rtl8188eu/hal/usb_halinit.c
Larry Finger a831dc1f7e rtl8188eu: Convert most typedef statements from include/rtw_pwrctrl.h
Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
2013-07-23 22:24:42 -05:00

3287 lines
83 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _HCI_HAL_INIT_C_
#include <osdep_service.h>
#include <drv_types.h>
#include <rtw_efuse.h>
#include <rtl8188e_hal.h>
#include <rtl8188e_led.h>
#include <rtw_iol.h>
#include <usb_ops.h>
#include <usb_hal.h>
#include <usb_osintf.h>
#if DISABLE_BB_RF
#define HAL_MAC_ENABLE 0
#define HAL_BB_ENABLE 0
#define HAL_RF_ENABLE 0
#else
#define HAL_MAC_ENABLE 1
#define HAL_BB_ENABLE 1
#define HAL_RF_ENABLE 1
#endif
static void
_ConfigNormalChipOutEP_8188E(
PADAPTER pAdapter,
u8 NumOutPipe
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter);
switch (NumOutPipe){
case 3:
pHalData->OutEpQueueSel=TX_SELE_HQ| TX_SELE_LQ|TX_SELE_NQ;
pHalData->OutEpNumber=3;
break;
case 2:
pHalData->OutEpQueueSel=TX_SELE_HQ| TX_SELE_NQ;
pHalData->OutEpNumber=2;
break;
case 1:
pHalData->OutEpQueueSel=TX_SELE_HQ;
pHalData->OutEpNumber=1;
break;
default:
break;
}
DBG_88E("%s OutEpQueueSel(0x%02x), OutEpNumber(%d)\n",__func__,pHalData->OutEpQueueSel,pHalData->OutEpNumber );
}
static bool HalUsbSetQueuePipeMapping8188EUsb(
PADAPTER pAdapter,
u8 NumInPipe,
u8 NumOutPipe
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter);
bool result = false;
_ConfigNormalChipOutEP_8188E(pAdapter, NumOutPipe);
/* Normal chip with one IN and one OUT doesn't have interrupt IN EP. */
if (1 == pHalData->OutEpNumber){
if (1 != NumInPipe){
return result;
}
}
/* All config other than above support one Bulk IN and one Interrupt IN. */
result = Hal_MappingOutPipe(pAdapter, NumOutPipe);
return result;
}
static void rtl8188eu_interface_configure(_adapter *padapter)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
if (pdvobjpriv->ishighspeed == true)
{
pHalData->UsbBulkOutSize = USB_HIGH_SPEED_BULK_SIZE;/* 512 bytes */
}
else
{
pHalData->UsbBulkOutSize = USB_FULL_SPEED_BULK_SIZE;/* 64 bytes */
}
pHalData->interfaceIndex = pdvobjpriv->InterfaceNumber;
pHalData->UsbTxAggMode = 1;
pHalData->UsbTxAggDescNum = 0x6; /* only 4 bits */
pHalData->UsbRxAggMode = USB_RX_AGG_DMA;/* USB_RX_AGG_DMA; */
pHalData->UsbRxAggBlockCount = 8; /* unit : 512b */
pHalData->UsbRxAggBlockTimeout = 0x6;
pHalData->UsbRxAggPageCount = 48; /* uint :128 b 0x0A; 10 = MAX_RX_DMA_BUFFER_SIZE/2/pHalData->UsbBulkOutSize */
pHalData->UsbRxAggPageTimeout = 0x4; /* 6, absolute time = 34ms/(2^6) */
HalUsbSetQueuePipeMapping8188EUsb(padapter,
pdvobjpriv->RtNumInPipes, pdvobjpriv->RtNumOutPipes);
}
static u32 rtl8188eu_InitPowerOn(_adapter *padapter)
{
u16 value16;
/* HW Power on sequence */
struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);
if (true == pHalData->bMacPwrCtrlOn)
return _SUCCESS;
if (!HalPwrSeqCmdParsing(padapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_PWR_ON_FLOW))
{
DBG_88E(KERN_ERR "%s: run power on flow fail\n", __func__);
return _FAIL;
}
/* Enable MAC DMA/WMAC/SCHEDULE/SEC block */
/* Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */
rtw_write16(padapter, REG_CR, 0x00); /* suggseted by zhouzhou, by page, 20111230 */
/* Enable MAC DMA/WMAC/SCHEDULE/SEC block */
value16 = rtw_read16(padapter, REG_CR);
value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN
| PROTOCOL_EN | SCHEDULE_EN | ENSEC | CALTMR_EN);
/* for SDIO - Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */
rtw_write16(padapter, REG_CR, value16);
pHalData->bMacPwrCtrlOn = true;
return _SUCCESS;
}
static void _dbg_dump_macreg(_adapter *padapter)
{
u32 offset = 0;
u32 val32 = 0;
u32 index =0 ;
for (index=0;index<64;index++)
{
offset = index*4;
val32 = rtw_read32(padapter,offset);
DBG_88E("offset : 0x%02x ,val:0x%08x\n",offset,val32);
}
}
static void _InitPABias(_adapter *padapter)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);
u8 pa_setting;
bool is92C = IS_92C_SERIAL(pHalData->VersionID);
/* FIXED PA current issue */
pa_setting = EFUSE_Read1Byte(padapter, 0x1FA);
if (!(pa_setting & BIT0))
{
PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0x0F406);
PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0x4F406);
PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0x8F406);
PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0xCF406);
}
if (!(pa_setting & BIT1) && is92C)
{
PHY_SetRFReg(padapter,RF_PATH_B, 0x15, 0x0FFFFF, 0x0F406);
PHY_SetRFReg(padapter,RF_PATH_B, 0x15, 0x0FFFFF, 0x4F406);
PHY_SetRFReg(padapter,RF_PATH_B, 0x15, 0x0FFFFF, 0x8F406);
PHY_SetRFReg(padapter,RF_PATH_B, 0x15, 0x0FFFFF, 0xCF406);
}
if (!(pa_setting & BIT4))
{
pa_setting = rtw_read8(padapter, 0x16);
pa_setting &= 0x0F;
rtw_write8(padapter, 0x16, pa_setting | 0x80);
rtw_write8(padapter, 0x16, pa_setting | 0x90);
}
}
#ifdef CONFIG_BT_COEXIST
static void _InitBTCoexist(_adapter *padapter)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);
struct btcoexist_priv *pbtpriv = &(pHalData->bt_coexist);
u8 u1Tmp;
if (pbtpriv->BT_Coexist && pbtpriv->BT_CoexistType == BT_CSR_BC4)
{
/* if MP_DRIVER != 1 */
if (padapter->registrypriv.mp_mode == 0)
{
if (pbtpriv->BT_Ant_isolation)
{
rtw_write8( padapter,REG_GPIO_MUXCFG, 0xa0);
DBG_88E("BT write 0x%x = 0x%x\n", REG_GPIO_MUXCFG, 0xa0);
}
}
/* endif */
u1Tmp = rtw_read8(padapter, 0x4fd) & BIT0;
u1Tmp = u1Tmp |
((pbtpriv->BT_Ant_isolation==1)?0:BIT1) |
((pbtpriv->BT_Service==BT_SCO)?0:BIT2);
rtw_write8( padapter, 0x4fd, u1Tmp);
DBG_88E("BT write 0x%x = 0x%x for non-isolation\n", 0x4fd, u1Tmp);
rtw_write32(padapter, REG_BT_COEX_TABLE+4, 0xaaaa9aaa);
DBG_88E("BT write 0x%x = 0x%x\n", REG_BT_COEX_TABLE+4, 0xaaaa9aaa);
rtw_write32(padapter, REG_BT_COEX_TABLE+8, 0xffbd0040);
DBG_88E("BT write 0x%x = 0x%x\n", REG_BT_COEX_TABLE+8, 0xffbd0040);
rtw_write32(padapter, REG_BT_COEX_TABLE+0xc, 0x40000010);
DBG_88E("BT write 0x%x = 0x%x\n", REG_BT_COEX_TABLE+0xc, 0x40000010);
/* Config to 1T1R */
u1Tmp = rtw_read8(padapter,rOFDM0_TRxPathEnable);
u1Tmp &= ~(BIT1);
rtw_write8( padapter, rOFDM0_TRxPathEnable, u1Tmp);
DBG_88E("BT write 0xC04 = 0x%x\n", u1Tmp);
u1Tmp = rtw_read8(padapter, rOFDM1_TRxPathEnable);
u1Tmp &= ~(BIT1);
rtw_write8( padapter, rOFDM1_TRxPathEnable, u1Tmp);
DBG_88E("BT write 0xD04 = 0x%x\n", u1Tmp);
}
}
#endif
/* */
/* */
/* MAC init functions */
/* */
/* */
static void
_SetMacID(
PADAPTER Adapter, u8* MacID
)
{
u32 i;
for (i=0 ; i< MAC_ADDR_LEN ; i++)
rtw_write32(Adapter, REG_MACID+i, MacID[i]);
}
static void
_SetBSSID(
PADAPTER Adapter, u8* BSSID
)
{
u32 i;
for (i=0 ; i< MAC_ADDR_LEN ; i++)
rtw_write32(Adapter, REG_BSSID+i, BSSID[i]);
}
/* Shall USB interface init this? */
static void
_InitInterrupt(
PADAPTER Adapter
)
{
u32 imr,imr_ex;
u8 usb_opt;
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
/* HISR write one to clear */
rtw_write32(Adapter, REG_HISR_88E, 0xFFFFFFFF);
/* HIMR - */
imr = IMR_PSTIMEOUT_88E | IMR_TBDER_88E | IMR_CPWM_88E | IMR_CPWM2_88E ;
rtw_write32(Adapter, REG_HIMR_88E, imr);
pHalData->IntrMask[0]=imr;
imr_ex = IMR_TXERR_88E | IMR_RXERR_88E | IMR_TXFOVW_88E |IMR_RXFOVW_88E;
rtw_write32(Adapter, REG_HIMRE_88E, imr_ex);
pHalData->IntrMask[1]=imr_ex;
/* REG_USB_SPECIAL_OPTION - BIT(4) */
/* 0; Use interrupt endpoint to upload interrupt pkt */
/* 1; Use bulk endpoint to upload interrupt pkt, */
usb_opt = rtw_read8(Adapter, REG_USB_SPECIAL_OPTION);
if (!adapter_to_dvobj(Adapter)->ishighspeed)
usb_opt = usb_opt & (~INT_BULK_SEL);
else
usb_opt = usb_opt | (INT_BULK_SEL);
rtw_write8(Adapter, REG_USB_SPECIAL_OPTION, usb_opt );
}
static void
_InitQueueReservedPage(
PADAPTER Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u32 outEPNum = (u32)pHalData->OutEpNumber;
u32 numHQ = 0;
u32 numLQ = 0;
u32 numNQ = 0;
u32 numPubQ;
u32 value32;
u8 value8;
bool bWiFiConfig = pregistrypriv->wifi_spec;
if (bWiFiConfig)
{
if (pHalData->OutEpQueueSel & TX_SELE_HQ)
{
numHQ = 0x29;
}
if (pHalData->OutEpQueueSel & TX_SELE_LQ)
{
numLQ = 0x1C;
}
/* NOTE: This step shall be proceed before writting REG_RQPN. */
if (pHalData->OutEpQueueSel & TX_SELE_NQ) {
numNQ = 0x1C;
}
value8 = (u8)_NPQ(numNQ);
rtw_write8(Adapter, REG_RQPN_NPQ, value8);
numPubQ = 0xA8 - numHQ - numLQ - numNQ;
/* TX DMA */
value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
rtw_write32(Adapter, REG_RQPN, value32);
}
else
{
rtw_write16(Adapter,REG_RQPN_NPQ, 0x0000);/* Just follow MP Team,??? Georgia 03/28 */
rtw_write16(Adapter,REG_RQPN_NPQ, 0x0d);
rtw_write32(Adapter,REG_RQPN, 0x808E000d);/* reserve 7 page for LPS */
}
}
static void
_InitTxBufferBoundary(
PADAPTER Adapter,
u8 txpktbuf_bndy
)
{
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
rtw_write8(Adapter, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
rtw_write8(Adapter, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
rtw_write8(Adapter, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy);
rtw_write8(Adapter, REG_TRXFF_BNDY, txpktbuf_bndy);
rtw_write8(Adapter, REG_TDECTRL+1, txpktbuf_bndy);
}
static void
_InitPageBoundary(
PADAPTER Adapter
)
{
/* RX Page Boundary */
/* */
u16 rxff_bndy = MAX_RX_DMA_BUFFER_SIZE_88E-1;
rtw_write16(Adapter, (REG_TRXFF_BNDY + 2), rxff_bndy);
}
static void
_InitNormalChipRegPriority(
PADAPTER Adapter,
u16 beQ,
u16 bkQ,
u16 viQ,
u16 voQ,
u16 mgtQ,
u16 hiQ
)
{
u16 value16 = (rtw_read16(Adapter, REG_TRXDMA_CTRL) & 0x7);
value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) |
_TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) |
_TXDMA_MGQ_MAP(mgtQ)| _TXDMA_HIQ_MAP(hiQ);
rtw_write16(Adapter, REG_TRXDMA_CTRL, value16);
}
static void
_InitNormalChipOneOutEpPriority(
PADAPTER Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u16 value = 0;
switch (pHalData->OutEpQueueSel)
{
case TX_SELE_HQ:
value = QUEUE_HIGH;
break;
case TX_SELE_LQ:
value = QUEUE_LOW;
break;
case TX_SELE_NQ:
value = QUEUE_NORMAL;
break;
default:
break;
}
_InitNormalChipRegPriority(Adapter,
value,
value,
value,
value,
value,
value
);
}
static void
_InitNormalChipTwoOutEpPriority(
PADAPTER Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u16 beQ,bkQ,viQ,voQ,mgtQ,hiQ;
u16 valueHi = 0;
u16 valueLow = 0;
switch (pHalData->OutEpQueueSel)
{
case (TX_SELE_HQ | TX_SELE_LQ):
valueHi = QUEUE_HIGH;
valueLow = QUEUE_LOW;
break;
case (TX_SELE_NQ | TX_SELE_LQ):
valueHi = QUEUE_NORMAL;
valueLow = QUEUE_LOW;
break;
case (TX_SELE_HQ | TX_SELE_NQ):
valueHi = QUEUE_HIGH;
valueLow = QUEUE_NORMAL;
break;
default:
break;
}
if (!pregistrypriv->wifi_spec ){
beQ = valueLow;
bkQ = valueLow;
viQ = valueHi;
voQ = valueHi;
mgtQ = valueHi;
hiQ = valueHi;
}
else{/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */
beQ = valueLow;
bkQ = valueHi;
viQ = valueHi;
voQ = valueLow;
mgtQ = valueHi;
hiQ = valueHi;
}
_InitNormalChipRegPriority(Adapter,beQ,bkQ,viQ,voQ,mgtQ,hiQ);
}
static void
_InitNormalChipThreeOutEpPriority(
PADAPTER Adapter
)
{
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u16 beQ,bkQ,viQ,voQ,mgtQ,hiQ;
if (!pregistrypriv->wifi_spec ){/* typical setting */
beQ = QUEUE_LOW;
bkQ = QUEUE_LOW;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_HIGH;
}
else{/* for WMM */
beQ = QUEUE_LOW;
bkQ = QUEUE_NORMAL;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_HIGH;
}
_InitNormalChipRegPriority(Adapter,beQ,bkQ,viQ,voQ,mgtQ,hiQ);
}
static void
_InitQueuePriority(
PADAPTER Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
switch (pHalData->OutEpNumber)
{
case 1:
_InitNormalChipOneOutEpPriority(Adapter);
break;
case 2:
_InitNormalChipTwoOutEpPriority(Adapter);
break;
case 3:
_InitNormalChipThreeOutEpPriority(Adapter);
break;
default:
break;
}
}
static void
_InitHardwareDropIncorrectBulkOut(
PADAPTER Adapter
)
{
u32 value32 = rtw_read32(Adapter, REG_TXDMA_OFFSET_CHK);
value32 |= DROP_DATA_EN;
rtw_write32(Adapter, REG_TXDMA_OFFSET_CHK, value32);
}
static void
_InitNetworkType(
PADAPTER Adapter
)
{
u32 value32;
value32 = rtw_read32(Adapter, REG_CR);
/* TODO: use the other function to set network type */
value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AP);
rtw_write32(Adapter, REG_CR, value32);
}
static void
_InitTransferPageSize(
PADAPTER Adapter
)
{
/* Tx page size is always 128. */
u8 value8;
value8 = _PSRX(PBP_128) | _PSTX(PBP_128);
rtw_write8(Adapter, REG_PBP, value8);
}
static void
_InitDriverInfoSize(
PADAPTER Adapter,
u8 drvInfoSize
)
{
rtw_write8(Adapter,REG_RX_DRVINFO_SZ, drvInfoSize);
}
static void
_InitWMACSetting(
PADAPTER Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
pHalData->ReceiveConfig =
RCR_AAP | RCR_APM | RCR_AM | RCR_AB |RCR_CBSSID_DATA| RCR_CBSSID_BCN| RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL | RCR_APP_MIC | RCR_APP_PHYSTS;
#if (1 == RTL8188E_RX_PACKET_INCLUDE_CRC)
pHalData->ReceiveConfig |= ACRC32;
#endif
/* some REG_RCR will be modified later by phy_ConfigMACWithHeaderFile() */
rtw_write32(Adapter, REG_RCR, pHalData->ReceiveConfig);
/* Accept all multicast address */
rtw_write32(Adapter, REG_MAR, 0xFFFFFFFF);
rtw_write32(Adapter, REG_MAR + 4, 0xFFFFFFFF);
}
static void
_InitAdaptiveCtrl(
PADAPTER Adapter
)
{
u16 value16;
u32 value32;
/* Response Rate Set */
value32 = rtw_read32(Adapter, REG_RRSR);
value32 &= ~RATE_BITMAP_ALL;
value32 |= RATE_RRSR_CCK_ONLY_1M;
rtw_write32(Adapter, REG_RRSR, value32);
/* CF-END Threshold */
/* SIFS (used in NAV) */
value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10);
rtw_write16(Adapter, REG_SPEC_SIFS, value16);
/* Retry Limit */
value16 = _LRL(0x30) | _SRL(0x30);
rtw_write16(Adapter, REG_RL, value16);
}
static void
_InitRateFallback(
PADAPTER Adapter
)
{
/* Set Data Auto Rate Fallback Retry Count register. */
rtw_write32(Adapter, REG_DARFRC, 0x00000000);
rtw_write32(Adapter, REG_DARFRC+4, 0x10080404);
rtw_write32(Adapter, REG_RARFRC, 0x04030201);
rtw_write32(Adapter, REG_RARFRC+4, 0x08070605);
}
static void
_InitEDCA(
PADAPTER Adapter
)
{
/* Set Spec SIFS (used in NAV) */
rtw_write16(Adapter,REG_SPEC_SIFS, 0x100a);
rtw_write16(Adapter,REG_MAC_SPEC_SIFS, 0x100a);
/* Set SIFS for CCK */
rtw_write16(Adapter,REG_SIFS_CTX, 0x100a);
/* Set SIFS for OFDM */
rtw_write16(Adapter,REG_SIFS_TRX, 0x100a);
/* TXOP */
rtw_write32(Adapter, REG_EDCA_BE_PARAM, 0x005EA42B);
rtw_write32(Adapter, REG_EDCA_BK_PARAM, 0x0000A44F);
rtw_write32(Adapter, REG_EDCA_VI_PARAM, 0x005EA324);
rtw_write32(Adapter, REG_EDCA_VO_PARAM, 0x002FA226);
}
static void _InitBeaconMaxError(PADAPTER Adapter, bool InfraMode)
{
}
static void _InitHWLed(PADAPTER Adapter)
{
struct led_priv *pledpriv = &(Adapter->ledpriv);
if ( pledpriv->LedStrategy != HW_LED)
return;
/* HW led control */
/* to do .... */
/* must consider cases of antenna diversity/ commbo card/solo card/mini card */
}
static void _InitRDGSetting(PADAPTER Adapter)
{
rtw_write8(Adapter,REG_RD_CTRL,0xFF);
rtw_write16(Adapter, REG_RD_NAV_NXT, 0x200);
rtw_write8(Adapter,REG_RD_RESP_PKT_TH,0x05);
}
static void
_InitRxSetting(
PADAPTER Adapter
)
{
rtw_write32(Adapter, REG_MACID, 0x87654321);
rtw_write32(Adapter, 0x0700, 0x87654321);
}
static void
_InitRetryFunction(
PADAPTER Adapter
)
{
u8 value8;
value8 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL);
value8 |= EN_AMPDU_RTY_NEW;
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL, value8);
/* Set ACK timeout */
rtw_write8(Adapter, REG_ACKTO, 0x40);
}
/*-----------------------------------------------------------------------------
* Function: usb_AggSettingTxUpdate()
*
* Overview: Seperate TX/RX parameters update independent for TP detection and
* dynamic TX/RX aggreagtion parameters update.
*
* Input: PADAPTER
*
* Output/Return: NONE
*
* Revised History:
* When Who Remark
* 12/10/2010 MHC Seperate to smaller function.
*
*---------------------------------------------------------------------------*/
static void
usb_AggSettingTxUpdate(
PADAPTER Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u32 value32;
if (Adapter->registrypriv.wifi_spec)
pHalData->UsbTxAggMode = false;
if (pHalData->UsbTxAggMode){
value32 = rtw_read32(Adapter, REG_TDECTRL);
value32 = value32 & ~(BLK_DESC_NUM_MASK << BLK_DESC_NUM_SHIFT);
value32 |= ((pHalData->UsbTxAggDescNum & BLK_DESC_NUM_MASK) << BLK_DESC_NUM_SHIFT);
rtw_write32(Adapter, REG_TDECTRL, value32);
}
} /* usb_AggSettingTxUpdate */
/*-----------------------------------------------------------------------------
* Function: usb_AggSettingRxUpdate()
*
* Overview: Seperate TX/RX parameters update independent for TP detection and
* dynamic TX/RX aggreagtion parameters update.
*
* Input: PADAPTER
*
* Output/Return: NONE
*
* Revised History:
* When Who Remark
* 12/10/2010 MHC Seperate to smaller function.
*
*---------------------------------------------------------------------------*/
static void
usb_AggSettingRxUpdate(
PADAPTER Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u8 valueDMA;
u8 valueUSB;
valueDMA = rtw_read8(Adapter, REG_TRXDMA_CTRL);
valueUSB = rtw_read8(Adapter, REG_USB_SPECIAL_OPTION);
switch (pHalData->UsbRxAggMode)
{
case USB_RX_AGG_DMA:
valueDMA |= RXDMA_AGG_EN;
valueUSB &= ~USB_AGG_EN;
break;
case USB_RX_AGG_USB:
valueDMA &= ~RXDMA_AGG_EN;
valueUSB |= USB_AGG_EN;
break;
case USB_RX_AGG_MIX:
valueDMA |= RXDMA_AGG_EN;
valueUSB |= USB_AGG_EN;
break;
case USB_RX_AGG_DISABLE:
default:
valueDMA &= ~RXDMA_AGG_EN;
valueUSB &= ~USB_AGG_EN;
break;
}
rtw_write8(Adapter, REG_TRXDMA_CTRL, valueDMA);
rtw_write8(Adapter, REG_USB_SPECIAL_OPTION, valueUSB);
switch (pHalData->UsbRxAggMode)
{
case USB_RX_AGG_DMA:
rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, pHalData->UsbRxAggPageCount);
rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH+1, pHalData->UsbRxAggPageTimeout);
break;
case USB_RX_AGG_USB:
rtw_write8(Adapter, REG_USB_AGG_TH, pHalData->UsbRxAggBlockCount);
rtw_write8(Adapter, REG_USB_AGG_TO, pHalData->UsbRxAggBlockTimeout);
break;
case USB_RX_AGG_MIX:
rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, pHalData->UsbRxAggPageCount);
rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH+1, (pHalData->UsbRxAggPageTimeout& 0x1F));/* 0x280[12:8] */
rtw_write8(Adapter, REG_USB_AGG_TH, pHalData->UsbRxAggBlockCount);
rtw_write8(Adapter, REG_USB_AGG_TO, pHalData->UsbRxAggBlockTimeout);
break;
case USB_RX_AGG_DISABLE:
default:
/* TODO: */
break;
}
switch (PBP_128)
{
case PBP_128:
pHalData->HwRxPageSize = 128;
break;
case PBP_64:
pHalData->HwRxPageSize = 64;
break;
case PBP_256:
pHalData->HwRxPageSize = 256;
break;
case PBP_512:
pHalData->HwRxPageSize = 512;
break;
case PBP_1024:
pHalData->HwRxPageSize = 1024;
break;
default:
break;
}
} /* usb_AggSettingRxUpdate */
static void
InitUsbAggregationSetting(
PADAPTER Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
/* Tx aggregation setting */
usb_AggSettingTxUpdate(Adapter);
/* Rx aggregation setting */
usb_AggSettingRxUpdate(Adapter);
/* 201/12/10 MH Add for USB agg mode dynamic switch. */
pHalData->UsbRxHighSpeedMode = false;
}
static void
HalRxAggr8188EUsb(
PADAPTER Adapter,
bool Value
)
{
}
/*-----------------------------------------------------------------------------
* Function: USB_AggModeSwitch()
*
* Overview: When RX traffic is more than 40M, we need to adjust some parameters to increase
* RX speed by increasing batch indication size. This will decrease TCP ACK speed, we
* need to monitor the influence of FTP/network share.
* For TX mode, we are still ubder investigation.
*
* Input: PADAPTER
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 12/10/2010 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
static void
USB_AggModeSwitch(
PADAPTER Adapter
)
{
} /* USB_AggModeSwitch */
static void
_InitOperationMode(
PADAPTER Adapter
)
{
}
static void
_InitBeaconParameters(
PADAPTER Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
rtw_write16(Adapter, REG_BCN_CTRL, 0x1010);
/* TODO: Remove these magic number */
rtw_write16(Adapter, REG_TBTT_PROHIBIT,0x6404);/* ms */
rtw_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);/* 5ms */
rtw_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME); /* 2ms */
/* Suggested by designer timchen. Change beacon AIFS to the largest number */
/* beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
rtw_write16(Adapter, REG_BCNTCFG, 0x660F);
pHalData->RegBcnCtrlVal = rtw_read8(Adapter, REG_BCN_CTRL);
pHalData->RegTxPause = rtw_read8(Adapter, REG_TXPAUSE);
pHalData->RegFwHwTxQCtrl = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL+2);
pHalData->RegReg542 = rtw_read8(Adapter, REG_TBTT_PROHIBIT+2);
pHalData->RegCR_1 = rtw_read8(Adapter, REG_CR+1);
}
static void
_InitRFType(
PADAPTER Adapter
)
{
struct registry_priv *pregpriv = &Adapter->registrypriv;
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
bool is92CU = IS_92C_SERIAL(pHalData->VersionID);
#if DISABLE_BB_RF
pHalData->rf_chip = RF_PSEUDO_11N;
return;
#endif
pHalData->rf_chip = RF_6052;
if (false == is92CU){
pHalData->rf_type = RF_1T1R;
DBG_88E("Set RF Chip ID to RF_6052 and RF type to 1T1R.\n");
return;
}
/* TODO: Consider that EEPROM set 92CU to 1T1R later. */
/* Force to overwrite setting according to chip version. Ignore EEPROM setting. */
MSG_88E("Set RF Chip ID to RF_6052 and RF type to %d.\n", pHalData->rf_type);
}
static void
_BeaconFunctionEnable(
PADAPTER Adapter,
bool Enable,
bool Linked
)
{
rtw_write8(Adapter, REG_BCN_CTRL, (BIT4 | BIT3 | BIT1));
rtw_write8(Adapter, REG_RD_CTRL+1, 0x6F);
}
/* Set CCK and OFDM Block "ON" */
static void _BBTurnOnBlock(
PADAPTER Adapter
)
{
#if (DISABLE_BB_RF)
return;
#endif
PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bCCKEn, 0x1);
PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bOFDMEn, 0x1);
}
static void _RfPowerSave(
PADAPTER Adapter
)
{
}
enum {
Antenna_Lfet = 1,
Antenna_Right = 2,
};
static void
_InitAntenna_Selection( PADAPTER Adapter)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
if (pHalData->AntDivCfg==0)
return;
DBG_88E("==> %s ....\n",__func__);
rtw_write32(Adapter, REG_LEDCFG0, rtw_read32(Adapter, REG_LEDCFG0)|BIT23);
PHY_SetBBReg(Adapter, rFPGA0_XAB_RFParameter, BIT13, 0x01);
if (PHY_QueryBBReg(Adapter, rFPGA0_XA_RFInterfaceOE, 0x300) == Antenna_A)
pHalData->CurAntenna = Antenna_A;
else
pHalData->CurAntenna = Antenna_B;
DBG_88E("%s,Cur_ant:(%x)%s\n",__func__,pHalData->CurAntenna,(pHalData->CurAntenna == Antenna_A)?"Antenna_A":"Antenna_B");
}
/* */
/* 2010/08/26 MH Add for selective suspend mode check. */
/* If Efuse 0x0e bit1 is not enabled, we can not support selective suspend for Minicard and */
/* slim card. */
/* */
static void
HalDetectSelectiveSuspendMode(
PADAPTER Adapter
)
{
} /* HalDetectSelectiveSuspendMode */
/*-----------------------------------------------------------------------------
* Function: HwSuspendModeEnable92Cu()
*
* Overview: HW suspend mode switch.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 08/23/2010 MHC HW suspend mode switch test..
*---------------------------------------------------------------------------*/
static void
HwSuspendModeEnable_88eu(
PADAPTER pAdapter,
u8 Type
)
{
} /* HwSuspendModeEnable92Cu */
rt_rf_power_state RfOnOffDetect( PADAPTER pAdapter )
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter);
u8 val8;
rt_rf_power_state rfpowerstate = rf_off;
if (pAdapter->pwrctrlpriv.bHWPowerdown)
{
val8 = rtw_read8(pAdapter, REG_HSISR);
DBG_88E("pwrdown, 0x5c(BIT7)=%02x\n", val8);
rfpowerstate = (val8 & BIT7) ? rf_off: rf_on;
}
else /* rf on/off */
{
rtw_write8( pAdapter, REG_MAC_PINMUX_CFG,rtw_read8(pAdapter, REG_MAC_PINMUX_CFG)&~(BIT3));
val8 = rtw_read8(pAdapter, REG_GPIO_IO_SEL);
DBG_88E("GPIO_IN=%02x\n", val8);
rfpowerstate = (val8 & BIT3) ? rf_on : rf_off;
}
return rfpowerstate;
} /* HalDetectPwrDownMode */
void _ps_open_RF(_adapter *padapter);
static u32 rtl8188eu_hal_init(PADAPTER Adapter)
{
u8 value8 = 0;
u16 value16;
u8 txpktbuf_bndy;
u32 status = _SUCCESS;
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
struct pwrctrl_priv *pwrctrlpriv = &Adapter->pwrctrlpriv;
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
rt_rf_power_state eRfPowerStateToSet;
#ifdef CONFIG_BT_COEXIST
struct btcoexist_priv *pbtpriv = &(pHalData->bt_coexist);
#endif
u32 init_start_time = rtw_get_current_time();
#define HAL_INIT_PROFILE_TAG(stage) do {} while (0)
_func_enter_;
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_BEGIN);
#ifdef CONFIG_WOWLAN
Adapter->pwrctrlpriv.wowlan_wake_reason = rtw_read8(Adapter, REG_WOWLAN_WAKE_REASON);
DBG_88E("%s wowlan_wake_reason: 0x%02x\n",
__func__, Adapter->pwrctrlpriv.wowlan_wake_reason);
if (rtw_read8(Adapter, REG_MCUFWDL)&BIT7){ /*&&
(Adapter->pwrctrlpriv.wowlan_wake_reason & FWDecisionDisconnect)) {*/
u8 reg_val=0;
DBG_88E("+Reset Entry+\n");
rtw_write8(Adapter, REG_MCUFWDL, 0x00);
_8051Reset88E(Adapter);
/* reset BB */
reg_val = rtw_read8(Adapter, REG_SYS_FUNC_EN);
reg_val &= ~(BIT(0) | BIT(1));
rtw_write8(Adapter, REG_SYS_FUNC_EN, reg_val);
/* reset RF */
rtw_write8(Adapter, REG_RF_CTRL, 0);
/* reset TRX path */
rtw_write16(Adapter, REG_CR, 0);
/* reset MAC, Digital Core */
reg_val = rtw_read8(Adapter, REG_SYS_FUNC_EN+1);
reg_val &= ~(BIT(4) | BIT(7));
rtw_write8(Adapter, REG_SYS_FUNC_EN+1, reg_val);
reg_val = rtw_read8(Adapter, REG_SYS_FUNC_EN+1);
reg_val |= BIT(4) | BIT(7);
rtw_write8(Adapter, REG_SYS_FUNC_EN+1, reg_val);
DBG_88E("-Reset Entry-\n");
}
#endif /* CONFIG_WOWLAN */
if (Adapter->pwrctrlpriv.bkeepfwalive)
{
_ps_open_RF(Adapter);
if (pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized){
PHY_IQCalibrate_8188E(Adapter,true);
}
else
{
PHY_IQCalibrate_8188E(Adapter,false);
pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized = true;
}
ODM_TXPowerTrackingCheck(&pHalData->odmpriv );
PHY_LCCalibrate_8188E(Adapter);
goto exit;
}
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PW_ON);
status = rtl8188eu_InitPowerOn(Adapter);
if (status == _FAIL){
RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init power on!\n"));
goto exit;
}
/* Save target channel */
pHalData->CurrentChannel = 6;/* default set to 6 */
if (pwrctrlpriv->reg_rfoff == true){
pwrctrlpriv->rf_pwrstate = rf_off;
}
/* 2010/08/09 MH We need to check if we need to turnon or off RF after detecting */
/* HW GPIO pin. Before PHY_RFConfig8192C. */
/* 2010/08/26 MH If Efuse does not support sective suspend then disable the function. */
if (!pregistrypriv->wifi_spec) {
txpktbuf_bndy = TX_PAGE_BOUNDARY_88E;
} else {
/* for WMM */
txpktbuf_bndy = WMM_NORMAL_TX_PAGE_BOUNDARY_88E;
}
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC01);
_InitQueueReservedPage(Adapter);
_InitQueuePriority(Adapter);
_InitPageBoundary(Adapter);
_InitTransferPageSize(Adapter);
_InitTxBufferBoundary(Adapter, 0);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_DOWNLOAD_FW);
#if (MP_DRIVER == 1)
if (Adapter->registrypriv.mp_mode == 1)
{
_InitRxSetting(Adapter);
Adapter->bFWReady = false;
pHalData->fw_ractrl = false;
}
else
#endif /* MP_DRIVER == 1 */
{
#ifdef CONFIG_WOWLAN
status = rtl8188e_FirmwareDownload(Adapter, false);
#else
status = rtl8188e_FirmwareDownload(Adapter);
#endif /* CONFIG_WOWLAN */
if (status != _SUCCESS) {
DBG_88E("%s: Download Firmware failed!!\n", __func__);
Adapter->bFWReady = false;
pHalData->fw_ractrl = false;
return status;
} else {
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Initializepadapter8192CSdio(): Download Firmware Success!!\n"));
Adapter->bFWReady = true;
pHalData->fw_ractrl = false;
}
}
rtl8188e_InitializeFirmwareVars(Adapter);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MAC);
#if (HAL_MAC_ENABLE == 1)
status = PHY_MACConfig8188E(Adapter);
if (status == _FAIL)
{
DBG_88E(" ### Failed to init MAC ......\n ");
goto exit;
}
#endif
/* */
/* d. Initialize BB related configurations. */
/* */
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_BB);
#if (HAL_BB_ENABLE == 1)
status = PHY_BBConfig8188E(Adapter);
if (status == _FAIL)
{
DBG_88E(" ### Failed to init BB ......\n ");
goto exit;
}
#endif
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_RF);
#if (HAL_RF_ENABLE == 1)
status = PHY_RFConfig8188E(Adapter);
if (status == _FAIL)
{
DBG_88E(" ### Failed to init RF ......\n ");
goto exit;
}
#endif
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_EFUSE_PATCH);
status = rtl8188e_iol_efuse_patch(Adapter);
if (status == _FAIL){
DBG_88E("%s rtl8188e_iol_efuse_patch failed\n",__func__);
goto exit;
}
_InitTxBufferBoundary(Adapter, txpktbuf_bndy);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_LLTT);
status = InitLLTTable(Adapter, txpktbuf_bndy);
if (status == _FAIL){
RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init LLT table\n"));
goto exit;
}
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC02);
/* Get Rx PHY status in order to report RSSI and others. */
_InitDriverInfoSize(Adapter, DRVINFO_SZ);
_InitInterrupt(Adapter);
hal_init_macaddr(Adapter);/* set mac_address */
_InitNetworkType(Adapter);/* set msr */
_InitWMACSetting(Adapter);
_InitAdaptiveCtrl(Adapter);
_InitEDCA(Adapter);
_InitRetryFunction(Adapter);
InitUsbAggregationSetting(Adapter);
_InitOperationMode(Adapter);/* todo */
_InitBeaconParameters(Adapter);
_InitBeaconMaxError(Adapter, true);
/* */
/* Init CR MACTXEN, MACRXEN after setting RxFF boundary REG_TRXFF_BNDY to patch */
/* Hw bug which Hw initials RxFF boundry size to a value which is larger than the real Rx buffer size in 88E. */
/* */
/* Enable MACTXEN/MACRXEN block */
value16 = rtw_read16(Adapter, REG_CR);
value16 |= (MACTXEN | MACRXEN);
rtw_write8(Adapter, REG_CR, value16);
#if ENABLE_USB_DROP_INCORRECT_OUT
_InitHardwareDropIncorrectBulkOut(Adapter);
#endif
if (pHalData->bRDGEnable){
_InitRDGSetting(Adapter);
}
#if (RATE_ADAPTIVE_SUPPORT==1)
{/* Enable TX Report */
/* Enable Tx Report Timer */
value8 = rtw_read8(Adapter, REG_TX_RPT_CTRL);
rtw_write8(Adapter, REG_TX_RPT_CTRL, (value8|BIT1|BIT0));
/* Set MAX RPT MACID */
rtw_write8(Adapter, REG_TX_RPT_CTRL+1, 2);/* FOR sta mode ,0: bc/mc ,1:AP */
/* Tx RPT Timer. Unit: 32us */
rtw_write16(Adapter, REG_TX_RPT_TIME, 0xCdf0);
}
#endif
rtw_write8(Adapter, REG_EARLY_MODE_CONTROL, 0);
rtw_write16(Adapter, REG_PKT_VO_VI_LIFE_TIME, 0x0400); /* unit: 256us. 256ms */
rtw_write16(Adapter, REG_PKT_BE_BK_LIFE_TIME, 0x0400); /* unit: 256us. 256ms */
_InitHWLed(Adapter);
/* Keep RfRegChnlVal for later use. */
pHalData->RfRegChnlVal[0] = PHY_QueryRFReg(Adapter, (RF_RADIO_PATH_E)0, RF_CHNLBW, bRFRegOffsetMask);
pHalData->RfRegChnlVal[1] = PHY_QueryRFReg(Adapter, (RF_RADIO_PATH_E)1, RF_CHNLBW, bRFRegOffsetMask);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_TURN_ON_BLOCK);
_BBTurnOnBlock(Adapter);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_SECURITY);
invalidate_cam_all(Adapter);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC11);
/* 2010/12/17 MH We need to set TX power according to EFUSE content at first. */
PHY_SetTxPowerLevel8188E(Adapter, pHalData->CurrentChannel);
/* Move by Neo for USB SS to below setp */
/* _RfPowerSave(Adapter); */
_InitAntenna_Selection(Adapter);
/* */
/* Disable BAR, suggested by Scott */
/* 2010.04.09 add by hpfan */
/* */
rtw_write32(Adapter, REG_BAR_MODE_CTRL, 0x0201ffff);
/* HW SEQ CTRL */
/* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */
rtw_write8(Adapter,REG_HWSEQ_CTRL, 0xFF);
if (pregistrypriv->wifi_spec)
rtw_write16(Adapter,REG_FAST_EDCA_CTRL ,0);
/* Nav limit , suggest by scott */
rtw_write8(Adapter, 0x652, 0x0);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_HAL_DM);
rtl8188e_InitHalDm(Adapter);
#if (MP_DRIVER == 1)
if (Adapter->registrypriv.mp_mode == 1)
{
Adapter->mppriv.channel = pHalData->CurrentChannel;
MPT_InitializeAdapter(Adapter, Adapter->mppriv.channel);
}
else
#endif /* if (MP_DRIVER == 1) */
{
/* */
/* 2010/08/11 MH Merge from 8192SE for Minicard init. We need to confirm current radio status */
/* and then decide to enable RF or not.!!!??? For Selective suspend mode. We may not */
/* call init_adapter. May cause some problem?? */
/* */
/* Fix the bug that Hw/Sw radio off before S3/S4, the RF off action will not be executed */
/* in MgntActSet_RF_State() after wake up, because the value of pHalData->eRFPowerState */
/* is the same as eRfOff, we should change it to eRfOn after we config RF parameters. */
/* Added by tynli. 2010.03.30. */
pwrctrlpriv->rf_pwrstate = rf_on;
/* enable Tx report. */
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL+1, 0x0F);
/* Suggested by SD1 pisa. Added by tynli. 2011.10.21. */
rtw_write8(Adapter, REG_EARLY_MODE_CONTROL+3, 0x01);/* Pretx_en, for WEP/TKIP SEC */
/* tynli_test_tx_report. */
rtw_write16(Adapter, REG_TX_RPT_TIME, 0x3DF0);
/* enable tx DMA to drop the redundate data of packet */
rtw_write16(Adapter,REG_TXDMA_OFFSET_CHK, (rtw_read16(Adapter,REG_TXDMA_OFFSET_CHK) | DROP_DATA_EN));
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_IQK);
/* 2010/08/26 MH Merge from 8192CE. */
if (pwrctrlpriv->rf_pwrstate == rf_on)
{
if (pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized){
PHY_IQCalibrate_8188E(Adapter,true);
}
else
{
PHY_IQCalibrate_8188E(Adapter,false);
pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized = true;
}
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_PW_TRACK);
ODM_TXPowerTrackingCheck(&pHalData->odmpriv );
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_LCK);
PHY_LCCalibrate_8188E(Adapter);
}
}
/* HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PABIAS); */
/* _InitPABias(Adapter); */
rtw_write8(Adapter, REG_USB_HRPWM, 0);
/* ack for xmit mgmt frames. */
rtw_write32(Adapter, REG_FWHW_TXQ_CTRL, rtw_read32(Adapter, REG_FWHW_TXQ_CTRL)|BIT(12));
exit:
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_END);
DBG_88E("%s in %dms\n", __func__, rtw_get_passing_time_ms(init_start_time));
_func_exit_;
return status;
}
void _ps_open_RF(_adapter *padapter) {
/* here call with bRegSSPwrLvl 1, bRegSSPwrLvl 2 needs to be verified */
/* phy_SsPwrSwitch92CU(padapter, rf_on, 1); */
}
static void _ps_close_RF(_adapter *padapter){
/* here call with bRegSSPwrLvl 1, bRegSSPwrLvl 2 needs to be verified */
/* phy_SsPwrSwitch92CU(padapter, rf_off, 1); */
}
static void CardDisableRTL8188EU(PADAPTER Adapter)
{
u8 val8;
u16 val16;
u32 val32;
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("CardDisableRTL8188EU\n"));
/* Stop Tx Report Timer. 0x4EC[Bit1]=b'0 */
val8 = rtw_read8(Adapter, REG_TX_RPT_CTRL);
rtw_write8(Adapter, REG_TX_RPT_CTRL, val8&(~BIT1));
/* stop rx */
rtw_write8(Adapter, REG_CR, 0x0);
/* Run LPS WL RFOFF flow */
HalPwrSeqCmdParsing(Adapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_LPS_ENTER_FLOW);
/* 2. 0x1F[7:0] = 0 turn off RF */
val8 = rtw_read8(Adapter, REG_MCUFWDL);
if ((val8 & RAM_DL_SEL) && Adapter->bFWReady) /* 8051 RAM code */
{
/* Reset MCU 0x2[10]=0. */
val8 = rtw_read8(Adapter, REG_SYS_FUNC_EN+1);
val8 &= ~BIT(2); /* 0x2[10], FEN_CPUEN */
rtw_write8(Adapter, REG_SYS_FUNC_EN+1, val8);
}
/* reset MCU ready status */
rtw_write8(Adapter, REG_MCUFWDL, 0);
/* YJ,add,111212 */
/* Disable 32k */
val8 = rtw_read8(Adapter, REG_32K_CTRL);
rtw_write8(Adapter, REG_32K_CTRL, val8&(~BIT0));
/* Card disable power action flow */
HalPwrSeqCmdParsing(Adapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_DISABLE_FLOW);
/* Reset MCU IO Wrapper */
val8 = rtw_read8(Adapter, REG_RSV_CTRL+1);
rtw_write8(Adapter, REG_RSV_CTRL+1, (val8&(~BIT3)));
val8 = rtw_read8(Adapter, REG_RSV_CTRL+1);
rtw_write8(Adapter, REG_RSV_CTRL+1, val8|BIT3);
/* YJ,test add, 111207. For Power Consumption. */
val8 = rtw_read8(Adapter, GPIO_IN);
rtw_write8(Adapter, GPIO_OUT, val8);
rtw_write8(Adapter, GPIO_IO_SEL, 0xFF);/* Reg0x46 */
val8 = rtw_read8(Adapter, REG_GPIO_IO_SEL);
rtw_write8(Adapter, REG_GPIO_IO_SEL, (val8<<4));
val8 = rtw_read8(Adapter, REG_GPIO_IO_SEL+1);
rtw_write8(Adapter, REG_GPIO_IO_SEL+1, val8|0x0F);/* Reg0x43 */
rtw_write32(Adapter, REG_BB_PAD_CTRL, 0x00080808);/* set LNA ,TRSW,EX_PA Pin to output mode */
pHalData->bMacPwrCtrlOn = false;
Adapter->bFWReady = false;
}
static void rtl8192cu_hw_power_down(_adapter *padapter)
{
/* 2010/-8/09 MH For power down module, we need to enable register block contrl reg at 0x1c. */
/* Then enable power down control bit of register 0x04 BIT4 and BIT15 as 1. */
/* Enable register area 0x0-0xc. */
rtw_write8(padapter,REG_RSV_CTRL, 0x0);
rtw_write16(padapter, REG_APS_FSMCO, 0x8812);
}
static u32 rtl8188eu_hal_deinit(PADAPTER Adapter)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
DBG_88E("==> %s\n",__func__);
rtw_write32(Adapter, REG_HIMR_88E, IMR_DISABLED_88E);
rtw_write32(Adapter, REG_HIMRE_88E, IMR_DISABLED_88E);
DBG_88E("bkeepfwalive(%x)\n",Adapter->pwrctrlpriv.bkeepfwalive);
if (Adapter->pwrctrlpriv.bkeepfwalive)
{
_ps_close_RF(Adapter);
if ((Adapter->pwrctrlpriv.bHWPwrPindetect) && (Adapter->pwrctrlpriv.bHWPowerdown))
rtl8192cu_hw_power_down(Adapter);
} else {
if (Adapter->hw_init_completed == true){
CardDisableRTL8188EU(Adapter);
if ((Adapter->pwrctrlpriv.bHWPwrPindetect ) && (Adapter->pwrctrlpriv.bHWPowerdown))
rtl8192cu_hw_power_down(Adapter);
}
}
return _SUCCESS;
}
static unsigned int rtl8188eu_inirp_init(PADAPTER Adapter)
{
u8 i;
struct recv_buf *precvbuf;
uint status;
struct dvobj_priv *pdev= adapter_to_dvobj(Adapter);
struct intf_hdl * pintfhdl=&Adapter->iopriv.intf;
struct recv_priv *precvpriv = &(Adapter->recvpriv);
u32 (*_read_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
_func_enter_;
_read_port = pintfhdl->io_ops._read_port;
status = _SUCCESS;
RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
("===> usb_inirp_init\n"));
precvpriv->ff_hwaddr = RECV_BULK_IN_ADDR;
/* issue Rx irp to receive data */
precvbuf = (struct recv_buf *)precvpriv->precv_buf;
for (i = 0; i < NR_RECVBUFF; i++) {
if (_read_port(pintfhdl, precvpriv->ff_hwaddr, 0, (unsigned char *)precvbuf) == false ) {
RT_TRACE(_module_hci_hal_init_c_,_drv_err_,("usb_rx_init: usb_read_port error\n"));
status = _FAIL;
goto exit;
}
precvbuf++;
precvpriv->free_recv_buf_queue_cnt--;
}
exit:
RT_TRACE(_module_hci_hal_init_c_,_drv_info_,("<=== usb_inirp_init\n"));
_func_exit_;
return status;
}
static unsigned int rtl8188eu_inirp_deinit(PADAPTER Adapter)
{
RT_TRACE(_module_hci_hal_init_c_,_drv_info_,("\n ===> usb_rx_deinit\n"));
rtw_read_port_cancel(Adapter);
RT_TRACE(_module_hci_hal_init_c_,_drv_info_,("\n <=== usb_rx_deinit\n"));
return _SUCCESS;
}
/* */
/* */
/* EEPROM/EFUSE Content Parsing */
/* */
/* */
static void _ReadIDs(PADAPTER Adapter, u8 *PROMContent, bool AutoloadFail)
{
}
static void
_ReadBoardType(
PADAPTER Adapter,
u8* PROMContent,
bool AutoloadFail
)
{
}
static void
_ReadLEDSetting(
PADAPTER Adapter,
u8* PROMContent,
bool AutoloadFail
)
{
struct led_priv *pledpriv = &(Adapter->ledpriv);
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
pledpriv->bRegUseLed = true;
switch (pHalData->CustomerID)
{
default:
pledpriv->LedStrategy = SW_LED_MODE1;
break;
}
pHalData->bLedOpenDrain = true;/* Support Open-drain arrangement for controlling the LED. Added by Roger, 2009.10.16. */
}
static void
_ReadThermalMeter(
PADAPTER Adapter,
u8* PROMContent,
bool AutoloadFail
)
{
}
static void
_ReadRFSetting(
PADAPTER Adapter,
u8* PROMContent,
bool AutoloadFail
)
{
}
static void
_ReadPROMVersion(
PADAPTER Adapter,
u8* PROMContent,
bool AutoloadFail
)
{
}
static void
readAntennaDiversity(
PADAPTER pAdapter,
u8 *hwinfo,
bool AutoLoadFail
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter);
struct registry_priv *registry_par = &pAdapter->registrypriv;
pHalData->AntDivCfg = registry_par->antdiv_cfg ; /* 0:OFF , 1:ON, */
}
static void
hal_InitPGData(
PADAPTER pAdapter,
u8 *PROMContent
)
{
}
static void
Hal_EfuseParsePIDVID_8188EU(
PADAPTER pAdapter,
u8* hwinfo,
bool AutoLoadFail
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter);
if ( !AutoLoadFail )
{
/* VID, PID */
pHalData->EEPROMVID = EF2BYTE( *(__le16 *)&hwinfo[EEPROM_VID_88EU] );
pHalData->EEPROMPID = EF2BYTE( *(__le16 *)&hwinfo[EEPROM_PID_88EU] );
/* Customer ID, 0x00 and 0xff are reserved for Realtek. */
pHalData->EEPROMCustomerID = *(u8 *)&hwinfo[EEPROM_CUSTOMERID_88E];
pHalData->EEPROMSubCustomerID = EEPROM_Default_SubCustomerID;
}
else
{
pHalData->EEPROMVID = EEPROM_Default_VID;
pHalData->EEPROMPID = EEPROM_Default_PID;
/* Customer ID, 0x00 and 0xff are reserved for Realtek. */
pHalData->EEPROMCustomerID = EEPROM_Default_CustomerID;
pHalData->EEPROMSubCustomerID = EEPROM_Default_SubCustomerID;
}
DBG_88E("VID = 0x%04X, PID = 0x%04X\n", pHalData->EEPROMVID, pHalData->EEPROMPID);
DBG_88E("Customer ID: 0x%02X, SubCustomer ID: 0x%02X\n", pHalData->EEPROMCustomerID, pHalData->EEPROMSubCustomerID);
}
static void
Hal_EfuseParseMACAddr_8188EU(
PADAPTER padapter,
u8* hwinfo,
bool AutoLoadFail
)
{
u16 i, usValue;
u8 sMacAddr[6] = {0x00, 0xE0, 0x4C, 0x81, 0x88, 0x02};
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
if (AutoLoadFail)
{
/* sMacAddr[5] = (u1Byte)GetRandomNumber(1, 254); */
for (i=0; i<6; i++)
pEEPROM->mac_addr[i] = sMacAddr[i];
}
else
{
/* Read Permanent MAC address */
_rtw_memcpy(pEEPROM->mac_addr, &hwinfo[EEPROM_MAC_ADDR_88EU], ETH_ALEN);
}
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_,
("Hal_EfuseParseMACAddr_8188EU: Permanent Address = %02x-%02x-%02x-%02x-%02x-%02x\n",
pEEPROM->mac_addr[0], pEEPROM->mac_addr[1],
pEEPROM->mac_addr[2], pEEPROM->mac_addr[3],
pEEPROM->mac_addr[4], pEEPROM->mac_addr[5]));
}
static void
Hal_CustomizeByCustomerID_8188EU(
PADAPTER padapter
)
{
}
/* Read HW power down mode selection */
static void _ReadPSSetting(PADAPTER Adapter, u8 *PROMContent, u8 AutoloadFail)
{
}
static void
readAdapterInfo_8188EU(
PADAPTER padapter
)
{
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
/* parse the eeprom/efuse content */
Hal_EfuseParseIDCode88E(padapter, pEEPROM->efuse_eeprom_data);
Hal_EfuseParsePIDVID_8188EU(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_EfuseParseMACAddr_8188EU(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_ReadPowerSavingMode88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_ReadTxPowerInfo88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_EfuseParseEEPROMVer88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
rtl8188e_EfuseParseChnlPlan(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_EfuseParseXtal_8188E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_EfuseParseCustomerID88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_ReadAntennaDiversity88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_EfuseParseBoardType88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_ReadThermalMeter_88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
/* */
/* The following part initialize some vars by PG info. */
/* */
Hal_InitChannelPlan(padapter);
Hal_CustomizeByCustomerID_8188EU(padapter);
_ReadLEDSetting(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
}
static void _ReadPROMContent(
PADAPTER Adapter
)
{
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(Adapter);
u8 eeValue;
/* check system boot selection */
eeValue = rtw_read8(Adapter, REG_9346CR);
pEEPROM->EepromOrEfuse = (eeValue & BOOT_FROM_EEPROM) ? true : false;
pEEPROM->bautoload_fail_flag = (eeValue & EEPROM_EN) ? false : true;
DBG_88E("Boot from %s, Autoload %s !\n", (pEEPROM->EepromOrEfuse ? "EEPROM" : "EFUSE"),
(pEEPROM->bautoload_fail_flag ? "Fail" : "OK") );
Hal_InitPGData88E(Adapter);
readAdapterInfo_8188EU(Adapter);
}
static void
_ReadRFType(
PADAPTER Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
#if DISABLE_BB_RF
pHalData->rf_chip = RF_PSEUDO_11N;
#else
pHalData->rf_chip = RF_6052;
#endif
}
static int _ReadAdapterInfo8188EU(PADAPTER Adapter)
{
u32 start=rtw_get_current_time();
MSG_88E("====> %s\n", __func__);
_ReadRFType(Adapter);/* rf_chip -> _InitRFType() */
_ReadPROMContent(Adapter);
MSG_88E("<==== %s in %d ms\n", __func__, rtw_get_passing_time_ms(start));
return _SUCCESS;
}
static void ReadAdapterInfo8188EU(PADAPTER Adapter)
{
/* Read EEPROM size before call any EEPROM function */
Adapter->EepromAddressSize = GetEEPROMSize8188E(Adapter);
_ReadAdapterInfo8188EU(Adapter);
}
#define GPIO_DEBUG_PORT_NUM 0
static void rtl8192cu_trigger_gpio_0(_adapter *padapter)
{
}
static void ResumeTxBeacon(_adapter *padapter)
{
struct hal_data_8188e* pHalData = GET_HAL_DATA(padapter);
/* 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
/* which should be read from register to a global variable. */
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl) | BIT6);
pHalData->RegFwHwTxQCtrl |= BIT6;
rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
pHalData->RegReg542 |= BIT0;
rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
}
static void UpdateInterruptMask8188EU(PADAPTER padapter,u8 bHIMR0 ,u32 AddMSR, u32 RemoveMSR)
{
struct hal_data_8188e *pHalData;
u32 *himr;
pHalData = GET_HAL_DATA(padapter);
if (bHIMR0)
himr = &(pHalData->IntrMask[0]);
else
himr = &(pHalData->IntrMask[1]);
if (AddMSR)
*himr |= AddMSR;
if (RemoveMSR)
*himr &= (~RemoveMSR);
if (bHIMR0)
rtw_write32(padapter, REG_HIMR_88E, *himr);
else
rtw_write32(padapter, REG_HIMRE_88E, *himr);
}
static void StopTxBeacon(_adapter *padapter)
{
struct hal_data_8188e* pHalData = GET_HAL_DATA(padapter);
/* 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
/* which should be read from register to a global variable. */
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl) & (~BIT6));
pHalData->RegFwHwTxQCtrl &= (~BIT6);
rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
pHalData->RegReg542 &= ~(BIT0);
rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
/* todo: CheckFwRsvdPageContent(Adapter); 2010.06.23. Added by tynli. */
}
static void hw_var_set_opmode(PADAPTER Adapter, u8 variable, u8* val)
{
u8 val8;
u8 mode = *((u8 *)val);
{
/* disable Port0 TSF update */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
/* set net_type */
val8 = rtw_read8(Adapter, MSR)&0x0c;
val8 |= mode;
rtw_write8(Adapter, MSR, val8);
DBG_88E("%s()-%d mode = %d\n", __func__, __LINE__, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
{
StopTxBeacon(Adapter);
rtw_write8(Adapter,REG_BCN_CTRL, 0x19);/* disable atim wnd */
}
else if ((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
{
ResumeTxBeacon(Adapter);
rtw_write8(Adapter,REG_BCN_CTRL, 0x1a);
}
else if (mode == _HW_STATE_AP_)
{
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x12);
/* Set RCR */
rtw_write32(Adapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0,reject ICV_ERR packet */
/* enable to rx data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/* enable to rx ps-poll */
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
/* Beacon Control related register for first time */
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */
rtw_write8(Adapter, REG_ATIMWND, 0x0a); /* 10ms */
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/* reset TSF */
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
/* BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0 */
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM)|BIT(3)|BIT(4));
/* enable BCN0 Function for if1 */
/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP|EN_BCN_FUNCTION |BIT(1)));
/* dis BCN1 ATIM WND if if2 is station */
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(0));
}
}
}
static void hw_var_set_macaddr(PADAPTER Adapter, u8 variable, u8* val)
{
u8 idx = 0;
u32 reg_macid;
reg_macid = REG_MACID;
for (idx = 0 ; idx < 6; idx++)
rtw_write8(Adapter, (reg_macid+idx), val[idx]);
}
static void hw_var_set_bssid(PADAPTER Adapter, u8 variable, u8* val)
{
u8 idx = 0;
u32 reg_bssid;
reg_bssid = REG_BSSID;
for (idx = 0 ; idx < 6; idx++)
rtw_write8(Adapter, (reg_bssid+idx), val[idx]);
}
static void hw_var_set_bcn_func(PADAPTER Adapter, u8 variable, u8* val)
{
u32 bcn_ctrl_reg;
bcn_ctrl_reg = REG_BCN_CTRL;
if (*((u8 *)val))
rtw_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
else
rtw_write8(Adapter, bcn_ctrl_reg, rtw_read8(Adapter, bcn_ctrl_reg)&(~(EN_BCN_FUNCTION | EN_TXBCN_RPT)));
}
static void hw_var_set_correct_tsf(PADAPTER Adapter, u8 variable, u8* val)
{
}
static void hw_var_set_mlme_disconnect(PADAPTER Adapter, u8 variable, u8* val)
{
}
static void hw_var_set_mlme_sitesurvey(PADAPTER Adapter, u8 variable, u8* val)
{
}
static void hw_var_set_mlme_join(PADAPTER Adapter, u8 variable, u8* val)
{
}
static void SetHwReg8188EU(PADAPTER Adapter, u8 variable, u8* val)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
struct dm_priv *pdmpriv = &pHalData->dmpriv;
DM_ODM_T *podmpriv = &pHalData->odmpriv;
_func_enter_;
switch (variable)
{
case HW_VAR_MEDIA_STATUS:
{
u8 val8;
val8 = rtw_read8(Adapter, MSR)&0x0c;
val8 |= *((u8 *)val);
rtw_write8(Adapter, MSR, val8);
}
break;
case HW_VAR_MEDIA_STATUS1:
{
u8 val8;
val8 = rtw_read8(Adapter, MSR)&0x03;
val8 |= *((u8 *)val) <<2;
rtw_write8(Adapter, MSR, val8);
}
break;
case HW_VAR_SET_OPMODE:
hw_var_set_opmode(Adapter, variable, val);
break;
case HW_VAR_MAC_ADDR:
hw_var_set_macaddr(Adapter, variable, val);
break;
case HW_VAR_BSSID:
hw_var_set_bssid(Adapter, variable, val);
break;
case HW_VAR_BASIC_RATE:
{
u16 BrateCfg = 0;
u8 RateIndex = 0;
/* 2007.01.16, by Emily */
/* Select RRSR (in Legacy-OFDM and CCK) */
/* For 8190, we select only 24M, 12M, 6M, 11M, 5.5M, 2M, and 1M from the Basic rate. */
/* We do not use other rates. */
HalSetBrateCfg( Adapter, val, &BrateCfg );
DBG_88E("HW_VAR_BASIC_RATE: BrateCfg(%#x)\n", BrateCfg);
/* 2011.03.30 add by Luke Lee */
/* CCK 2M ACK should be disabled for some BCM and Atheros AP IOT */
/* because CCK 2M has poor TXEVM */
/* CCK 5.5M & 11M ACK should be enabled for better performance */
pHalData->BasicRateSet = BrateCfg = (BrateCfg |0xd) & 0x15d;
BrateCfg |= 0x01; /* default enable 1M ACK rate */
/* Set RRSR rate table. */
rtw_write8(Adapter, REG_RRSR, BrateCfg&0xff);
rtw_write8(Adapter, REG_RRSR+1, (BrateCfg>>8)&0xff);
rtw_write8(Adapter, REG_RRSR+2, rtw_read8(Adapter, REG_RRSR+2)&0xf0);
/* Set RTS initial rate */
while (BrateCfg > 0x1)
{
BrateCfg = (BrateCfg>> 1);
RateIndex++;
}
/* Ziv - Check */
rtw_write8(Adapter, REG_INIRTS_RATE_SEL, RateIndex);
}
break;
case HW_VAR_TXPAUSE:
rtw_write8(Adapter, REG_TXPAUSE, *((u8 *)val));
break;
case HW_VAR_BCN_FUNC:
hw_var_set_bcn_func(Adapter, variable, val);
break;
case HW_VAR_CORRECT_TSF:
{
u64 tsf;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; /* us */
if (((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
StopTxBeacon(Adapter);
}
/* disable related TSF function */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR, tsf);
rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);
/* enable related TSF function */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3));
if (((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
ResumeTxBeacon(Adapter);
}
}
break;
case HW_VAR_CHECK_BSSID:
if (*((u8 *)val))
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
}
else
{
u32 val32;
val32 = rtw_read32(Adapter, REG_RCR);
val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
rtw_write32(Adapter, REG_RCR, val32);
}
break;
case HW_VAR_MLME_DISCONNECT:
{
/* Set RCR to not to receive data frame when NO LINK state */
/* reject all data frames */
rtw_write16(Adapter, REG_RXFLTMAP2,0x00);
/* reset TSF */
rtw_write8(Adapter, REG_DUAL_TSF_RST, (BIT(0)|BIT(1)));
/* disable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
}
break;
case HW_VAR_MLME_SITESURVEY:
if (*((u8 *)val))/* under sitesurvey */
{
/* config RCR to receive different BSSID & not to receive data frame */
u32 v = rtw_read32(Adapter, REG_RCR);
v &= ~(RCR_CBSSID_BCN);
rtw_write32(Adapter, REG_RCR, v);
/* reject all data frame */
rtw_write16(Adapter, REG_RXFLTMAP2,0x00);
/* disable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
}
else/* sitesurvey done */
{
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if ((is_client_associated_to_ap(Adapter) == true) ||
((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) )
{
/* enable to rx data frame */
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
/* enable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
}
else if ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
{
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
/* enable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
}
if ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
else
{
if (Adapter->in_cta_test)
{
u32 v = rtw_read32(Adapter, REG_RCR);
v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN );/* RCR_ADF */
rtw_write32(Adapter, REG_RCR, v);
}
else
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
}
}
}
break;
case HW_VAR_MLME_JOIN:
{
u8 RetryLimit = 0x30;
u8 type = *((u8 *)val);
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
if (type == 0) /* prepare to join */
{
/* enable to rx data frame.Accept all data frame */
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
if (Adapter->in_cta_test)
{
u32 v = rtw_read32(Adapter, REG_RCR);
v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN );/* RCR_ADF */
rtw_write32(Adapter, REG_RCR, v);
}
else
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
}
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
{
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
}
else /* Ad-hoc Mode */
{
RetryLimit = 0x7;
}
}
else if (type == 1) /* joinbss_event call back when join res < 0 */
{
rtw_write16(Adapter, REG_RXFLTMAP2,0x00);
}
else if (type == 2) /* sta add event call back */
{
/* enable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
{
RetryLimit = 0x7;
}
}
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
}
break;
case HW_VAR_BEACON_INTERVAL:
rtw_write16(Adapter, REG_BCN_INTERVAL, *((u16 *)val));
break;
case HW_VAR_SLOT_TIME:
{
u8 u1bAIFS, aSifsTime;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
rtw_write8(Adapter, REG_SLOT, val[0]);
if (pmlmeinfo->WMM_enable == 0)
{
if ( pmlmeext->cur_wireless_mode == WIRELESS_11B)
aSifsTime = 10;
else
aSifsTime = 16;
u1bAIFS = aSifsTime + (2 * pmlmeinfo->slotTime);
/* <Roger_EXP> Temporary removed, 2008.06.20. */
rtw_write8(Adapter, REG_EDCA_VO_PARAM, u1bAIFS);
rtw_write8(Adapter, REG_EDCA_VI_PARAM, u1bAIFS);
rtw_write8(Adapter, REG_EDCA_BE_PARAM, u1bAIFS);
rtw_write8(Adapter, REG_EDCA_BK_PARAM, u1bAIFS);
}
}
break;
case HW_VAR_RESP_SIFS:
/* RESP_SIFS for CCK */
rtw_write8(Adapter, REG_R2T_SIFS, val[0]); /* SIFS_T2T_CCK (0x08) */
rtw_write8(Adapter, REG_R2T_SIFS+1, val[1]); /* SIFS_R2T_CCK(0x08) */
/* RESP_SIFS for OFDM */
rtw_write8(Adapter, REG_T2T_SIFS, val[2]); /* SIFS_T2T_OFDM (0x0a) */
rtw_write8(Adapter, REG_T2T_SIFS+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
break;
case HW_VAR_ACK_PREAMBLE:
{
u8 regTmp;
u8 bShortPreamble = *( (bool *)val );
/* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
regTmp = (pHalData->nCur40MhzPrimeSC)<<5;
if (bShortPreamble)
regTmp |= 0x80;
rtw_write8(Adapter, REG_RRSR+2, regTmp);
}
break;
case HW_VAR_SEC_CFG:
rtw_write8(Adapter, REG_SECCFG, *((u8 *)val));
break;
case HW_VAR_DM_FLAG:
podmpriv->SupportAbility = *((u8 *)val);
break;
case HW_VAR_DM_FUNC_OP:
if (val[0])
{/* save dm flag */
podmpriv->BK_SupportAbility = podmpriv->SupportAbility;
}
else
{/* restore dm flag */
podmpriv->SupportAbility = podmpriv->BK_SupportAbility;
}
break;
case HW_VAR_DM_FUNC_SET:
if (*((u32 *)val) == DYNAMIC_ALL_FUNC_ENABLE){
pdmpriv->DMFlag = pdmpriv->InitDMFlag;
podmpriv->SupportAbility = pdmpriv->InitODMFlag;
}
else{
podmpriv->SupportAbility |= *((u32 *)val);
}
break;
case HW_VAR_DM_FUNC_CLR:
podmpriv->SupportAbility &= *((u32 *)val);
break;
case HW_VAR_CAM_EMPTY_ENTRY:
{
u8 ucIndex = *((u8 *)val);
u8 i;
u32 ulCommand=0;
u32 ulContent=0;
u32 ulEncAlgo=CAM_AES;
for (i=0;i<CAM_CONTENT_COUNT;i++)
{
/* filled id in CAM config 2 byte */
if ( i == 0)
{
ulContent |=(ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
/* ulContent |= CAM_VALID; */
}
else
{
ulContent = 0;
}
/* polling bit, and No Write enable, and address */
ulCommand= CAM_CONTENT_COUNT*ucIndex+i;
ulCommand= ulCommand | CAM_POLLINIG|CAM_WRITE;
/* write content 0 is equall to mark invalid */
rtw_write32(Adapter, WCAMI, ulContent); /* delay_ms(40); */
rtw_write32(Adapter, RWCAM, ulCommand); /* delay_ms(40); */
}
}
break;
case HW_VAR_CAM_INVALID_ALL:
rtw_write32(Adapter, RWCAM, BIT(31)|BIT(30));
break;
case HW_VAR_CAM_WRITE:
{
u32 cmd;
u32 *cam_val = (u32 *)val;
rtw_write32(Adapter, WCAMI, cam_val[0]);
cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
rtw_write32(Adapter, RWCAM, cmd);
}
break;
case HW_VAR_AC_PARAM_VO:
rtw_write32(Adapter, REG_EDCA_VO_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_VI:
rtw_write32(Adapter, REG_EDCA_VI_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_BE:
pHalData->AcParam_BE = ((u32 *)(val))[0];
rtw_write32(Adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_BK:
rtw_write32(Adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_ACM_CTRL:
{
u8 acm_ctrl = *((u8 *)val);
u8 AcmCtrl = rtw_read8( Adapter, REG_ACMHWCTRL);
if (acm_ctrl > 1)
AcmCtrl = AcmCtrl | 0x1;
if (acm_ctrl & BIT(3))
AcmCtrl |= AcmHw_VoqEn;
else
AcmCtrl &= (~AcmHw_VoqEn);
if (acm_ctrl & BIT(2))
AcmCtrl |= AcmHw_ViqEn;
else
AcmCtrl &= (~AcmHw_ViqEn);
if (acm_ctrl & BIT(1))
AcmCtrl |= AcmHw_BeqEn;
else
AcmCtrl &= (~AcmHw_BeqEn);
DBG_88E("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl );
rtw_write8(Adapter, REG_ACMHWCTRL, AcmCtrl );
}
break;
case HW_VAR_AMPDU_MIN_SPACE:
{
u8 MinSpacingToSet;
u8 SecMinSpace;
MinSpacingToSet = *((u8 *)val);
if (MinSpacingToSet <= 7)
{
switch (Adapter->securitypriv.dot11PrivacyAlgrthm)
{
case _NO_PRIVACY_:
case _AES_:
SecMinSpace = 0;
break;
case _WEP40_:
case _WEP104_:
case _TKIP_:
case _TKIP_WTMIC_:
SecMinSpace = 6;
break;
default:
SecMinSpace = 7;
break;
}
if (MinSpacingToSet < SecMinSpace){
MinSpacingToSet = SecMinSpace;
}
rtw_write8(Adapter, REG_AMPDU_MIN_SPACE, (rtw_read8(Adapter, REG_AMPDU_MIN_SPACE) & 0xf8) | MinSpacingToSet);
}
}
break;
case HW_VAR_AMPDU_FACTOR:
{
u8 RegToSet_Normal[4]={0x41,0xa8,0x72, 0xb9};
u8 RegToSet_BT[4]={0x31,0x74,0x42, 0x97};
u8 FactorToSet;
u8 *pRegToSet;
u8 index = 0;
#ifdef CONFIG_BT_COEXIST
if ( (pHalData->bt_coexist.BT_Coexist) &&
(pHalData->bt_coexist.BT_CoexistType == BT_CSR_BC4) )
pRegToSet = RegToSet_BT; /* 0x97427431; */
else
#endif
pRegToSet = RegToSet_Normal; /* 0xb972a841; */
FactorToSet = *((u8 *)val);
if (FactorToSet <= 3)
{
FactorToSet = (1<<(FactorToSet + 2));
if (FactorToSet>0xf)
FactorToSet = 0xf;
for (index=0; index<4; index++)
{
if ((pRegToSet[index] & 0xf0) > (FactorToSet<<4))
pRegToSet[index] = (pRegToSet[index] & 0x0f) | (FactorToSet<<4);
if ((pRegToSet[index] & 0x0f) > FactorToSet)
pRegToSet[index] = (pRegToSet[index] & 0xf0) | (FactorToSet);
rtw_write8(Adapter, (REG_AGGLEN_LMT+index), pRegToSet[index]);
}
}
}
break;
case HW_VAR_RXDMA_AGG_PG_TH:
{
u8 threshold = *((u8 *)val);
if ( threshold == 0)
{
threshold = pHalData->UsbRxAggPageCount;
}
rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, threshold);
}
break;
case HW_VAR_SET_RPWM:
break;
case HW_VAR_H2C_FW_PWRMODE:
{
u8 psmode = (*(u8 *)val);
/* Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
/* saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
if ( (psmode != PS_MODE_ACTIVE) && (!IS_92C_SERIAL(pHalData->VersionID)))
ODM_RF_Saving(podmpriv, true);
rtl8188e_set_FwPwrMode_cmd(Adapter, psmode);
}
break;
case HW_VAR_H2C_FW_JOINBSSRPT:
{
u8 mstatus = (*(u8 *)val);
rtl8188e_set_FwJoinBssReport_cmd(Adapter, mstatus);
}
break;
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
{
u8 p2p_ps_state = (*(u8 *)val);
rtl8188e_set_p2p_ps_offload_cmd(Adapter, p2p_ps_state);
}
break;
case HW_VAR_INITIAL_GAIN:
{
DIG_T *pDigTable = &podmpriv->DM_DigTable;
u32 rx_gain = ((u32 *)(val))[0];
if (rx_gain == 0xff){/* restore rx gain */
ODM_Write_DIG(podmpriv,pDigTable->BackupIGValue);
}
else{
pDigTable->BackupIGValue = pDigTable->CurIGValue;
ODM_Write_DIG(podmpriv,rx_gain);
}
}
break;
case HW_VAR_TRIGGER_GPIO_0:
rtl8192cu_trigger_gpio_0(Adapter);
break;
#ifdef CONFIG_BT_COEXIST
case HW_VAR_BT_SET_COEXIST:
{
u8 bStart = (*(u8 *)val);
rtl8192c_set_dm_bt_coexist(Adapter, bStart);
}
break;
case HW_VAR_BT_ISSUE_DELBA:
{
u8 dir = (*(u8 *)val);
rtl8192c_issue_delete_ba(Adapter, dir);
}
break;
#endif
#if (RATE_ADAPTIVE_SUPPORT==1)
case HW_VAR_RPT_TIMER_SETTING:
{
u16 min_rpt_time = (*(u16 *)val);
ODM_RA_Set_TxRPT_Time(podmpriv,min_rpt_time);
}
break;
#endif
case HW_VAR_ANTENNA_DIVERSITY_SELECT:
{
u8 Optimum_antenna = (*(u8 *)val);
u8 Ant ;
/* switch antenna to Optimum_antenna */
if (pHalData->CurAntenna != Optimum_antenna) {
Ant = (Optimum_antenna==2)?MAIN_ANT:AUX_ANT;
ODM_UpdateRxIdleAnt_88E(&pHalData->odmpriv, Ant);
pHalData->CurAntenna = Optimum_antenna ;
}
}
break;
case HW_VAR_EFUSE_BYTES: /* To set EFUE total used bytes, added by Roger, 2008.12.22. */
pHalData->EfuseUsedBytes = *((u16 *)val);
break;
case HW_VAR_FIFO_CLEARN_UP:
{
struct pwrctrl_priv *pwrpriv = &Adapter->pwrctrlpriv;
u8 trycnt = 100;
/* pause tx */
rtw_write8(Adapter,REG_TXPAUSE,0xff);
/* keep sn */
Adapter->xmitpriv.nqos_ssn = rtw_read16(Adapter,REG_NQOS_SEQ);
if (pwrpriv->bkeepfwalive != true)
{
/* RX DMA stop */
rtw_write32(Adapter,REG_RXPKT_NUM,(rtw_read32(Adapter,REG_RXPKT_NUM)|RW_RELEASE_EN));
do{
if (!(rtw_read32(Adapter,REG_RXPKT_NUM)&RXDMA_IDLE))
break;
}while (trycnt--);
if (trycnt ==0)
DBG_88E("Stop RX DMA failed......\n");
/* RQPN Load 0 */
rtw_write16(Adapter,REG_RQPN_NPQ,0x0);
rtw_write32(Adapter,REG_RQPN,0x80000000);
rtw_mdelay_os(10);
}
}
break;
case HW_VAR_CHECK_TXBUF:
break;
case HW_VAR_APFM_ON_MAC:
pHalData->bMacPwrCtrlOn = *val;
DBG_88E("%s: bMacPwrCtrlOn=%d\n", __func__, pHalData->bMacPwrCtrlOn);
break;
#ifdef CONFIG_WOWLAN
case HW_VAR_WOWLAN:
{
struct wowlan_ioctl_param *poidparam;
struct recv_buf *precvbuf;
int res, i;
u32 tmp;
u16 len = 0;
u8 mstatus = (*(u8 *)val);
u8 trycnt = 100;
u8 data[4];
poidparam = (struct wowlan_ioctl_param *)val;
switch (poidparam->subcode){
case WOWLAN_ENABLE:
DBG_88E_LEVEL(_drv_always_, "WOWLAN_ENABLE\n");
SetFwRelatedForWoWLAN8188ES(Adapter, true);
/* RX DMA stop */
DBG_88E_LEVEL(_drv_always_, "Pause DMA\n");
rtw_write32(Adapter,REG_RXPKT_NUM,(rtw_read32(Adapter,REG_RXPKT_NUM)|RW_RELEASE_EN));
do{
if ((rtw_read32(Adapter, REG_RXPKT_NUM)&RXDMA_IDLE)) {
DBG_88E_LEVEL(_drv_always_, "RX_DMA_IDLE is true\n");
break;
} else {
/* If RX_DMA is not idle, receive one pkt from DMA */
DBG_88E_LEVEL(_drv_always_, "RX_DMA_IDLE is not true\n");
}
}while (trycnt--);
if (trycnt ==0)
DBG_88E_LEVEL(_drv_always_, "Stop RX DMA failed......\n");
/* Set WOWLAN H2C command. */
DBG_88E_LEVEL(_drv_always_, "Set WOWLan cmd\n");
rtl8188es_set_wowlan_cmd(Adapter, 1);
mstatus = rtw_read8(Adapter, REG_WOW_CTRL);
trycnt = 10;
while (!(mstatus&BIT1) && trycnt>1) {
mstatus = rtw_read8(Adapter, REG_WOW_CTRL);
DBG_88E_LEVEL(_drv_info_, "Loop index: %d :0x%02x\n", trycnt, mstatus);
trycnt --;
rtw_msleep_os(2);
}
Adapter->pwrctrlpriv.wowlan_wake_reason = rtw_read8(Adapter, REG_WOWLAN_WAKE_REASON);
DBG_88E_LEVEL(_drv_always_, "wowlan_wake_reason: 0x%02x\n",
Adapter->pwrctrlpriv.wowlan_wake_reason);
/* Invoid SE0 reset signal during suspending*/
rtw_write8(Adapter, REG_RSV_CTRL, 0x20);
rtw_write8(Adapter, REG_RSV_CTRL, 0x60);
/* rtw_msleep_os(10); */
break;
case WOWLAN_DISABLE:
DBG_88E_LEVEL(_drv_always_, "WOWLAN_DISABLE\n");
trycnt = 10;
rtl8188es_set_wowlan_cmd(Adapter, 0);
mstatus = rtw_read8(Adapter, REG_WOW_CTRL);
DBG_88E_LEVEL(_drv_info_, "%s mstatus:0x%02x\n", __func__, mstatus);
while (mstatus&BIT1 && trycnt>1) {
mstatus = rtw_read8(Adapter, REG_WOW_CTRL);
DBG_88E_LEVEL(_drv_always_, "Loop index: %d :0x%02x\n", trycnt, mstatus);
trycnt --;
rtw_msleep_os(2);
}
if (mstatus & BIT1)
printk("System did not release RX_DMA\n");
else
SetFwRelatedForWoWLAN8188ES(Adapter, false);
rtw_msleep_os(2);
if (!(Adapter->pwrctrlpriv.wowlan_wake_reason & FWDecisionDisconnect))
rtl8188e_set_FwJoinBssReport_cmd(Adapter, 1);
break;
default:
break;
}
}
break;
#endif /* CONFIG_WOWLAN */
#if (RATE_ADAPTIVE_SUPPORT == 1)
case HW_VAR_TX_RPT_MAX_MACID:
{
u8 maxMacid = *val;
DBG_88E("### MacID(%d),Set Max Tx RPT MID(%d)\n",maxMacid,maxMacid+1);
rtw_write8(Adapter, REG_TX_RPT_CTRL+1, maxMacid+1);
}
break;
#endif
case HW_VAR_H2C_MEDIA_STATUS_RPT:
{
rtl8188e_set_FwMediaStatus_cmd(Adapter , (*(__le16 *)val));
}
break;
case HW_VAR_BCN_VALID:
/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
rtw_write8(Adapter, REG_TDECTRL+2, rtw_read8(Adapter, REG_TDECTRL+2) | BIT0);
break;
default:
break;
}
_func_exit_;
}
static void GetHwReg8188EU(PADAPTER Adapter, u8 variable, u8* val)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
DM_ODM_T *podmpriv = &pHalData->odmpriv;
_func_enter_;
switch (variable)
{
case HW_VAR_BASIC_RATE:
*((u16 *)(val)) = pHalData->BasicRateSet;
case HW_VAR_TXPAUSE:
val[0] = rtw_read8(Adapter, REG_TXPAUSE);
break;
case HW_VAR_BCN_VALID:
/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
val[0] = (BIT0 & rtw_read8(Adapter, REG_TDECTRL+2))?true:false;
break;
case HW_VAR_DM_FLAG:
val[0] = podmpriv->SupportAbility;
break;
case HW_VAR_RF_TYPE:
val[0] = pHalData->rf_type;
break;
case HW_VAR_FWLPS_RF_ON:
{
/* When we halt NIC, we should check if FW LPS is leave. */
if (Adapter->pwrctrlpriv.rf_pwrstate == rf_off)
{
/* If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
/* because Fw is unload. */
val[0] = true;
}
else
{
u32 valRCR;
valRCR = rtw_read32(Adapter, REG_RCR);
valRCR &= 0x00070000;
if (valRCR)
val[0] = false;
else
val[0] = true;
}
}
break;
case HW_VAR_CURRENT_ANTENNA:
val[0] = pHalData->CurAntenna;
break;
case HW_VAR_EFUSE_BYTES: /* To get EFUE total used bytes, added by Roger, 2008.12.22. */
*((u16 *)(val)) = pHalData->EfuseUsedBytes;
break;
case HW_VAR_APFM_ON_MAC:
*val = pHalData->bMacPwrCtrlOn;
break;
case HW_VAR_CHK_HI_QUEUE_EMPTY:
*val = ((rtw_read32(Adapter, REG_HGQ_INFORMATION)&0x0000ff00)==0) ? true:false;
break;
default:
break;
}
_func_exit_;
}
/* */
/* Description: */
/* Query setting of specified variable. */
/* */
static u8
GetHalDefVar8188EUsb(
PADAPTER Adapter,
enum hal_def_variable eVariable,
void * pValue
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u8 bResult = _SUCCESS;
switch (eVariable)
{
case HAL_DEF_UNDERCORATEDSMOOTHEDPWDB:
#if 1 /* trunk */
{
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
struct sta_priv * pstapriv = &Adapter->stapriv;
struct sta_info * psta;
psta = rtw_get_stainfo(pstapriv, pmlmepriv->cur_network.network.MacAddress);
if (psta)
{
*((int *)pValue) = psta->rssi_stat.UndecoratedSmoothedPWDB;
}
}
#else /* V4 branch */
if (check_fwstate(&Adapter->mlmepriv, WIFI_STATION_STATE) == true){
*((int *)pValue) = pHalData->dmpriv.UndecoratedSmoothedPWDB;
}
else{
}
#endif
break;
case HAL_DEF_IS_SUPPORT_ANT_DIV:
*((u8 *)pValue) = (pHalData->AntDivCfg==0)?false:true;
break;
case HAL_DEF_CURRENT_ANTENNA:
*(( u8*)pValue) = pHalData->CurAntenna;
break;
case HAL_DEF_DRVINFO_SZ:
*(( u32*)pValue) = DRVINFO_SZ;
break;
case HAL_DEF_MAX_RECVBUF_SZ:
*(( u32*)pValue) = MAX_RECVBUF_SZ;
break;
case HAL_DEF_RX_PACKET_OFFSET:
*(( u32*)pValue) = RXDESC_SIZE + DRVINFO_SZ;
break;
case HAL_DEF_DBG_DM_FUNC:
*(( u32*)pValue) =pHalData->odmpriv.SupportAbility;
break;
#if (RATE_ADAPTIVE_SUPPORT == 1)
case HAL_DEF_RA_DECISION_RATE:
{
u8 MacID = *((u8*)pValue);
*((u8*)pValue) = ODM_RA_GetDecisionRate_8188E(&(pHalData->odmpriv), MacID);
}
break;
case HAL_DEF_RA_SGI:
{
u8 MacID = *((u8*)pValue);
*((u8*)pValue) = ODM_RA_GetShortGI_8188E(&(pHalData->odmpriv), MacID);
}
break;
#endif
case HAL_DEF_PT_PWR_STATUS:
#if (POWER_TRAINING_ACTIVE==1)
{
u8 MacID = *((u8*)pValue);
*((u8*)pValue) = ODM_RA_GetHwPwrStatus_8188E(&(pHalData->odmpriv), MacID);
}
#endif/* POWER_TRAINING_ACTIVE==1) */
break;
case HW_VAR_MAX_RX_AMPDU_FACTOR:
*(( u32*)pValue) = MAX_AMPDU_FACTOR_64K;
break;
case HW_DEF_RA_INFO_DUMP:
#if (RATE_ADAPTIVE_SUPPORT == 1)
{
u8 entry_id = *((u8*)pValue);
if (check_fwstate(&Adapter->mlmepriv, _FW_LINKED)== true)
{
DBG_88E("============ RA status check ===================\n");
DBG_88E("Mac_id:%d ,RateID = %d,RAUseRate = 0x%08x,RateSGI = %d, DecisionRate = 0x%02x ,PTStage = %d\n",
entry_id,
pHalData->odmpriv.RAInfo[entry_id].RateID,
pHalData->odmpriv.RAInfo[entry_id].RAUseRate,
pHalData->odmpriv.RAInfo[entry_id].RateSGI,
pHalData->odmpriv.RAInfo[entry_id].DecisionRate,
pHalData->odmpriv.RAInfo[entry_id].PTStage);
}
}
#endif /* RATE_ADAPTIVE_SUPPORT == 1) */
break;
case HW_DEF_ODM_DBG_FLAG:
{
u8Byte DebugComponents = *((u32*)pValue);
PDM_ODM_T pDM_Odm = &(pHalData->odmpriv);
printk("pDM_Odm->DebugComponents = 0x%llx\n",pDM_Odm->DebugComponents );
}
break;
case HAL_DEF_DBG_DUMP_RXPKT:
*(( u8*)pValue) = pHalData->bDumpRxPkt;
break;
case HAL_DEF_DBG_DUMP_TXPKT:
*(( u8*)pValue) = pHalData->bDumpTxPkt;
break;
default:
bResult = _FAIL;
break;
}
return bResult;
}
/* */
/* Description: */
/* Change default setting of specified variable. */
/* */
static u8 SetHalDefVar8188EUsb(
PADAPTER Adapter,
enum hal_def_variable eVariable,
void * pValue
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u8 bResult = _SUCCESS;
switch (eVariable)
{
case HAL_DEF_DBG_DM_FUNC:
{
u8 dm_func = *(( u8*)pValue);
struct dm_priv *pdmpriv = &pHalData->dmpriv;
DM_ODM_T *podmpriv = &pHalData->odmpriv;
if (dm_func == 0){ /* disable all dynamic func */
podmpriv->SupportAbility = DYNAMIC_FUNC_DISABLE;
DBG_88E("==> Disable all dynamic function...\n");
}
else if (dm_func == 1){/* disable DIG */
podmpriv->SupportAbility &= (~DYNAMIC_BB_DIG);
DBG_88E("==> Disable DIG...\n");
}
else if (dm_func == 2){/* disable High power */
podmpriv->SupportAbility &= (~DYNAMIC_BB_DYNAMIC_TXPWR);
}
else if (dm_func == 3){/* disable tx power tracking */
podmpriv->SupportAbility &= (~DYNAMIC_RF_CALIBRATION);
DBG_88E("==> Disable tx power tracking...\n");
}
else if (dm_func == 5){/* disable antenna diversity */
podmpriv->SupportAbility &= (~DYNAMIC_BB_ANT_DIV);
}
else if (dm_func == 6){/* turn on all dynamic func */
if (!(podmpriv->SupportAbility & DYNAMIC_BB_DIG))
{
DIG_T *pDigTable = &podmpriv->DM_DigTable;
pDigTable->CurIGValue= rtw_read8(Adapter,0xc50);
}
podmpriv->SupportAbility = DYNAMIC_ALL_FUNC_ENABLE;
DBG_88E("==> Turn on all dynamic function...\n");
}
}
break;
case HAL_DEF_DBG_DUMP_RXPKT:
pHalData->bDumpRxPkt = *(( u8*)pValue);
break;
case HAL_DEF_DBG_DUMP_TXPKT:
pHalData->bDumpTxPkt = *(( u8*)pValue);
break;
case HW_DEF_FA_CNT_DUMP:
{
u8 bRSSIDump = *((u8*)pValue);
PDM_ODM_T pDM_Odm = &(pHalData->odmpriv);
if (bRSSIDump)
pDM_Odm->DebugComponents = ODM_COMP_DIG|ODM_COMP_FA_CNT ;
else
pDM_Odm->DebugComponents = 0;
}
break;
case HW_DEF_ODM_DBG_FLAG:
{
u8Byte DebugComponents = *((u8Byte*)pValue);
PDM_ODM_T pDM_Odm = &(pHalData->odmpriv);
pDM_Odm->DebugComponents = DebugComponents;
}
break;
default:
bResult = _FAIL;
break;
}
return bResult;
}
static void _update_response_rate(_adapter *padapter,unsigned int mask)
{
u8 RateIndex = 0;
/* Set RRSR rate table. */
rtw_write8(padapter, REG_RRSR, mask&0xff);
rtw_write8(padapter,REG_RRSR+1, (mask>>8)&0xff);
/* Set RTS initial rate */
while (mask > 0x1)
{
mask = (mask>> 1);
RateIndex++;
}
rtw_write8(padapter, REG_INIRTS_RATE_SEL, RateIndex);
}
static void UpdateHalRAMask8188EUsb(PADAPTER padapter, u32 mac_id, u8 rssi_level)
{
u8 init_rate=0;
u8 networkType, raid;
u32 mask,rate_bitmap;
u8 shortGIrate = false;
int supportRateNum = 0;
struct sta_info *psta;
struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct wlan_bssid_ex *cur_network = &(pmlmeinfo->network);
if (mac_id >= NUM_STA) /* CAM_SIZE */
return;
psta = pmlmeinfo->FW_sta_info[mac_id].psta;
if (psta == NULL)
return;
switch (mac_id)
{
case 0:/* for infra mode */
supportRateNum = rtw_get_rateset_len(cur_network->SupportedRates);
networkType = judge_network_type(padapter, cur_network->SupportedRates, supportRateNum) & 0xf;
raid = networktype_to_raid(networkType);
mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
mask |= (pmlmeinfo->HT_enable)? update_MSC_rate(&(pmlmeinfo->HT_caps)): 0;
if (support_short_GI(padapter, &(pmlmeinfo->HT_caps)))
{
shortGIrate = true;
}
break;
case 1:/* for broadcast/multicast */
supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
if (pmlmeext->cur_wireless_mode & WIRELESS_11B)
networkType = WIRELESS_11B;
else
networkType = WIRELESS_11G;
raid = networktype_to_raid(networkType);
mask = update_basic_rate(cur_network->SupportedRates, supportRateNum);
break;
default: /* for each sta in IBSS */
supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
networkType = judge_network_type(padapter, pmlmeinfo->FW_sta_info[mac_id].SupportedRates, supportRateNum) & 0xf;
raid = networktype_to_raid(networkType);
mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
/* todo: support HT in IBSS */
break;
}
rate_bitmap = 0x0fffffff;
rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv,mac_id,mask,rssi_level);
DBG_88E("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
__func__,mac_id,networkType,mask,rssi_level,rate_bitmap);
mask &= rate_bitmap;
init_rate = get_highest_rate_idx(mask)&0x3f;
if (pHalData->fw_ractrl == true)
{
u8 arg = 0;
arg = mac_id&0x1f;/* MACID */
arg |= BIT(7);
if (shortGIrate==true)
arg |= BIT(5);
mask |= ((raid<<28)&0xf0000000);
DBG_88E("update raid entry, mask=0x%x, arg=0x%x\n", mask, arg);
psta->ra_mask=mask;
mask |= ((raid<<28)&0xf0000000);
/* to do ,for 8188E-SMIC */
/*
*(pu4Byte)&RateMask=EF4Byte((ratr_bitmap&0x0fffffff) | (ratr_index<<28));
RateMask[4] = macId | (bShortGI?0x20:0x00) | 0x80;
*/
rtl8188e_set_raid_cmd(padapter, mask);
}
else
{
#if (RATE_ADAPTIVE_SUPPORT == 1)
ODM_RA_UpdateRateInfo_8188E(
&(pHalData->odmpriv),
mac_id,
raid,
mask,
shortGIrate
);
#endif
}
/* set ra_id */
psta->raid = raid;
psta->init_rate = init_rate;
}
static void SetBeaconRelatedRegisters8188EUsb(PADAPTER padapter)
{
u32 value32;
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
u32 bcn_ctrl_reg = REG_BCN_CTRL;
/* reset TSF, enable update TSF, correcting TSF On Beacon */
/* BCN interval */
rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
rtw_write8(padapter, REG_ATIMWND, 0x02);/* 2ms */
_InitBeaconParameters(padapter);
rtw_write8(padapter, REG_SLOT, 0x09);
value32 =rtw_read32(padapter, REG_TCR);
value32 &= ~TSFRST;
rtw_write32(padapter, REG_TCR, value32);
value32 |= TSFRST;
rtw_write32(padapter, REG_TCR, value32);
/* NOTE: Fix test chip's bug (about contention windows's randomness) */
rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
_BeaconFunctionEnable(padapter, true, true);
ResumeTxBeacon(padapter);
rtw_write8(padapter, bcn_ctrl_reg, rtw_read8(padapter, bcn_ctrl_reg)|BIT(1));
}
static void rtl8188eu_init_default_value(_adapter * padapter)
{
struct hal_data_8188e *pHalData;
struct pwrctrl_priv *pwrctrlpriv;
u8 i;
pHalData = GET_HAL_DATA(padapter);
pwrctrlpriv = &padapter->pwrctrlpriv;
/* init default value */
pHalData->fw_ractrl = false;
if (!pwrctrlpriv->bkeepfwalive)
pHalData->LastHMEBoxNum = 0;
/* init dm default value */
pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized = false;
pHalData->odmpriv.RFCalibrateInfo.TM_Trigger = 0;/* for IQK */
pHalData->pwrGroupCnt = 0;
pHalData->PGMaxGroup= 13;
pHalData->odmpriv.RFCalibrateInfo.ThermalValue_HP_index = 0;
for (i = 0; i < HP_THERMAL_NUM; i++)
pHalData->odmpriv.RFCalibrateInfo.ThermalValue_HP[i] = 0;
}
static u8 rtl8188eu_ps_func(PADAPTER Adapter,enum hal_intf_ps_func efunc_id, u8 *val)
{
u8 bResult = true;
return bResult;
}
void rtl8188eu_set_hal_ops(_adapter * padapter)
{
struct hal_ops *pHalFunc = &padapter->HalFunc;
_func_enter_;
padapter->HalData = rtw_zmalloc(sizeof(struct hal_data_8188e));
if (padapter->HalData == NULL){
DBG_88E("cant not alloc memory for HAL DATA\n");
}
padapter->hal_data_sz = sizeof(struct hal_data_8188e);
pHalFunc->hal_power_on = rtl8188eu_InitPowerOn;
pHalFunc->hal_init = &rtl8188eu_hal_init;
pHalFunc->hal_deinit = &rtl8188eu_hal_deinit;
pHalFunc->inirp_init = &rtl8188eu_inirp_init;
pHalFunc->inirp_deinit = &rtl8188eu_inirp_deinit;
pHalFunc->init_xmit_priv = &rtl8188eu_init_xmit_priv;
pHalFunc->free_xmit_priv = &rtl8188eu_free_xmit_priv;
pHalFunc->init_recv_priv = &rtl8188eu_init_recv_priv;
pHalFunc->free_recv_priv = &rtl8188eu_free_recv_priv;
pHalFunc->InitSwLeds = &rtl8188eu_InitSwLeds;
pHalFunc->DeInitSwLeds = &rtl8188eu_DeInitSwLeds;
pHalFunc->init_default_value = &rtl8188eu_init_default_value;
pHalFunc->intf_chip_configure = &rtl8188eu_interface_configure;
pHalFunc->read_adapter_info = &ReadAdapterInfo8188EU;
pHalFunc->SetHwRegHandler = &SetHwReg8188EU;
pHalFunc->GetHwRegHandler = &GetHwReg8188EU;
pHalFunc->GetHalDefVarHandler = &GetHalDefVar8188EUsb;
pHalFunc->SetHalDefVarHandler = &SetHalDefVar8188EUsb;
pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8188EUsb;
pHalFunc->SetBeaconRelatedRegistersHandler = &SetBeaconRelatedRegisters8188EUsb;
pHalFunc->hal_xmit = &rtl8188eu_hal_xmit;
pHalFunc->mgnt_xmit = &rtl8188eu_mgnt_xmit;
pHalFunc->interface_ps_func = &rtl8188eu_ps_func;
rtl8188e_set_hal_ops(pHalFunc);
_func_exit_;
}