rtl8188eu/os_dep/osdep_service.c
Larry Finger 689d01adf6 rtl8188eu: Convert typedef for _queue to struct __queue
Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
2013-07-24 17:55:38 -05:00

881 lines
17 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2012 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _OSDEP_SERVICE_C_
#include <osdep_service.h>
#include <drv_types.h>
#include <recv_osdep.h>
#include <linux/vmalloc.h>
#include <rtw_ioctl_set.h>
/*
* Translate the OS dependent @param error_code to OS independent RTW_STATUS_CODE
* @return: one of RTW_STATUS_CODE
*/
inline int RTW_STATUS_CODE(int error_code){
if (error_code >=0)
return _SUCCESS;
switch (error_code) {
//case -ETIMEDOUT:
// return RTW_STATUS_TIMEDOUT;
default:
return _FAIL;
}
}
u32 rtw_atoi(u8* s)
{
int num = 0, flag = 0;
int i;
for (i = 0; i <= strlen(s); i++) {
if (s[i] >= '0' && s[i] <= '9')
num = num * 10 + s[i] -'0';
else if (s[0] == '-' && i == 0)
flag =1;
else
break;
}
if (flag == 1)
num = num * -1;
return(num);
}
inline u8 *_rtw_vmalloc(u32 sz)
{
u8 *pbuf;
pbuf = vmalloc(sz);
return pbuf;
}
inline u8* _rtw_zvmalloc(u32 sz)
{
u8 *pbuf;
pbuf = _rtw_vmalloc(sz);
if (pbuf != NULL)
memset(pbuf, 0, sz);
return pbuf;
}
inline void _rtw_vmfree(u8 *pbuf, u32 sz)
{
vfree(pbuf);
}
u8* _rtw_malloc(u32 sz)
{
u8 *pbuf=NULL;
pbuf = kmalloc(sz,in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
return pbuf;
}
u8* _rtw_zmalloc(u32 sz)
{
u8 *pbuf = _rtw_malloc(sz);
if (pbuf != NULL)
memset(pbuf, 0, sz);
return pbuf;
}
void _rtw_mfree(u8 *pbuf, u32 sz)
{
kfree(pbuf);
}
void* rtw_malloc2d(int h, int w, int size)
{
int j;
void **a = (void **) rtw_zmalloc( h*sizeof(void *) + h*w*size );
if (a == NULL) {
pr_info("%s: alloc memory fail!\n", __func__);
return NULL;
}
for ( j=0; j < h; j++ )
a[j] = ((char *)(a+h)) + j*w*size;
return a;
}
void rtw_mfree2d(void *pbuf, int h, int w, int size)
{
rtw_mfree((u8 *)pbuf, h*sizeof(void*) + w*h*size);
}
void _rtw_memcpy(void* dst, void* src, u32 sz)
{
memcpy(dst, src, sz);
}
int _rtw_memcmp(void *dst, void *src, u32 sz)
{
//under Linux/GNU/GLibc, the return value of memcmp for two same mem. chunk is 0
if (!(memcmp(dst, src, sz)))
return true;
else
return false;
}
void _rtw_memset(void *pbuf, int c, u32 sz)
{
memset(pbuf, c, sz);
}
void _rtw_init_listhead(_list *list)
{
INIT_LIST_HEAD(list);
}
/*
For the following list_xxx operations,
caller must guarantee the atomic context.
Otherwise, there will be racing condition.
*/
u32 rtw_is_list_empty(_list *phead)
{
if (list_empty(phead))
return true;
else
return false;
}
void rtw_list_insert_head(_list *plist, _list *phead)
{
list_add(plist, phead);
}
void rtw_list_insert_tail(_list *plist, _list *phead)
{
list_add_tail(plist, phead);
}
/*
Caller must check if the list is empty before calling rtw_list_delete
*/
void _rtw_init_sema(struct semaphore *sema, int init_val)
{
sema_init(sema, init_val);
}
void _rtw_free_sema(struct semaphore *sema)
{
}
void _rtw_up_sema(struct semaphore *sema)
{
up(sema);
}
u32 _rtw_down_sema(struct semaphore *sema)
{
if (down_interruptible(sema))
return _FAIL;
else
return _SUCCESS;
}
void _rtw_mutex_init(struct mutex *pmutex)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37))
mutex_init(pmutex);
#else
init_MUTEX(pmutex);
#endif
}
void _rtw_mutex_free(struct mutex *pmutex)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37))
mutex_destroy(pmutex);
#endif
}
void _rtw_spinlock_init(spinlock_t *plock)
{
spin_lock_init(plock);
}
void _rtw_spinlock_free(spinlock_t *plock)
{
}
void _rtw_init_queue(struct __queue *pqueue)
{
_rtw_init_listhead(&(pqueue->queue));
_rtw_spinlock_init(&(pqueue->lock));
}
u32 _rtw_queue_empty(struct __queue *pqueue)
{
return rtw_is_list_empty(&(pqueue->queue));
}
u32 rtw_end_of_queue_search(_list *head, _list *plist)
{
if (head == plist)
return true;
else
return false;
}
u32 rtw_get_current_time(void)
{
return jiffies;
}
inline u32 rtw_systime_to_ms(u32 systime)
{
return systime * 1000 / HZ;
}
inline u32 rtw_ms_to_systime(u32 ms)
{
return ms * HZ / 1000;
}
// the input parameter start use the same unit as returned by rtw_get_current_time
inline s32 rtw_get_passing_time_ms(u32 start)
{
return rtw_systime_to_ms(jiffies-start);
}
inline s32 rtw_get_time_interval_ms(u32 start, u32 end)
{
return rtw_systime_to_ms(end-start);
}
void rtw_sleep_schedulable(int ms)
{
u32 delta;
delta = (ms * HZ)/1000;//(ms)
if (delta == 0) {
delta = 1;// 1 ms
}
set_current_state(TASK_INTERRUPTIBLE);
if (schedule_timeout(delta) != 0) {
return ;
}
}
void rtw_msleep_os(int ms)
{
msleep((unsigned int)ms);
}
void rtw_usleep_os(int us)
{
if ( 1 < (us/1000) )
msleep(1);
else
msleep( (us/1000) + 1);
}
void rtw_mdelay_os(int ms)
{
mdelay((unsigned long)ms);
}
void rtw_udelay_os(int us)
{
udelay((unsigned long)us);
}
void rtw_yield_os(void)
{
yield();
}
#define RTW_SUSPEND_LOCK_NAME "rtw_wifi"
inline void rtw_suspend_lock_init(void)
{
}
inline void rtw_suspend_lock_uninit(void)
{
}
inline void rtw_lock_suspend(void)
{
}
inline void rtw_unlock_suspend(void)
{
}
#ifdef CONFIG_WOWLAN
inline void rtw_lock_suspend_timeout(long timeout)
{
}
#endif //CONFIG_WOWLAN
inline void ATOMIC_SET(ATOMIC_T *v, int i)
{
atomic_set(v,i);
}
inline int ATOMIC_READ(ATOMIC_T *v)
{
return atomic_read(v);
}
inline void ATOMIC_ADD(ATOMIC_T *v, int i)
{
atomic_add(i,v);
}
inline void ATOMIC_SUB(ATOMIC_T *v, int i)
{
atomic_sub(i,v);
}
inline void ATOMIC_INC(ATOMIC_T *v)
{
atomic_inc(v);
}
inline void ATOMIC_DEC(ATOMIC_T *v)
{
atomic_dec(v);
}
inline int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i)
{
return atomic_add_return(i,v);
}
inline int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i)
{
return atomic_sub_return(i,v);
}
inline int ATOMIC_INC_RETURN(ATOMIC_T *v)
{
return atomic_inc_return(v);
}
inline int ATOMIC_DEC_RETURN(ATOMIC_T *v)
{
return atomic_dec_return(v);
}
/*
* Open a file with the specific @param path, @param flag, @param mode
* @param fpp the pointer of struct file pointer to get struct file pointer while file opening is success
* @param path the path of the file to open
* @param flag file operation flags, please refer to linux document
* @param mode please refer to linux document
* @return Linux specific error code
*/
static int openFile(struct file **fpp, char *path, int flag, int mode)
{
struct file *fp;
fp=filp_open(path, flag, mode);
if (IS_ERR(fp)) {
*fpp=NULL;
return PTR_ERR(fp);
}
else {
*fpp=fp;
return 0;
}
}
/*
* Close the file with the specific @param fp
* @param fp the pointer of struct file to close
* @return always 0
*/
static int closeFile(struct file *fp)
{
filp_close(fp,NULL);
return 0;
}
static int readFile(struct file *fp,char __user *buf,int len)
{
int rlen=0, sum=0;
if (!fp->f_op || !fp->f_op->read)
return -EPERM;
while (sum<len) {
rlen=fp->f_op->read(fp,buf+sum,len-sum, &fp->f_pos);
if (rlen>0)
sum+=rlen;
else if (0 != rlen)
return rlen;
else
break;
}
return sum;
}
static int writeFile(struct file *fp, char __user *buf, int len)
{
int wlen=0, sum=0;
if (!fp->f_op || !fp->f_op->write)
return -EPERM;
while (sum<len) {
wlen=fp->f_op->write(fp,buf+sum,len-sum, &fp->f_pos);
if (wlen>0)
sum+=wlen;
else if (0 != wlen)
return wlen;
else
break;
}
return sum;
}
/*
* Test if the specifi @param path is a file and readable
* @param path the path of the file to test
* @return Linux specific error code
*/
static int isFileReadable(char *path)
{
struct file *fp;
int ret = 0;
mm_segment_t oldfs;
char __user buf;
fp=filp_open(path, O_RDONLY, 0);
if (IS_ERR(fp)) {
ret = PTR_ERR(fp);
}
else {
oldfs = get_fs(); set_fs(get_ds());
if (1!=readFile(fp, &buf, 1))
ret = PTR_ERR(fp);
set_fs(oldfs);
filp_close(fp,NULL);
}
return ret;
}
/*
* Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most
* @param path the path of the file to open and read
* @param buf the starting address of the buffer to store file content
* @param sz how many bytes to read at most
* @return the byte we've read, or Linux specific error code
*/
static int retriveFromFile(char *path, u8 __user *buf, u32 sz)
{
int ret =-1;
mm_segment_t oldfs;
struct file *fp;
if (path && buf) {
if ( 0 == (ret=openFile(&fp,path, O_RDONLY, 0)) ){
DBG_88E("%s openFile path:%s fp=%p\n",__func__, path ,fp);
oldfs = get_fs(); set_fs(get_ds());
ret=readFile(fp, buf, sz);
set_fs(oldfs);
closeFile(fp);
DBG_88E("%s readFile, ret:%d\n",__func__, ret);
} else {
DBG_88E("%s openFile path:%s Fail, ret:%d\n",__func__, path, ret);
}
} else {
DBG_88E("%s NULL pointer\n",__func__);
ret = -EINVAL;
}
return ret;
}
/*
* Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file
* @param path the path of the file to open and write
* @param buf the starting address of the data to write into file
* @param sz how many bytes to write at most
* @return the byte we've written, or Linux specific error code
*/
static int storeToFile(char *path, u8 __user *buf, u32 sz)
{
int ret =0;
mm_segment_t oldfs;
struct file *fp;
if (path && buf) {
if ( 0 == (ret=openFile(&fp, path, O_CREAT|O_WRONLY, 0666)) ) {
DBG_88E("%s openFile path:%s fp=%p\n",__func__, path ,fp);
oldfs = get_fs(); set_fs(get_ds());
ret=writeFile(fp, buf, sz);
set_fs(oldfs);
closeFile(fp);
DBG_88E("%s writeFile, ret:%d\n",__func__, ret);
} else {
DBG_88E("%s openFile path:%s Fail, ret:%d\n",__func__, path, ret);
}
} else {
DBG_88E("%s NULL pointer\n",__func__);
ret = -EINVAL;
}
return ret;
}
/*
* Test if the specifi @param path is a file and readable
* @param path the path of the file to test
* @return true or false
*/
int rtw_is_file_readable(char *path)
{
if (isFileReadable(path) == 0)
return true;
else
return false;
}
/*
* Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most
* @param path the path of the file to open and read
* @param buf the starting address of the buffer to store file content
* @param sz how many bytes to read at most
* @return the byte we've read
*/
int rtw_retrive_from_file(char *path, u8 __user *buf, u32 sz)
{
int ret =retriveFromFile(path, buf, sz);
return ret>=0?ret:0;
}
/*
* Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file
* @param path the path of the file to open and write
* @param buf the starting address of the data to write into file
* @param sz how many bytes to write at most
* @return the byte we've written
*/
int rtw_store_to_file(char *path, u8 __user *buf, u32 sz)
{
int ret =storeToFile(path, buf, sz);
return ret >= 0 ? ret : 0;
}
struct net_device *rtw_alloc_etherdev_with_old_priv(int sizeof_priv, void *old_priv)
{
struct net_device *pnetdev;
struct rtw_netdev_priv_indicator *pnpi;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35))
pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4);
#else
pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator));
#endif
if (!pnetdev)
goto RETURN;
pnpi = netdev_priv(pnetdev);
pnpi->priv=old_priv;
pnpi->sizeof_priv=sizeof_priv;
RETURN:
return pnetdev;
}
struct net_device *rtw_alloc_etherdev(int sizeof_priv)
{
struct net_device *pnetdev;
struct rtw_netdev_priv_indicator *pnpi;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35))
pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4);
#else
pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator));
#endif
if (!pnetdev)
goto RETURN;
pnpi = netdev_priv(pnetdev);
pnpi->priv = rtw_zvmalloc(sizeof_priv);
if (!pnpi->priv) {
free_netdev(pnetdev);
pnetdev = NULL;
goto RETURN;
}
pnpi->sizeof_priv=sizeof_priv;
RETURN:
return pnetdev;
}
void rtw_free_netdev(struct net_device * netdev)
{
struct rtw_netdev_priv_indicator *pnpi;
if (!netdev)
goto RETURN;
pnpi = netdev_priv(netdev);
if (!pnpi->priv)
goto RETURN;
rtw_vmfree(pnpi->priv, pnpi->sizeof_priv);
free_netdev(netdev);
RETURN:
return;
}
/*
* Jeff: this function should be called under ioctl (rtnl_lock is accquired) while
* LINUX_VERSION_CODE < KERNEL_VERSION(2,6,26)
*/
int rtw_change_ifname(_adapter *padapter, const char *ifname)
{
struct net_device *pnetdev;
struct net_device *cur_pnetdev = padapter->pnetdev;
struct rereg_nd_name_data *rereg_priv;
int ret;
if (!padapter)
goto error;
rereg_priv = &padapter->rereg_nd_name_priv;
//free the old_pnetdev
if (rereg_priv->old_pnetdev) {
free_netdev(rereg_priv->old_pnetdev);
rereg_priv->old_pnetdev = NULL;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
if (!rtnl_is_locked())
unregister_netdev(cur_pnetdev);
else
#endif
unregister_netdevice(cur_pnetdev);
rtw_proc_remove_one(cur_pnetdev);
rereg_priv->old_pnetdev=cur_pnetdev;
pnetdev = rtw_init_netdev(padapter);
if (!pnetdev) {
ret = -1;
goto error;
}
SET_NETDEV_DEV(pnetdev, dvobj_to_dev(adapter_to_dvobj(padapter)));
rtw_init_netdev_name(pnetdev, ifname);
_rtw_memcpy(pnetdev->dev_addr, padapter->eeprompriv.mac_addr, ETH_ALEN);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
if (!rtnl_is_locked())
ret = register_netdev(pnetdev);
else
#endif
ret = register_netdevice(pnetdev);
if ( ret != 0) {
RT_TRACE(_module_hci_intfs_c_,_drv_err_,("register_netdev() failed\n"));
goto error;
}
rtw_proc_init_one(pnetdev);
return 0;
error:
return -1;
}
u64 rtw_modular64(u64 x, u64 y)
{
return do_div(x, y);
}
u64 rtw_division64(u64 x, u64 y)
{
do_div(x, y);
return x;
}
void rtw_buf_free(u8 **buf, u32 *buf_len)
{
if (!buf || !buf_len)
return;
if (*buf) {
*buf_len = 0;
_rtw_mfree(*buf, *buf_len);
*buf = NULL;
}
}
void rtw_buf_update(u8 **buf, u32 *buf_len, u8 *src, u32 src_len)
{
u32 ori_len = 0, dup_len = 0;
u8 *ori = NULL;
u8 *dup = NULL;
if (!buf || !buf_len)
return;
if (!src || !src_len)
goto keep_ori;
/* duplicate src */
dup = rtw_malloc(src_len);
if (dup) {
dup_len = src_len;
_rtw_memcpy(dup, src, dup_len);
}
keep_ori:
ori = *buf;
ori_len = *buf_len;
/* replace buf with dup */
*buf_len = 0;
*buf = dup;
*buf_len = dup_len;
/* free ori */
if (ori && ori_len > 0)
_rtw_mfree(ori, ori_len);
}
/**
* rtw_cbuf_full - test if cbuf is full
* @cbuf: pointer of struct rtw_cbuf
*
* Returns: true if cbuf is full
*/
inline bool rtw_cbuf_full(struct rtw_cbuf *cbuf)
{
return (cbuf->write == cbuf->read-1)? true : false;
}
/**
* rtw_cbuf_empty - test if cbuf is empty
* @cbuf: pointer of struct rtw_cbuf
*
* Returns: true if cbuf is empty
*/
inline bool rtw_cbuf_empty(struct rtw_cbuf *cbuf)
{
return (cbuf->write == cbuf->read)? true : false;
}
/**
* rtw_cbuf_push - push a pointer into cbuf
* @cbuf: pointer of struct rtw_cbuf
* @buf: pointer to push in
*
* Lock free operation, be careful of the use scheme
* Returns: true push success
*/
bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf)
{
if (rtw_cbuf_full(cbuf))
return _FAIL;
if (0)
DBG_88E("%s on %u\n", __func__, cbuf->write);
cbuf->bufs[cbuf->write] = buf;
cbuf->write = (cbuf->write+1)%cbuf->size;
return _SUCCESS;
}
/**
* rtw_cbuf_pop - pop a pointer from cbuf
* @cbuf: pointer of struct rtw_cbuf
*
* Lock free operation, be careful of the use scheme
* Returns: pointer popped out
*/
void *rtw_cbuf_pop(struct rtw_cbuf *cbuf)
{
void *buf;
if (rtw_cbuf_empty(cbuf))
return NULL;
if (0)
DBG_88E("%s on %u\n", __func__, cbuf->read);
buf = cbuf->bufs[cbuf->read];
cbuf->read = (cbuf->read+1)%cbuf->size;
return buf;
}
/**
* rtw_cbuf_alloc - allocte a rtw_cbuf with given size and do initialization
* @size: size of pointer
*
* Returns: pointer of srtuct rtw_cbuf, NULL for allocation failure
*/
struct rtw_cbuf *rtw_cbuf_alloc(u32 size)
{
struct rtw_cbuf *cbuf;
cbuf = (struct rtw_cbuf *)rtw_malloc(sizeof(*cbuf) + sizeof(void*)*size);
if (cbuf) {
cbuf->write = cbuf->read = 0;
cbuf->size = size;
}
return cbuf;
}
/**
* rtw_cbuf_free - free the given rtw_cbuf
* @cbuf: pointer of struct rtw_cbuf to free
*/
void rtw_cbuf_free(struct rtw_cbuf *cbuf)
{
rtw_mfree((u8*)cbuf, sizeof(*cbuf) + sizeof(void*)*cbuf->size);
}