(
char chTmp
)
{
if (chTmp >= '0' && chTmp <= '9')
return chTmp - '0';
else if (chTmp >= 'a' && chTmp <= 'f')
return 10 + (chTmp - 'a');
else if (chTmp >= 'A' && chTmp <= 'F')
return 10 + (chTmp - 'A');
else
return 0;
}
/*
* Description:
* Parse hex number from the string pucStr.
* */
bool
GetHexValueFromString(
char *szStr,
u32 *pu4bVal,
u32 *pu4bMove
)
{
char *szScan = szStr;
/* Check input parameter. */
if (szStr == NULL || pu4bVal == NULL || pu4bMove == NULL) {
RTW_INFO("GetHexValueFromString(): Invalid inpur argumetns! szStr: %p, pu4bVal: %p, pu4bMove: %p\n", szStr, pu4bVal, pu4bMove);
return false;
}
/* Initialize output. */
*pu4bMove = 0;
*pu4bVal = 0;
/* Skip leading space. */
while (*szScan != '\0' &&
(*szScan == ' ' || *szScan == '\t')) {
szScan++;
(*pu4bMove)++;
}
/* Skip leading '0x' or '0X'. */
if (*szScan == '0' && (*(szScan + 1) == 'x' || *(szScan + 1) == 'X')) {
szScan += 2;
(*pu4bMove) += 2;
}
/* Check if szScan is now pointer to a character for hex digit, */
/* if not, it means this is not a valid hex number. */
if (!IsHexDigit(*szScan))
return false;
/* Parse each digit. */
do {
(*pu4bVal) <<= 4;
*pu4bVal += MapCharToHexDigit(*szScan);
szScan++;
(*pu4bMove)++;
} while (IsHexDigit(*szScan));
return true;
}
bool
GetFractionValueFromString(
char *szStr,
u8 *pInteger,
u8 *pFraction,
u32 *pu4bMove
)
{
char *szScan = szStr;
/* Initialize output. */
*pu4bMove = 0;
*pInteger = 0;
*pFraction = 0;
/* Skip leading space. */
while (*szScan != '\0' && (*szScan == ' ' || *szScan == '\t')) {
++szScan;
++(*pu4bMove);
}
/* Parse each digit. */
do {
(*pInteger) *= 10;
*pInteger += (*szScan - '0');
++szScan;
++(*pu4bMove);
if (*szScan == '.') {
++szScan;
++(*pu4bMove);
if (*szScan < '0' || *szScan > '9')
return false;
else {
*pFraction = *szScan - '0';
++szScan;
++(*pu4bMove);
return true;
}
}
} while (*szScan >= '0' && *szScan <= '9');
return true;
}
/*
* Description:
* Return true if szStr is comment out with leading " */ /* ".
* */
bool
IsCommentString(
char *szStr
)
{
if (*szStr == '/' && *(szStr + 1) == '/')
return true;
else
return false;
}
bool
GetU1ByteIntegerFromStringInDecimal(
char *Str,
u8 *pInt
)
{
u16 i = 0;
*pInt = 0;
while (Str[i] != '\0') {
if (Str[i] >= '0' && Str[i] <= '9') {
*pInt *= 10;
*pInt += (Str[i] - '0');
} else
return false;
++i;
}
return true;
}
/* <20121004, Kordan> For example,
* ParseQualifiedString(inString, 0, outString, '[', ']') gets "Kordan" from a string "Hello [Kordan]".
* If RightQualifier does not exist, it will hang on in the while loop */
bool
ParseQualifiedString(
char *In,
u32 *Start,
char *Out,
char LeftQualifier,
char RightQualifier
)
{
u32 i = 0, j = 0;
char c = In[(*Start)++];
if (c != LeftQualifier)
return false;
i = (*Start);
while ((c = In[(*Start)++]) != RightQualifier)
; /* find ']' */
j = (*Start) - 2;
strncpy((char *)Out, (const char *)(In + i), j - i + 1);
return true;
}
bool
isAllSpaceOrTab(
u8 *data,
u8 size
)
{
u8 cnt = 0, NumOfSpaceAndTab = 0;
while (size > cnt) {
if (data[cnt] == ' ' || data[cnt] == '\t' || data[cnt] == '\0')
++NumOfSpaceAndTab;
++cnt;
}
return size == NumOfSpaceAndTab;
}
void rtw_hal_check_rxfifo_full(_adapter *adapter)
{
struct dvobj_priv *psdpriv = adapter->dvobj;
struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter);
struct registry_priv *regsty = &adapter->registrypriv;
int save_cnt = false;
if (regsty->check_hw_status == 1) {
/* switch counter to RX fifo */
if (IS_8188E(pHalData->version_id) ||
IS_8188F(pHalData->version_id) ||
IS_8812_SERIES(pHalData->version_id) ||
IS_8821_SERIES(pHalData->version_id) ||
IS_8723B_SERIES(pHalData->version_id) ||
IS_8192E(pHalData->version_id) ||
IS_8703B_SERIES(pHalData->version_id) ||
IS_8723D_SERIES(pHalData->version_id)) {
rtw_write8(adapter, REG_RXERR_RPT + 3, rtw_read8(adapter, REG_RXERR_RPT + 3) | 0xa0);
save_cnt = true;
} else {
/* todo: other chips */
}
if (save_cnt) {
pdbgpriv->dbg_rx_fifo_last_overflow = pdbgpriv->dbg_rx_fifo_curr_overflow;
pdbgpriv->dbg_rx_fifo_curr_overflow = rtw_read16(adapter, REG_RXERR_RPT);
pdbgpriv->dbg_rx_fifo_diff_overflow = pdbgpriv->dbg_rx_fifo_curr_overflow - pdbgpriv->dbg_rx_fifo_last_overflow;
} else {
/* special value to indicate no implementation */
pdbgpriv->dbg_rx_fifo_last_overflow = 1;
pdbgpriv->dbg_rx_fifo_curr_overflow = 1;
pdbgpriv->dbg_rx_fifo_diff_overflow = 1;
}
}
}
void linked_info_dump(_adapter *padapter, u8 benable)
{
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(padapter);
if (padapter->bLinkInfoDump == benable)
return;
RTW_INFO("%s %s\n", __func__, (benable) ? "enable" : "disable");
if (benable) {
#ifdef CONFIG_LPS
pwrctrlpriv->org_power_mgnt = pwrctrlpriv->power_mgnt;/* keep org value */
rtw_pm_set_lps(padapter, PS_MODE_ACTIVE);
#endif
#ifdef CONFIG_IPS
pwrctrlpriv->ips_org_mode = pwrctrlpriv->ips_mode;/* keep org value */
rtw_pm_set_ips(padapter, IPS_NONE);
#endif
} else {
#ifdef CONFIG_IPS
rtw_pm_set_ips(padapter, pwrctrlpriv->ips_org_mode);
#endif /* CONFIG_IPS */
#ifdef CONFIG_LPS
rtw_pm_set_lps(padapter, pwrctrlpriv->org_power_mgnt);
#endif /* CONFIG_LPS */
}
padapter->bLinkInfoDump = benable ;
}
#ifdef DBG_RX_SIGNAL_DISPLAY_RAW_DATA
void rtw_get_raw_rssi_info(void *sel, _adapter *padapter)
{
u8 isCCKrate, rf_path;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct rx_raw_rssi *psample_pkt_rssi = &padapter->recvpriv.raw_rssi_info;
RTW_PRINT_SEL(sel, "RxRate = %s, PWDBALL = %d(%%), rx_pwr_all = %d(dBm)\n",
HDATA_RATE(psample_pkt_rssi->data_rate), psample_pkt_rssi->pwdball, psample_pkt_rssi->pwr_all);
isCCKrate = (psample_pkt_rssi->data_rate <= DESC_RATE11M) ? true : false;
if (isCCKrate)
psample_pkt_rssi->mimo_signal_strength[0] = psample_pkt_rssi->pwdball;
for (rf_path = 0; rf_path < pHalData->NumTotalRFPath; rf_path++) {
RTW_PRINT_SEL(sel, "RF_PATH_%d=>signal_strength:%d(%%),signal_quality:%d(%%)\n"
, rf_path, psample_pkt_rssi->mimo_signal_strength[rf_path], psample_pkt_rssi->mimo_signal_quality[rf_path]);
if (!isCCKrate) {
RTW_PRINT_SEL(sel, "\trx_ofdm_pwr:%d(dBm),rx_ofdm_snr:%d(dB)\n",
psample_pkt_rssi->ofdm_pwr[rf_path], psample_pkt_rssi->ofdm_snr[rf_path]);
}
}
}
void rtw_dump_raw_rssi_info(_adapter *padapter, void *sel)
{
u8 isCCKrate, rf_path;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct rx_raw_rssi *psample_pkt_rssi = &padapter->recvpriv.raw_rssi_info;
_RTW_PRINT_SEL(sel, "============ RAW Rx Info dump ===================\n");
_RTW_PRINT_SEL(sel, "RxRate = %s, PWDBALL = %d(%%), rx_pwr_all = %d(dBm)\n", HDATA_RATE(psample_pkt_rssi->data_rate), psample_pkt_rssi->pwdball, psample_pkt_rssi->pwr_all);
isCCKrate = (psample_pkt_rssi->data_rate <= DESC_RATE11M) ? true : false;
if (isCCKrate)
psample_pkt_rssi->mimo_signal_strength[0] = psample_pkt_rssi->pwdball;
for (rf_path = 0; rf_path < pHalData->NumTotalRFPath; rf_path++) {
_RTW_PRINT_SEL(sel , "RF_PATH_%d=>signal_strength:%d(%%),signal_quality:%d(%%)"
, rf_path, psample_pkt_rssi->mimo_signal_strength[rf_path], psample_pkt_rssi->mimo_signal_quality[rf_path]);
if (!isCCKrate)
_RTW_PRINT_SEL(sel , ",rx_ofdm_pwr:%d(dBm),rx_ofdm_snr:%d(dB)\n", psample_pkt_rssi->ofdm_pwr[rf_path], psample_pkt_rssi->ofdm_snr[rf_path]);
else
_RTW_PRINT_SEL(sel , "\n");
}
}
#endif
#ifdef DBG_RX_DFRAME_RAW_DATA
void rtw_dump_rx_dframe_info(_adapter *padapter, void *sel)
{
unsigned long irqL;
u8 isCCKrate, rf_path;
struct recv_priv *precvpriv = &(padapter->recvpriv);
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct sta_priv *pstapriv = &padapter->stapriv;
struct sta_info *psta;
struct sta_recv_dframe_info *psta_dframe_info;
int i;
_list *plist, *phead;
char *BW;
u8 bc_addr[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
u8 null_addr[6] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
if (precvpriv->store_law_data_flag) {
_enter_critical_bh(&pstapriv->sta_hash_lock, &irqL);
for (i = 0; i < NUM_STA; i++) {
phead = &(pstapriv->sta_hash[i]);
plist = get_next(phead);
while ((rtw_end_of_queue_search(phead, plist)) == false) {
psta = LIST_CONTAINOR(plist, struct sta_info, hash_list);
plist = get_next(plist);
if (psta) {
psta_dframe_info = &psta->sta_dframe_info;
if ((memcmp(psta->hwaddr, bc_addr, 6))
&& (memcmp(psta->hwaddr, null_addr, 6))
&& (memcmp(psta->hwaddr, adapter_mac_addr(padapter), 6))) {
isCCKrate = (psta_dframe_info->sta_data_rate <= DESC_RATE11M) ? true : false;
switch (psta_dframe_info->sta_bw_mode) {
case CHANNEL_WIDTH_20:
BW = "20M";
break;
case CHANNEL_WIDTH_40:
BW = "40M";
break;
case CHANNEL_WIDTH_80:
BW = "80M";
break;
case CHANNEL_WIDTH_160:
BW = "160M";
break;
default:
BW = "";
break;
}
RTW_PRINT_SEL(sel, "==============================\n");
_RTW_PRINT_SEL(sel, "macaddr =" MAC_FMT "\n", MAC_ARG(psta->hwaddr));
_RTW_PRINT_SEL(sel, "BW=%s, sgi =%d\n", BW, psta_dframe_info->sta_sgi);
_RTW_PRINT_SEL(sel, "Rx_Data_Rate = %s\n", HDATA_RATE(psta_dframe_info->sta_data_rate));
for (rf_path = 0; rf_path < pHalData->NumTotalRFPath; rf_path++) {
if (!isCCKrate) {
_RTW_PRINT_SEL(sel , "RF_PATH_%d RSSI:%d(dBm)", rf_path, psta_dframe_info->sta_RxPwr[rf_path]);
_RTW_PRINT_SEL(sel , ",rx_ofdm_snr:%d(dB)\n", psta_dframe_info->sta_ofdm_snr[rf_path]);
} else
_RTW_PRINT_SEL(sel , "RF_PATH_%d RSSI:%d(dBm)\n", rf_path, (psta_dframe_info->sta_mimo_signal_strength[rf_path]) - 100);
}
}
}
}
}
_exit_critical_bh(&pstapriv->sta_hash_lock, &irqL);
}
}
#endif
void rtw_store_phy_info(_adapter *padapter, union recv_frame *prframe)
{
u8 isCCKrate, rf_path , dframe_type;
u8 *ptr;
u8 bc_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
#ifdef DBG_RX_DFRAME_RAW_DATA
struct sta_recv_dframe_info *psta_dframe_info;
#endif
struct recv_priv *precvpriv = &(padapter->recvpriv);
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct rx_pkt_attrib *pattrib = &prframe->u.hdr.attrib;
struct sta_info *psta = prframe->u.hdr.psta;
struct _odm_phy_status_info_ *p_phy_info = (struct _odm_phy_status_info_ *)(&pattrib->phy_info);
struct rx_raw_rssi *psample_pkt_rssi = &padapter->recvpriv.raw_rssi_info;
psample_pkt_rssi->data_rate = pattrib->data_rate;
ptr = prframe->u.hdr.rx_data;
dframe_type = GetFrameType(ptr);
/*RTW_INFO("=>%s\n", __func__);*/
if (precvpriv->store_law_data_flag) {
isCCKrate = (pattrib->data_rate <= DESC_RATE11M) ? true : false;
psample_pkt_rssi->pwdball = p_phy_info->rx_pwdb_all;
psample_pkt_rssi->pwr_all = p_phy_info->recv_signal_power;
for (rf_path = 0; rf_path < pHalData->NumTotalRFPath; rf_path++) {
psample_pkt_rssi->mimo_signal_strength[rf_path] = p_phy_info->rx_mimo_signal_strength[rf_path];
psample_pkt_rssi->mimo_signal_quality[rf_path] = p_phy_info->rx_mimo_signal_quality[rf_path];
if (!isCCKrate) {
psample_pkt_rssi->ofdm_pwr[rf_path] = p_phy_info->rx_pwr[rf_path];
psample_pkt_rssi->ofdm_snr[rf_path] = p_phy_info->rx_snr[rf_path];
}
}
#ifdef DBG_RX_DFRAME_RAW_DATA
if ((dframe_type == WIFI_DATA_TYPE) || (dframe_type == WIFI_QOS_DATA_TYPE) || (padapter->registrypriv.mp_mode == 1)) {
/*RTW_INFO("=>%s WIFI_DATA_TYPE or WIFI_QOS_DATA_TYPE\n", __func__);*/
if (psta) {
psta_dframe_info = &psta->sta_dframe_info;
/*RTW_INFO("=>%s psta->hwaddr="MAC_FMT" !\n", __func__, MAC_ARG(psta->hwaddr));*/
if ((memcmp(psta->hwaddr, bc_addr, ETH_ALEN)) || (padapter->registrypriv.mp_mode == 1)) {
psta_dframe_info->sta_data_rate = pattrib->data_rate;
psta_dframe_info->sta_sgi = pattrib->sgi;
psta_dframe_info->sta_bw_mode = pattrib->bw;
for (rf_path = 0; rf_path < pHalData->NumTotalRFPath; rf_path++) {
psta_dframe_info->sta_mimo_signal_strength[rf_path] = (p_phy_info->rx_mimo_signal_strength[rf_path]);/*Percentage to dbm*/
if (!isCCKrate) {
psta_dframe_info->sta_ofdm_snr[rf_path] = p_phy_info->rx_snr[rf_path];
psta_dframe_info->sta_RxPwr[rf_path] = p_phy_info->rx_pwr[rf_path];
}
}
}
}
}
#endif
}
}
int check_phy_efuse_tx_power_info_valid(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u8 *pContent = pHalData->efuse_eeprom_data;
int index = 0;
u16 tx_index_offset = 0x0000;
switch (rtw_get_chip_type(padapter)) {
case RTL8723B:
tx_index_offset = EEPROM_TX_PWR_INX_8723B;
break;
case RTL8703B:
tx_index_offset = EEPROM_TX_PWR_INX_8703B;
break;
case RTL8723D:
tx_index_offset = EEPROM_TX_PWR_INX_8723D;
break;
case RTL8188E:
tx_index_offset = EEPROM_TX_PWR_INX_88E;
break;
case RTL8188F:
tx_index_offset = EEPROM_TX_PWR_INX_8188F;
break;
case RTL8192E:
tx_index_offset = EEPROM_TX_PWR_INX_8192E;
break;
case RTL8821:
tx_index_offset = EEPROM_TX_PWR_INX_8821;
break;
case RTL8812:
tx_index_offset = EEPROM_TX_PWR_INX_8812;
break;
case RTL8814A:
tx_index_offset = EEPROM_TX_PWR_INX_8814;
break;
case RTL8822B:
tx_index_offset = EEPROM_TX_PWR_INX_8822B;
break;
case RTL8821C:
tx_index_offset = EEPROM_TX_PWR_INX_8821C;
break;
default:
tx_index_offset = 0x0010;
break;
}
/* TODO: chacking length by ICs */
for (index = 0 ; index < 11 ; index++) {
if (pContent[tx_index_offset + index] == 0xFF)
return false;
}
return true;
}
int hal_efuse_macaddr_offset(_adapter *adapter)
{
u8 interface_type = 0;
int addr_offset = -1;
interface_type = rtw_get_intf_type(adapter);
switch (rtw_get_chip_type(adapter)) {
case RTL8188E:
if (interface_type == RTW_USB)
addr_offset = EEPROM_MAC_ADDR_88EU;
else if (interface_type == RTW_SDIO)
addr_offset = EEPROM_MAC_ADDR_88ES;
else if (interface_type == RTW_PCIE)
addr_offset = EEPROM_MAC_ADDR_88EE;
break;
}
if (addr_offset == -1) {
RTW_ERR("%s: unknown combination - chip_type:%u, interface:%u\n"
, __func__, rtw_get_chip_type(adapter), rtw_get_intf_type(adapter));
}
return addr_offset;
}
int Hal_GetPhyEfuseMACAddr(PADAPTER padapter, u8 *mac_addr)
{
int ret = _FAIL;
int addr_offset;
addr_offset = hal_efuse_macaddr_offset(padapter);
if (addr_offset == -1)
goto exit;
ret = rtw_efuse_map_read(padapter, addr_offset, ETH_ALEN, mac_addr);
exit:
return ret;
}
void rtw_dump_cur_efuse(PADAPTER padapter)
{
int i =0;
u16 mapsize =0;
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(padapter);
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN , (void *)&mapsize, false);
if (mapsize <= 0 || mapsize > EEPROM_MAX_SIZE) {
RTW_ERR("wrong map size %d\n", mapsize);
return;
}
if (hal_data->efuse_file_status == EFUSE_FILE_LOADED)
RTW_INFO("EFUSE FILE\n");
else
RTW_INFO("HW EFUSE\n");
}
#ifdef CONFIG_EFUSE_CONFIG_FILE
u32 Hal_readPGDataFromConfigFile(PADAPTER padapter)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(padapter);
u32 ret = false;
u16 maplen = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN , (void *)&maplen, false);
if (maplen < 256 || maplen > EEPROM_MAX_SIZE) {
RTW_ERR("eFuse length error :%d\n", maplen);
return false;
}
ret = rtw_read_efuse_from_file(EFUSE_MAP_PATH, hal_data->efuse_eeprom_data, maplen);
hal_data->efuse_file_status = ((ret == _FAIL) ? EFUSE_FILE_FAILED : EFUSE_FILE_LOADED);
if (hal_data->efuse_file_status == EFUSE_FILE_LOADED)
rtw_dump_cur_efuse(padapter);
return ret;
}
u32 Hal_ReadMACAddrFromFile(PADAPTER padapter, u8 *mac_addr)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(padapter);
u32 ret = _FAIL;
if (rtw_read_macaddr_from_file(WIFIMAC_PATH, mac_addr) == _SUCCESS
&& rtw_check_invalid_mac_address(mac_addr, true) == false
) {
hal_data->macaddr_file_status = MACADDR_FILE_LOADED;
ret = _SUCCESS;
} else
hal_data->macaddr_file_status = MACADDR_FILE_FAILED;
return ret;
}
#endif /* CONFIG_EFUSE_CONFIG_FILE */
int hal_config_macaddr(_adapter *adapter, bool autoload_fail)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
u8 addr[ETH_ALEN];
int addr_offset = hal_efuse_macaddr_offset(adapter);
u8 *hw_addr = NULL;
int ret = _SUCCESS;
if (autoload_fail)
goto bypass_hw_pg;
if (addr_offset != -1)
hw_addr = &hal_data->efuse_eeprom_data[addr_offset];
#ifdef CONFIG_EFUSE_CONFIG_FILE
/* if the hw_addr is written by efuse file, set to NULL */
if (hal_data->efuse_file_status == EFUSE_FILE_LOADED)
hw_addr = NULL;
#endif
if (!hw_addr) {
/* try getting hw pg data */
if (Hal_GetPhyEfuseMACAddr(adapter, addr) == _SUCCESS)
hw_addr = addr;
}
/* check hw pg data */
if (hw_addr && rtw_check_invalid_mac_address(hw_addr, true) == false) {
memcpy(hal_data->EEPROMMACAddr, hw_addr, ETH_ALEN);
goto exit;
}
bypass_hw_pg:
#ifdef CONFIG_EFUSE_CONFIG_FILE
/* check wifi mac file */
if (Hal_ReadMACAddrFromFile(adapter, addr) == _SUCCESS) {
memcpy(hal_data->EEPROMMACAddr, addr, ETH_ALEN);
goto exit;
}
#endif
memset(hal_data->EEPROMMACAddr, 0, ETH_ALEN);
ret = _FAIL;
exit:
return ret;
}
#ifdef CONFIG_RF_POWER_TRIM
u32 Array_kfreemap[] = {
0x08, 0xe,
0x06, 0xc,
0x04, 0xa,
0x02, 0x8,
0x00, 0x6,
0x03, 0x4,
0x05, 0x2,
0x07, 0x0,
0x09, 0x0,
0x0c, 0x0,
};
void rtw_bb_rf_gain_offset(_adapter *padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct registry_priv *registry_par = &padapter->registrypriv;
struct kfree_data_t *kfree_data = &pHalData->kfree_data;
u8 value = pHalData->EEPROMRFGainOffset;
u8 tmp = 0x3e;
u32 res, i = 0;
u32 ArrayLen = sizeof(Array_kfreemap) / sizeof(u32);
u32 * Array = Array_kfreemap;
u32 v1 = 0, v2 = 0, GainValue = 0, target = 0;
if (registry_par->RegPwrTrimEnable == 2) {
RTW_INFO("Registry kfree default force disable.\n");
return;
}
if (value & BIT4 || (registry_par->RegPwrTrimEnable == 1)) {
RTW_INFO("8188ES Offset RF Gain.\n");
RTW_INFO("8188ES Offset RF Gain. EEPROMRFGainVal=0x%x\n",
pHalData->EEPROMRFGainVal);
if (pHalData->EEPROMRFGainVal != 0xff) {
res = rtw_hal_read_rfreg(padapter, RF_PATH_A,
REG_RF_BB_GAIN_OFFSET, 0xffffffff);
RTW_INFO("Offset RF Gain. reg 0x55=0x%x\n", res);
res &= 0xfff87fff;
res |= (pHalData->EEPROMRFGainVal & 0x0f) << 15;
RTW_INFO("Offset RF Gain. res=0x%x\n", res);
rtw_hal_write_rfreg(padapter, RF_PATH_A,
REG_RF_BB_GAIN_OFFSET,
RF_GAIN_OFFSET_MASK, res);
} else {
RTW_INFO("Offset RF Gain. EEPROMRFGainVal=0x%x == 0xff, didn't run Kfree\n",
pHalData->EEPROMRFGainVal);
}
} else
RTW_INFO("Using the default RF gain.\n");
}
#endif /*CONFIG_RF_POWER_TRIM */
bool kfree_data_is_bb_gain_empty(struct kfree_data_t *data)
{
#ifdef CONFIG_RF_POWER_TRIM
int i, j;
for (i = 0; i < BB_GAIN_NUM; i++)
for (j = 0; j < RF_PATH_MAX; j++)
if (data->bb_gain[i][j] != 0)
return 0;
#endif
return 1;
}
#ifdef CONFIG_USB_RX_AGGREGATION
static void rtw_set_usb_agg_by_mode_normal(_adapter *padapter, u8 cur_wireless_mode)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (cur_wireless_mode < WIRELESS_11_24N
&& cur_wireless_mode > 0) { /* ABG mode */
#ifdef CONFIG_PREALLOC_RX_SKB_BUFFER
u32 remainder = 0;
u8 quotient = 0;
remainder = MAX_RECVBUF_SZ % (4 * 1024);
quotient = (u8)(MAX_RECVBUF_SZ >> 12);
if (quotient > 5) {
pHalData->rxagg_usb_size = 0x6;
pHalData->rxagg_usb_timeout = 0x10;
} else {
if (remainder >= 2048) {
pHalData->rxagg_usb_size = quotient;
pHalData->rxagg_usb_timeout = 0x10;
} else {
pHalData->rxagg_usb_size = (quotient - 1);
pHalData->rxagg_usb_timeout = 0x10;
}
}
#else /* !CONFIG_PREALLOC_RX_SKB_BUFFER */
if (0x6 != pHalData->rxagg_usb_size || 0x10 != pHalData->rxagg_usb_timeout) {
pHalData->rxagg_usb_size = 0x6;
pHalData->rxagg_usb_timeout = 0x10;
rtw_write16(padapter, REG_RXDMA_AGG_PG_TH,
pHalData->rxagg_usb_size | (pHalData->rxagg_usb_timeout << 8));
}
#endif /* CONFIG_PREALLOC_RX_SKB_BUFFER */
} else if (cur_wireless_mode >= WIRELESS_11_24N
&& cur_wireless_mode <= WIRELESS_MODE_MAX) { /* N AC mode */
#ifdef CONFIG_PREALLOC_RX_SKB_BUFFER
u32 remainder = 0;
u8 quotient = 0;
remainder = MAX_RECVBUF_SZ % (4 * 1024);
quotient = (u8)(MAX_RECVBUF_SZ >> 12);
if (quotient > 5) {
pHalData->rxagg_usb_size = 0x5;
pHalData->rxagg_usb_timeout = 0x20;
} else {
if (remainder >= 2048) {
pHalData->rxagg_usb_size = quotient;
pHalData->rxagg_usb_timeout = 0x10;
} else {
pHalData->rxagg_usb_size = (quotient - 1);
pHalData->rxagg_usb_timeout = 0x10;
}
}
#else /* !CONFIG_PREALLOC_RX_SKB_BUFFER */
if ((0x5 != pHalData->rxagg_usb_size) || (0x20 != pHalData->rxagg_usb_timeout)) {
pHalData->rxagg_usb_size = 0x5;
pHalData->rxagg_usb_timeout = 0x20;
rtw_write16(padapter, REG_RXDMA_AGG_PG_TH,
pHalData->rxagg_usb_size | (pHalData->rxagg_usb_timeout << 8));
}
#endif /* CONFIG_PREALLOC_RX_SKB_BUFFER */
} else {
/* RTW_INFO("%s: Unknow wireless mode(0x%x)\n",__func__,padapter->mlmeextpriv.cur_wireless_mode); */
}
}
static void rtw_set_usb_agg_by_mode_customer(_adapter *padapter, u8 cur_wireless_mode, u8 UsbDmaSize, u8 Legacy_UsbDmaSize)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (cur_wireless_mode < WIRELESS_11_24N
&& cur_wireless_mode > 0) { /* ABG mode */
if (Legacy_UsbDmaSize != pHalData->rxagg_usb_size
|| 0x10 != pHalData->rxagg_usb_timeout) {
pHalData->rxagg_usb_size = Legacy_UsbDmaSize;
pHalData->rxagg_usb_timeout = 0x10;
rtw_write16(padapter, REG_RXDMA_AGG_PG_TH,
pHalData->rxagg_usb_size | (pHalData->rxagg_usb_timeout << 8));
}
} else if (cur_wireless_mode >= WIRELESS_11_24N
&& cur_wireless_mode <= WIRELESS_MODE_MAX) { /* N AC mode */
if (UsbDmaSize != pHalData->rxagg_usb_size
|| 0x20 != pHalData->rxagg_usb_timeout) {
pHalData->rxagg_usb_size = UsbDmaSize;
pHalData->rxagg_usb_timeout = 0x20;
rtw_write16(padapter, REG_RXDMA_AGG_PG_TH,
pHalData->rxagg_usb_size | (pHalData->rxagg_usb_timeout << 8));
}
} else {
/* RTW_INFO("%s: Unknown wireless mode(0x%x)\n",__func__,padapter->mlmeextpriv.cur_wireless_mode); */
}
}
static void rtw_set_usb_agg_by_mode(_adapter *padapter, u8 cur_wireless_mode)
{
#ifdef CONFIG_PLATFORM_NOVATEK_NT72668
rtw_set_usb_agg_by_mode_customer(padapter, cur_wireless_mode, 0x3, 0x3);
return;
#endif /* CONFIG_PLATFORM_NOVATEK_NT72668 */
rtw_set_usb_agg_by_mode_normal(padapter, cur_wireless_mode);
}
#endif /* CONFIG_USB_RX_AGGREGATION */
/* To avoid RX affect TX throughput */
void dm_DynamicUsbTxAgg(_adapter *padapter, u8 from_timer)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u8 cur_wireless_mode = WIRELESS_INVALID;
#ifdef CONFIG_USB_RX_AGGREGATION
#ifdef CONFIG_PLATFORM_NOVATEK_NT72668
rtw_set_usb_agg_by_mode(padapter, cur_wireless_mode);
#endif /* CONFIG_PLATFORM_NOVATEK_NT72668 */
#endif
}
/* bus-agg check for SoftAP mode */
inline u8 rtw_hal_busagg_qsel_check(_adapter *padapter, u8 pre_qsel, u8 next_qsel)
{
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
u8 chk_rst = _SUCCESS;
if (check_fwstate(pmlmepriv, WIFI_AP_STATE) != true)
return chk_rst;
/* if((pre_qsel == 0xFF)||(next_qsel== 0xFF)) */
/* return chk_rst; */
if (((pre_qsel == QSLT_HIGH) || ((next_qsel == QSLT_HIGH)))
&& (pre_qsel != next_qsel)) {
/* RTW_INFO("### bus-agg break cause of qsel misatch, pre_qsel=0x%02x,next_qsel=0x%02x ###\n", */
/* pre_qsel,next_qsel); */
chk_rst = _FAIL;
}
return chk_rst;
}
/*
* Description:
* dump_TX_FIFO: This is only used to dump TX_FIFO for debug WoW mode offload
* contant.
*
* Input:
* adapter: adapter pointer.
* page_num: The max. page number that user want to dump.
* page_size: page size of each page. eg. 128 bytes, 256 bytes, 512byte.
*/
void dump_TX_FIFO(_adapter *padapter, u8 page_num, u16 page_size)
{
int i;
u8 val = 0;
u8 base = 0;
u32 addr = 0;
u32 count = (page_size / 8);
if (page_num <= 0) {
RTW_INFO("!!%s: incorrect input page_num paramter!\n", __func__);
return;
}
if (page_size < 128 || page_size > 512) {
RTW_INFO("!!%s: incorrect input page_size paramter!\n", __func__);
return;
}
RTW_INFO("+%s+\n", __func__);
val = rtw_read8(padapter, 0x106);
rtw_write8(padapter, 0x106, 0x69);
RTW_INFO("0x106: 0x%02x\n", val);
base = rtw_read8(padapter, 0x209);
RTW_INFO("0x209: 0x%02x\n", base);
addr = ((base)*page_size) / 8;
for (i = 0 ; i < page_num * count ; i += 2) {
rtw_write32(padapter, 0x140, addr + i);
printk(" %08x %08x ", rtw_read32(padapter, 0x144), rtw_read32(padapter, 0x148));
rtw_write32(padapter, 0x140, addr + i + 1);
printk(" %08x %08x\n", rtw_read32(padapter, 0x144), rtw_read32(padapter, 0x148));
}
}
#ifdef CONFIG_GPIO_API
u8 rtw_hal_get_gpio(_adapter *adapter, u8 gpio_num)
{
u8 value = 0;
u8 direction = 0;
u32 gpio_ctrl_reg_to_set = REG_GPIO_PIN_CTRL + 2;
u8 gpio_num_to_set = gpio_num;
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
if (rtw_hal_gpio_func_check(adapter, gpio_num) == _FAIL)
return value;
rtw_ps_deny(adapter, PS_DENY_IOCTL);
RTW_INFO("rf_pwrstate=0x%02x\n", pwrpriv->rf_pwrstate);
LeaveAllPowerSaveModeDirect(adapter);
if (gpio_num > 7) {
gpio_ctrl_reg_to_set = REG_GPIO_PIN_CTRL_2 + 2;
gpio_num_to_set = gpio_num - 8;
}
/* Read GPIO Direction */
direction = (rtw_read8(adapter, gpio_ctrl_reg_to_set) & BIT(gpio_num_to_set)) >> gpio_num;
/* According the direction to read register value */
if (direction)
value = (rtw_read8(adapter, gpio_ctrl_reg_to_set) & BIT(gpio_num_to_set)) >> gpio_num;
else
value = (rtw_read8(adapter, gpio_ctrl_reg_to_set) & BIT(gpio_num_to_set)) >> gpio_num;
rtw_ps_deny_cancel(adapter, PS_DENY_IOCTL);
RTW_INFO("%s direction=%d value=%d\n", __func__, direction, value);
return value;
}
int rtw_hal_set_gpio_output_value(_adapter *adapter, u8 gpio_num, bool isHigh)
{
u8 direction = 0;
u8 res = -1;
u32 gpio_ctrl_reg_to_set = REG_GPIO_PIN_CTRL + 2;
u8 gpio_num_to_set = gpio_num;
if (rtw_hal_gpio_func_check(adapter, gpio_num) == _FAIL)
return -1;
rtw_ps_deny(adapter, PS_DENY_IOCTL);
LeaveAllPowerSaveModeDirect(adapter);
if (gpio_num > 7) {
gpio_ctrl_reg_to_set = REG_GPIO_PIN_CTRL_2 + 2;
gpio_num_to_set = gpio_num - 8;
}
/* Read GPIO direction */
direction = (rtw_read8(adapter, REG_GPIO_PIN_CTRL + 2) & BIT(gpio_num)) >> gpio_num;
/* If GPIO is output direction, setting value. */
if (direction) {
if (isHigh)
rtw_write8(adapter, gpio_ctrl_reg_to_set, rtw_read8(adapter, gpio_ctrl_reg_to_set) | BIT(gpio_num_to_set));
else
rtw_write8(adapter, gpio_ctrl_reg_to_set, rtw_read8(adapter, gpio_ctrl_reg_to_set) & ~BIT(gpio_num_to_set));
RTW_INFO("%s Set gpio %x[%d]=%d\n", __func__, REG_GPIO_PIN_CTRL + 1, gpio_num, isHigh);
res = 0;
} else {
RTW_INFO("%s The gpio is input,not be set!\n", __func__);
res = -1;
}
rtw_ps_deny_cancel(adapter, PS_DENY_IOCTL);
return res;
}
int rtw_hal_config_gpio(_adapter *adapter, u8 gpio_num, bool isOutput)
{
u32 gpio_ctrl_reg_to_set = REG_GPIO_PIN_CTRL + 2;
u8 gpio_num_to_set = gpio_num;
if (rtw_hal_gpio_func_check(adapter, gpio_num) == _FAIL)
return -1;
RTW_INFO("%s gpio_num =%d direction=%d\n", __func__, gpio_num, isOutput);
rtw_ps_deny(adapter, PS_DENY_IOCTL);
LeaveAllPowerSaveModeDirect(adapter);
rtw_hal_gpio_multi_func_reset(adapter, gpio_num);
if (gpio_num > 7) {
gpio_ctrl_reg_to_set = REG_GPIO_PIN_CTRL_2 + 2;
gpio_num_to_set = gpio_num - 8;
}
if (isOutput)
rtw_write8(adapter, gpio_ctrl_reg_to_set, rtw_read8(adapter, gpio_ctrl_reg_to_set) | BIT(gpio_num_to_set));
else
rtw_write8(adapter, gpio_ctrl_reg_to_set, rtw_read8(adapter, gpio_ctrl_reg_to_set) & ~BIT(gpio_num_to_set));
rtw_ps_deny_cancel(adapter, PS_DENY_IOCTL);
return 0;
}
int rtw_hal_register_gpio_interrupt(_adapter *adapter, int gpio_num, void(*callback)(u8 level))
{
u8 value;
u8 direction;
PHAL_DATA_TYPE phal = GET_HAL_DATA(adapter);
if (IS_HARDWARE_TYPE_8188E(adapter)) {
if (gpio_num > 7 || gpio_num < 4) {
RTW_PRINT("%s The gpio number does not included 4~7.\n", __func__);
return -1;
}
}
rtw_ps_deny(adapter, PS_DENY_IOCTL);
LeaveAllPowerSaveModeDirect(adapter);
/* Read GPIO direction */
direction = (rtw_read8(adapter, REG_GPIO_PIN_CTRL + 2) & BIT(gpio_num)) >> gpio_num;
if (direction) {
RTW_PRINT("%s Can't register output gpio as interrupt.\n", __func__);
return -1;
}
/* Config GPIO Mode */
rtw_write8(adapter, REG_GPIO_PIN_CTRL + 3, rtw_read8(adapter, REG_GPIO_PIN_CTRL + 3) | BIT(gpio_num));
/* Register GPIO interrupt handler*/
adapter->gpiointpriv.callback[gpio_num] = callback;
/* Set GPIO interrupt mode, 0:positive edge, 1:negative edge */
value = rtw_read8(adapter, REG_GPIO_PIN_CTRL) & BIT(gpio_num);
adapter->gpiointpriv.interrupt_mode = rtw_read8(adapter, REG_HSIMR + 2) ^ value;
rtw_write8(adapter, REG_GPIO_INTM, adapter->gpiointpriv.interrupt_mode);
/* Enable GPIO interrupt */
adapter->gpiointpriv.interrupt_enable_mask = rtw_read8(adapter, REG_HSIMR + 2) | BIT(gpio_num);
rtw_write8(adapter, REG_HSIMR + 2, adapter->gpiointpriv.interrupt_enable_mask);
rtw_hal_update_hisr_hsisr_ind(adapter, 1);
rtw_ps_deny_cancel(adapter, PS_DENY_IOCTL);
return 0;
}
int rtw_hal_disable_gpio_interrupt(_adapter *adapter, int gpio_num)
{
u8 value;
u8 direction;
PHAL_DATA_TYPE phal = GET_HAL_DATA(adapter);
if (IS_HARDWARE_TYPE_8188E(adapter)) {
if (gpio_num > 7 || gpio_num < 4) {
RTW_INFO("%s The gpio number does not included 4~7.\n", __func__);
return -1;
}
}
rtw_ps_deny(adapter, PS_DENY_IOCTL);
LeaveAllPowerSaveModeDirect(adapter);
/* Config GPIO Mode */
rtw_write8(adapter, REG_GPIO_PIN_CTRL + 3, rtw_read8(adapter, REG_GPIO_PIN_CTRL + 3) & ~BIT(gpio_num));
/* Unregister GPIO interrupt handler*/
adapter->gpiointpriv.callback[gpio_num] = NULL;
/* Reset GPIO interrupt mode, 0:positive edge, 1:negative edge */
adapter->gpiointpriv.interrupt_mode = rtw_read8(adapter, REG_GPIO_INTM) & ~BIT(gpio_num);
rtw_write8(adapter, REG_GPIO_INTM, 0x00);
/* Disable GPIO interrupt */
adapter->gpiointpriv.interrupt_enable_mask = rtw_read8(adapter, REG_HSIMR + 2) & ~BIT(gpio_num);
rtw_write8(adapter, REG_HSIMR + 2, adapter->gpiointpriv.interrupt_enable_mask);
if (!adapter->gpiointpriv.interrupt_enable_mask)
rtw_hal_update_hisr_hsisr_ind(adapter, 0);
rtw_ps_deny_cancel(adapter, PS_DENY_IOCTL);
return 0;
}
#endif
s8 rtw_hal_ch_sw_iqk_info_search(_adapter *padapter, u8 central_chnl, u8 bw_mode)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u8 i;
for (i = 0; i < MAX_IQK_INFO_BACKUP_CHNL_NUM; i++) {
if ((pHalData->iqk_reg_backup[i].central_chnl != 0)) {
if ((pHalData->iqk_reg_backup[i].central_chnl == central_chnl)
&& (pHalData->iqk_reg_backup[i].bw_mode == bw_mode))
return i;
}
}
return -1;
}
void rtw_hal_ch_sw_iqk_info_backup(_adapter *padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
s8 res;
u8 i;
/* If it's an existed record, overwrite it */
res = rtw_hal_ch_sw_iqk_info_search(padapter, pHalData->current_channel, pHalData->current_channel_bw);
if ((res >= 0) && (res < MAX_IQK_INFO_BACKUP_CHNL_NUM)) {
rtw_hal_set_hwreg(padapter, HW_VAR_CH_SW_IQK_INFO_BACKUP, (u8 *)&(pHalData->iqk_reg_backup[res]));
return;
}
/* Search for the empty record to use */
for (i = 0; i < MAX_IQK_INFO_BACKUP_CHNL_NUM; i++) {
if (pHalData->iqk_reg_backup[i].central_chnl == 0) {
rtw_hal_set_hwreg(padapter, HW_VAR_CH_SW_IQK_INFO_BACKUP, (u8 *)&(pHalData->iqk_reg_backup[i]));
return;
}
}
/* Else, overwrite the oldest record */
for (i = 1; i < MAX_IQK_INFO_BACKUP_CHNL_NUM; i++)
memcpy(&(pHalData->iqk_reg_backup[i - 1]), &(pHalData->iqk_reg_backup[i]), sizeof(struct hal_iqk_reg_backup));
rtw_hal_set_hwreg(padapter, HW_VAR_CH_SW_IQK_INFO_BACKUP, (u8 *)&(pHalData->iqk_reg_backup[MAX_IQK_INFO_BACKUP_CHNL_NUM - 1]));
}
void rtw_hal_ch_sw_iqk_info_restore(_adapter *padapter, u8 ch_sw_use_case)
{
rtw_hal_set_hwreg(padapter, HW_VAR_CH_SW_IQK_INFO_RESTORE, &ch_sw_use_case);
}
void rtw_dump_mac_rx_counters(_adapter *padapter, struct dbg_rx_counter *rx_counter)
{
u32 mac_cck_ok = 0, mac_ofdm_ok = 0, mac_ht_ok = 0, mac_vht_ok = 0;
u32 mac_cck_err = 0, mac_ofdm_err = 0, mac_ht_err = 0, mac_vht_err = 0;
u32 mac_cck_fa = 0, mac_ofdm_fa = 0, mac_ht_fa = 0;
u32 DropPacket = 0;
if (!rx_counter) {
rtw_warn_on(1);
return;
}
phy_set_mac_reg(padapter, REG_RXERR_RPT, BIT28 | BIT29 | BIT30 | BIT31, 0x3);
mac_cck_ok = phy_query_mac_reg(padapter, REG_RXERR_RPT, bMaskLWord);/* [15:0] */
phy_set_mac_reg(padapter, REG_RXERR_RPT, BIT28 | BIT29 | BIT30 | BIT31, 0x0);
mac_ofdm_ok = phy_query_mac_reg(padapter, REG_RXERR_RPT, bMaskLWord);/* [15:0] */
phy_set_mac_reg(padapter, REG_RXERR_RPT, BIT28 | BIT29 | BIT30 | BIT31, 0x6);
mac_ht_ok = phy_query_mac_reg(padapter, REG_RXERR_RPT, bMaskLWord);/* [15:0] */
mac_vht_ok = 0;
phy_set_mac_reg(padapter, REG_RXERR_RPT, BIT28 | BIT29 | BIT30 | BIT31, 0x4);
mac_cck_err = phy_query_mac_reg(padapter, REG_RXERR_RPT, bMaskLWord);/* [15:0] */
phy_set_mac_reg(padapter, REG_RXERR_RPT, BIT28 | BIT29 | BIT30 | BIT31, 0x1);
mac_ofdm_err = phy_query_mac_reg(padapter, REG_RXERR_RPT, bMaskLWord);/* [15:0] */
phy_set_mac_reg(padapter, REG_RXERR_RPT, BIT28 | BIT29 | BIT30 | BIT31, 0x7);
mac_ht_err = phy_query_mac_reg(padapter, REG_RXERR_RPT, bMaskLWord);/* [15:0] */
mac_vht_err = 0;
phy_set_mac_reg(padapter, REG_RXERR_RPT, BIT28 | BIT29 | BIT30 | BIT31, 0x5);
mac_cck_fa = phy_query_mac_reg(padapter, REG_RXERR_RPT, bMaskLWord);/* [15:0] */
phy_set_mac_reg(padapter, REG_RXERR_RPT, BIT28 | BIT29 | BIT30 | BIT31, 0x2);
mac_ofdm_fa = phy_query_mac_reg(padapter, REG_RXERR_RPT, bMaskLWord);/* [15:0] */
phy_set_mac_reg(padapter, REG_RXERR_RPT, BIT28 | BIT29 | BIT30 | BIT31, 0x9);
mac_ht_fa = phy_query_mac_reg(padapter, REG_RXERR_RPT, bMaskLWord);/* [15:0] */
/* Mac_DropPacket */
rtw_write32(padapter, REG_RXERR_RPT, (rtw_read32(padapter, REG_RXERR_RPT) & 0x0FFFFFFF) | Mac_DropPacket);
DropPacket = rtw_read32(padapter, REG_RXERR_RPT) & 0x0000FFFF;
rx_counter->rx_pkt_ok = mac_cck_ok + mac_ofdm_ok + mac_ht_ok + mac_vht_ok;
rx_counter->rx_pkt_crc_error = mac_cck_err + mac_ofdm_err + mac_ht_err + mac_vht_err;
rx_counter->rx_cck_fa = mac_cck_fa;
rx_counter->rx_ofdm_fa = mac_ofdm_fa;
rx_counter->rx_ht_fa = mac_ht_fa;
rx_counter->rx_pkt_drop = DropPacket;
}
void rtw_reset_mac_rx_counters(_adapter *padapter)
{
/* reset mac counter */
phy_set_mac_reg(padapter, REG_RXERR_RPT, BIT27, 0x1);
phy_set_mac_reg(padapter, REG_RXERR_RPT, BIT27, 0x0);
}
void rtw_dump_phy_rx_counters(_adapter *padapter, struct dbg_rx_counter *rx_counter)
{
u32 cckok = 0, cckcrc = 0, ofdmok = 0, ofdmcrc = 0, htok = 0, htcrc = 0, OFDM_FA = 0, CCK_FA = 0, vht_ok = 0, vht_err = 0;
if (!rx_counter) {
rtw_warn_on(1);
return;
}
cckok = phy_query_bb_reg(padapter, 0xF88, bMaskDWord);
ofdmok = phy_query_bb_reg(padapter, 0xF94, bMaskLWord);
htok = phy_query_bb_reg(padapter, 0xF90, bMaskLWord);
vht_ok = 0;
cckcrc = phy_query_bb_reg(padapter, 0xF84, bMaskDWord);
ofdmcrc = phy_query_bb_reg(padapter, 0xF94, bMaskHWord);
htcrc = phy_query_bb_reg(padapter, 0xF90, bMaskHWord);
vht_err = 0;
OFDM_FA = phy_query_bb_reg(padapter, 0xCF0, bMaskLWord) + phy_query_bb_reg(padapter, 0xCF2, bMaskLWord) +
phy_query_bb_reg(padapter, 0xDA2, bMaskLWord) + phy_query_bb_reg(padapter, 0xDA4, bMaskLWord) +
phy_query_bb_reg(padapter, 0xDA6, bMaskLWord) + phy_query_bb_reg(padapter, 0xDA8, bMaskLWord);
CCK_FA = (rtw_read8(padapter, 0xA5B) << 8) | (rtw_read8(padapter, 0xA5C));
rx_counter->rx_pkt_ok = cckok + ofdmok + htok + vht_ok;
rx_counter->rx_pkt_crc_error = cckcrc + ofdmcrc + htcrc + vht_err;
rx_counter->rx_ofdm_fa = OFDM_FA;
rx_counter->rx_cck_fa = CCK_FA;
}
void rtw_reset_phy_trx_ok_counters(_adapter *padapter)
{
}
void rtw_reset_phy_rx_counters(_adapter *padapter)
{
/* reset phy counter */
phy_set_bb_reg(padapter, 0xF14, BIT16, 0x1);
rtw_msleep_os(10);
phy_set_bb_reg(padapter, 0xF14, BIT16, 0x0);
phy_set_bb_reg(padapter, 0xD00, BIT27, 0x1);/* reset OFDA FA counter */
phy_set_bb_reg(padapter, 0xC0C, BIT31, 0x1);/* reset OFDA FA counter */
phy_set_bb_reg(padapter, 0xD00, BIT27, 0x0);
phy_set_bb_reg(padapter, 0xC0C, BIT31, 0x0);
phy_set_bb_reg(padapter, 0xA2C, BIT15, 0x0);/* reset CCK FA counter */
phy_set_bb_reg(padapter, 0xA2C, BIT15, 0x1);
}
#ifdef DBG_RX_COUNTER_DUMP
void rtw_dump_drv_rx_counters(_adapter *padapter, struct dbg_rx_counter *rx_counter)
{
struct recv_priv *precvpriv = &padapter->recvpriv;
if (!rx_counter) {
rtw_warn_on(1);
return;
}
rx_counter->rx_pkt_ok = padapter->drv_rx_cnt_ok;
rx_counter->rx_pkt_crc_error = padapter->drv_rx_cnt_crcerror;
rx_counter->rx_pkt_drop = precvpriv->rx_drop - padapter->drv_rx_cnt_drop;
}
void rtw_reset_drv_rx_counters(_adapter *padapter)
{
struct recv_priv *precvpriv = &padapter->recvpriv;
padapter->drv_rx_cnt_ok = 0;
padapter->drv_rx_cnt_crcerror = 0;
padapter->drv_rx_cnt_drop = precvpriv->rx_drop;
}
void rtw_dump_phy_rxcnts_preprocess(_adapter *padapter, u8 rx_cnt_mode)
{
u8 initialgain;
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(padapter);
if ((!(padapter->dump_rx_cnt_mode & DUMP_PHY_RX_COUNTER)) && (rx_cnt_mode & DUMP_PHY_RX_COUNTER)) {
rtw_hal_get_odm_var(padapter, HAL_ODM_INITIAL_GAIN, &initialgain, NULL);
RTW_INFO("%s CurIGValue:0x%02x\n", __func__, initialgain);
rtw_hal_set_odm_var(padapter, HAL_ODM_INITIAL_GAIN, &initialgain, false);
/*disable dynamic functions, such as high power, DIG*/
rtw_phydm_ability_backup(padapter);
rtw_phydm_func_clr(padapter, (ODM_BB_DIG | ODM_BB_FA_CNT));
} else if ((padapter->dump_rx_cnt_mode & DUMP_PHY_RX_COUNTER) && (!(rx_cnt_mode & DUMP_PHY_RX_COUNTER))) {
/* turn on phy-dynamic functions */
rtw_phydm_ability_restore(padapter);
initialgain = 0xff; /* restore RX GAIN */
rtw_hal_set_odm_var(padapter, HAL_ODM_INITIAL_GAIN, &initialgain, false);
}
}
void rtw_dump_rx_counters(_adapter *padapter)
{
struct dbg_rx_counter rx_counter;
if (padapter->dump_rx_cnt_mode & DUMP_DRV_RX_COUNTER) {
memset(&rx_counter, 0, sizeof(struct dbg_rx_counter));
rtw_dump_drv_rx_counters(padapter, &rx_counter);
RTW_INFO("Drv Received packet OK:%d CRC error:%d Drop Packets: %d\n",
rx_counter.rx_pkt_ok, rx_counter.rx_pkt_crc_error, rx_counter.rx_pkt_drop);
rtw_reset_drv_rx_counters(padapter);
}
if (padapter->dump_rx_cnt_mode & DUMP_MAC_RX_COUNTER) {
memset(&rx_counter, 0, sizeof(struct dbg_rx_counter));
rtw_dump_mac_rx_counters(padapter, &rx_counter);
RTW_INFO("Mac Received packet OK:%d CRC error:%d FA Counter: %d Drop Packets: %d\n",
rx_counter.rx_pkt_ok, rx_counter.rx_pkt_crc_error,
rx_counter.rx_cck_fa + rx_counter.rx_ofdm_fa + rx_counter.rx_ht_fa,
rx_counter.rx_pkt_drop);
rtw_reset_mac_rx_counters(padapter);
}
if (padapter->dump_rx_cnt_mode & DUMP_PHY_RX_COUNTER) {
memset(&rx_counter, 0, sizeof(struct dbg_rx_counter));
rtw_dump_phy_rx_counters(padapter, &rx_counter);
/* RTW_INFO("%s: OFDM_FA =%d\n", __func__, rx_counter.rx_ofdm_fa); */
/* RTW_INFO("%s: CCK_FA =%d\n", __func__, rx_counter.rx_cck_fa); */
RTW_INFO("Phy Received packet OK:%d CRC error:%d FA Counter: %d\n", rx_counter.rx_pkt_ok, rx_counter.rx_pkt_crc_error,
rx_counter.rx_ofdm_fa + rx_counter.rx_cck_fa);
rtw_reset_phy_rx_counters(padapter);
}
}
#endif
void rtw_get_noise(_adapter *padapter)
{
#if defined(CONFIG_SIGNAL_DISPLAY_DBM) && defined(CONFIG_BACKGROUND_NOISE_MONITOR)
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct noise_info info;
if (rtw_linked_check(padapter)) {
info.bPauseDIG = true;
info.IGIValue = 0x1e;
info.max_time = 100;/* ms */
info.chan = pmlmeext->cur_channel ;/* rtw_get_oper_ch(padapter); */
rtw_ps_deny(padapter, PS_DENY_IOCTL);
LeaveAllPowerSaveModeDirect(padapter);
rtw_hal_set_odm_var(padapter, HAL_ODM_NOISE_MONITOR, &info, false);
/* odm_inband_noise_monitor(podmpriv,true,0x20,100); */
rtw_ps_deny_cancel(padapter, PS_DENY_IOCTL);
rtw_hal_get_odm_var(padapter, HAL_ODM_NOISE_MONITOR, &(info.chan), &(padapter->recvpriv.noise));
#ifdef DBG_NOISE_MONITOR
RTW_INFO("chan:%d,noise_level:%d\n", info.chan, padapter->recvpriv.noise);
#endif
}
#endif
}
u8 rtw_get_current_tx_sgi(_adapter *padapter, u8 macid)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct PHY_DM_STRUCT *pDM_Odm = &pHalData->odmpriv;
struct _rate_adaptive_table_ *pRA_Table = &pDM_Odm->dm_ra_table;
u8 curr_tx_sgi = 0;
curr_tx_sgi = odm_ra_get_decision_rate_8188e(pDM_Odm, macid);
return curr_tx_sgi;
}
u8 rtw_get_current_tx_rate(_adapter *padapter, u8 macid)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct PHY_DM_STRUCT *pDM_Odm = &pHalData->odmpriv;
struct _rate_adaptive_table_ *pRA_Table = &pDM_Odm->dm_ra_table;
u8 rate_id = 0;
#if (RATE_ADAPTIVE_SUPPORT == 1)
rate_id = odm_ra_get_decision_rate_8188e(pDM_Odm, macid);
#else
rate_id = (pRA_Table->link_tx_rate[macid]) & 0x7f;
#endif
return rate_id;
}
void update_IOT_info(_adapter *padapter)
{
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
switch (pmlmeinfo->assoc_AP_vendor) {
case HT_IOT_PEER_MARVELL:
pmlmeinfo->turboMode_cts2self = 1;
pmlmeinfo->turboMode_rtsen = 0;
break;
case HT_IOT_PEER_RALINK:
pmlmeinfo->turboMode_cts2self = 0;
pmlmeinfo->turboMode_rtsen = 1;
/* disable high power */
rtw_phydm_func_clr(padapter, ODM_BB_DYNAMIC_TXPWR);
break;
case HT_IOT_PEER_REALTEK:
/* rtw_write16(padapter, 0x4cc, 0xffff); */
/* rtw_write16(padapter, 0x546, 0x01c0); */
/* disable high power */
rtw_phydm_func_clr(padapter, ODM_BB_DYNAMIC_TXPWR);
break;
default:
pmlmeinfo->turboMode_cts2self = 0;
pmlmeinfo->turboMode_rtsen = 1;
break;
}
}
#ifdef CONFIG_AUTO_CHNL_SEL_NHM
void rtw_acs_start(_adapter *padapter, bool bStart)
{
if (bStart) {
ACS_OP acs_op = ACS_INIT;
rtw_hal_set_odm_var(padapter, HAL_ODM_AUTO_CHNL_SEL, &acs_op, true);
rtw_set_acs_channel(padapter, 0);
SET_ACS_STATE(padapter, ACS_ENABLE);
} else {
SET_ACS_STATE(padapter, ACS_DISABLE);
#ifdef DBG_AUTO_CHNL_SEL_NHM
if (1) {
u8 best_24g_ch = 0;
u8 best_5g_ch = 0;
rtw_hal_get_odm_var(padapter, HAL_ODM_AUTO_CHNL_SEL, &(best_24g_ch), &(best_5g_ch));
RTW_INFO("[ACS-"ADPT_FMT"] Best 2.4G CH:%u\n", ADPT_ARG(padapter), best_24g_ch);
RTW_INFO("[ACS-"ADPT_FMT"] Best 5G CH:%u\n", ADPT_ARG(padapter), best_5g_ch);
}
#endif
}
}
#endif
/* TODO: merge with phydm, see odm_SetCrystalCap() */
void hal_set_crystal_cap(_adapter *adapter, u8 crystal_cap)
{
crystal_cap = crystal_cap & 0x3F;
switch (rtw_get_chip_type(adapter)) {
case RTL8188E:
case RTL8188F:
/* write 0x24[16:11] = 0x24[22:17] = CrystalCap */
phy_set_bb_reg(adapter, REG_AFE_XTAL_CTRL, 0x007FF800, (crystal_cap | (crystal_cap << 6)));
break;
default:
rtw_warn_on(1);
}
}
int hal_spec_init(_adapter *adapter)
{
u8 interface_type = 0;
int ret = _SUCCESS;
interface_type = rtw_get_intf_type(adapter);
switch (rtw_get_chip_type(adapter)) {
case RTL8188E:
init_hal_spec_8188e(adapter);
break;
default:
RTW_ERR("%s: unknown chip_type:%u\n"
, __func__, rtw_get_chip_type(adapter));
ret = _FAIL;
break;
}
return ret;
}
static const char *const _band_cap_str[] = {
/* BIT0 */"2G",
/* BIT1 */"5G",
};
static const char *const _bw_cap_str[] = {
/* BIT0 */"5M",
/* BIT1 */"10M",
/* BIT2 */"20M",
/* BIT3 */"40M",
/* BIT4 */"80M",
/* BIT5 */"160M",
/* BIT6 */"80_80M",
};
static const char *const _proto_cap_str[] = {
/* BIT0 */"b",
/* BIT1 */"g",
/* BIT2 */"n",
/* BIT3 */"ac",
};
static const char *const _wl_func_str[] = {
/* BIT0 */"P2P",
/* BIT1 */"MIRACAST",
/* BIT2 */"TDLS",
/* BIT3 */"FTM",
};
void dump_hal_spec(void *sel, _adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
int i;
RTW_PRINT_SEL(sel, "macid_num:%u\n", hal_spec->macid_num);
RTW_PRINT_SEL(sel, "sec_cap:0x%02x\n", hal_spec->sec_cap);
RTW_PRINT_SEL(sel, "sec_cam_ent_num:%u\n", hal_spec->sec_cam_ent_num);
RTW_PRINT_SEL(sel, "rfpath_num_2g:%u\n", hal_spec->rfpath_num_2g);
RTW_PRINT_SEL(sel, "rfpath_num_5g:%u\n", hal_spec->rfpath_num_5g);
RTW_PRINT_SEL(sel, "max_tx_cnt:%u\n", hal_spec->max_tx_cnt);
RTW_PRINT_SEL(sel, "tx_nss_num:%u\n", hal_spec->tx_nss_num);
RTW_PRINT_SEL(sel, "rx_nss_num:%u\n", hal_spec->rx_nss_num);
RTW_PRINT_SEL(sel, "band_cap:");
for (i = 0; i < BAND_CAP_BIT_NUM; i++) {
if (((hal_spec->band_cap) >> i) & BIT0 && _band_cap_str[i])
_RTW_PRINT_SEL(sel, "%s ", _band_cap_str[i]);
}
_RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "bw_cap:");
for (i = 0; i < BW_CAP_BIT_NUM; i++) {
if (((hal_spec->bw_cap) >> i) & BIT0 && _bw_cap_str[i])
_RTW_PRINT_SEL(sel, "%s ", _bw_cap_str[i]);
}
_RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "proto_cap:");
for (i = 0; i < PROTO_CAP_BIT_NUM; i++) {
if (((hal_spec->proto_cap) >> i) & BIT0 && _proto_cap_str[i])
_RTW_PRINT_SEL(sel, "%s ", _proto_cap_str[i]);
}
_RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "wl_func:");
for (i = 0; i < WL_FUNC_BIT_NUM; i++) {
if (((hal_spec->wl_func) >> i) & BIT0 && _wl_func_str[i])
_RTW_PRINT_SEL(sel, "%s ", _wl_func_str[i]);
}
_RTW_PRINT_SEL(sel, "\n");
}
inline bool hal_chk_band_cap(_adapter *adapter, u8 cap)
{
return GET_HAL_SPEC(adapter)->band_cap & cap;
}
inline bool hal_chk_bw_cap(_adapter *adapter, u8 cap)
{
return GET_HAL_SPEC(adapter)->bw_cap & cap;
}
inline bool hal_chk_proto_cap(_adapter *adapter, u8 cap)
{
return GET_HAL_SPEC(adapter)->proto_cap & cap;
}
inline bool hal_chk_wl_func(_adapter *adapter, u8 func)
{
return GET_HAL_SPEC(adapter)->wl_func & func;
}
inline bool hal_is_band_support(_adapter *adapter, u8 band)
{
return GET_HAL_SPEC(adapter)->band_cap & band_to_band_cap(band);
}
inline bool hal_is_bw_support(_adapter *adapter, u8 bw)
{
return GET_HAL_SPEC(adapter)->bw_cap & ch_width_to_bw_cap(bw);
}
inline bool hal_is_wireless_mode_support(_adapter *adapter, u8 mode)
{
u8 proto_cap = GET_HAL_SPEC(adapter)->proto_cap;
if (mode == WIRELESS_11B)
if ((proto_cap & PROTO_CAP_11B) && hal_chk_band_cap(adapter, BAND_CAP_2G))
return 1;
if (mode == WIRELESS_11G)
if ((proto_cap & PROTO_CAP_11G) && hal_chk_band_cap(adapter, BAND_CAP_2G))
return 1;
if (mode == WIRELESS_11A)
if ((proto_cap & PROTO_CAP_11G) && hal_chk_band_cap(adapter, BAND_CAP_5G))
return 1;
if (mode == WIRELESS_11_24N)
if ((proto_cap & PROTO_CAP_11N) && hal_chk_band_cap(adapter, BAND_CAP_2G))
return 1;
if (mode == WIRELESS_11_5N)
if ((proto_cap & PROTO_CAP_11N) && hal_chk_band_cap(adapter, BAND_CAP_5G))
return 1;
if (mode == WIRELESS_11AC)
if ((proto_cap & PROTO_CAP_11AC) && hal_chk_band_cap(adapter, BAND_CAP_5G))
return 1;
return 0;
}
/*
* hal_largest_bw - starting from in_bw, get largest bw supported by HAL
* @adapter:
* @in_bw: starting bw, value of CHANNEL_WIDTH
*
* Returns: value of CHANNEL_WIDTH
*/
u8 hal_largest_bw(_adapter *adapter, u8 in_bw)
{
for (; in_bw > CHANNEL_WIDTH_20; in_bw--) {
if (hal_is_bw_support(adapter, in_bw))
break;
}
if (!hal_is_bw_support(adapter, in_bw))
rtw_warn_on(1);
return in_bw;
}
void rtw_hal_correct_tsf(_adapter *padapter, u8 hw_port, u64 tsf)
{
if (hw_port == HW_PORT0) {
/*disable related TSF function*/
rtw_write8(padapter, REG_BCN_CTRL, rtw_read8(padapter, REG_BCN_CTRL) & (~EN_BCN_FUNCTION));
rtw_write32(padapter, REG_TSFTR, tsf);
rtw_write32(padapter, REG_TSFTR + 4, tsf >> 32);
/*enable related TSF function*/
rtw_write8(padapter, REG_BCN_CTRL, rtw_read8(padapter, REG_BCN_CTRL) | EN_BCN_FUNCTION);
} else if (hw_port == HW_PORT1) {
/*disable related TSF function*/
rtw_write8(padapter, REG_BCN_CTRL_1, rtw_read8(padapter, REG_BCN_CTRL_1) & (~EN_BCN_FUNCTION));
rtw_write32(padapter, REG_TSFTR1, tsf);
rtw_write32(padapter, REG_TSFTR1 + 4, tsf >> 32);
/*enable related TSF function*/
rtw_write8(padapter, REG_BCN_CTRL_1, rtw_read8(padapter, REG_BCN_CTRL_1) | EN_BCN_FUNCTION);
} else
RTW_INFO("%s-[WARN] "ADPT_FMT" invalid hw_port:%d\n", __func__, ADPT_ARG(padapter), hw_port);
}
void ResumeTxBeacon(_adapter *padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
/* 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
/* which should be read from register to a global variable. */
pHalData->RegFwHwTxQCtrl |= BIT(6);
rtw_write8(padapter, REG_FWHW_TXQ_CTRL + 2, pHalData->RegFwHwTxQCtrl);
/*TBTT hold time :4ms 0x540[19:8]*/
rtw_write8(padapter, REG_TBTT_PROHIBIT + 1,
TBTT_PROBIHIT_HOLD_TIME & 0xFF);
rtw_write8(padapter, REG_TBTT_PROHIBIT + 2,
(rtw_read8(padapter, REG_TBTT_PROHIBIT + 2) & 0xF0) | (TBTT_PROBIHIT_HOLD_TIME >> 8));
}
void StopTxBeacon(_adapter *padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
/* 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
/* which should be read from register to a global variable. */
pHalData->RegFwHwTxQCtrl &= ~BIT(6);
rtw_write8(padapter, REG_FWHW_TXQ_CTRL + 2, pHalData->RegFwHwTxQCtrl);
rtw_write8(padapter, REG_TBTT_PROHIBIT + 1, 0x64);
rtw_write8(padapter, REG_TBTT_PROHIBIT + 2,
(rtw_read8(padapter, REG_TBTT_PROHIBIT + 2) & 0xF0));
/*CheckFwRsvdPageContent(padapter);*/ /* 2010.06.23. Added by tynli. */
}
#ifdef CONFIG_MI_WITH_MBSSID_CAM /*HW port0 - MBSS*/
void hw_var_set_opmode_mbid(_adapter *Adapter, u8 mode)
{
RTW_INFO("%s()-"ADPT_FMT" mode = %d\n", __func__, ADPT_ARG(Adapter), mode);
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR) & (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN)));
/* disable Port0 TSF update*/
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | DIS_TSF_UDT);
/* set net_type */
Set_MSR(Adapter, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
if (!rtw_mi_check_status(Adapter, MI_AP_MODE))
StopTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_ATIM);/*disable atim wnd*/
} else if (mode == _HW_STATE_ADHOC_) {
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
} else if (mode == _HW_STATE_AP_) {
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | DIS_BCNQ_SUB);
/*enable to rx data frame*/
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/*Beacon Control related register for first time*/
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */
/*rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);*/
rtw_write8(Adapter, REG_ATIMWND, 0x0a); /* 10ms */
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/*reset TSF*/
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
/*enable BCN0 Function for if1*/
/*don't enable update TSF0 for if1 (due to TSF update when beacon,probe rsp are received)*/
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_BCNQ_SUB));
}
}
#endif
#ifdef CONFIG_ANTENNA_DIVERSITY
u8 rtw_hal_antdiv_before_linked(_adapter *padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u8 cur_ant, change_ant;
if (!pHalData->AntDivCfg)
return false;
if (pHalData->sw_antdiv_bl_state == 0) {
pHalData->sw_antdiv_bl_state = 1;
rtw_hal_get_odm_var(padapter, HAL_ODM_ANTDIV_SELECT, &cur_ant, NULL);
change_ant = (cur_ant == MAIN_ANT) ? AUX_ANT : MAIN_ANT;
return rtw_antenna_select_cmd(padapter, change_ant, false);
}
pHalData->sw_antdiv_bl_state = 0;
return false;
}
void rtw_hal_antdiv_rssi_compared(_adapter *padapter, WLAN_BSSID_EX *dst, WLAN_BSSID_EX *src)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (pHalData->AntDivCfg) {
/*RTW_INFO("update_network=> org-RSSI(%d), new-RSSI(%d)\n", dst->Rssi, src->Rssi);*/
/*select optimum_antenna for before linked =>For antenna diversity*/
if (dst->Rssi >= src->Rssi) {/*keep org parameter*/
src->Rssi = dst->Rssi;
src->PhyInfo.Optimum_antenna = dst->PhyInfo.Optimum_antenna;
}
}
}
#endif
#ifdef CONFIG_PHY_CAPABILITY_QUERY
static void rtw_dump_phy_cap_by_phydmapi(void *sel, _adapter *adapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter);
struct phy_spec_t *phy_spec = &pHalData->phy_spec;
RTW_PRINT_SEL(sel, "[PHY SPEC] TRx Capability : 0x%08x\n", phy_spec->trx_cap);
RTW_PRINT_SEL(sel, "[PHY SPEC] Tx Stream Num Index : %d\n", (phy_spec->trx_cap >> 24) & 0xFF); /*Tx Stream Num Index [31:24]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] Rx Stream Num Index : %d\n", (phy_spec->trx_cap >> 16) & 0xFF); /*Rx Stream Num Index [23:16]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] Tx Path Num Index : %d\n", (phy_spec->trx_cap >> 8) & 0xFF);/*Tx Path Num Index [15:8]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] Rx Path Num Index : %d\n\n", (phy_spec->trx_cap & 0xFF));/*Rx Path Num Index [7:0]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] STBC Capability : 0x%08x\n", phy_spec->stbc_cap);
RTW_PRINT_SEL(sel, "[PHY SPEC] VHT STBC Tx : %s\n", ((phy_spec->stbc_cap >> 24) & 0xFF) ? "Supported" : "N/A"); /*VHT STBC Tx [31:24]*/
/*VHT STBC Rx [23:16]
0 = not support
1 = support for 1 spatial stream
2 = support for 1 or 2 spatial streams
3 = support for 1 or 2 or 3 spatial streams
4 = support for 1 or 2 or 3 or 4 spatial streams*/
RTW_PRINT_SEL(sel, "[PHY SPEC] VHT STBC Rx :%d\n", ((phy_spec->stbc_cap >> 16) & 0xFF));
RTW_PRINT_SEL(sel, "[PHY SPEC] HT STBC Tx : %s\n", ((phy_spec->stbc_cap >> 8) & 0xFF) ? "Supported" : "N/A"); /*HT STBC Tx [15:8]*/
/*HT STBC Rx [7:0]
0 = not support
1 = support for 1 spatial stream
2 = support for 1 or 2 spatial streams
3 = support for 1 or 2 or 3 spatial streams*/
RTW_PRINT_SEL(sel, "[PHY SPEC] HT STBC Rx : %d\n\n", (phy_spec->stbc_cap & 0xFF));
RTW_PRINT_SEL(sel, "[PHY SPEC] LDPC Capability : 0x%08x\n", phy_spec->ldpc_cap);
RTW_PRINT_SEL(sel, "[PHY SPEC] VHT LDPC Tx : %s\n", ((phy_spec->ldpc_cap >> 24) & 0xFF) ? "Supported" : "N/A"); /*VHT LDPC Tx [31:24]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] VHT LDPC Rx : %s\n", ((phy_spec->ldpc_cap >> 16) & 0xFF) ? "Supported" : "N/A"); /*VHT LDPC Rx [23:16]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] HT LDPC Tx : %s\n", ((phy_spec->ldpc_cap >> 8) & 0xFF) ? "Supported" : "N/A"); /*HT LDPC Tx [15:8]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] HT LDPC Rx : %s\n\n", (phy_spec->ldpc_cap & 0xFF) ? "Supported" : "N/A"); /*HT LDPC Rx [7:0]*/
#ifdef CONFIG_BEAMFORMING
RTW_PRINT_SEL(sel, "[PHY SPEC] TxBF Capability : 0x%08x\n", phy_spec->txbf_cap);
RTW_PRINT_SEL(sel, "[PHY SPEC] VHT MU Bfer : %s\n", ((phy_spec->txbf_cap >> 28) & 0xF) ? "Supported" : "N/A"); /*VHT MU Bfer [31:28]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] VHT MU Bfee : %s\n", ((phy_spec->txbf_cap >> 24) & 0xF) ? "Supported" : "N/A"); /*VHT MU Bfee [27:24]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] VHT SU Bfer : %s\n", ((phy_spec->txbf_cap >> 20) & 0xF) ? "Supported" : "N/A"); /*VHT SU Bfer [23:20]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] VHT SU Bfee : %s\n", ((phy_spec->txbf_cap >> 16) & 0xF) ? "Supported" : "N/A"); /*VHT SU Bfee [19:16]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] HT Bfer : %s\n", ((phy_spec->txbf_cap >> 4) & 0xF) ? "Supported" : "N/A"); /*HT Bfer [7:4]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] HT Bfee : %s\n\n", (phy_spec->txbf_cap & 0xF) ? "Supported" : "N/A"); /*HT Bfee [3:0]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] TxBF parameter : 0x%08x\n", phy_spec->txbf_param);
RTW_PRINT_SEL(sel, "[PHY SPEC] VHT Sounding Dim : %d\n", (phy_spec->txbf_param >> 24) & 0xFF); /*VHT Sounding Dim [31:24]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] VHT Steering Ant : %d\n", (phy_spec->txbf_param >> 16) & 0xFF); /*VHT Steering Ant [23:16]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] HT Sounding Dim : %d\n", (phy_spec->txbf_param >> 8) & 0xFF); /*HT Sounding Dim [15:8]*/
RTW_PRINT_SEL(sel, "[PHY SPEC] HT Steering Ant : %d\n", phy_spec->txbf_param & 0xFF); /*HT Steering Ant [7:0]*/
#endif
}
#else
static void rtw_dump_phy_cap_by_hal(void *sel, _adapter *adapter)
{
u8 phy_cap = false;
/* STBC */
rtw_hal_get_def_var(adapter, HAL_DEF_TX_STBC, (u8 *)&phy_cap);
RTW_PRINT_SEL(sel, "[HAL] STBC Tx : %s\n", (phy_cap) ? "Supported" : "N/A");
phy_cap = false;
rtw_hal_get_def_var(adapter, HAL_DEF_RX_STBC, (u8 *)&phy_cap);
RTW_PRINT_SEL(sel, "[HAL] STBC Rx : %s\n\n", (phy_cap) ? "Supported" : "N/A");
/* LDPC support */
phy_cap = false;
rtw_hal_get_def_var(adapter, HAL_DEF_TX_LDPC, (u8 *)&phy_cap);
RTW_PRINT_SEL(sel, "[HAL] LDPC Tx : %s\n", (phy_cap) ? "Supported" : "N/A");
phy_cap = false;
rtw_hal_get_def_var(adapter, HAL_DEF_RX_LDPC, (u8 *)&phy_cap);
RTW_PRINT_SEL(sel, "[HAL] LDPC Rx : %s\n\n", (phy_cap) ? "Supported" : "N/A");
#ifdef CONFIG_BEAMFORMING
phy_cap = false;
rtw_hal_get_def_var(adapter, HAL_DEF_EXPLICIT_BEAMFORMER, (u8 *)&phy_cap);
RTW_PRINT_SEL(sel, "[HAL] Beamformer: %s\n", (phy_cap) ? "Supported" : "N/A");
phy_cap = false;
rtw_hal_get_def_var(adapter, HAL_DEF_EXPLICIT_BEAMFORMEE, (u8 *)&phy_cap);
RTW_PRINT_SEL(sel, "[HAL] Beamformee: %s\n", (phy_cap) ? "Supported" : "N/A");
phy_cap = false;
rtw_hal_get_def_var(adapter, HAL_DEF_VHT_MU_BEAMFORMER, &phy_cap);
RTW_PRINT_SEL(sel, "[HAL] VHT MU Beamformer: %s\n", (phy_cap) ? "Supported" : "N/A");
phy_cap = false;
rtw_hal_get_def_var(adapter, HAL_DEF_VHT_MU_BEAMFORMEE, &phy_cap);
RTW_PRINT_SEL(sel, "[HAL] VHT MU Beamformee: %s\n", (phy_cap) ? "Supported" : "N/A");
#endif
}
#endif
void rtw_dump_phy_cap(void *sel, _adapter *adapter)
{
RTW_PRINT_SEL(sel, "\n ======== PHY Capability ========\n");
#ifdef CONFIG_PHY_CAPABILITY_QUERY
rtw_dump_phy_cap_by_phydmapi(sel, adapter);
#else
rtw_dump_phy_cap_by_hal(sel, adapter);
#endif
}