rtl8188eu/hal/rtl8188e_hal_init.c
Larry Finger b77dd7b8df rtl8188eu: Replace p1byte with u8
Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
2014-12-30 17:50:44 -06:00

3658 lines
90 KiB
C
Executable file

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _HAL_INIT_C_
#include <drv_types.h>
#include <rtw_byteorder.h>
#include <rtw_efuse.h>
#include <rtl8188e_hal.h>
#include <rtw_iol.h>
#if defined(CONFIG_IOL)
#include <usb_ops.h>
static void iol_mode_enable(struct adapter *padapter, u8 enable)
{
u8 reg_0xf0 = 0;
if(enable)
{
//Enable initial offload
reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
//DBG_871X("%s reg_0xf0:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0xf0, reg_0xf0|SW_OFFLOAD_EN);
rtw_write8(padapter, REG_SYS_CFG, reg_0xf0|SW_OFFLOAD_EN);
if(padapter->bFWReady == false)
{
printk("bFWReady == false call reset 8051...\n");
_8051Reset88E(padapter);
}
}
else
{
//disable initial offload
reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
//DBG_871X("%s reg_0xf0:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0xf0, reg_0xf0& ~SW_OFFLOAD_EN);
rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN);
}
}
static s32 iol_execute(struct adapter *padapter, u8 control)
{
s32 status = _FAIL;
u8 reg_0x88 = 0,reg_1c7=0;
u32 start = 0, passing_time = 0;
u32 t1,t2;
control = control&0x0f;
reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0);
//DBG_871X("%s reg_0x88:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x88, reg_0x88|control);
rtw_write8(padapter, REG_HMEBOX_E0, reg_0x88|control);
t1 = start = rtw_get_current_time();
while(
//(reg_1c7 = rtw_read8(padapter, 0x1c7) >1) &&
(reg_0x88=rtw_read8(padapter, REG_HMEBOX_E0)) & control
&& (passing_time=rtw_get_passing_time_ms(start))<1000
) {
//DBG_871X("%s polling reg_0x88:0x%02x,reg_0x1c7:0x%02x\n", __FUNCTION__, reg_0x88,rtw_read8(padapter, 0x1c7) );
//rtw_udelay_os(100);
}
reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0);
status = (reg_0x88 & control)?_FAIL:_SUCCESS;
if(reg_0x88 & control<<4)
status = _FAIL;
t2= rtw_get_current_time();
//printk("==> step iol_execute : %5u reg-0x1c0= 0x%02x\n",rtw_get_time_interval_ms(t1,t2),rtw_read8(padapter, 0x1c0));
//DBG_871X("%s in %u ms, reg_0x88:0x%02x\n", __FUNCTION__, passing_time, reg_0x88);
return status;
}
static s32 iol_InitLLTTable(
struct adapter *padapter,
u8 txpktbuf_bndy
)
{
s32 rst = _SUCCESS;
iol_mode_enable(padapter, 1);
//DBG_871X("%s txpktbuf_bndy:%u\n", __FUNCTION__, txpktbuf_bndy);
rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
rst = iol_execute(padapter, CMD_INIT_LLT);
iol_mode_enable(padapter, 0);
return rst;
}
static void
efuse_phymap_to_logical(u8 * phymap, u16 _offset, u16 _size_byte, u8 *pbuf)
{
u8 *efuseTbl = NULL;
u8 rtemp8;
u16 eFuse_Addr = 0;
u8 offset, wren;
u16 i, j;
u16 **eFuseWord = NULL;
u16 efuse_utilized = 0;
u8 efuse_usage = 0;
u8 u1temp = 0;
efuseTbl = (u8*)rtw_zmalloc(EFUSE_MAP_LEN_88E);
if(efuseTbl == NULL)
{
DBG_871X("%s: alloc efuseTbl fail!\n", __FUNCTION__);
goto exit;
}
eFuseWord= (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
if(eFuseWord == NULL)
{
DBG_871X("%s: alloc eFuseWord fail!\n", __FUNCTION__);
goto exit;
}
// 0. Refresh efuse init map as all oxFF.
for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
eFuseWord[i][j] = 0xFFFF;
//
// 1. Read the first byte to check if efuse is empty!!!
//
//
rtemp8 = *(phymap+eFuse_Addr);
if(rtemp8 != 0xFF)
{
efuse_utilized++;
//printk("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8);
eFuse_Addr++;
}
else
{
DBG_871X("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, rtemp8);
goto exit;
}
//
// 2. Read real efuse content. Filter PG header and every section data.
//
while((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
{
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8));
// Check PG header for section num.
if((rtemp8 & 0x1F ) == 0x0F) //extended header
{
u1temp =( (rtemp8 & 0xE0) >> 5);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0));
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x \n", u1temp));
rtemp8 = *(phymap+eFuse_Addr);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8));
if((rtemp8 & 0x0F) == 0x0F)
{
eFuse_Addr++;
rtemp8 = *(phymap+eFuse_Addr);
if(rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
{
eFuse_Addr++;
}
continue;
}
else
{
offset = ((rtemp8 & 0xF0) >> 1) | u1temp;
wren = (rtemp8 & 0x0F);
eFuse_Addr++;
}
}
else
{
offset = ((rtemp8 >> 4) & 0x0f);
wren = (rtemp8 & 0x0f);
}
if(offset < EFUSE_MAX_SECTION_88E)
{
// Get word enable value from PG header
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren));
for(i=0; i<EFUSE_MAX_WORD_UNIT; i++)
{
// Check word enable condition in the section
if(!(wren & 0x01))
{
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d \n", eFuse_Addr));
rtemp8 = *(phymap+eFuse_Addr);
eFuse_Addr++;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8));
efuse_utilized++;
eFuseWord[offset][i] = (rtemp8 & 0xff);
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
break;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr));
rtemp8 = *(phymap+eFuse_Addr);
eFuse_Addr++;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8));
efuse_utilized++;
eFuseWord[offset][i] |= (((u16)rtemp8 << 8) & 0xff00);
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
break;
}
wren >>= 1;
}
}
// Read next PG header
rtemp8 = *(phymap+eFuse_Addr);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8));
if(rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
{
efuse_utilized++;
eFuse_Addr++;
}
}
//
// 3. Collect 16 sections and 4 word unit into Efuse map.
//
for(i=0; i<EFUSE_MAX_SECTION_88E; i++)
{
for(j=0; j<EFUSE_MAX_WORD_UNIT; j++)
{
efuseTbl[(i*8)+(j*2)]=(eFuseWord[i][j] & 0xff);
efuseTbl[(i*8)+((j*2)+1)]=((eFuseWord[i][j] >> 8) & 0xff);
}
}
//
// 4. Copy from Efuse map to output pointer memory!!!
//
for(i=0; i<_size_byte; i++)
{
pbuf[i] = efuseTbl[_offset+i];
}
//
// 5. Calculate Efuse utilization.
//
efuse_usage = (u8)((efuse_utilized*100)/EFUSE_REAL_CONTENT_LEN_88E);
//Adapter->HalFunc.SetHwRegHandler(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_utilized);
exit:
if(efuseTbl)
rtw_mfree(efuseTbl, EFUSE_MAP_LEN_88E);
if(eFuseWord)
rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
}
void efuse_read_phymap_from_txpktbuf(
struct adapter *adapter,
int bcnhead, //beacon head, where FW store len(2-byte) and efuse physical map.
u8 *content, //buffer to store efuse physical map
u16 *size //for efuse content: the max byte to read. will update to byte read
)
{
u16 dbg_addr = 0;
u32 start = 0, passing_time = 0;
u8 reg_0x143 = 0;
u8 reg_0x106 = 0;
u32 lo32 = 0, hi32 = 0;
u16 len = 0, count = 0;
int i = 0;
u16 limit = *size;
u8 *pos = content;
if(bcnhead<0) //if not valid
bcnhead = rtw_read8(adapter, REG_TDECTRL+1);
DBG_871X("%s bcnhead:%d\n", __FUNCTION__, bcnhead);
//reg_0x106 = rtw_read8(adapter, REG_PKT_BUFF_ACCESS_CTRL);
//DBG_871X("%s reg_0x106:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x106, 0x69);
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
//DBG_871X("%s reg_0x106:0x%02x\n", __FUNCTION__, rtw_read8(adapter, 0x106));
dbg_addr = bcnhead*128/8; //8-bytes addressing
while(1)
{
//DBG_871X("%s dbg_addr:0x%x\n", __FUNCTION__, dbg_addr+i);
rtw_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr+i);
//DBG_871X("%s write reg_0x143:0x00\n", __FUNCTION__);
rtw_write8(adapter, REG_TXPKTBUF_DBG, 0);
start = rtw_get_current_time();
while(!(reg_0x143=rtw_read8(adapter, REG_TXPKTBUF_DBG))//dbg
//while(rtw_read8(adapter, REG_TXPKTBUF_DBG) & BIT0
&& (passing_time=rtw_get_passing_time_ms(start))<1000
) {
DBG_871X("%s polling reg_0x143:0x%02x, reg_0x106:0x%02x\n", __FUNCTION__, reg_0x143, rtw_read8(adapter, 0x106));
rtw_usleep_os(100);
}
lo32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L);
hi32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H);
if(i==0)
{
#if 1 //for debug
u8 lenc[2];
u16 lenbak, aaabak;
u16 aaa;
lenc[0] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L);
lenc[1] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+1);
aaabak = le16_to_cpup((u16*)lenc);
lenbak = le16_to_cpu(*((u16*)lenc));
aaa = le16_to_cpup((u16*)&lo32);
#endif
len = le16_to_cpu(*((u16*)&lo32));
limit = (len-2<limit)?len-2:limit;
DBG_871X("%s len:%u, lenbak:%u, aaa:%u, aaabak:%u\n", __FUNCTION__, len, lenbak, aaa, aaabak);
_rtw_memcpy(pos, ((u8*)&lo32)+2, (limit>=count+2)?2:limit-count);
count+= (limit>=count+2)?2:limit-count;
pos=content+count;
}
else
{
_rtw_memcpy(pos, ((u8*)&lo32), (limit>=count+4)?4:limit-count);
count+=(limit>=count+4)?4:limit-count;
pos=content+count;
}
if(limit>count && len-2>count) {
_rtw_memcpy(pos, (u8*)&hi32, (limit>=count+4)?4:limit-count);
count+=(limit>=count+4)?4:limit-count;
pos=content+count;
}
if(limit<=count || len-2<=count)
break;
i++;
}
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS);
DBG_871X("%s read count:%u\n", __FUNCTION__, count);
*size = count;
}
static s32 iol_read_efuse(
struct adapter *padapter,
u8 txpktbuf_bndy,
u16 offset,
u16 size_byte,
u8 *logical_map
)
{
s32 status = _FAIL;
u8 reg_0x106 = 0;
u8 physical_map[512];
u16 size = 512;
int i;
rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
_rtw_memset(physical_map, 0xFF, 512);
///reg_0x106 = rtw_read8(padapter, REG_PKT_BUFF_ACCESS_CTRL);
//DBG_871X("%s reg_0x106:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x106, 0x69);
rtw_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
//DBG_871X("%s reg_0x106:0x%02x\n", __FUNCTION__, rtw_read8(padapter, 0x106));
status = iol_execute(padapter, CMD_READ_EFUSE_MAP);
if(status == _SUCCESS)
efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size);
efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map);
return status;
}
s32 rtl8188e_iol_efuse_patch(struct adapter *padapter)
{
s32 result = _SUCCESS;
printk("==> %s \n",__FUNCTION__);
if(rtw_IOL_applied(padapter)){
iol_mode_enable(padapter, 1);
result = iol_execute(padapter, CMD_READ_EFUSE_MAP);
if(result == _SUCCESS)
result = iol_execute(padapter, CMD_EFUSE_PATCH);
iol_mode_enable(padapter, 0);
}
return result;
}
static s32 iol_ioconfig(
struct adapter *padapter,
u8 iocfg_bndy
)
{
s32 rst = _SUCCESS;
//DBG_871X("%s iocfg_bndy:%u\n", __FUNCTION__, iocfg_bndy);
rtw_write8(padapter, REG_TDECTRL+1, iocfg_bndy);
rst = iol_execute(padapter, CMD_IOCONFIG);
return rst;
}
int rtl8188e_IOL_exec_cmds_sync(struct adapter *adapter, struct xmit_frame *xmit_frame, u32 max_wating_ms,u32 bndy_cnt)
{
u32 start_time = rtw_get_current_time();
u32 passing_time_ms;
u8 polling_ret,i;
int ret = _FAIL;
u32 t1,t2;
//printk("===> %s ,bndy_cnt = %d \n",__FUNCTION__,bndy_cnt);
if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS)
goto exit;
{
struct pkt_attrib *pattrib = &xmit_frame->attrib;
if(rtw_usb_bulk_size_boundary(adapter,TXDESC_SIZE+pattrib->last_txcmdsz))
{
if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS)
goto exit;
}
}
dump_mgntframe_and_wait(adapter, xmit_frame, max_wating_ms);
t1= rtw_get_current_time();
iol_mode_enable(adapter, 1);
for(i=0;i<bndy_cnt;i++){
u8 page_no = 0;
page_no = i*2 ;
//printk(" i = %d, page_no = %d \n",i,page_no);
if( (ret = iol_ioconfig(adapter, page_no)) != _SUCCESS)
{
break;
}
}
iol_mode_enable(adapter, 0);
t2 = rtw_get_current_time();
//printk("==> %s : %5u\n",__FUNCTION__,rtw_get_time_interval_ms(t1,t2));
exit:
//restore BCN_HEAD
rtw_write8(adapter, REG_TDECTRL+1, 0);
return ret;
}
void rtw_IOL_cmd_tx_pkt_buf_dump(struct adapter *Adapter,int data_len)
{
u32 fifo_data,reg_140;
u32 addr,rstatus,loop=0;
u16 data_cnts = (data_len/8)+1;
u8 *pbuf =rtw_zvmalloc(data_len+10);
printk("###### %s ######\n",__FUNCTION__);
rtw_write8(Adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
if(pbuf){
for(addr=0;addr< data_cnts;addr++){
//printk("==> addr:0x%02x\n",addr);
rtw_write32(Adapter,0x140,addr);
rtw_usleep_os(2);
loop=0;
do{
rstatus=(reg_140=rtw_read32(Adapter,REG_PKTBUF_DBG_CTRL)&BIT24);
//printk("rstatus = %02x, reg_140:0x%08x\n",rstatus,reg_140);
if(rstatus){
fifo_data = rtw_read32(Adapter,REG_PKTBUF_DBG_DATA_L);
//printk("fifo_data_144:0x%08x\n",fifo_data);
_rtw_memcpy(pbuf+(addr*8),&fifo_data , 4);
fifo_data = rtw_read32(Adapter,REG_PKTBUF_DBG_DATA_H);
//printk("fifo_data_148:0x%08x\n",fifo_data);
_rtw_memcpy(pbuf+(addr*8+4), &fifo_data, 4);
}
rtw_usleep_os(2);
}while( !rstatus && (loop++ <10));
}
rtw_IOL_cmd_buf_dump(Adapter,data_len,pbuf);
rtw_vmfree(pbuf, data_len+10);
}
printk("###### %s ######\n",__FUNCTION__);
}
#endif /* defined(CONFIG_IOL) */
static void
_FWDownloadEnable(
IN struct adapter * padapter,
IN BOOLEAN enable
)
{
u8 tmp;
if(enable)
{
// MCU firmware download enable.
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
// 8051 reset
tmp = rtw_read8(padapter, REG_MCUFWDL+2);
rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
}
else
{
// MCU firmware download disable.
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
// Reserved for fw extension.
rtw_write8(padapter, REG_MCUFWDL+1, 0x00);
}
}
#define MAX_REG_BOLCK_SIZE 196
static int
_BlockWrite(
IN struct adapter * padapter,
IN void * buffer,
IN u32 buffSize
)
{
int ret = _SUCCESS;
u32 blockSize_p1 = 4; // (Default) Phase #1 : PCI muse use 4-byte write to download FW
u32 blockSize_p2 = 8; // Phase #2 : Use 8-byte, if Phase#1 use big size to write FW.
u32 blockSize_p3 = 1; // Phase #3 : Use 1-byte, the remnant of FW image.
u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
u32 remainSize_p1 = 0, remainSize_p2 = 0;
u8 *bufferPtr = (u8*)buffer;
u32 i=0, offset=0;
blockSize_p1 = MAX_REG_BOLCK_SIZE;
//3 Phase #1
blockCount_p1 = buffSize / blockSize_p1;
remainSize_p1 = buffSize % blockSize_p1;
if (blockCount_p1) {
RT_TRACE(_module_hal_init_c_, _drv_notice_,
("_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n",
buffSize, blockSize_p1, blockCount_p1, remainSize_p1));
}
for (i = 0; i < blockCount_p1; i++)
{
ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1));
if(ret == _FAIL)
goto exit;
}
//3 Phase #2
if (remainSize_p1)
{
offset = blockCount_p1 * blockSize_p1;
blockCount_p2 = remainSize_p1/blockSize_p2;
remainSize_p2 = remainSize_p1%blockSize_p2;
if (blockCount_p2) {
RT_TRACE(_module_hal_init_c_, _drv_notice_,
("_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n",
(buffSize-offset), blockSize_p2 ,blockCount_p2, remainSize_p2));
}
for (i = 0; i < blockCount_p2; i++) {
ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + offset + i*blockSize_p2), blockSize_p2, (bufferPtr + offset + i*blockSize_p2));
if(ret == _FAIL)
goto exit;
}
}
//3 Phase #3
if (remainSize_p2)
{
offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
blockCount_p3 = remainSize_p2 / blockSize_p3;
RT_TRACE(_module_hal_init_c_, _drv_notice_,
("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n",
(buffSize-offset), blockSize_p3, blockCount_p3));
for(i = 0 ; i < blockCount_p3 ; i++){
ret =rtw_write8(padapter, (FW_8188E_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
if(ret == _FAIL)
goto exit;
}
}
exit:
return ret;
}
static int
_PageWrite(
IN struct adapter *padapter,
IN u32 page,
IN void * buffer,
IN u32 size
)
{
u8 value8;
u8 u8Page = (u8) (page & 0x07) ;
value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page ;
rtw_write8(padapter, REG_MCUFWDL+2,value8);
return _BlockWrite(padapter,buffer,size);
}
static void
_FillDummy(
u8* pFwBuf,
u32* pFwLen
)
{
u32 FwLen = *pFwLen;
u8 remain = (u8)(FwLen%4);
remain = (remain==0)?0:(4-remain);
while(remain>0)
{
pFwBuf[FwLen] = 0;
FwLen++;
remain--;
}
*pFwLen = FwLen;
}
static int
_WriteFW(
IN struct adapter * padapter,
IN void * buffer,
IN u32 size
)
{
// Since we need dynamic decide method of dwonload fw, so we call this function to get chip version.
// We can remove _ReadChipVersion from ReadpadapterInfo8192C later.
int ret = _SUCCESS;
u32 pageNums,remainSize ;
u32 page, offset;
u8 *bufferPtr = (u8*)buffer;
pageNums = size / MAX_PAGE_SIZE ;
remainSize = size % MAX_PAGE_SIZE;
for (page = 0; page < pageNums; page++) {
offset = page * MAX_PAGE_SIZE;
ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_PAGE_SIZE);
if(ret == _FAIL)
goto exit;
}
if (remainSize) {
offset = pageNums * MAX_PAGE_SIZE;
page = pageNums;
ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
if(ret == _FAIL)
goto exit;
}
RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n"));
exit:
return ret;
}
void _MCUIO_Reset88E(struct adapter *padapter,u8 bReset)
{
u8 u1bTmp;
if(bReset==true){
// Reset MCU IO Wrapper- sugggest by SD1-Gimmy
u1bTmp = rtw_read8(padapter, REG_RSV_CTRL+1);
rtw_write8(padapter,REG_RSV_CTRL+1, (u1bTmp&(~BIT3)));
}else{
// Enable MCU IO Wrapper
u1bTmp = rtw_read8(padapter, REG_RSV_CTRL+1);
rtw_write8(padapter, REG_RSV_CTRL+1, u1bTmp|BIT3);
}
}
void _8051Reset88E(struct adapter *padapter)
{
u8 u1bTmp;
_MCUIO_Reset88E(padapter,true);
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
_MCUIO_Reset88E(padapter,false);
rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp|(BIT2));
DBG_871X("=====> _8051Reset88E(): 8051 reset success .\n");
}
static s32 _FWFreeToGo(struct adapter *padapter)
{
u32 counter = 0;
u32 value32;
u8 value8;
// polling CheckSum report
do {
value32 = rtw_read32(padapter, REG_MCUFWDL);
if (value32 & FWDL_ChkSum_rpt) break;
} while (counter++ < POLLING_READY_TIMEOUT_COUNT);
if (counter >= POLLING_READY_TIMEOUT_COUNT) {
DBG_871X("%s: chksum report fail! REG_MCUFWDL:0x%08x\n", __FUNCTION__, value32);
return _FAIL;
}
DBG_871X("%s: Checksum report OK! REG_MCUFWDL:0x%08x\n", __FUNCTION__, value32);
value32 = rtw_read32(padapter, REG_MCUFWDL);
value32 |= MCUFWDL_RDY;
value32 &= ~WINTINI_RDY;
rtw_write32(padapter, REG_MCUFWDL, value32);
_8051Reset88E(padapter);
// polling for FW ready
counter = 0;
do {
value32 = rtw_read32(padapter, REG_MCUFWDL);
if (value32 & WINTINI_RDY) {
DBG_871X("%s: Polling FW ready success!! REG_MCUFWDL:0x%08x\n", __FUNCTION__, value32);
return _SUCCESS;
}
rtw_udelay_os(5);
} while (counter++ < POLLING_READY_TIMEOUT_COUNT);
DBG_871X ("%s: Polling FW ready fail!! REG_MCUFWDL:0x%08x\n", __FUNCTION__, value32);
return _FAIL;
}
#define IS_FW_81xxC(padapter) (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
#ifdef CONFIG_FILE_FWIMG
extern char *rtw_fw_file_path;
u8 FwBuffer8188E[FW_8188E_SIZE];
#endif //CONFIG_FILE_FWIMG
#ifdef CONFIG_WOWLAN
//
// Description:
// Download 8192C firmware code.
//
//
s32 rtl8188e_FirmwareDownload(struct adapter *padapter, BOOLEAN bUsedWoWLANFw)
#else
s32 rtl8188e_FirmwareDownload(struct adapter *padapter)
#endif
{
s32 rtStatus = _SUCCESS;
u8 writeFW_retry = 0;
u32 fwdl_start_time;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u8 *FwImage;
u32 FwImageLen;
u8 *pFwImageFileName;
#ifdef CONFIG_WOWLAN
u8 *FwImageWoWLAN;
u32 FwImageWoWLANLen;
#endif
u8 *pucMappedFile = NULL;
PRT_FIRMWARE_8188E pFirmware = NULL;
PRT_8188E_FIRMWARE_HDR pFwHdr = NULL;
u8 *pFirmwareBuf;
u32 FirmwareLen;
RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __FUNCTION__));
pFirmware = (PRT_FIRMWARE_8188E)rtw_zmalloc(sizeof(RT_FIRMWARE_8188E));
if(!pFirmware)
{
rtStatus = _FAIL;
goto Exit;
}
FwImage = (u8*)Rtl8188E_FwImageArray;
FwImageLen = Rtl8188E_FWImgArrayLength;
#ifdef CONFIG_WOWLAN
FwImageWoWLAN = (u8*)Rtl8188E_FwWoWImageArray;
FwImageWoWLANLen = Rtl8188E_FwWoWImgArrayLength;
#endif //CONFIG_WOWLAN
// RT_TRACE(_module_hal_init_c_, _drv_err_, ("rtl8723a_FirmwareDownload: %s\n", pFwImageFileName));
#ifdef CONFIG_FILE_FWIMG
if(rtw_is_file_readable(rtw_fw_file_path) == true)
{
DBG_871X("%s accquire FW from file:%s\n", __FUNCTION__, rtw_fw_file_path);
pFirmware->eFWSource = FW_SOURCE_IMG_FILE;
}
else
#endif //CONFIG_FILE_FWIMG
{
pFirmware->eFWSource = FW_SOURCE_HEADER_FILE;
}
switch(pFirmware->eFWSource)
{
case FW_SOURCE_IMG_FILE:
#ifdef CONFIG_FILE_FWIMG
rtStatus = rtw_retrive_from_file(rtw_fw_file_path, FwBuffer8188E, FW_8188E_SIZE);
pFirmware->ulFwLength = rtStatus>=0?rtStatus:0;
pFirmware->szFwBuffer = FwBuffer8188E;
#endif //CONFIG_FILE_FWIMG
break;
case FW_SOURCE_HEADER_FILE:
if (FwImageLen > FW_8188E_SIZE) {
rtStatus = _FAIL;
RT_TRACE(_module_hal_init_c_, _drv_err_, ("Firmware size exceed 0x%X. Check it.\n", FW_8188E_SIZE) );
goto Exit;
}
pFirmware->szFwBuffer = FwImage;
pFirmware->ulFwLength = FwImageLen;
#ifdef CONFIG_WOWLAN
if(bUsedWoWLANFw){
pFirmware->szWoWLANFwBuffer = FwImageWoWLAN;
pFirmware->ulWoWLANFwLength = FwImageWoWLANLen;
}
#endif //CONFIG_WOWLAN
break;
}
#ifdef CONFIG_WOWLAN
if(bUsedWoWLANFw) {
pFirmwareBuf = pFirmware->szWoWLANFwBuffer;
FirmwareLen = pFirmware->ulWoWLANFwLength;
pFwHdr = (PRT_8188E_FIRMWARE_HDR)pFirmware->szWoWLANFwBuffer;
} else
#endif
{
pFirmwareBuf = pFirmware->szFwBuffer;
FirmwareLen = pFirmware->ulFwLength;
DBG_871X_LEVEL(_drv_info_, "+%s: !bUsedWoWLANFw, FmrmwareLen:%d+\n", __func__, FirmwareLen);
// To Check Fw header. Added by tynli. 2009.12.04.
pFwHdr = (PRT_8188E_FIRMWARE_HDR)pFirmware->szFwBuffer;
}
pHalData->FirmwareVersion = le16_to_cpu(pFwHdr->Version);
pHalData->FirmwareSubVersion = pFwHdr->Subversion;
pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature);
DBG_871X ("%s: fw_ver=%d fw_subver=%d sig=0x%x\n",
__FUNCTION__, pHalData->FirmwareVersion, pHalData->FirmwareSubVersion, pHalData->FirmwareSignature);
if (IS_FW_HEADER_EXIST(pFwHdr))
{
// Shift 32 bytes for FW header
pFirmwareBuf = pFirmwareBuf + 32;
FirmwareLen = FirmwareLen - 32;
}
// Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself,
// or it will cause download Fw fail. 2010.02.01. by tynli.
if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) //8051 RAM code
{
rtw_write8(padapter, REG_MCUFWDL, 0x00);
_8051Reset88E(padapter);
}
_FWDownloadEnable(padapter, true);
fwdl_start_time = rtw_get_current_time();
while(1) {
//reset the FWDL chksum
rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
if(rtStatus == _SUCCESS || padapter->bDriverStopped || padapter->bSurpriseRemoved
||(writeFW_retry++ >= 3 && rtw_get_passing_time_ms(fwdl_start_time) > 500)
)
break;
}
_FWDownloadEnable(padapter, false);
DBG_871X("%s writeFW_retry:%u, time after fwdl_start_time:%ums\n", __FUNCTION__
, writeFW_retry
, rtw_get_passing_time_ms(fwdl_start_time)
);
if(_SUCCESS != rtStatus){
DBG_871X("DL Firmware failed!\n");
goto Exit;
}
rtStatus = _FWFreeToGo(padapter);
if (_SUCCESS != rtStatus) {
DBG_871X("DL Firmware failed!\n");
goto Exit;
}
RT_TRACE(_module_hal_init_c_, _drv_info_, ("Firmware is ready to run!\n"));
Exit:
if (pFirmware)
rtw_mfree((u8*)pFirmware, sizeof(RT_FIRMWARE_8188E));
//RT_TRACE(COMP_INIT, DBG_LOUD, (" <=== FirmwareDownload91C()\n"));
#ifdef CONFIG_WOWLAN
if (adapter_to_pwrctl(padapter)->wowlan_mode)
rtl8188e_InitializeFirmwareVars(padapter);
else
DBG_871X_LEVEL(_drv_always_, "%s: wowland_mode:%d wowlan_wake_reason:%d\n",
__func__, adapter_to_pwrctl(padapter)->wowlan_mode,
adapter_to_pwrctl(padapter)->wowlan_wake_reason);
#endif
return rtStatus;
}
#ifdef CONFIG_WOWLAN
void rtl8188e_InitializeFirmwareVars(struct adapter *padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
// Init Fw LPS related.
pwrpriv->bFwCurrentInPSMode = false;
// Init H2C counter. by tynli. 2009.12.09.
pHalData->LastHMEBoxNum = 0;
}
//===========================================
//
// Description: Prepare some information to Fw for WoWLAN.
// (1) Download wowlan Fw.
// (2) Download RSVD page packets.
// (3) Enable AP offload if needed.
//
// 2011.04.12 by tynli.
//
void
SetFwRelatedForWoWLAN8188ES(
IN struct adapter * padapter,
IN u8 bHostIsGoingtoSleep
)
{
int status=_FAIL;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u8 bRecover = false;
//
// 1. Before WoWLAN we need to re-download WoWLAN Fw.
//
status = rtl8188e_FirmwareDownload(padapter, bHostIsGoingtoSleep);
if(status != _SUCCESS) {
DBG_871X("ConfigFwRelatedForWoWLAN8188ES(): Re-Download Firmware failed!!\n");
return;
} else {
DBG_871X("ConfigFwRelatedForWoWLAN8188ES(): Re-Download Firmware Success !!\n");
}
//
// 2. Re-Init the variables about Fw related setting.
//
rtl8188e_InitializeFirmwareVars(padapter);
}
#else
void rtl8188e_InitializeFirmwareVars(struct adapter *padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
// Init Fw LPS related.
adapter_to_pwrctl(padapter)->bFwCurrentInPSMode = false;
// Init H2C counter. by tynli. 2009.12.09.
pHalData->LastHMEBoxNum = 0;
// pHalData->H2CQueueHead = 0;
// pHalData->H2CQueueTail = 0;
// pHalData->H2CStopInsertQueue = FALSE;
}
#endif //CONFIG_WOWLAN
static void rtl8188e_free_hal_data(struct adapter *padapter)
{
_func_enter_;
if(padapter->HalData)
{
rtw_mfree(padapter->HalData, sizeof(HAL_DATA_TYPE));
padapter->HalData = NULL;
}
_func_exit_;
}
//===========================================================
// Efuse related code
//===========================================================
enum{
VOLTAGE_V25 = 0x03,
LDOE25_SHIFT = 28 ,
};
static BOOLEAN
hal_EfusePgPacketWrite2ByteHeader(
IN struct adapter * pAdapter,
IN u8 efuseType,
IN u16 *pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest);
static BOOLEAN
hal_EfusePgPacketWrite1ByteHeader(
IN struct adapter * pAdapter,
IN u8 efuseType,
IN u16 *pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest);
static BOOLEAN
hal_EfusePgPacketWriteData(
IN struct adapter * pAdapter,
IN u8 efuseType,
IN u16 *pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest);
static void
hal_EfusePowerSwitch_RTL8188E(
IN struct adapter *pAdapter,
IN u8 bWrite,
IN u8 PwrState)
{
u8 tempval;
u16 tmpV16;
if (PwrState == true)
{
rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON);
// 1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid
tmpV16 = rtw_read16(pAdapter,REG_SYS_ISO_CTRL);
if( ! (tmpV16 & PWC_EV12V ) ){
tmpV16 |= PWC_EV12V ;
rtw_write16(pAdapter,REG_SYS_ISO_CTRL,tmpV16);
}
// Reset: 0x0000h[28], default valid
tmpV16 = rtw_read16(pAdapter,REG_SYS_FUNC_EN);
if( !(tmpV16 & FEN_ELDR) ){
tmpV16 |= FEN_ELDR ;
rtw_write16(pAdapter,REG_SYS_FUNC_EN,tmpV16);
}
// Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid
tmpV16 = rtw_read16(pAdapter,REG_SYS_CLKR);
if( (!(tmpV16 & LOADER_CLK_EN) ) ||(!(tmpV16 & ANA8M) ) ){
tmpV16 |= (LOADER_CLK_EN |ANA8M ) ;
rtw_write16(pAdapter,REG_SYS_CLKR,tmpV16);
}
if(bWrite == true)
{
// Enable LDO 2.5V before read/write action
tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
tempval &= 0x0F;
tempval |= (VOLTAGE_V25 << 4);
rtw_write8(pAdapter, EFUSE_TEST+3, (tempval | 0x80));
}
}
else
{
rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
if(bWrite == true){
// Disable LDO 2.5V after read/write action
tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
rtw_write8(pAdapter, EFUSE_TEST+3, (tempval & 0x7F));
}
}
}
static void
rtl8188e_EfusePowerSwitch(
IN struct adapter *pAdapter,
IN u8 bWrite,
IN u8 PwrState)
{
hal_EfusePowerSwitch_RTL8188E(pAdapter, bWrite, PwrState);
}
static bool efuse_read_phymap(
struct adapter *Adapter,
u8 *pbuf, //buffer to store efuse physical map
u16 *size //the max byte to read. will update to byte read
)
{
u8 *pos = pbuf;
u16 limit = *size;
u16 addr = 0;
bool reach_end = false;
//
// Refresh efuse init map as all 0xFF.
//
_rtw_memset(pbuf, 0xFF, limit);
//
// Read physical efuse content.
//
while(addr < limit)
{
ReadEFuseByte(Adapter, addr, pos, false);
if(*pos != 0xFF)
{
pos++;
addr++;
}
else
{
reach_end = true;
break;
}
}
*size = addr;
return reach_end;
}
static void
Hal_EfuseReadEFuse88E(
struct adapter * Adapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
//u8 efuseTbl[EFUSE_MAP_LEN_88E];
u8 *efuseTbl = NULL;
u8 rtemp8[1];
u16 eFuse_Addr = 0;
u8 offset, wren;
u16 i, j;
//u16 eFuseWord[EFUSE_MAX_SECTION_88E][EFUSE_MAX_WORD_UNIT];
u16 **eFuseWord = NULL;
u16 efuse_utilized = 0;
u8 efuse_usage = 0;
u8 u1temp = 0;
//
// Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10.
//
if((_offset + _size_byte)>EFUSE_MAP_LEN_88E)
{// total E-Fuse table is 512bytes
DBG_8192C("Hal_EfuseReadEFuse88E(): Invalid offset(%#x) with read bytes(%#x)!!\n",_offset, _size_byte);
goto exit;
}
efuseTbl = (u8*)rtw_zmalloc(EFUSE_MAP_LEN_88E);
if(efuseTbl == NULL)
{
DBG_871X("%s: alloc efuseTbl fail!\n", __FUNCTION__);
goto exit;
}
eFuseWord= (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
if(eFuseWord == NULL)
{
DBG_871X("%s: alloc eFuseWord fail!\n", __FUNCTION__);
goto exit;
}
// 0. Refresh efuse init map as all oxFF.
for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
eFuseWord[i][j] = 0xFFFF;
//
// 1. Read the first byte to check if efuse is empty!!!
//
//
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
if(*rtemp8 != 0xFF)
{
efuse_utilized++;
//DBG_8192C("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8);
eFuse_Addr++;
}
else
{
DBG_871X("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8);
goto exit;
}
//
// 2. Read real efuse content. Filter PG header and every section data.
//
while((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
{
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8));
// Check PG header for section num.
if((*rtemp8 & 0x1F ) == 0x0F) //extended header
{
u1temp =( (*rtemp8 & 0xE0) >> 5);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0));
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x \n", u1temp));
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8));
if((*rtemp8 & 0x0F) == 0x0F)
{
eFuse_Addr++;
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
if(*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
{
eFuse_Addr++;
}
continue;
}
else
{
offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
wren = (*rtemp8 & 0x0F);
eFuse_Addr++;
}
}
else
{
offset = ((*rtemp8 >> 4) & 0x0f);
wren = (*rtemp8 & 0x0f);
}
if(offset < EFUSE_MAX_SECTION_88E)
{
// Get word enable value from PG header
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren));
for(i=0; i<EFUSE_MAX_WORD_UNIT; i++)
{
// Check word enable condition in the section
if(!(wren & 0x01))
{
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d \n", eFuse_Addr));
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
eFuse_Addr++;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8));
efuse_utilized++;
eFuseWord[offset][i] = (*rtemp8 & 0xff);
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
break;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr));
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
eFuse_Addr++;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8));
efuse_utilized++;
eFuseWord[offset][i] |= (((u16)*rtemp8 << 8) & 0xff00);
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
break;
}
wren >>= 1;
}
}
// Read next PG header
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8));
if(*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
{
efuse_utilized++;
eFuse_Addr++;
}
}
//
// 3. Collect 16 sections and 4 word unit into Efuse map.
//
for(i=0; i<EFUSE_MAX_SECTION_88E; i++)
{
for(j=0; j<EFUSE_MAX_WORD_UNIT; j++)
{
efuseTbl[(i*8)+(j*2)]=(eFuseWord[i][j] & 0xff);
efuseTbl[(i*8)+((j*2)+1)]=((eFuseWord[i][j] >> 8) & 0xff);
}
}
//
// 4. Copy from Efuse map to output pointer memory!!!
//
for(i=0; i<_size_byte; i++)
{
pbuf[i] = efuseTbl[_offset+i];
}
//
// 5. Calculate Efuse utilization.
//
efuse_usage = (u8)((eFuse_Addr*100)/EFUSE_REAL_CONTENT_LEN_88E);
rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr);
exit:
if(efuseTbl)
rtw_mfree(efuseTbl, EFUSE_MAP_LEN_88E);
if(eFuseWord)
rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
}
static BOOLEAN
Hal_EfuseSwitchToBank(
IN struct adapter *pAdapter,
IN u8 bank,
IN BOOLEAN bPseudoTest
)
{
BOOLEAN bRet = false;
u32 value32=0;
//RTPRINT(FEEPROM, EFUSE_PG, ("Efuse switch bank to %d\n", bank));
if(bPseudoTest)
{
fakeEfuseBank = bank;
bRet = true;
}
else
{
if(IS_HARDWARE_TYPE_8723A(pAdapter) &&
INCLUDE_MULTI_FUNC_BT(pAdapter))
{
value32 = rtw_read32(pAdapter, EFUSE_TEST);
bRet = true;
switch(bank)
{
case 0:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
break;
case 1:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
break;
case 2:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
break;
case 3:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
break;
default:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
bRet = false;
break;
}
rtw_write32(pAdapter, EFUSE_TEST, value32);
}
else
bRet = true;
}
return bRet;
}
static void
ReadEFuseByIC(
struct adapter *Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
#ifdef DBG_IOL_READ_EFUSE_MAP
u8 logical_map[512];
#endif
#ifdef CONFIG_IOL_READ_EFUSE_MAP
if(!bPseudoTest )//&& rtw_IOL_applied(Adapter))
{
int ret = _FAIL;
if(rtw_IOL_applied(Adapter))
{
rtw_hal_power_on(Adapter);
iol_mode_enable(Adapter, 1);
#ifdef DBG_IOL_READ_EFUSE_MAP
iol_read_efuse(Adapter, 0, _offset, _size_byte, logical_map);
#else
ret = iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf);
#endif
iol_mode_enable(Adapter, 0);
if(_SUCCESS == ret)
goto exit;
}
}
#endif
Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
exit:
#ifdef DBG_IOL_READ_EFUSE_MAP
if(_rtw_memcmp(logical_map, Adapter->eeprompriv.efuse_eeprom_data, 0x130) == false)
{
int i;
DBG_871X("%s compare first 0x130 byte fail\n", __FUNCTION__);
for(i=0;i<512;i++)
{
if(i%16==0)
DBG_871X("0x%03x: ", i);
DBG_871X("%02x ", logical_map[i]);
if(i%16==15)
DBG_871X("\n");
}
DBG_871X("\n");
}
#endif
return;
}
static void
ReadEFuse_Pseudo(
struct adapter *Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
}
static void
rtl8188e_ReadEFuse(
struct adapter *Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
if(bPseudoTest)
{
ReadEFuse_Pseudo(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
}
else
{
ReadEFuseByIC(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
}
}
//Do not support BT
void
Hal_EFUSEGetEfuseDefinition88E(
IN struct adapter *pAdapter,
IN u8 efuseType,
IN u8 type,
OUT void * pOut
)
{
switch(type)
{
case TYPE_EFUSE_MAX_SECTION:
{
u8* pMax_section;
pMax_section = (u8*)pOut;
*pMax_section = EFUSE_MAX_SECTION_88E;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
}
break;
case TYPE_EFUSE_MAP_LEN:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = (u16)EFUSE_MAP_LEN_88E;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK:
{
u8* pu1Tmp;
pu1Tmp = (u8*)pOut;
*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E);
}
break;
default:
{
u8* pu1Tmp;
pu1Tmp = (u8*)pOut;
*pu1Tmp = 0;
}
break;
}
}
void
Hal_EFUSEGetEfuseDefinition_Pseudo88E(
IN struct adapter *pAdapter,
IN u8 efuseType,
IN u8 type,
OUT void * pOut
)
{
switch(type)
{
case TYPE_EFUSE_MAX_SECTION:
{
u8* pMax_section;
pMax_section = (u8 *)pOut;
*pMax_section = EFUSE_MAX_SECTION_88E;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN:
{
u16* pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK:
{
u16* pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
{
u16* pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
{
u16* pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
}
break;
case TYPE_EFUSE_MAP_LEN:
{
u16* pu2Tmp;
pu2Tmp = (u16 *)pOut;
*pu2Tmp = (u16)EFUSE_MAP_LEN_88E;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK:
{
u8* pu1Tmp;
pu1Tmp = (u8*)pOut;
*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E);
}
break;
default:
{
u8* pu1Tmp;
pu1Tmp = (u8*)pOut;
*pu1Tmp = 0;
}
break;
}
}
static void
rtl8188e_EFUSE_GetEfuseDefinition(
IN struct adapter *pAdapter,
IN u8 efuseType,
IN u8 type,
OUT void *pOut,
IN BOOLEAN bPseudoTest
)
{
if(bPseudoTest)
{
Hal_EFUSEGetEfuseDefinition_Pseudo88E(pAdapter, efuseType, type, pOut);
}
else
{
Hal_EFUSEGetEfuseDefinition88E(pAdapter, efuseType, type, pOut);
}
}
static u8
Hal_EfuseWordEnableDataWrite( IN struct adapter *pAdapter,
IN u16 efuse_addr,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u16 tmpaddr = 0;
u16 start_addr = efuse_addr;
u8 badworden = 0x0F;
u8 tmpdata[8];
_rtw_memset((void *)tmpdata, 0xff, PGPKT_DATA_SIZE);
//RT_TRACE(COMP_EFUSE, DBG_LOUD, ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
if(!(word_en&BIT0))
{
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[0], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[1], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[0], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[1], bPseudoTest);
if((data[0]!=tmpdata[0])||(data[1]!=tmpdata[1])){
badworden &= (~BIT0);
}
}
if(!(word_en&BIT1))
{
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[2], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[3], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr , &tmpdata[2], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[3], bPseudoTest);
if((data[2]!=tmpdata[2])||(data[3]!=tmpdata[3])){
badworden &=( ~BIT1);
}
}
if(!(word_en&BIT2))
{
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[4], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[5], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[4], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[5], bPseudoTest);
if((data[4]!=tmpdata[4])||(data[5]!=tmpdata[5])){
badworden &=( ~BIT2);
}
}
if(!(word_en&BIT3))
{
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[6], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[7], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[6], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[7], bPseudoTest);
if((data[6]!=tmpdata[6])||(data[7]!=tmpdata[7])){
badworden &=( ~BIT3);
}
}
return badworden;
}
static u8
Hal_EfuseWordEnableDataWrite_Pseudo( IN struct adapter *pAdapter,
IN u16 efuse_addr,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 ret=0;
ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
return ret;
}
static u8
rtl8188e_Efuse_WordEnableDataWrite( IN struct adapter *pAdapter,
IN u16 efuse_addr,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 ret=0;
if(bPseudoTest)
{
ret = Hal_EfuseWordEnableDataWrite_Pseudo(pAdapter, efuse_addr, word_en, data, bPseudoTest);
}
else
{
ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
}
return ret;
}
static u16
hal_EfuseGetCurrentSize_8188e(IN struct adapter *pAdapter,
IN BOOLEAN bPseudoTest)
{
int bContinual = true;
u16 efuse_addr = 0;
u8 hoffset=0,hworden=0;
u8 efuse_data,word_cnts=0;
if(bPseudoTest)
{
efuse_addr = (u16)(fakeEfuseUsedBytes);
}
else
{
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
}
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), start_efuse_addr = %d\n", efuse_addr));
while ( bContinual &&
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest) &&
AVAILABLE_EFUSE_ADDR(efuse_addr))
{
if(efuse_data!=0xFF)
{
if((efuse_data&0x1F) == 0x0F) //extended header
{
hoffset = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest);
if((efuse_data & 0x0F) == 0x0F)
{
efuse_addr++;
continue;
}
else
{
hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
}
else
{
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
//read next header
efuse_addr = efuse_addr + (word_cnts*2)+1;
}
else
{
bContinual = false ;
}
}
if(bPseudoTest)
{
fakeEfuseUsedBytes = efuse_addr;
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", fakeEfuseUsedBytes));
}
else
{
rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", efuse_addr));
}
return efuse_addr;
}
static u16
Hal_EfuseGetCurrentSize_Pseudo(IN struct adapter *pAdapter,
IN BOOLEAN bPseudoTest)
{
u16 ret=0;
ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest);
return ret;
}
static u16
rtl8188e_EfuseGetCurrentSize(
IN struct adapter *pAdapter,
IN u8 efuseType,
IN BOOLEAN bPseudoTest)
{
u16 ret=0;
if(bPseudoTest)
{
ret = Hal_EfuseGetCurrentSize_Pseudo(pAdapter, bPseudoTest);
}
else
{
ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest);
}
return ret;
}
static int
hal_EfusePgPacketRead_8188e(
IN struct adapter *pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 ReadState = PG_STATE_HEADER;
int bContinual = true;
int bDataEmpty = true ;
u8 efuse_data,word_cnts = 0;
u16 efuse_addr = 0;
u8 hoffset = 0,hworden = 0;
u8 tmpidx = 0;
u8 tmpdata[8];
u8 max_section = 0;
u8 tmp_header = 0;
EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, (void *)&max_section, bPseudoTest);
if(data==NULL)
return false;
if(offset>max_section)
return false;
_rtw_memset((void *)data, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
_rtw_memset((void *)tmpdata, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
//
// <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP.
// Skip dummy parts to prevent unexpected data read from Efuse.
// By pass right now. 2009.02.19.
//
while(bContinual && AVAILABLE_EFUSE_ADDR(efuse_addr) )
{
//------- Header Read -------------
if(ReadState & PG_STATE_HEADER)
{
if(efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest)&&(efuse_data!=0xFF))
{
if(EXT_HEADER(efuse_data))
{
tmp_header = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest);
if(!ALL_WORDS_DISABLED(efuse_data))
{
hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
else
{
DBG_8192C("Error, All words disabled\n");
efuse_addr++;
continue;
}
}
else
{
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
bDataEmpty = true ;
if(hoffset==offset)
{
for(tmpidx = 0;tmpidx< word_cnts*2 ;tmpidx++)
{
if(efuse_OneByteRead(pAdapter, efuse_addr+1+tmpidx ,&efuse_data, bPseudoTest) )
{
tmpdata[tmpidx] = efuse_data;
if(efuse_data!=0xff)
{
bDataEmpty = false;
}
}
}
if(bDataEmpty==false){
ReadState = PG_STATE_DATA;
}else{//read next header
efuse_addr = efuse_addr + (word_cnts*2)+1;
ReadState = PG_STATE_HEADER;
}
}
else{//read next header
efuse_addr = efuse_addr + (word_cnts*2)+1;
ReadState = PG_STATE_HEADER;
}
}
else{
bContinual = false ;
}
}
//------- Data section Read -------------
else if(ReadState & PG_STATE_DATA)
{
efuse_WordEnableDataRead(hworden,tmpdata,data);
efuse_addr = efuse_addr + (word_cnts*2)+1;
ReadState = PG_STATE_HEADER;
}
}
if( (data[0]==0xff) &&(data[1]==0xff) && (data[2]==0xff) && (data[3]==0xff) &&
(data[4]==0xff) &&(data[5]==0xff) && (data[6]==0xff) && (data[7]==0xff))
return false;
else
return true;
}
static int
Hal_EfusePgPacketRead( IN struct adapter *pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret=0;
ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest);
return ret;
}
static int
Hal_EfusePgPacketRead_Pseudo( IN struct adapter *pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret=0;
ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest);
return ret;
}
static int
rtl8188e_Efuse_PgPacketRead( IN struct adapter *pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret=0;
if(bPseudoTest)
{
ret = Hal_EfusePgPacketRead_Pseudo(pAdapter, offset, data, bPseudoTest);
}
else
{
ret = Hal_EfusePgPacketRead(pAdapter, offset, data, bPseudoTest);
}
return ret;
}
static BOOLEAN
hal_EfuseFixHeaderProcess(
IN struct adapter * pAdapter,
IN u8 efuseType,
IN PPGPKT_STRUCT pFixPkt,
IN u16 *pAddr,
IN BOOLEAN bPseudoTest
)
{
u8 originaldata[8], badworden=0;
u16 efuse_addr=*pAddr;
u32 PgWriteSuccess=0;
_rtw_memset((void *)originaldata, 0xff, 8);
if(Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest))
{ //check if data exist
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pFixPkt->word_en, originaldata, bPseudoTest);
if(badworden != 0xf) // write fail
{
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest);
if(!PgWriteSuccess)
return false;
else
efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
}
else
{
efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) +1;
}
}
else
{
efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) +1;
}
*pAddr = efuse_addr;
return true;
}
static BOOLEAN
hal_EfusePgPacketWrite2ByteHeader(
IN struct adapter * pAdapter,
IN u8 efuseType,
IN u16 *pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest)
{
BOOLEAN bRet=false, bContinual=true;
u16 efuse_addr=*pAddr, efuse_max_available_len=0;
u8 pg_header=0, tmp_header=0, pg_header_temp=0;
u8 repeatcnt=0;
//RTPRINT(FEEPROM, EFUSE_PG, ("Wirte 2byte header\n"));
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (void *)&efuse_max_available_len, bPseudoTest);
while(efuse_addr < efuse_max_available_len)
{
pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
//RTPRINT(FEEPROM, EFUSE_PG, ("pg_header = 0x%x\n", pg_header));
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
while(tmp_header == 0xFF)
{
if(repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
{
//RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for pg_header!!\n"));
return false;
}
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
}
//to write ext_header
if(tmp_header == pg_header)
{
efuse_addr++;
pg_header_temp = pg_header;
pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
while(tmp_header == 0xFF)
{
if(repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
{
//RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for ext_header!!\n"));
return false;
}
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
}
if((tmp_header & 0x0F) == 0x0F) //word_en PG fail
{
if(repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
{
//RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for word_en!!\n"));
return false;
}
else
{
efuse_addr++;
continue;
}
}
else if(pg_header != tmp_header) //offset PG fail
{
PGPKT_STRUCT fixPkt;
//RTPRINT(FEEPROM, EFUSE_PG, ("Error condition for offset PG fail, need to cover the existed data\n"));
fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
fixPkt.word_en = tmp_header & 0x0F;
fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
if(!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
return false;
}
else
{
bRet = true;
break;
}
}
else if ((tmp_header & 0x1F) == 0x0F) //wrong extended header
{
efuse_addr+=2;
continue;
}
}
*pAddr = efuse_addr;
return bRet;
}
static BOOLEAN
hal_EfusePgPacketWrite1ByteHeader(
IN struct adapter * pAdapter,
IN u8 efuseType,
IN u16 *pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest)
{
BOOLEAN bRet=false;
u8 pg_header=0, tmp_header=0;
u16 efuse_addr=*pAddr;
u8 repeatcnt=0;
//RTPRINT(FEEPROM, EFUSE_PG, ("Wirte 1byte header\n"));
pg_header = ((pTargetPkt->offset << 4) & 0xf0) |pTargetPkt->word_en;
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
while(tmp_header == 0xFF)
{
if(repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
{
return false;
}
efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
}
if(pg_header == tmp_header)
{
bRet = true;
}
else
{
PGPKT_STRUCT fixPkt;
//RTPRINT(FEEPROM, EFUSE_PG, ("Error condition for fixed PG packet, need to cover the existed data\n"));
fixPkt.offset = (tmp_header>>4) & 0x0F;
fixPkt.word_en = tmp_header & 0x0F;
fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
if(!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
return false;
}
*pAddr = efuse_addr;
return bRet;
}
static BOOLEAN
hal_EfusePgPacketWriteData(
IN struct adapter * pAdapter,
IN u8 efuseType,
IN u16 *pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest)
{
BOOLEAN bRet=false;
u16 efuse_addr=*pAddr;
u8 badworden=0;
u32 PgWriteSuccess=0;
badworden = 0x0f;
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
if(badworden == 0x0F)
{
// write ok
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgPacketWriteData ok!!\n"));
return true;
}
else
{
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgPacketWriteData Fail!!\n"));
//reorganize other pg packet
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
if(!PgWriteSuccess)
return false;
else
return true;
}
return bRet;
}
static BOOLEAN
hal_EfusePgPacketWriteHeader(
IN struct adapter * pAdapter,
IN u8 efuseType,
IN u16 *pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest)
{
BOOLEAN bRet=false;
if(pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
{
bRet = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
}
else
{
bRet = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
}
return bRet;
}
static BOOLEAN
wordEnMatched(
IN PPGPKT_STRUCT pTargetPkt,
IN PPGPKT_STRUCT pCurPkt,
IN u8 *pWden
)
{
u8 match_word_en = 0x0F; // default all words are disabled
u8 i;
// check if the same words are enabled both target and current PG packet
if( ((pTargetPkt->word_en & BIT0) == 0) &&
((pCurPkt->word_en & BIT0) == 0) )
{
match_word_en &= ~BIT0; // enable word 0
}
if( ((pTargetPkt->word_en & BIT1) == 0) &&
((pCurPkt->word_en & BIT1) == 0) )
{
match_word_en &= ~BIT1; // enable word 1
}
if( ((pTargetPkt->word_en & BIT2) == 0) &&
((pCurPkt->word_en & BIT2) == 0) )
{
match_word_en &= ~BIT2; // enable word 2
}
if( ((pTargetPkt->word_en & BIT3) == 0) &&
((pCurPkt->word_en & BIT3) == 0) )
{
match_word_en &= ~BIT3; // enable word 3
}
*pWden = match_word_en;
if(match_word_en != 0xf)
return true;
else
return false;
}
static BOOLEAN
hal_EfuseCheckIfDatafollowed(
IN struct adapter * pAdapter,
IN u8 word_cnts,
IN u16 startAddr,
IN BOOLEAN bPseudoTest
)
{
BOOLEAN bRet=false;
u8 i, efuse_data;
for(i=0; i<(word_cnts*2) ; i++)
{
if(efuse_OneByteRead(pAdapter, (startAddr+i) ,&efuse_data, bPseudoTest)&&(efuse_data != 0xFF))
bRet = true;
}
return bRet;
}
static BOOLEAN
hal_EfusePartialWriteCheck(
IN struct adapter * pAdapter,
IN u8 efuseType,
IN u16 *pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest
)
{
BOOLEAN bRet=false;
u8 i, efuse_data=0, cur_header=0;
u8 new_wden=0, matched_wden=0, badworden=0;
u16 startAddr=0, efuse_max_available_len=0, efuse_max=0;
PGPKT_STRUCT curPkt;
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (void *)&efuse_max_available_len, bPseudoTest);
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_REAL_CONTENT_LEN, (void *)&efuse_max, bPseudoTest);
if(efuseType == EFUSE_WIFI)
{
if(bPseudoTest)
{
startAddr = (u16)(fakeEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN);
}
else
{
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
startAddr%=EFUSE_REAL_CONTENT_LEN;
}
}
else
{
if(bPseudoTest)
{
startAddr = (u16)(fakeBTEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN);
}
else
{
startAddr = (u16)(BTEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN);
}
}
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePartialWriteCheck(), startAddr=%d\n", startAddr));
while(1)
{
if(startAddr >= efuse_max_available_len)
{
bRet = false;
break;
}
if(efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data!=0xFF))
{
if(EXT_HEADER(efuse_data))
{
cur_header = efuse_data;
startAddr++;
efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest);
if(ALL_WORDS_DISABLED(efuse_data))
{
//RTPRINT(FEEPROM, EFUSE_PG, ("Error condition, all words disabled"));
bRet = false;
break;
}
else
{
curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
curPkt.word_en = efuse_data & 0x0F;
}
}
else
{
cur_header = efuse_data;
curPkt.offset = (cur_header>>4) & 0x0F;
curPkt.word_en = cur_header & 0x0F;
}
curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
// if same header is found but no data followed
// write some part of data followed by the header.
if( (curPkt.offset == pTargetPkt->offset) &&
(!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr+1, bPseudoTest)) &&
wordEnMatched(pTargetPkt, &curPkt, &matched_wden) )
{
//RTPRINT(FEEPROM, EFUSE_PG, ("Need to partial write data by the previous wrote header\n"));
// Here to write partial data
badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
if(badworden != 0x0F)
{
u32 PgWriteSuccess=0;
// if write fail on some words, write these bad words again
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
if(!PgWriteSuccess)
{
bRet = false; // write fail, return
break;
}
}
// partial write ok, update the target packet for later use
for(i=0; i<4; i++)
{
if((matched_wden & (0x1<<i)) == 0) // this word has been written
{
pTargetPkt->word_en |= (0x1<<i); // disable the word
}
}
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
// read from next header
startAddr = startAddr + (curPkt.word_cnts*2) +1;
}
else
{
// not used header, 0xff
*pAddr = startAddr;
//RTPRINT(FEEPROM, EFUSE_PG, ("Started from unused header offset=%d\n", startAddr));
bRet = true;
break;
}
}
return bRet;
}
static BOOLEAN
hal_EfusePgCheckAvailableAddr(
IN struct adapter *pAdapter,
IN u8 efuseType,
IN BOOLEAN bPseudoTest
)
{
u16 efuse_max_available_len=0;
//Change to check TYPE_EFUSE_MAP_LEN ,beacuse 8188E raw 256,logic map over 256.
EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&efuse_max_available_len, false);
//EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (void *)&efuse_max_available_len, bPseudoTest);
//RTPRINT(FEEPROM, EFUSE_PG, ("efuse_max_available_len = %d\n", efuse_max_available_len));
if(Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= efuse_max_available_len)
{
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgCheckAvailableAddr error!!\n"));
return false;
}
return true;
}
static void
hal_EfuseConstructPGPkt(
IN u8 offset,
IN u8 word_en,
IN u8 *pData,
IN PPGPKT_STRUCT pTargetPkt
)
{
_rtw_memset((void *)pTargetPkt->data, 0xFF, sizeof(u8)*8);
pTargetPkt->offset = offset;
pTargetPkt->word_en= word_en;
efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseConstructPGPkt(), targetPkt, offset=%d, word_en=0x%x, word_cnts=%d\n", pTargetPkt->offset, pTargetPkt->word_en, pTargetPkt->word_cnts));
}
static BOOLEAN
hal_EfusePgPacketWrite_BT(
IN struct adapter *pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *pData,
IN BOOLEAN bPseudoTest
)
{
PGPKT_STRUCT targetPkt;
u16 startAddr=0;
u8 efuseType=EFUSE_BT;
if(!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest))
return false;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if(!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if(!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if(!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
return true;
}
static BOOLEAN
hal_EfusePgPacketWrite_8188e(
IN struct adapter * pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *pData,
IN BOOLEAN bPseudoTest
)
{
PGPKT_STRUCT targetPkt;
u16 startAddr=0;
u8 efuseType=EFUSE_WIFI;
if(!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest))
return false;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if(!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if(!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if(!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
return true;
}
static int
Hal_EfusePgPacketWrite_Pseudo(IN struct adapter *pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret;
ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest);
return ret;
}
static int
Hal_EfusePgPacketWrite(IN struct adapter *pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret=0;
ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest);
return ret;
}
static int
rtl8188e_Efuse_PgPacketWrite(IN struct adapter *pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret;
if(bPseudoTest)
{
ret = Hal_EfusePgPacketWrite_Pseudo(pAdapter, offset, word_en, data, bPseudoTest);
}
else
{
ret = Hal_EfusePgPacketWrite(pAdapter, offset, word_en, data, bPseudoTest);
}
return ret;
}
static HAL_VERSION
ReadChipVersion8188E(
IN struct adapter *padapter
)
{
u32 value32;
HAL_VERSION ChipVersion;
HAL_DATA_TYPE *pHalData;
pHalData = GET_HAL_DATA(padapter);
value32 = rtw_read32(padapter, REG_SYS_CFG);
ChipVersion.ICType = CHIP_8188E ;
ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
ChipVersion.RFType = RF_TYPE_1T1R;
ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; // IC version (CUT)
// For regulator mode. by tynli. 2011.01.14
pHalData->RegulatorMode = ((value32 & TRP_BT_EN) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
ChipVersion.ROMVer = 0; // ROM code version.
pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
//#if DBG
#if 1
dump_chip_info(ChipVersion);
#endif
pHalData->VersionID = ChipVersion;
if (IS_1T2R(ChipVersion)){
pHalData->rf_type = RF_1T2R;
pHalData->NumTotalRFPath = 2;
}
else if (IS_2T2R(ChipVersion)){
pHalData->rf_type = RF_2T2R;
pHalData->NumTotalRFPath = 2;
}
else{
pHalData->rf_type = RF_1T1R;
pHalData->NumTotalRFPath = 1;
}
MSG_8192C("RF_Type is %x!!\n", pHalData->rf_type);
return ChipVersion;
}
static void rtl8188e_read_chip_version(struct adapter *padapter)
{
ReadChipVersion8188E(padapter);
}
void rtl8188e_GetHalODMVar(
struct adapter * Adapter,
HAL_ODM_VARIABLE eVariable,
void * pValue1,
BOOLEAN bSet)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PDM_ODM_T podmpriv = &pHalData->odmpriv;
switch(eVariable){
case HAL_ODM_STA_INFO:
break;
default:
break;
}
}
void rtl8188e_SetHalODMVar(
struct adapter * Adapter,
HAL_ODM_VARIABLE eVariable,
void * pValue1,
BOOLEAN bSet)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PDM_ODM_T podmpriv = &pHalData->odmpriv;
//_irqL irqL;
switch(eVariable){
case HAL_ODM_STA_INFO:
{
struct sta_info *psta = (struct sta_info *)pValue1;
if(bSet){
DBG_8192C("### Set STA_(%d) info\n",psta->mac_id);
ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS,psta->mac_id,psta);
#if(RATE_ADAPTIVE_SUPPORT==1)
ODM_RAInfo_Init(podmpriv,psta->mac_id);
#endif
}
else{
DBG_8192C("### Clean STA_(%d) info\n",psta->mac_id);
//_enter_critical_bh(&pHalData->odm_stainfo_lock, &irqL);
ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS,psta->mac_id,NULL);
//_exit_critical_bh(&pHalData->odm_stainfo_lock, &irqL);
}
}
break;
case HAL_ODM_P2P_STATE:
ODM_CmnInfoUpdate(podmpriv,ODM_CMNINFO_WIFI_DIRECT,bSet);
break;
case HAL_ODM_WIFI_DISPLAY_STATE:
ODM_CmnInfoUpdate(podmpriv,ODM_CMNINFO_WIFI_DISPLAY,bSet);
break;
default:
break;
}
}
void rtl8188e_start_thread(struct adapter *padapter)
{
}
void rtl8188e_stop_thread(struct adapter *padapter)
{
}
void hal_notch_filter_8188e(struct adapter *adapter, bool enable)
{
if (enable) {
DBG_871X("Enable notch filter\n");
rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
} else {
DBG_871X("Disable notch filter\n");
rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
}
}
void rtl8188e_set_hal_ops(struct hal_ops *pHalFunc)
{
pHalFunc->free_hal_data = &rtl8188e_free_hal_data;
pHalFunc->dm_init = &rtl8188e_init_dm_priv;
pHalFunc->dm_deinit = &rtl8188e_deinit_dm_priv;
pHalFunc->read_chip_version = &rtl8188e_read_chip_version;
pHalFunc->set_bwmode_handler = &PHY_SetBWMode8188E;
pHalFunc->set_channel_handler = &PHY_SwChnl8188E;
pHalFunc->hal_dm_watchdog = &rtl8188e_HalDmWatchDog;
pHalFunc->Add_RateATid = &rtl8188e_Add_RateATid;
pHalFunc->run_thread= &rtl8188e_start_thread;
pHalFunc->cancel_thread= &rtl8188e_stop_thread;
#ifdef CONFIG_ANTENNA_DIVERSITY
pHalFunc->AntDivBeforeLinkHandler = &AntDivBeforeLink8188E;
pHalFunc->AntDivCompareHandler = &AntDivCompare8188E;
#endif
pHalFunc->read_bbreg = &rtl8188e_PHY_QueryBBReg;
pHalFunc->write_bbreg = &rtl8188e_PHY_SetBBReg;
pHalFunc->read_rfreg = &rtl8188e_PHY_QueryRFReg;
pHalFunc->write_rfreg = &rtl8188e_PHY_SetRFReg;
// Efuse related function
pHalFunc->EfusePowerSwitch = &rtl8188e_EfusePowerSwitch;
pHalFunc->ReadEFuse = &rtl8188e_ReadEFuse;
pHalFunc->EFUSEGetEfuseDefinition = &rtl8188e_EFUSE_GetEfuseDefinition;
pHalFunc->EfuseGetCurrentSize = &rtl8188e_EfuseGetCurrentSize;
pHalFunc->Efuse_PgPacketRead = &rtl8188e_Efuse_PgPacketRead;
pHalFunc->Efuse_PgPacketWrite = &rtl8188e_Efuse_PgPacketWrite;
pHalFunc->Efuse_WordEnableDataWrite = &rtl8188e_Efuse_WordEnableDataWrite;
#ifdef DBG_CONFIG_ERROR_DETECT
pHalFunc->sreset_init_value = &sreset_init_value;
pHalFunc->sreset_reset_value = &sreset_reset_value;
pHalFunc->silentreset = &sreset_reset;
pHalFunc->sreset_xmit_status_check = &rtl8188e_sreset_xmit_status_check;
pHalFunc->sreset_linked_status_check = &rtl8188e_sreset_linked_status_check;
pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status;
pHalFunc->sreset_inprogress= &sreset_inprogress;
#endif //DBG_CONFIG_ERROR_DETECT
pHalFunc->GetHalODMVarHandler = &rtl8188e_GetHalODMVar;
pHalFunc->SetHalODMVarHandler = &rtl8188e_SetHalODMVar;
#ifdef CONFIG_XMIT_THREAD_MODE
pHalFunc->xmit_thread_handler = &hal_xmit_handler;
#endif
#ifdef CONFIG_IOL
pHalFunc->IOL_exec_cmds_sync = &rtl8188e_IOL_exec_cmds_sync;
#endif
pHalFunc->hal_notch_filter = &hal_notch_filter_8188e;
}
u8 GetEEPROMSize8188E(struct adapter *padapter)
{
u8 size = 0;
u32 cr;
cr = rtw_read16(padapter, REG_9346CR);
// 6: EEPROM used is 93C46, 4: boot from E-Fuse.
size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
MSG_8192C("EEPROM type is %s\n", size==4 ? "E-FUSE" : "93C46");
return size;
}
//-------------------------------------------------------------------------
//
// LLT R/W/Init function
//
//-------------------------------------------------------------------------
s32 _LLTWrite(struct adapter *padapter, u32 address, u32 data)
{
s32 status = _SUCCESS;
s32 count = 0;
u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
u16 LLTReg = REG_LLT_INIT;
rtw_write32(padapter, LLTReg, value);
//polling
do {
value = rtw_read32(padapter, LLTReg);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) {
break;
}
if (count > POLLING_LLT_THRESHOLD) {
RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling write LLT done at address %d!\n", address));
status = _FAIL;
break;
}
} while (count++);
return status;
}
u8 _LLTRead(struct adapter *padapter, u32 address)
{
s32 count = 0;
u32 value = _LLT_INIT_ADDR(address) | _LLT_OP(_LLT_READ_ACCESS);
u16 LLTReg = REG_LLT_INIT;
rtw_write32(padapter, LLTReg, value);
//polling and get value
do {
value = rtw_read32(padapter, LLTReg);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) {
return (u8)value;
}
if (count > POLLING_LLT_THRESHOLD) {
RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling read LLT done at address %d!\n", address));
break;
}
} while (count++);
return 0xFF;
}
void Read_LLT_Tab(struct adapter *padapter)
{
u32 addr,next_addr;
printk("############### %s ###################\n",__FUNCTION__);
for(addr=0;addr<176;addr++)
{
next_addr = _LLTRead(padapter,addr);
printk("%d->",next_addr);
if(((addr+1) %8) ==0)
printk("\n");
}
printk("\n##################################\n");
}
s32 InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy)
{
s32 status = _FAIL;
u32 i;
u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER;// 176, 22k
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
#if defined(CONFIG_IOL_LLT)
if(rtw_IOL_applied(padapter))
{
status = iol_InitLLTTable(padapter, txpktbuf_bndy);
}
else
#endif
{
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
status = _LLTWrite(padapter, i, i + 1);
if (_SUCCESS != status) {
return status;
}
}
// end of list
status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF);
if (_SUCCESS != status) {
return status;
}
// Make the other pages as ring buffer
// This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer.
// Otherwise used as local loopback buffer.
for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
status = _LLTWrite(padapter, i, (i + 1));
if (_SUCCESS != status) {
return status;
}
}
// Let last entry point to the start entry of ring buffer
status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
if (_SUCCESS != status) {
return status;
}
}
return status;
}
void
Hal_InitPGData88E(struct adapter *padapter)
{
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
// HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u32 i;
u16 value16;
if(false == pEEPROM->bautoload_fail_flag)
{ // autoload OK.
if (is_boot_from_eeprom(padapter))
{
// Read all Content from EEPROM or EFUSE.
for(i = 0; i < HWSET_MAX_SIZE_88E; i += 2)
{
// value16 = EF2Byte(ReadEEprom(pAdapter, (u16) (i>>1)));
// *((u16*)(&PROMContent[i])) = value16;
}
}
else
{
// Read EFUSE real map to shadow.
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
}
}
else
{//autoload fail
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
// pHalData->AutoloadFailFlag = true;
//update to default value 0xFF
if (!is_boot_from_eeprom(padapter))
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
}
}
void
Hal_EfuseParseIDCode88E(
IN struct adapter *padapter,
IN u8 *hwinfo
)
{
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
// HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u16 EEPROMId;
// Checl 0x8129 again for making sure autoload status!!
EEPROMId = le16_to_cpu(*((u16*)hwinfo));
if (EEPROMId != RTL_EEPROM_ID)
{
DBG_8192C("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
pEEPROM->bautoload_fail_flag = true;
}
else
{
pEEPROM->bautoload_fail_flag = false;
}
DBG_871X("EEPROM ID=0x%04x\n", EEPROMId);
}
static void
Hal_EEValueCheck(
IN u8 EEType,
IN void * pInValue,
OUT void * pOutValue
)
{
switch(EEType)
{
case EETYPE_TX_PWR:
{
u8 *pIn, *pOut;
pIn = (u8*)pInValue;
pOut = (u8*)pOutValue;
if(*pIn >= 0 && *pIn <= 63)
{
*pOut = *pIn;
}
else
{
RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("EETYPE_TX_PWR, value=%d is invalid, set to default=0x%x\n",
*pIn, EEPROM_Default_TxPowerLevel));
*pOut = EEPROM_Default_TxPowerLevel;
}
}
break;
default:
break;
}
}
static void
Hal_ReadPowerValueFromPROM_8188E(
IN struct adapter * padapter,
IN PTxPowerInfo24G pwrInfo24G,
IN u8* PROMContent,
IN BOOLEAN AutoLoadFail
)
{
u32 rfPath, eeAddr=EEPROM_TX_PWR_INX_88E, group,TxCount=0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
_rtw_memset(pwrInfo24G, 0, sizeof(TxPowerInfo24G));
if(AutoLoadFail)
{
for(rfPath = 0 ; rfPath < pHalData->NumTotalRFPath ; rfPath++)
{
//2.4G default value
for(group = 0 ; group < MAX_CHNL_GROUP_24G; group++)
{
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
if(TxCount==0)
{
pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
}
else
{
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
}
}
}
//pHalData->bNOPG = TRUE;
return;
}
for(rfPath = 0 ; rfPath < pHalData->NumTotalRFPath ; rfPath++)
{
//2.4G default value
for(group = 0 ; group < MAX_CHNL_GROUP_24G; group++)
{
//printk(" IndexCCK_Base rfPath:%d group:%d,eeAddr:0x%02x ",rfPath,group,eeAddr);
pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++];
//printk(" IndexCCK_Base:%02x \n",pwrInfo24G->IndexCCK_Base[rfPath][group] );
if(pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
{
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
// pHalData->bNOPG = TRUE;
}
}
for(group = 0 ; group < MAX_CHNL_GROUP_24G-1; group++)
{
//printk(" IndexBW40_Base rfPath:%d group:%d,eeAddr:0x%02x ",rfPath,group,eeAddr);
pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++];
//printk(" IndexBW40_Base: %02x \n",pwrInfo24G->IndexBW40_Base[rfPath][group] );
if(pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
if(TxCount==0)
{
pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
if(PROMContent[eeAddr] == 0xFF)
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF;
else
{
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
if(PROMContent[eeAddr] == 0xFF)
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
else
{
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
}
pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
eeAddr++;
}
else
{
if(PROMContent[eeAddr] == 0xFF)
pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
else
{
pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
}
if(PROMContent[eeAddr] == 0xFF)
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
else
{
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
eeAddr++;
if(PROMContent[eeAddr] == 0xFF)
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
else
{
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
}
if(PROMContent[eeAddr] == 0xFF)
pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
else
{
pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
}
eeAddr++;
}
}
}
}
static u8
Hal_GetChnlGroup(
IN u8 chnl
)
{
u8 group=0;
if (chnl < 3) // Cjanel 1-3
group = 0;
else if (chnl < 9) // Channel 4-9
group = 1;
else // Channel 10-14
group = 2;
return group;
}
static u8
Hal_GetChnlGroup88E(
IN u8 chnl,
OUT u8* pGroup
)
{
u8 bIn24G=true;
if(chnl<=14)
{
bIn24G=true;
if (chnl < 3) // Chanel 1-2
*pGroup = 0;
else if (chnl < 6) // Channel 3-5
*pGroup = 1;
else if(chnl <9) // Channel 6-8
*pGroup = 2;
else if(chnl <12) // Channel 9-11
*pGroup = 3;
else if(chnl <14) // Channel 12-13
*pGroup = 4;
else if(chnl ==14) // Channel 14
*pGroup = 5;
else
{
//RT_TRACE(COMP_EFUSE,DBG_LOUD,("==>Hal_GetChnlGroup88E in 2.4 G, but Channel %d in Group not found \n",chnl));
}
}
else
{
bIn24G=false;
if (chnl <=40)
*pGroup = 0;
else if (chnl <=48)
*pGroup = 1;
else if(chnl <=56)
*pGroup = 2;
else if(chnl <=64)
*pGroup = 3;
else if(chnl <=104)
*pGroup = 4;
else if(chnl <=112)
*pGroup = 5;
else if(chnl <=120)
*pGroup = 5;
else if(chnl <=128)
*pGroup = 6;
else if(chnl <=136)
*pGroup = 7;
else if(chnl <=144)
*pGroup = 8;
else if(chnl <=153)
*pGroup = 9;
else if(chnl <=161)
*pGroup = 10;
else if(chnl <=177)
*pGroup = 11;
else
{
//RT_TRACE(COMP_EFUSE,DBG_LOUD,("==>Hal_GetChnlGroup88E in 5G, but Channel %d in Group not found \n",chnl));
}
}
//RT_TRACE(COMP_EFUSE,DBG_LOUD,("<==Hal_GetChnlGroup88E, Channel = %d, bIn24G =%d,\n",chnl,bIn24G));
return bIn24G;
}
void Hal_ReadPowerSavingMode88E(
struct adapter * padapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
u8 tmpvalue;
if(AutoLoadFail){
pwrctl->bHWPowerdown = false;
pwrctl->bSupportRemoteWakeup = false;
}
else {
//hw power down mode selection , 0:rf-off / 1:power down
if(padapter->registrypriv.hwpdn_mode==2)
pwrctl->bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_88E] & BIT4)?true:false;
else
pwrctl->bHWPowerdown = padapter->registrypriv.hwpdn_mode;
pwrctl->bHWPwrPindetect = padapter->registrypriv.hwpwrp_detect;
// decide hw if support remote wakeup function
// if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume
pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1)?true :false;
DBG_8192C("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) ,bSupportRemoteWakeup(%x)\n",__FUNCTION__,
pwrctl->bHWPwrPindetect, pwrctl->bHWPowerdown, pwrctl->bSupportRemoteWakeup);
DBG_8192C("### PS params=> power_mgnt(%x),usbss_enable(%x) ###\n",padapter->registrypriv.power_mgnt,padapter->registrypriv.usbss_enable);
}
}
void
Hal_ReadTxPowerInfo88E(
IN struct adapter * padapter,
IN u8* PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
TxPowerInfo24G pwrInfo24G;
u8 rfPath, ch, group, rfPathMax=1;
u8 pwr, diff,bIn24G,TxCount;
Hal_ReadPowerValueFromPROM_8188E(padapter,&pwrInfo24G, PROMContent, AutoLoadFail);
if(!AutoLoadFail)
pHalData->bTXPowerDataReadFromEEPORM = TRUE;
//for(rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++)
for(rfPath = 0 ; rfPath < pHalData->NumTotalRFPath ; rfPath++)
{
for(ch = 0 ; ch < CHANNEL_MAX_NUMBER ; ch++)
{
bIn24G = Hal_GetChnlGroup88E(ch+1,&group);
if(bIn24G)
{
pHalData->Index24G_CCK_Base[rfPath][ch]=pwrInfo24G.IndexCCK_Base[rfPath][group];
if(ch==(14-1))
pHalData->Index24G_BW40_Base[rfPath][ch]=pwrInfo24G.IndexBW40_Base[rfPath][4];
else
pHalData->Index24G_BW40_Base[rfPath][ch]=pwrInfo24G.IndexBW40_Base[rfPath][group];
}
if(bIn24G)
{
DBG_871X("======= Path %d, Channel %d =======\n",rfPath,ch+1 );
DBG_871X("Index24G_CCK_Base[%d][%d] = 0x%x\n",rfPath,ch+1 ,pHalData->Index24G_CCK_Base[rfPath][ch]);
DBG_871X("Index24G_BW40_Base[%d][%d] = 0x%x\n",rfPath,ch+1 ,pHalData->Index24G_BW40_Base[rfPath][ch]);
}
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
pHalData->CCK_24G_Diff[rfPath][TxCount]=pwrInfo24G.CCK_Diff[rfPath][TxCount];
pHalData->OFDM_24G_Diff[rfPath][TxCount]=pwrInfo24G.OFDM_Diff[rfPath][TxCount];
pHalData->BW20_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW20_Diff[rfPath][TxCount];
pHalData->BW40_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW40_Diff[rfPath][TxCount];
#if DBG
DBG_871X("======= TxCount %d =======\n",TxCount );
DBG_871X("CCK_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->CCK_24G_Diff[rfPath][TxCount]);
DBG_871X("OFDM_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->OFDM_24G_Diff[rfPath][TxCount]);
DBG_871X("BW20_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW20_24G_Diff[rfPath][TxCount]);
DBG_871X("BW40_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW40_24G_Diff[rfPath][TxCount]);
#endif
}
}
// 2010/10/19 MH Add Regulator recognize for EU.
if(!AutoLoadFail)
{
struct registry_priv *registry_par = &padapter->registrypriv;
if( registry_par->regulatory_tid == 0xff){
if(PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); //bit0~2
else
pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x7); //bit0~2
}else{
pHalData->EEPROMRegulatory = registry_par->regulatory_tid;
}
}
else
{
pHalData->EEPROMRegulatory = 0;
}
DBG_871X("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory);
}
void
Hal_EfuseParseXtal_8188E(
IN struct adapter * pAdapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if(!AutoLoadFail)
{
pHalData->CrystalCap = hwinfo[EEPROM_XTAL_88E];
if(pHalData->CrystalCap == 0xFF)
pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
}
else
{
pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
}
DBG_871X("CrystalCap: 0x%2x\n", pHalData->CrystalCap);
}
void
Hal_EfuseParseBoardType88E(
IN struct adapter * pAdapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if (!AutoLoadFail)
pHalData->BoardType = ((hwinfo[EEPROM_RF_BOARD_OPTION_88E]&0xE0)>>5);
else
pHalData->BoardType = 0;
DBG_871X("Board Type: 0x%2x\n", pHalData->BoardType);
}
void
Hal_EfuseParseEEPROMVer88E(
IN struct adapter * padapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if(!AutoLoadFail){
pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_88E];
if(pHalData->EEPROMVersion == 0xFF)
pHalData->EEPROMVersion = EEPROM_Default_Version;
}
else{
pHalData->EEPROMVersion = 1;
}
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
pHalData->EEPROMVersion));
}
void
rtl8188e_EfuseParseChnlPlan(
IN struct adapter * padapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
padapter->mlmepriv.ChannelPlan = hal_com_get_channel_plan(
padapter
, hwinfo?hwinfo[EEPROM_ChannelPlan_88E]:0xFF
, padapter->registrypriv.channel_plan
, RT_CHANNEL_DOMAIN_WORLD_WIDE_13
, AutoLoadFail
);
DBG_871X("mlmepriv.ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan);
}
void
Hal_EfuseParseCustomerID88E(
IN struct adapter * padapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (!AutoLoadFail)
{
pHalData->EEPROMCustomerID = hwinfo[EEPROM_CUSTOMERID_88E];
//pHalData->EEPROMSubCustomerID = hwinfo[EEPROM_CUSTOMERID_88E];
}
else
{
pHalData->EEPROMCustomerID = 0;
pHalData->EEPROMSubCustomerID = 0;
}
DBG_871X("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID);
//DBG_871X("EEPROM SubCustomer ID: 0x%02x\n", pHalData->EEPROMSubCustomerID);
}
void
Hal_ReadAntennaDiversity88E(
IN struct adapter * pAdapter,
IN u8* PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
struct registry_priv *registry_par = &pAdapter->registrypriv;
if(!AutoLoadFail)
{
// Antenna Diversity setting.
if(registry_par->antdiv_cfg == 2)// 2:By EFUSE
{
pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x18)>>3;
if(PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION&0x18)>>3;;
}
else
{
pHalData->AntDivCfg = registry_par->antdiv_cfg ; // 0:OFF , 1:ON, 2:By EFUSE
}
if(registry_par->antdiv_type == 0)// If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead.
{
pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_88E];
if (pHalData->TRxAntDivType == 0xFF)
pHalData->TRxAntDivType = CG_TRX_HW_ANTDIV; // For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port)
}
else{
pHalData->TRxAntDivType = registry_par->antdiv_type ;
}
if (pHalData->TRxAntDivType == CG_TRX_HW_ANTDIV || pHalData->TRxAntDivType == CGCS_RX_HW_ANTDIV)
pHalData->AntDivCfg = 1; // 0xC1[3] is ignored.
}
else
{
pHalData->AntDivCfg = 0;
pHalData->TRxAntDivType = pHalData->TRxAntDivType; // The value in the driver setting of device manager.
}
DBG_871X("EEPROM : AntDivCfg = %x, TRxAntDivType = %x\n",pHalData->AntDivCfg, pHalData->TRxAntDivType);
}
void
Hal_ReadThermalMeter_88E(
IN struct adapter *Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 tempval;
//
// ThermalMeter from EEPROM
//
if(!AutoloadFail)
pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_88E];
else
pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;
// pHalData->EEPROMThermalMeter = (tempval&0x1f); //[4:0]
if(pHalData->EEPROMThermalMeter == 0xff || AutoloadFail)
{
pHalData->bAPKThermalMeterIgnore = true;
pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;
}
//pHalData->ThermalMeter[0] = pHalData->EEPROMThermalMeter;
DBG_871X("ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter);
}
void
Hal_InitChannelPlan(
IN struct adapter *padapter
)
{
}
BOOLEAN HalDetectPwrDownMode88E(struct adapter *Adapter)
{
u8 tmpvalue = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(Adapter);
EFUSE_ShadowRead(Adapter, 1, EEPROM_RF_FEATURE_OPTION_88E, (u32 *)&tmpvalue);
// 2010/08/25 MH INF priority > PDN Efuse value.
if(tmpvalue & BIT(4) && pwrctrlpriv->reg_pdnmode)
{
pHalData->pwrdown = true;
}
else
{
pHalData->pwrdown = false;
}
DBG_8192C("HalDetectPwrDownMode(): PDN=%d\n", pHalData->pwrdown);
return pHalData->pwrdown;
} // HalDetectPwrDownMode
#ifdef CONFIG_WOWLAN
void Hal_DetectWoWMode(struct adapter *pAdapter)
{
adapter_to_pwrctl(pAdapter)->bSupportRemoteWakeup = true;
DBG_871X("%s\n", __func__);
}
#endif
#ifdef CONFIG_RF_GAIN_OFFSET
void Hal_ReadRFGainOffset(
IN struct adapter * Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail)
{
u8 buff[EFUSE_MAX_SIZE];
u32 res;
//
// BB_RF Gain Offset from EEPROM
//
//res = rtw_efuse_access(Adapter, false, 0, EFUSE_MAX_SIZE, buff);
if(!AutoloadFail ){
Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET_88E];
Adapter->eeprompriv.EEPROMRFGainVal=EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL_88E);
}
else{
Adapter->eeprompriv.EEPROMRFGainOffset = EEPROM_Default_RFGainOffset;
Adapter->eeprompriv.EEPROMRFGainVal=0xff;
}
DBG_871X("EEPRORFGainOffset = 0x%02x\n", Adapter->eeprompriv.EEPROMRFGainOffset);
}
#endif //CONFIG_RF_GAIN_OFFSET
//====================================================================================
//
// 20100209 Joseph:
// This function is used only for 92C to set REG_BCN_CTRL(0x550) register.
// We just reserve the value of the register in variable pHalData->RegBcnCtrlVal and then operate
// the value of the register via atomic operation.
// This prevents from race condition when setting this register.
// The value of pHalData->RegBcnCtrlVal is initialized in HwConfigureRTL8192CE() function.
//
void SetBcnCtrlReg(
struct adapter *padapter,
u8 SetBits,
u8 ClearBits)
{
PHAL_DATA_TYPE pHalData;
pHalData = GET_HAL_DATA(padapter);
pHalData->RegBcnCtrlVal |= SetBits;
pHalData->RegBcnCtrlVal &= ~ClearBits;
rtw_write8(padapter, REG_BCN_CTRL, (u8)pHalData->RegBcnCtrlVal);
}