rtl8188eu/hal/rtl8188e_phycfg.c
Larry Finger 202d20077c rtl8192eu: Replace typedefs for struct adapter
Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
2014-12-17 17:13:53 -06:00

3552 lines
106 KiB
C
Executable file

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _RTL8188E_PHYCFG_C_
#include <drv_conf.h>
#include <osdep_service.h>
#include <drv_types.h>
#include <rtw_byteorder.h>
#ifdef CONFIG_IOL
#include <rtw_iol.h>
#endif
#include <rtl8188e_hal.h>
/*---------------------------Define Local Constant---------------------------*/
/* Channel switch:The size of command tables for switch channel*/
#define MAX_PRECMD_CNT 16
#define MAX_RFDEPENDCMD_CNT 16
#define MAX_POSTCMD_CNT 16
#define MAX_DOZE_WAITING_TIMES_9x 64
/*---------------------------Define Local Constant---------------------------*/
/*------------------------Define global variable-----------------------------*/
/*------------------------Define local variable------------------------------*/
/*--------------------Define export function prototype-----------------------*/
// Please refer to header file
/*--------------------Define export function prototype-----------------------*/
/*----------------------------Function Body----------------------------------*/
//
// 1. BB register R/W API
//
/**
* Function: phy_CalculateBitShift
*
* OverView: Get shifted position of the BitMask
*
* Input:
* u4Byte BitMask,
*
* Output: none
* Return: u4Byte Return the shift bit bit position of the mask
*/
static u32
phy_CalculateBitShift(
u32 BitMask
)
{
u32 i;
for(i=0; i<=31; i++)
{
if ( ((BitMask>>i) & 0x1 ) == 1)
break;
}
return (i);
}
#if(SIC_ENABLE == 1)
static BOOLEAN
sic_IsSICReady(
IN struct adapter *Adapter
)
{
BOOLEAN bRet=_FALSE;
u32 retryCnt=0;
u8 sic_cmd=0xff;
while(1)
{
if(retryCnt++ >= SIC_MAX_POLL_CNT)
{
//RTPRINT(FPHY, (PHY_SICR|PHY_SICW), ("[SIC], sic_IsSICReady() return FALSE\n"));
return _FALSE;
}
//if(RT_SDIO_CANNOT_IO(Adapter))
// return _FALSE;
sic_cmd = rtw_read8(Adapter, SIC_CMD_REG);
//sic_cmd = PlatformEFIORead1Byte(Adapter, SIC_CMD_REG);
#if(SIC_HW_SUPPORT == 1)
sic_cmd &= 0xf0; // [7:4]
#endif
//RTPRINT(FPHY, (PHY_SICR|PHY_SICW), ("[SIC], sic_IsSICReady(), readback 0x%x=0x%x\n", SIC_CMD_REG, sic_cmd));
if(sic_cmd == SIC_CMD_READY)
return _TRUE;
else
{
rtw_msleep_os(1);
//delay_ms(1);
}
}
return bRet;
}
/*
u32
sic_CalculateBitShift(
u32 BitMask
)
{
u32 i;
for(i=0; i<=31; i++)
{
if ( ((BitMask>>i) & 0x1 ) == 1)
break;
}
return (i);
}
*/
static u32
sic_Read4Byte(
PVOID Adapter,
u32 offset
)
{
u32 u4ret=0xffffffff;
#if RTL8188E_SUPPORT == 1
u8 retry = 0;
#endif
//RTPRINT(FPHY, PHY_SICR, ("[SIC], sic_Read4Byte(): read offset(%#x)\n", offset));
if(sic_IsSICReady(Adapter))
{
#if(SIC_HW_SUPPORT == 1)
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_PREREAD);
//PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_PREREAD);
//RTPRINT(FPHY, PHY_SICR, ("write cmdreg 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_PREREAD));
#endif
rtw_write8(Adapter, SIC_ADDR_REG, (u8)(offset&0xff));
//PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG, (u1Byte)(offset&0xff));
//RTPRINT(FPHY, PHY_SICR, ("write 0x%x = 0x%x\n", SIC_ADDR_REG, (u1Byte)(offset&0xff)));
rtw_write8(Adapter, SIC_ADDR_REG+1, (u8)((offset&0xff00)>>8));
//PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG+1, (u1Byte)((offset&0xff00)>>8));
//RTPRINT(FPHY, PHY_SICR, ("write 0x%x = 0x%x\n", SIC_ADDR_REG+1, (u1Byte)((offset&0xff00)>>8)));
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_READ);
//PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_READ);
//RTPRINT(FPHY, PHY_SICR, ("write cmdreg 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_READ));
#if RTL8188E_SUPPORT == 1
retry = 4;
while(retry--){
rtw_udelay_os(50);
//PlatformStallExecution(50);
}
#else
rtw_udelay_os(200);
//PlatformStallExecution(200);
#endif
if(sic_IsSICReady(Adapter))
{
u4ret = rtw_read32(Adapter, SIC_DATA_REG);
//u4ret = PlatformEFIORead4Byte(Adapter, SIC_DATA_REG);
//RTPRINT(FPHY, PHY_SICR, ("read 0x%x = 0x%x\n", SIC_DATA_REG, u4ret));
//DbgPrint("<===Read 0x%x = 0x%x\n", offset, u4ret);
}
}
return u4ret;
}
static VOID
sic_Write4Byte(
PVOID Adapter,
u32 offset,
u32 data
)
{
#if RTL8188E_SUPPORT == 1
u8 retry = 6;
#endif
//DbgPrint("=>Write 0x%x = 0x%x\n", offset, data);
//RTPRINT(FPHY, PHY_SICW, ("[SIC], sic_Write4Byte(): write offset(%#x)=0x%x\n", offset, data));
if(sic_IsSICReady(Adapter))
{
#if(SIC_HW_SUPPORT == 1)
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_PREWRITE);
//PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_PREWRITE);
//RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_PREWRITE));
#endif
rtw_write8(Adapter, SIC_ADDR_REG, (u8)(offset&0xff));
//PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG, (u1Byte)(offset&0xff));
//RTPRINT(FPHY, PHY_SICW, ("write 0x%x=0x%x\n", SIC_ADDR_REG, (u1Byte)(offset&0xff)));
rtw_write8(Adapter, SIC_ADDR_REG+1, (u8)((offset&0xff00)>>8));
//PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG+1, (u1Byte)((offset&0xff00)>>8));
//RTPRINT(FPHY, PHY_SICW, ("write 0x%x=0x%x\n", (SIC_ADDR_REG+1), (u1Byte)((offset&0xff00)>>8)));
rtw_write32(Adapter, SIC_DATA_REG, (u32)data);
//PlatformEFIOWrite4Byte(Adapter, SIC_DATA_REG, (u4Byte)data);
//RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_DATA_REG, data));
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_WRITE);
//PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_WRITE);
//RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_WRITE));
#if RTL8188E_SUPPORT == 1
while(retry--){
rtw_udelay_os(50);
//PlatformStallExecution(50);
}
#else
rtw_udelay_os(150);
//PlatformStallExecution(150);
#endif
}
}
//============================================================
// extern function
//============================================================
static VOID
SIC_SetBBReg(
IN struct adapter *Adapter,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 OriginalValue, BitShift;
u16 BBWaitCounter = 0;
//RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg() start\n"));
/*
while(PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _TRUE) == _TRUE)
{
BBWaitCounter ++;
delay_ms(10); // 1 ms
if((BBWaitCounter > 100) || RT_CANNOT_IO(Adapter))
{// Wait too long, return FALSE to avoid to be stuck here.
RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg(), Fail to set BB offset(%#x)!!, WaitCnt(%d)\n", RegAddr, BBWaitCounter));
return;
}
}
*/
//
// Critical section start
//
//RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg(), mask=0x%x, addr[0x%x]=0x%x\n", BitMask, RegAddr, Data));
if(BitMask!= bMaskDWord){//if not "double word" write
OriginalValue = sic_Read4Byte(Adapter, RegAddr);
//BitShift = sic_CalculateBitShift(BitMask);
BitShift = phy_CalculateBitShift(BitMask);
Data = (((OriginalValue) & (~BitMask)) | (Data << BitShift));
}
sic_Write4Byte(Adapter, RegAddr, Data);
//PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _FALSE);
//RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg() end\n"));
}
static u32
SIC_QueryBBReg(
IN struct adapter *Adapter,
IN u32 RegAddr,
IN u32 BitMask
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 ReturnValue = 0, OriginalValue, BitShift;
u16 BBWaitCounter = 0;
//RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg() start\n"));
/*
while(PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _TRUE) == _TRUE)
{
BBWaitCounter ++;
delay_ms(10); // 10 ms
if((BBWaitCounter > 100) || RT_CANNOT_IO(Adapter))
{// Wait too long, return FALSE to avoid to be stuck here.
RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_QueryBBReg(), Fail to query BB offset(%#x)!!, WaitCnt(%d)\n", RegAddr, BBWaitCounter));
return ReturnValue;
}
}
*/
OriginalValue = sic_Read4Byte(Adapter, RegAddr);
//BitShift = sic_CalculateBitShift(BitMask);
BitShift = phy_CalculateBitShift(BitMask);
ReturnValue = (OriginalValue & BitMask) >> BitShift;
//RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg(), 0x%x=0x%x\n", RegAddr, OriginalValue));
//RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg() end\n"));
//PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _FALSE);
return (ReturnValue);
}
VOID
SIC_Init(
IN struct adapter *Adapter
)
{
// Here we need to write 0x1b8~0x1bf = 0 after fw is downloaded
// because for 8723E at beginning 0x1b8=0x1e, that will cause
// sic always not be ready
#if(SIC_HW_SUPPORT == 1)
//RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x%x = 0x%x\n",
// SIC_INIT_REG, SIC_INIT_VAL));
rtw_write8(Adapter, SIC_INIT_REG, SIC_INIT_VAL);
//PlatformEFIOWrite1Byte(Adapter, SIC_INIT_REG, SIC_INIT_VAL);
//RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x%x = 0x%x\n",
// SIC_CMD_REG, SIC_CMD_INIT));
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_INIT);
//PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_INIT);
#else
//RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x1b8~0x1bf = 0x0\n"));
rtw_write32(Adapter, SIC_CMD_REG, 0);
//PlatformEFIOWrite4Byte(Adapter, SIC_CMD_REG, 0);
rtw_write32(Adapter, SIC_CMD_REG+4, 0);
//PlatformEFIOWrite4Byte(Adapter, SIC_CMD_REG+4, 0);
#endif
}
static BOOLEAN
SIC_LedOff(
IN struct adapter *Adapter
)
{
// When SIC is enabled, led pin will be used as debug pin,
// so don't execute led function when SIC is enabled.
return _TRUE;
}
#endif
/**
* Function: PHY_QueryBBReg
*
* OverView: Read "sepcific bits" from BB register
*
* Input:
* struct adapter * Adapter,
* u4Byte RegAddr, //The target address to be readback
* u4Byte BitMask //The target bit position in the target address
* //to be readback
* Output: None
* Return: u4Byte Data //The readback register value
* Note: This function is equal to "GetRegSetting" in PHY programming guide
*/
u32
rtl8188e_PHY_QueryBBReg(
IN struct adapter *Adapter,
IN u32 RegAddr,
IN u32 BitMask
)
{
u32 ReturnValue = 0, OriginalValue, BitShift;
u16 BBWaitCounter = 0;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
#if(SIC_ENABLE == 1)
return SIC_QueryBBReg(Adapter, RegAddr, BitMask);
#endif
//RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_QueryBBReg(): RegAddr(%#lx), BitMask(%#lx)\n", RegAddr, BitMask));
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
ReturnValue = (OriginalValue & BitMask) >> BitShift;
//RTPRINT(FPHY, PHY_BBR, ("BBR MASK=0x%lx Addr[0x%lx]=0x%lx\n", BitMask, RegAddr, OriginalValue));
//RT_TRACE(COMP_RF, DBG_TRACE, ("<---PHY_QueryBBReg(): RegAddr(%#lx), BitMask(%#lx), OriginalValue(%#lx)\n", RegAddr, BitMask, OriginalValue));
return (ReturnValue);
}
/**
* Function: PHY_SetBBReg
*
* OverView: Write "Specific bits" to BB register (page 8~)
*
* Input:
* struct adapter * Adapter,
* u4Byte RegAddr, //The target address to be modified
* u4Byte BitMask //The target bit position in the target address
* //to be modified
* u4Byte Data //The new register value in the target bit position
* //of the target address
*
* Output: None
* Return: None
* Note: This function is equal to "PutRegSetting" in PHY programming guide
*/
VOID
rtl8188e_PHY_SetBBReg(
IN struct adapter *Adapter,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//u16 BBWaitCounter = 0;
u32 OriginalValue, BitShift;
#if (DISABLE_BB_RF == 1)
return;
#endif
#if(SIC_ENABLE == 1)
SIC_SetBBReg(Adapter, RegAddr, BitMask, Data);
return;
#endif
//RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_SetBBReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx)\n", RegAddr, BitMask, Data));
if(BitMask!= bMaskDWord){//if not "double word" write
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Data = ((OriginalValue & (~BitMask)) | ((Data << BitShift) & BitMask));
}
rtw_write32(Adapter, RegAddr, Data);
//RTPRINT(FPHY, PHY_BBW, ("BBW MASK=0x%lx Addr[0x%lx]=0x%lx\n", BitMask, RegAddr, Data));
//RT_TRACE(COMP_RF, DBG_TRACE, ("<---PHY_SetBBReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx)\n", RegAddr, BitMask, Data));
}
//
// 2. RF register R/W API
//
/**
* Function: phy_RFSerialRead
*
* OverView: Read regster from RF chips
*
* Input:
* struct adapter * Adapter,
* RF_RADIO_PATH_E eRFPath, //Radio path of A/B/C/D
* u4Byte Offset, //The target address to be read
*
* Output: None
* Return: u4Byte reback value
* Note: Threre are three types of serial operations:
* 1. Software serial write
* 2. Hardware LSSI-Low Speed Serial Interface
* 3. Hardware HSSI-High speed
* serial write. Driver need to implement (1) and (2).
* This function is equal to the combination of RF_ReadReg() and RFLSSIRead()
*/
static u32
phy_RFSerialRead(
IN struct adapter * Adapter,
IN RF_RADIO_PATH_E eRFPath,
IN u32 Offset
)
{
u32 retValue = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset;
u32 tmplong,tmplong2;
u8 RfPiEnable=0;
#if 0
if(pHalData->RFChipID == RF_8225 && Offset > 0x24) //36 valid regs
return retValue;
if(pHalData->RFChipID == RF_8256 && Offset > 0x2D) //45 valid regs
return retValue;
#endif
//
// Make sure RF register offset is correct
//
Offset &= 0xff;
//
// Switch page for 8256 RF IC
//
NewOffset = Offset;
// 2009/06/17 MH We can not execute IO for power save or other accident mode.
//if(RT_CANNOT_IO(Adapter))
//{
// RTPRINT(FPHY, PHY_RFR, ("phy_RFSerialRead return all one\n"));
// return 0xFFFFFFFF;
//}
// For 92S LSSI Read RFLSSIRead
// For RF A/B write 0x824/82c(does not work in the future)
// We must use 0x824 for RF A and B to execute read trigger
tmplong = PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord);
if(eRFPath == RF_PATH_A)
tmplong2 = tmplong;
else
tmplong2 = PHY_QueryBBReg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord);
tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset<<23) | bLSSIReadEdge; //T65 RF
PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord, tmplong&(~bLSSIReadEdge));
rtw_udelay_os(10);// PlatformStallExecution(10);
PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord, tmplong2);
rtw_udelay_os(100);//PlatformStallExecution(100);
//PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord, tmplong|bLSSIReadEdge);
rtw_udelay_os(10);//PlatformStallExecution(10);
if(eRFPath == RF_PATH_A)
RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter1, BIT8);
else if(eRFPath == RF_PATH_B)
RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XB_HSSIParameter1, BIT8);
if(RfPiEnable)
{ // Read from BBreg8b8, 12 bits for 8190, 20bits for T65 RF
retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBackPi, bLSSIReadBackData);
//DBG_8192C("Readback from RF-PI : 0x%x\n", retValue);
}
else
{ //Read from BBreg8a0, 12 bits for 8190, 20 bits for T65 RF
retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBack, bLSSIReadBackData);
//DBG_8192C("Readback from RF-SI : 0x%x\n", retValue);
}
//DBG_8192C("RFR-%d Addr[0x%x]=0x%x\n", eRFPath, pPhyReg->rfLSSIReadBack, retValue);
return retValue;
}
/**
* Function: phy_RFSerialWrite
*
* OverView: Write data to RF register (page 8~)
*
* Input:
* struct adapter * Adapter,
* RF_RADIO_PATH_E eRFPath, //Radio path of A/B/C/D
* u4Byte Offset, //The target address to be read
* u4Byte Data //The new register Data in the target bit position
* //of the target to be read
*
* Output: None
* Return: None
* Note: Threre are three types of serial operations:
* 1. Software serial write
* 2. Hardware LSSI-Low Speed Serial Interface
* 3. Hardware HSSI-High speed
* serial write. Driver need to implement (1) and (2).
* This function is equal to the combination of RF_ReadReg() and RFLSSIRead()
*
* Note: For RF8256 only
* The total count of RTL8256(Zebra4) register is around 36 bit it only employs
* 4-bit RF address. RTL8256 uses "register mode control bit" (Reg00[12], Reg00[10])
* to access register address bigger than 0xf. See "Appendix-4 in PHY Configuration
* programming guide" for more details.
* Thus, we define a sub-finction for RTL8526 register address conversion
* ===========================================================
* Register Mode RegCTL[1] RegCTL[0] Note
* (Reg00[12]) (Reg00[10])
* ===========================================================
* Reg_Mode0 0 x Reg 0 ~15(0x0 ~ 0xf)
* ------------------------------------------------------------------
* Reg_Mode1 1 0 Reg 16 ~30(0x1 ~ 0xf)
* ------------------------------------------------------------------
* Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf)
* ------------------------------------------------------------------
*
* 2008/09/02 MH Add 92S RF definition
*
*
*
*/
static VOID
phy_RFSerialWrite(
IN struct adapter * Adapter,
IN RF_RADIO_PATH_E eRFPath,
IN u32 Offset,
IN u32 Data
)
{
u32 DataAndAddr = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset;
#if 0
//<Roger_TODO> We should check valid regs for RF_6052 case.
if(pHalData->RFChipID == RF_8225 && Offset > 0x24) //36 valid regs
return;
if(pHalData->RFChipID == RF_8256 && Offset > 0x2D) //45 valid regs
return;
#endif
// 2009/06/17 MH We can not execute IO for power save or other accident mode.
//if(RT_CANNOT_IO(Adapter))
//{
// RTPRINT(FPHY, PHY_RFW, ("phy_RFSerialWrite stop\n"));
// return;
//}
Offset &= 0xff;
//
// Shadow Update
//
//PHY_RFShadowWrite(Adapter, eRFPath, Offset, Data);
//
// Switch page for 8256 RF IC
//
NewOffset = Offset;
//
// Put write addr in [5:0] and write data in [31:16]
//
//DataAndAddr = (Data<<16) | (NewOffset&0x3f);
DataAndAddr = ((NewOffset<<20) | (Data&0x000fffff)) & 0x0fffffff; // T65 RF
//
// Write Operation
//
PHY_SetBBReg(Adapter, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
//RTPRINT(FPHY, PHY_RFW, ("RFW-%d Addr[0x%lx]=0x%lx\n", eRFPath, pPhyReg->rf3wireOffset, DataAndAddr));
}
/**
* Function: PHY_QueryRFReg
*
* OverView: Query "Specific bits" to RF register (page 8~)
*
* Input:
* struct adapter * Adapter,
* RF_RADIO_PATH_E eRFPath, //Radio path of A/B/C/D
* u4Byte RegAddr, //The target address to be read
* u4Byte BitMask //The target bit position in the target address
* //to be read
*
* Output: None
* Return: u4Byte Readback value
* Note: This function is equal to "GetRFRegSetting" in PHY programming guide
*/
u32
rtl8188e_PHY_QueryRFReg(
IN struct adapter * Adapter,
IN RF_RADIO_PATH_E eRFPath,
IN u32 RegAddr,
IN u32 BitMask
)
{
u32 Original_Value, Readback_Value, BitShift;
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//u8 RFWaitCounter = 0;
//_irqL irqL;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
//RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_QueryRFReg(): RegAddr(%#lx), eRFPath(%#x), BitMask(%#lx)\n", RegAddr, eRFPath,BitMask));
#ifdef CONFIG_USB_HCI
//PlatformAcquireMutex(&pHalData->mxRFOperate);
#else
//_enter_critical(&pHalData->rf_lock, &irqL);
#endif
Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Readback_Value = (Original_Value & BitMask) >> BitShift;
#ifdef CONFIG_USB_HCI
//PlatformReleaseMutex(&pHalData->mxRFOperate);
#else
//_exit_critical(&pHalData->rf_lock, &irqL);
#endif
//RTPRINT(FPHY, PHY_RFR, ("RFR-%d MASK=0x%lx Addr[0x%lx]=0x%lx\n", eRFPath, BitMask, RegAddr, Original_Value));//BitMask(%#lx),BitMask,
//RT_TRACE(COMP_RF, DBG_TRACE, ("<---PHY_QueryRFReg(): RegAddr(%#lx), eRFPath(%#x), Original_Value(%#lx)\n",
// RegAddr, eRFPath, Original_Value));
return (Readback_Value);
}
/**
* Function: PHY_SetRFReg
*
* OverView: Write "Specific bits" to RF register (page 8~)
*
* Input:
* struct adapter * Adapter,
* RF_RADIO_PATH_E eRFPath, //Radio path of A/B/C/D
* u4Byte RegAddr, //The target address to be modified
* u4Byte BitMask //The target bit position in the target address
* //to be modified
* u4Byte Data //The new register Data in the target bit position
* //of the target address
*
* Output: None
* Return: None
* Note: This function is equal to "PutRFRegSetting" in PHY programming guide
*/
VOID
rtl8188e_PHY_SetRFReg(
IN struct adapter * Adapter,
IN RF_RADIO_PATH_E eRFPath,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//u1Byte RFWaitCounter = 0;
u32 Original_Value, BitShift;
//_irqL irqL;
#if (DISABLE_BB_RF == 1)
return;
#endif
//RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_SetRFReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx), eRFPath(%#x)\n",
// RegAddr, BitMask, Data, eRFPath));
//RTPRINT(FINIT, INIT_RF, ("PHY_SetRFReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx), eRFPath(%#x)\n",
// RegAddr, BitMask, Data, eRFPath));
#ifdef CONFIG_USB_HCI
//PlatformAcquireMutex(&pHalData->mxRFOperate);
#else
//_enter_critical(&pHalData->rf_lock, &irqL);
#endif
// RF data is 12 bits only
if (BitMask != bRFRegOffsetMask)
{
Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Data = ((Original_Value & (~BitMask)) | (Data<< BitShift));
}
phy_RFSerialWrite(Adapter, eRFPath, RegAddr, Data);
#ifdef CONFIG_USB_HCI
//PlatformReleaseMutex(&pHalData->mxRFOperate);
#else
//_exit_critical(&pHalData->rf_lock, &irqL);
#endif
//PHY_QueryRFReg(Adapter,eRFPath,RegAddr,BitMask);
//RT_TRACE(COMP_RF, DBG_TRACE, ("<---PHY_SetRFReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx), eRFPath(%#x)\n",
// RegAddr, BitMask, Data, eRFPath));
}
//
// 3. Initial MAC/BB/RF config by reading MAC/BB/RF txt.
//
/*-----------------------------------------------------------------------------
* Function: phy_ConfigMACWithParaFile()
*
* Overview: This function read BB parameters from general file format, and do register
* Read/Write
*
* Input: struct adapter * Adapter
* ps1Byte pFileName
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
*
* Note: The format of MACPHY_REG.txt is different from PHY and RF.
* [Register][Mask][Value]
*---------------------------------------------------------------------------*/
static int
phy_ConfigMACWithParaFile(
IN struct adapter * Adapter,
IN u8* pFileName
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _FAIL;
return rtStatus;
}
/*-----------------------------------------------------------------------------
* Function: phy_ConfigMACWithHeaderFile()
*
* Overview: This function read BB parameters from Header file we gen, and do register
* Read/Write
*
* Input: struct adapter * Adapter
* ps1Byte pFileName
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
*
* Note: The format of MACPHY_REG.txt is different from PHY and RF.
* [Register][Mask][Value]
*---------------------------------------------------------------------------*/
#ifndef CONFIG_PHY_SETTING_WITH_ODM
static int
phy_ConfigMACWithHeaderFile(
IN struct adapter * Adapter
)
{
u32 i = 0;
u32 ArrayLength = 0;
u32* ptrArray;
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//2008.11.06 Modified by tynli.
//RT_TRACE(COMP_INIT, DBG_LOUD, ("Read Rtl819XMACPHY_Array\n"));
ArrayLength = Rtl8188E_MAC_ArrayLength;
ptrArray = (u32*)Rtl8188E_MAC_Array;
#ifdef CONFIG_IOL_MAC
{
struct xmit_frame *xmit_frame;
if((xmit_frame=rtw_IOL_accquire_xmit_frame(Adapter)) == NULL)
return _FAIL;
for(i = 0 ;i < ArrayLength;i=i+2){ // Add by tynli for 2 column
rtw_IOL_append_WB_cmd(xmit_frame, ptrArray[i], (u8)ptrArray[i+1]);
}
return rtw_IOL_exec_cmds_sync(Adapter, xmit_frame, 1000,0);
}
#else
for(i = 0 ;i < ArrayLength;i=i+2){ // Add by tynli for 2 column
rtw_write8(Adapter, ptrArray[i], (u8)ptrArray[i+1]);
}
#endif
return _SUCCESS;
}
#endif //#ifndef CONFIG_PHY_SETTING_WITH_ODM
/*-----------------------------------------------------------------------------
* Function: PHY_MACConfig8192C
*
* Overview: Condig MAC by header file or parameter file.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 08/12/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
s32 PHY_MACConfig8188E(struct adapter *Adapter)
{
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
s8 *pszMACRegFile;
s8 sz8188EMACRegFile[] = RTL8188E_PHY_MACREG;
pszMACRegFile = sz8188EMACRegFile;
//
// Config MAC
//
#ifdef CONFIG_EMBEDDED_FWIMG
#ifdef CONFIG_PHY_SETTING_WITH_ODM
if(HAL_STATUS_FAILURE == ODM_ConfigMACWithHeaderFile(&pHalData->odmpriv))
rtStatus = _FAIL;
#else
rtStatus = phy_ConfigMACWithHeaderFile(Adapter);
#endif//#ifdef CONFIG_PHY_SETTING_WITH_ODM
#else
// Not make sure EEPROM, add later
//RT_TRACE(COMP_INIT, DBG_LOUD, ("Read MACREG.txt\n"));
rtStatus = phy_ConfigMACWithParaFile(Adapter, pszMACRegFile);
#endif//CONFIG_EMBEDDED_FWIMG
// 2010.07.13 AMPDU aggregation number B
rtw_write8(Adapter, REG_MAX_AGGR_NUM, MAX_AGGR_NUM);
//rtw_write8(Adapter, REG_MAX_AGGR_NUM, 0x0B);
return rtStatus;
}
/**
* Function: phy_InitBBRFRegisterDefinition
*
* OverView: Initialize Register definition offset for Radio Path A/B/C/D
*
* Input:
* struct adapter * Adapter,
*
* Output: None
* Return: None
* Note: The initialization value is constant and it should never be changes
*/
static VOID
phy_InitBBRFRegisterDefinition(
IN struct adapter * Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
// RF Interface Sowrtware Control
pHalData->PHYRegDef[RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 LSBs if read 32-bit from 0x870
pHalData->PHYRegDef[RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872)
pHalData->PHYRegDef[RF_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW;// 16 LSBs if read 32-bit from 0x874
pHalData->PHYRegDef[RF_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW;// 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876)
// RF Interface Readback Value
pHalData->PHYRegDef[RF_PATH_A].rfintfi = rFPGA0_XAB_RFInterfaceRB; // 16 LSBs if read 32-bit from 0x8E0
pHalData->PHYRegDef[RF_PATH_B].rfintfi = rFPGA0_XAB_RFInterfaceRB;// 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2)
pHalData->PHYRegDef[RF_PATH_C].rfintfi = rFPGA0_XCD_RFInterfaceRB;// 16 LSBs if read 32-bit from 0x8E4
pHalData->PHYRegDef[RF_PATH_D].rfintfi = rFPGA0_XCD_RFInterfaceRB;// 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6)
// RF Interface Output (and Enable)
pHalData->PHYRegDef[RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x860
pHalData->PHYRegDef[RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x864
// RF Interface (Output and) Enable
pHalData->PHYRegDef[RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862)
pHalData->PHYRegDef[RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866)
//Addr of LSSI. Wirte RF register by driver
pHalData->PHYRegDef[RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; //LSSI Parameter
pHalData->PHYRegDef[RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;
// RF parameter
pHalData->PHYRegDef[RF_PATH_A].rfLSSI_Select = rFPGA0_XAB_RFParameter; //BB Band Select
pHalData->PHYRegDef[RF_PATH_B].rfLSSI_Select = rFPGA0_XAB_RFParameter;
pHalData->PHYRegDef[RF_PATH_C].rfLSSI_Select = rFPGA0_XCD_RFParameter;
pHalData->PHYRegDef[RF_PATH_D].rfLSSI_Select = rFPGA0_XCD_RFParameter;
// Tx AGC Gain Stage (same for all path. Should we remove this?)
pHalData->PHYRegDef[RF_PATH_A].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage
pHalData->PHYRegDef[RF_PATH_B].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage
pHalData->PHYRegDef[RF_PATH_C].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage
pHalData->PHYRegDef[RF_PATH_D].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage
// Tranceiver A~D HSSI Parameter-1
pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara1 = rFPGA0_XA_HSSIParameter1; //wire control parameter1
pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara1 = rFPGA0_XB_HSSIParameter1; //wire control parameter1
// Tranceiver A~D HSSI Parameter-2
pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; //wire control parameter2
pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; //wire control parameter2
// RF switch Control
pHalData->PHYRegDef[RF_PATH_A].rfSwitchControl = rFPGA0_XAB_SwitchControl; //TR/Ant switch control
pHalData->PHYRegDef[RF_PATH_B].rfSwitchControl = rFPGA0_XAB_SwitchControl;
pHalData->PHYRegDef[RF_PATH_C].rfSwitchControl = rFPGA0_XCD_SwitchControl;
pHalData->PHYRegDef[RF_PATH_D].rfSwitchControl = rFPGA0_XCD_SwitchControl;
// AGC control 1
pHalData->PHYRegDef[RF_PATH_A].rfAGCControl1 = rOFDM0_XAAGCCore1;
pHalData->PHYRegDef[RF_PATH_B].rfAGCControl1 = rOFDM0_XBAGCCore1;
pHalData->PHYRegDef[RF_PATH_C].rfAGCControl1 = rOFDM0_XCAGCCore1;
pHalData->PHYRegDef[RF_PATH_D].rfAGCControl1 = rOFDM0_XDAGCCore1;
// AGC control 2
pHalData->PHYRegDef[RF_PATH_A].rfAGCControl2 = rOFDM0_XAAGCCore2;
pHalData->PHYRegDef[RF_PATH_B].rfAGCControl2 = rOFDM0_XBAGCCore2;
pHalData->PHYRegDef[RF_PATH_C].rfAGCControl2 = rOFDM0_XCAGCCore2;
pHalData->PHYRegDef[RF_PATH_D].rfAGCControl2 = rOFDM0_XDAGCCore2;
// RX AFE control 1
pHalData->PHYRegDef[RF_PATH_A].rfRxIQImbalance = rOFDM0_XARxIQImbalance;
pHalData->PHYRegDef[RF_PATH_B].rfRxIQImbalance = rOFDM0_XBRxIQImbalance;
pHalData->PHYRegDef[RF_PATH_C].rfRxIQImbalance = rOFDM0_XCRxIQImbalance;
pHalData->PHYRegDef[RF_PATH_D].rfRxIQImbalance = rOFDM0_XDRxIQImbalance;
// RX AFE control 1
pHalData->PHYRegDef[RF_PATH_A].rfRxAFE = rOFDM0_XARxAFE;
pHalData->PHYRegDef[RF_PATH_B].rfRxAFE = rOFDM0_XBRxAFE;
pHalData->PHYRegDef[RF_PATH_C].rfRxAFE = rOFDM0_XCRxAFE;
pHalData->PHYRegDef[RF_PATH_D].rfRxAFE = rOFDM0_XDRxAFE;
// Tx AFE control 1
pHalData->PHYRegDef[RF_PATH_A].rfTxIQImbalance = rOFDM0_XATxIQImbalance;
pHalData->PHYRegDef[RF_PATH_B].rfTxIQImbalance = rOFDM0_XBTxIQImbalance;
pHalData->PHYRegDef[RF_PATH_C].rfTxIQImbalance = rOFDM0_XCTxIQImbalance;
pHalData->PHYRegDef[RF_PATH_D].rfTxIQImbalance = rOFDM0_XDTxIQImbalance;
// Tx AFE control 2
pHalData->PHYRegDef[RF_PATH_A].rfTxAFE = rOFDM0_XATxAFE;
pHalData->PHYRegDef[RF_PATH_B].rfTxAFE = rOFDM0_XBTxAFE;
pHalData->PHYRegDef[RF_PATH_C].rfTxAFE = rOFDM0_XCTxAFE;
pHalData->PHYRegDef[RF_PATH_D].rfTxAFE = rOFDM0_XDTxAFE;
// Tranceiver LSSI Readback SI mode
pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack;
// Tranceiver LSSI Readback PI mode
pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback;
pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback;
//pHalData->PHYRegDef[RF_PATH_C].rfLSSIReadBackPi = rFPGA0_XC_LSSIReadBack;
//pHalData->PHYRegDef[RF_PATH_D].rfLSSIReadBackPi = rFPGA0_XD_LSSIReadBack;
}
/*-----------------------------------------------------------------------------
* Function: phy_ConfigBBWithParaFile()
*
* Overview: This function read BB parameters from general file format, and do register
* Read/Write
*
* Input: struct adapter * Adapter
* ps1Byte pFileName
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
* 2008/11/06 MH For 92S we do not support silent reset now. Disable
* parameter file compare!!!!!!??
*
*---------------------------------------------------------------------------*/
static int
phy_ConfigBBWithParaFile(
IN struct adapter * Adapter,
IN u8* pFileName
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
return rtStatus;
}
//****************************************
// The following is for High Power PA
//****************************************
VOID
phy_ConfigBBExternalPA(
IN struct adapter * Adapter
)
{
#ifdef CONFIG_USB_HCI
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u16 i=0;
u32 temp=0;
if(!pHalData->ExternalPA)
{
return;
}
// 2010/10/19 MH According to Jenyu/EEChou 's opinion, we need not to execute the
// same code as SU. It is already updated in PHY_REG_1T_HP.txt.
#if 0
PHY_SetBBReg(Adapter, 0xee8, BIT28, 1);
temp = PHY_QueryBBReg(Adapter, 0x860, bMaskDWord);
temp |= (BIT26|BIT21|BIT10|BIT5);
PHY_SetBBReg(Adapter, 0x860, bMaskDWord, temp);
PHY_SetBBReg(Adapter, 0x870, BIT10, 0);
PHY_SetBBReg(Adapter, 0xc80, bMaskDWord, 0x20000080);
PHY_SetBBReg(Adapter, 0xc88, bMaskDWord, 0x40000100);
#endif
#endif
}
/*-----------------------------------------------------------------------------
* Function: phy_ConfigBBWithHeaderFile()
*
* Overview: This function read BB parameters from general file format, and do register
* Read/Write
*
* Input: struct adapter * Adapter
* u1Byte ConfigType 0 => PHY_CONFIG
* 1 =>AGC_TAB
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
*
*---------------------------------------------------------------------------*/
#ifndef CONFIG_PHY_SETTING_WITH_ODM
static int
phy_ConfigBBWithHeaderFile(
IN struct adapter * Adapter,
IN u8 ConfigType
)
{
int i;
u32* Rtl819XPHY_REGArray_Table;
u32* Rtl819XAGCTAB_Array_Table;
u16 PHY_REGArrayLen, AGCTAB_ArrayLen;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
DM_ODM_T *podmpriv = &pHalData->odmpriv;
int ret = _SUCCESS;
AGCTAB_ArrayLen = Rtl8188E_AGCTAB_1TArrayLength;
Rtl819XAGCTAB_Array_Table = (u32*)Rtl8188E_AGCTAB_1TArray;
PHY_REGArrayLen = Rtl8188E_PHY_REG_1TArrayLength;
Rtl819XPHY_REGArray_Table = (u32*)Rtl8188E_PHY_REG_1TArray;
// RT_TRACE(COMP_INIT, DBG_LOUD, (" ===> phy_ConfigBBWithHeaderFile() phy:Rtl8188EAGCTAB_1TArray\n"));
// RT_TRACE(COMP_INIT, DBG_LOUD, (" ===> phy_ConfigBBWithHeaderFile() agc:Rtl8188EPHY_REG_1TArray\n"));
if(ConfigType == CONFIG_BB_PHY_REG)
{
#ifdef CONFIG_IOL_BB_PHY_REG
{
struct xmit_frame *xmit_frame;
u32 tmp_value;
if((xmit_frame=rtw_IOL_accquire_xmit_frame(Adapter)) == NULL) {
ret = _FAIL;
goto exit;
}
for(i=0;i<PHY_REGArrayLen;i=i+2)
{
tmp_value=Rtl819XPHY_REGArray_Table[i+1];
if (Rtl819XPHY_REGArray_Table[i] == 0xfe)
rtw_IOL_append_DELAY_MS_cmd(xmit_frame, 50);
else if (Rtl819XPHY_REGArray_Table[i] == 0xfd)
rtw_IOL_append_DELAY_MS_cmd(xmit_frame, 5);
else if (Rtl819XPHY_REGArray_Table[i] == 0xfc)
rtw_IOL_append_DELAY_MS_cmd(xmit_frame, 1);
else if (Rtl819XPHY_REGArray_Table[i] == 0xfb)
rtw_IOL_append_DELAY_US_cmd(xmit_frame, 50);
else if (Rtl819XPHY_REGArray_Table[i] == 0xfa)
rtw_IOL_append_DELAY_US_cmd(xmit_frame, 5);
else if (Rtl819XPHY_REGArray_Table[i] == 0xf9)
rtw_IOL_append_DELAY_US_cmd(xmit_frame, 1);
else if (Rtl819XPHY_REGArray_Table[i] == 0xa24)
podmpriv->RFCalibrateInfo.RegA24 = Rtl819XPHY_REGArray_Table[i+1];
rtw_IOL_append_WD_cmd(xmit_frame, Rtl819XPHY_REGArray_Table[i], tmp_value);
//RT_TRACE(COMP_INIT, DBG_TRACE, ("The Rtl819XPHY_REGArray_Table[0] is %lx Rtl819XPHY_REGArray[1] is %lx \n",Rtl819XPHY_REGArray_Table[i], Rtl819XPHY_REGArray_Table[i+1]));
}
ret = rtw_IOL_exec_cmds_sync(Adapter, xmit_frame, 1000,0);
}
#else
for(i=0;i<PHY_REGArrayLen;i=i+2)
{
if (Rtl819XPHY_REGArray_Table[i] == 0xfe){
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(50);
#else
rtw_mdelay_os(50);
#endif
}
else if (Rtl819XPHY_REGArray_Table[i] == 0xfd)
rtw_mdelay_os(5);
else if (Rtl819XPHY_REGArray_Table[i] == 0xfc)
rtw_mdelay_os(1);
else if (Rtl819XPHY_REGArray_Table[i] == 0xfb)
rtw_udelay_os(50);
else if (Rtl819XPHY_REGArray_Table[i] == 0xfa)
rtw_udelay_os(5);
else if (Rtl819XPHY_REGArray_Table[i] == 0xf9)
rtw_udelay_os(1);
else if (Rtl819XPHY_REGArray_Table[i] == 0xa24)
podmpriv->RFCalibrateInfo.RegA24 = Rtl819XPHY_REGArray_Table[i+1];
PHY_SetBBReg(Adapter, Rtl819XPHY_REGArray_Table[i], bMaskDWord, Rtl819XPHY_REGArray_Table[i+1]);
// Add 1us delay between BB/RF register setting.
rtw_udelay_os(1);
//RT_TRACE(COMP_INIT, DBG_TRACE, ("The Rtl819XPHY_REGArray_Table[0] is %lx Rtl819XPHY_REGArray[1] is %lx \n",Rtl819XPHY_REGArray_Table[i], Rtl819XPHY_REGArray_Table[i+1]));
}
#endif
// for External PA
phy_ConfigBBExternalPA(Adapter);
}
else if(ConfigType == CONFIG_BB_AGC_TAB)
{
#ifdef CONFIG_IOL_BB_AGC_TAB
{
struct xmit_frame *xmit_frame;
if((xmit_frame=rtw_IOL_accquire_xmit_frame(Adapter)) == NULL) {
ret = _FAIL;
goto exit;
}
for(i=0;i<AGCTAB_ArrayLen;i=i+2)
{
rtw_IOL_append_WD_cmd(xmit_frame, Rtl819XAGCTAB_Array_Table[i], Rtl819XAGCTAB_Array_Table[i+1]);
//RT_TRACE(COMP_INIT, DBG_TRACE, ("The Rtl819XAGCTAB_Array_Table[0] is %lx Rtl819XPHY_REGArray[1] is %lx \n",Rtl819XAGCTAB_Array_Table[i], Rtl819XAGCTAB_Array_Table[i+1]));
}
ret = rtw_IOL_exec_cmds_sync(Adapter, xmit_frame, 1000,0);
}
#else
for(i=0;i<AGCTAB_ArrayLen;i=i+2)
{
PHY_SetBBReg(Adapter, Rtl819XAGCTAB_Array_Table[i], bMaskDWord, Rtl819XAGCTAB_Array_Table[i+1]);
// Add 1us delay between BB/RF register setting.
rtw_udelay_os(1);
//RT_TRACE(COMP_INIT, DBG_TRACE, ("The Rtl819XAGCTAB_Array_Table[0] is %lx Rtl819XPHY_REGArray[1] is %lx \n",Rtl819XAGCTAB_Array_Table[i], Rtl819XAGCTAB_Array_Table[i+1]));
}
#endif
}
exit:
return ret;
}
#endif //#ifndef CONFIG_PHY_SETTING_WITH_ODM
VOID
storePwrIndexDiffRateOffset(
IN struct adapter *Adapter,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if(RegAddr == rTxAGC_A_Rate18_06)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][0]-TxAGC_A_Rate18_06 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0]);
}
if(RegAddr == rTxAGC_A_Rate54_24)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][1] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][1]-TxAGC_A_Rate54_24 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][1]);
}
if(RegAddr == rTxAGC_A_CCK1_Mcs32)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][6] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][6]-TxAGC_A_CCK1_Mcs32 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][6]);
}
if(RegAddr == rTxAGC_B_CCK11_A_CCK2_11 && BitMask == 0xffffff00)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][7] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][7]-TxAGC_B_CCK11_A_CCK2_11 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][7]);
}
if(RegAddr == rTxAGC_A_Mcs03_Mcs00)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][2] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][2]-TxAGC_A_Mcs03_Mcs00 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][2]);
}
if(RegAddr == rTxAGC_A_Mcs07_Mcs04)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][3] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][3]-TxAGC_A_Mcs07_Mcs04 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][3]);
}
if(RegAddr == rTxAGC_A_Mcs11_Mcs08)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][4] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][4]-TxAGC_A_Mcs11_Mcs08 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][4]);
}
if(RegAddr == rTxAGC_A_Mcs15_Mcs12)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][5] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][5]-TxAGC_A_Mcs15_Mcs12 = 0x%x\n", pHalData->pwrGroupCnt,pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][5]);
if(pHalData->rf_type== RF_1T1R)
{
//printk("pwrGroupCnt = %d\n", pHalData->pwrGroupCnt);
pHalData->pwrGroupCnt++;
}
}
if(RegAddr == rTxAGC_B_Rate18_06)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][8] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][8]-TxAGC_B_Rate18_06 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][8]);
}
if(RegAddr == rTxAGC_B_Rate54_24)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][9] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][9]-TxAGC_B_Rate54_24 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][9]);
}
if(RegAddr == rTxAGC_B_CCK1_55_Mcs32)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][14] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][14]-TxAGC_B_CCK1_55_Mcs32 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][14]);
}
if(RegAddr == rTxAGC_B_CCK11_A_CCK2_11 && BitMask == 0x000000ff)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][15] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][15]-TxAGC_B_CCK11_A_CCK2_11 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][15]);
}
if(RegAddr == rTxAGC_B_Mcs03_Mcs00)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][10] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][10]-TxAGC_B_Mcs03_Mcs00 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][10]);
}
if(RegAddr == rTxAGC_B_Mcs07_Mcs04)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][11] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][11]-TxAGC_B_Mcs07_Mcs04 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][11]);
}
if(RegAddr == rTxAGC_B_Mcs11_Mcs08)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][12] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][12]-TxAGC_B_Mcs11_Mcs08 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][12]);
}
if(RegAddr == rTxAGC_B_Mcs15_Mcs12)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][13] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][13]-TxAGC_B_Mcs15_Mcs12 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][13]);
if(pHalData->rf_type != RF_1T1R)
{
//printk("pwrGroupCnt = %d\n", pHalData->pwrGroupCnt);
pHalData->pwrGroupCnt++;
}
}
}
/*-----------------------------------------------------------------------------
* Function: phy_ConfigBBWithPgParaFile
*
* Overview:
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/06/2008 MHC Create Version 0.
* 2009/07/29 tynli (porting from 92SE branch)2009/03/11 Add copy parameter file to buffer for silent reset
*---------------------------------------------------------------------------*/
static int
phy_ConfigBBWithPgParaFile(
IN struct adapter * Adapter,
IN u8* pFileName)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
return rtStatus;
} /* phy_ConfigBBWithPgParaFile */
#ifndef CONFIG_PHY_SETTING_WITH_ODM
/*-----------------------------------------------------------------------------
* Function: phy_ConfigBBWithPgHeaderFile
*
* Overview: Config PHY_REG_PG array
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/06/2008 MHC Add later!!!!!!.. Please modify for new files!!!!
* 11/10/2008 tynli Modify to mew files.
*---------------------------------------------------------------------------*/
static int
phy_ConfigBBWithPgHeaderFile(
IN struct adapter * Adapter,
IN u8 ConfigType)
{
int i;
u32* Rtl819XPHY_REGArray_Table_PG;
u16 PHY_REGArrayPGLen;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PHY_REGArrayPGLen = Rtl8188E_PHY_REG_Array_PGLength;
Rtl819XPHY_REGArray_Table_PG = (u32*)Rtl8188E_PHY_REG_Array_PG;
if(ConfigType == CONFIG_BB_PHY_REG)
{
for(i=0;i<PHY_REGArrayPGLen;i=i+3)
{
#if 0 //without IO, no delay is neeeded...
if (Rtl819XPHY_REGArray_Table_PG[i] == 0xfe){
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(50);
#else
rtw_mdelay_os(50);
#endif
}
else if (Rtl819XPHY_REGArray_Table_PG[i] == 0xfd)
rtw_mdelay_os(5);
else if (Rtl819XPHY_REGArray_Table_PG[i] == 0xfc)
rtw_mdelay_os(1);
else if (Rtl819XPHY_REGArray_Table_PG[i] == 0xfb)
rtw_udelay_os(50);
else if (Rtl819XPHY_REGArray_Table_PG[i] == 0xfa)
rtw_udelay_os(5);
else if (Rtl819XPHY_REGArray_Table_PG[i] == 0xf9)
rtw_udelay_os(1);
//PHY_SetBBReg(Adapter, Rtl819XPHY_REGArray_Table_PG[i], Rtl819XPHY_REGArray_Table_PG[i+1], Rtl819XPHY_REGArray_Table_PG[i+2]);
#endif
storePwrIndexDiffRateOffset(Adapter, Rtl819XPHY_REGArray_Table_PG[i],
Rtl819XPHY_REGArray_Table_PG[i+1],
Rtl819XPHY_REGArray_Table_PG[i+2]);
//PHY_SetBBReg(Adapter, Rtl819XPHY_REGArray_Table_PG[i], Rtl819XPHY_REGArray_Table_PG[i+1], Rtl819XPHY_REGArray_Table_PG[i+2]);
//RT_TRACE(COMP_SEND, DBG_TRACE, ("The Rtl819XPHY_REGArray_Table_PG[0] is %lx Rtl819XPHY_REGArray_Table_PG[1] is %lx \n",Rtl819XPHY_REGArray_Table_PG[i], Rtl819XPHY_REGArray_Table_PG[i+1]));
}
}
else
{
//RT_TRACE(COMP_SEND, DBG_LOUD, ("phy_ConfigBBWithPgHeaderFile(): ConfigType != CONFIG_BB_PHY_REG\n"));
}
return _SUCCESS;
} /* phy_ConfigBBWithPgHeaderFile */
#endif //CONFIG_PHY_SETTING_WITH_ODM
static VOID
phy_BB8192C_Config_1T(
IN struct adapter *Adapter
)
{
#if 0
//for path - A
PHY_SetBBReg(Adapter, rFPGA0_TxInfo, 0x3, 0x1);
PHY_SetBBReg(Adapter, rFPGA1_TxInfo, 0x0303, 0x0101);
PHY_SetBBReg(Adapter, 0xe74, 0x0c000000, 0x1);
PHY_SetBBReg(Adapter, 0xe78, 0x0c000000, 0x1);
PHY_SetBBReg(Adapter, 0xe7c, 0x0c000000, 0x1);
PHY_SetBBReg(Adapter, 0xe80, 0x0c000000, 0x1);
PHY_SetBBReg(Adapter, 0xe88, 0x0c000000, 0x1);
#endif
//for path - B
PHY_SetBBReg(Adapter, rFPGA0_TxInfo, 0x3, 0x2);
PHY_SetBBReg(Adapter, rFPGA1_TxInfo, 0x300033, 0x200022);
// 20100519 Joseph: Add for 1T2R config. Suggested by Kevin, Jenyu and Yunan.
PHY_SetBBReg(Adapter, rCCK0_AFESetting, bMaskByte3, 0x45);
PHY_SetBBReg(Adapter, rOFDM0_TRxPathEnable, bMaskByte0, 0x23);
PHY_SetBBReg(Adapter, rOFDM0_AGCParameter1, 0x30, 0x1); // B path first AGC
PHY_SetBBReg(Adapter, 0xe74, 0x0c000000, 0x2);
PHY_SetBBReg(Adapter, 0xe78, 0x0c000000, 0x2);
PHY_SetBBReg(Adapter, 0xe7c, 0x0c000000, 0x2);
PHY_SetBBReg(Adapter, 0xe80, 0x0c000000, 0x2);
PHY_SetBBReg(Adapter, 0xe88, 0x0c000000, 0x2);
}
// Joseph test: new initialize order!!
// Test only!! This part need to be re-organized.
// Now it is just for 8256.
static int
phy_BB8190_Config_HardCode(
IN struct adapter *Adapter
)
{
//RT_ASSERT(FALSE, ("This function is not implement yet!! \n"));
return _SUCCESS;
}
static int
phy_BB8188E_Config_ParaFile(
IN struct adapter *Adapter
)
{
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(Adapter);
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
u8 sz8188EBBRegFile[] = RTL8188E_PHY_REG;
u8 sz8188EAGCTableFile[] = RTL8188E_AGC_TAB;
u8 sz8188EBBRegPgFile[] = RTL8188E_PHY_REG_PG;
u8 sz8188EBBRegMpFile[] = RTL8188E_PHY_REG_MP;
u8 *pszBBRegFile = NULL, *pszAGCTableFile = NULL, *pszBBRegPgFile = NULL, *pszBBRegMpFile=NULL;
//RT_TRACE(COMP_INIT, DBG_TRACE, ("==>phy_BB8192S_Config_ParaFile\n"));
pszBBRegFile = sz8188EBBRegFile ;
pszAGCTableFile = sz8188EAGCTableFile;
pszBBRegPgFile = sz8188EBBRegPgFile;
pszBBRegMpFile = sz8188EBBRegMpFile;
//
// 1. Read PHY_REG.TXT BB INIT!!
// We will seperate as 88C / 92C according to chip version
//
#ifdef CONFIG_EMBEDDED_FWIMG
#ifdef CONFIG_PHY_SETTING_WITH_ODM
if(HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG))
rtStatus = _FAIL;
#else
rtStatus = phy_ConfigBBWithHeaderFile(Adapter, CONFIG_BB_PHY_REG);
#endif//#ifdef CONFIG_PHY_SETTING_WITH_ODM
#else
// No matter what kind of CHIP we always read PHY_REG.txt. We must copy different
// type of parameter files to phy_reg.txt at first.
rtStatus = phy_ConfigBBWithParaFile(Adapter,pszBBRegFile);
#endif//#ifdef CONFIG_EMBEDDED_FWIMG
if(rtStatus != _SUCCESS){
//RT_TRACE(COMP_INIT, DBG_SERIOUS, ("phy_BB8192S_Config_ParaFile():Write BB Reg Fail!!"));
goto phy_BB8190_Config_ParaFile_Fail;
}
//
// 20100318 Joseph: Config 2T2R to 1T2R if necessary.
//
//if(pHalData->rf_type == RF_1T2R)
//{
//phy_BB8192C_Config_1T(Adapter);
//DBG_8192C("phy_BB8188E_Config_ParaFile():Config to 1T!!\n");
//}
//
// 2. If EEPROM or EFUSE autoload OK, We must config by PHY_REG_PG.txt
//
if (pEEPROM->bautoload_fail_flag == _FALSE)
{
pHalData->pwrGroupCnt = 0;
#ifdef CONFIG_EMBEDDED_FWIMG
#ifdef CONFIG_PHY_SETTING_WITH_ODM
if(HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG_PG))
rtStatus = _FAIL;
#else
rtStatus = phy_ConfigBBWithPgHeaderFile(Adapter, CONFIG_BB_PHY_REG_PG);
#endif
#else
rtStatus = phy_ConfigBBWithPgParaFile(Adapter, pszBBRegPgFile);
#endif
}
if(rtStatus != _SUCCESS){
//RT_TRACE(COMP_INIT, DBG_SERIOUS, ("phy_BB8192S_Config_ParaFile():BB_PG Reg Fail!!"));
goto phy_BB8190_Config_ParaFile_Fail;
}
//
// 3. BB AGC table Initialization
//
#ifdef CONFIG_EMBEDDED_FWIMG
#ifdef CONFIG_PHY_SETTING_WITH_ODM
if(HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_AGC_TAB))
rtStatus = _FAIL;
#else
rtStatus = phy_ConfigBBWithHeaderFile(Adapter, CONFIG_BB_AGC_TAB);
#endif//#ifdef CONFIG_PHY_SETTING_WITH_ODM
#else
//RT_TRACE(COMP_INIT, DBG_LOUD, ("phy_BB8192S_Config_ParaFile AGC_TAB.txt\n"));
rtStatus = phy_ConfigBBWithParaFile(Adapter, pszAGCTableFile);
#endif//#ifdef CONFIG_EMBEDDED_FWIMG
if(rtStatus != _SUCCESS){
//RT_TRACE(COMP_FPGA, DBG_SERIOUS, ("phy_BB8192S_Config_ParaFile():AGC Table Fail\n"));
goto phy_BB8190_Config_ParaFile_Fail;
}
phy_BB8190_Config_ParaFile_Fail:
return rtStatus;
}
int
PHY_BBConfig8188E(
IN struct adapter *Adapter
)
{
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 RegVal;
u8 TmpU1B=0;
u8 value8,CrystalCap;
phy_InitBBRFRegisterDefinition(Adapter);
// Enable BB and RF
RegVal = rtw_read16(Adapter, REG_SYS_FUNC_EN);
rtw_write16(Adapter, REG_SYS_FUNC_EN, (u16)(RegVal|BIT13|BIT0|BIT1));
// 20090923 Joseph: Advised by Steven and Jenyu. Power sequence before init RF.
//rtw_write8(Adapter, REG_AFE_PLL_CTRL, 0x83);
//rtw_write8(Adapter, REG_AFE_PLL_CTRL+1, 0xdb);
rtw_write8(Adapter, REG_RF_CTRL, RF_EN|RF_RSTB|RF_SDMRSTB);
#ifdef CONFIG_USB_HCI
rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_USBA | FEN_USBD | FEN_BB_GLB_RSTn | FEN_BBRSTB);
#else
rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_PPLL|FEN_PCIEA|FEN_DIO_PCIE|FEN_BB_GLB_RSTn|FEN_BBRSTB);
#endif
#if 0
#ifdef CONFIG_USB_HCI
//To Fix MAC loopback mode fail. Suggested by SD4 Johnny. 2010.03.23.
rtw_write8(Adapter, REG_LDOHCI12_CTRL, 0x0f);
rtw_write8(Adapter, 0x15, 0xe9);
#endif
rtw_write8(Adapter, REG_AFE_XTAL_CTRL+1, 0x80);
#endif
#ifdef CONFIG_USB_HCI
//rtw_write8(Adapter, 0x15, 0xe9);
#endif
#ifdef CONFIG_PCI_HCI
// Force use left antenna by default for 88C.
// if(!IS_92C_SERIAL(pHalData->VersionID) || IS_92C_1T2R(pHalData->VersionID))
if(Adapter->ledpriv.LedStrategy != SW_LED_MODE10)
{
RegVal = rtw_read32(Adapter, REG_LEDCFG0);
rtw_write32(Adapter, REG_LEDCFG0, RegVal|BIT23);
}
#endif
//
// Config BB and AGC
//
rtStatus = phy_BB8188E_Config_ParaFile(Adapter);
// write 0x24[16:11] = 0x24[22:17] = CrystalCap
CrystalCap = pHalData->CrystalCap & 0x3F;
PHY_SetBBReg(Adapter, REG_AFE_XTAL_CTRL, 0x7ff800, (CrystalCap | (CrystalCap << 6)));
return rtStatus;
}
int
PHY_RFConfig8188E(
IN struct adapter *Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
//
// RF config
//
rtStatus = PHY_RF6052_Config8188E(Adapter);
#if 0
switch(pHalData->rf_chip)
{
case RF_6052:
rtStatus = PHY_RF6052_Config(Adapter);
break;
case RF_8225:
rtStatus = PHY_RF8225_Config(Adapter);
break;
case RF_8256:
rtStatus = PHY_RF8256_Config(Adapter);
break;
case RF_8258:
break;
case RF_PSEUDO_11N:
rtStatus = PHY_RF8225_Config(Adapter);
break;
default: //for MacOs Warning: "RF_TYPE_MIN" not handled in switch
break;
}
#endif
return rtStatus;
}
/*-----------------------------------------------------------------------------
* Function: PHY_ConfigRFWithParaFile()
*
* Overview: This function read RF parameters from general file format, and do RF 3-wire
*
* Input: struct adapter * Adapter
* ps1Byte pFileName
* RF_RADIO_PATH_E eRFPath
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
*
* Note: Delay may be required for RF configuration
*---------------------------------------------------------------------------*/
int
rtl8188e_PHY_ConfigRFWithParaFile(
IN struct adapter * Adapter,
IN u8* pFileName,
RF_RADIO_PATH_E eRFPath
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
return rtStatus;
}
//****************************************
// The following is for High Power PA
//****************************************
#define HighPowerRadioAArrayLen 22
//This is for High power PA
u32 Rtl8192S_HighPower_RadioA_Array[HighPowerRadioAArrayLen] = {
0x013,0x00029ea4,
0x013,0x00025e74,
0x013,0x00020ea4,
0x013,0x0001ced0,
0x013,0x00019f40,
0x013,0x00014e70,
0x013,0x000106a0,
0x013,0x0000c670,
0x013,0x000082a0,
0x013,0x00004270,
0x013,0x00000240,
};
int
PHY_ConfigRFExternalPA(
IN struct adapter * Adapter,
RF_RADIO_PATH_E eRFPath
)
{
int rtStatus = _SUCCESS;
#ifdef CONFIG_USB_HCI
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u16 i=0;
if(!pHalData->ExternalPA)
{
return rtStatus;
}
// 2010/10/19 MH According to Jenyu/EEChou 's opinion, we need not to execute the
// same code as SU. It is already updated in radio_a_1T_HP.txt.
#if 0
//add for SU High Power PA
for(i = 0;i<HighPowerRadioAArrayLen; i=i+2)
{
RT_TRACE(COMP_INIT, DBG_LOUD, ("External PA, write RF 0x%lx=0x%lx\n", Rtl8192S_HighPower_RadioA_Array[i], Rtl8192S_HighPower_RadioA_Array[i+1]));
PHY_SetRFReg(Adapter, eRFPath, Rtl8192S_HighPower_RadioA_Array[i], bRFRegOffsetMask, Rtl8192S_HighPower_RadioA_Array[i+1]);
}
#endif
#endif
return rtStatus;
}
//****************************************
/*-----------------------------------------------------------------------------
* Function: PHY_ConfigRFWithHeaderFile()
*
* Overview: This function read RF parameters from general file format, and do RF 3-wire
*
* Input: struct adapter * Adapter
* ps1Byte pFileName
* RF_RADIO_PATH_E eRFPath
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
*
* Note: Delay may be required for RF configuration
*---------------------------------------------------------------------------*/
#ifndef CONFIG_PHY_SETTING_WITH_ODM
int
rtl8188e_PHY_ConfigRFWithHeaderFile(
IN struct adapter * Adapter,
RF_RADIO_PATH_E eRFPath
)
{
int i;
int rtStatus = _SUCCESS;
u32* Rtl819XRadioA_Array_Table;
u32* Rtl819XRadioB_Array_Table;
u16 RadioA_ArrayLen,RadioB_ArrayLen;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
RadioA_ArrayLen = Rtl8188E_RadioA_1TArrayLength;
Rtl819XRadioA_Array_Table = (u32*)Rtl8188E_RadioA_1TArray;
RadioB_ArrayLen = Rtl8188E_RadioB_1TArrayLength;
Rtl819XRadioB_Array_Table = (u32*)Rtl8188E_RadioB_1TArray;
// RT_TRACE(COMP_INIT, DBG_LOUD, (" ===> PHY_ConfigRFWithHeaderFile() Radio_A:Rtl8188ERadioA_1TArray\n"));
// RT_TRACE(COMP_INIT, DBG_LOUD, (" ===> PHY_ConfigRFWithHeaderFile() Radio_B:Rtl8188ERadioB_1TArray\n"));
switch (eRFPath)
{
case RF_PATH_A:
#ifdef CONFIG_IOL_RF_RF_PATH_A
{
struct xmit_frame *xmit_frame;
if((xmit_frame=rtw_IOL_accquire_xmit_frame(Adapter)) == NULL) {
rtStatus = _FAIL;
goto exit;
}
for(i = 0;i<RadioA_ArrayLen; i=i+2)
{
if(Rtl819XRadioA_Array_Table[i] == 0xfe)
rtw_IOL_append_DELAY_MS_cmd(xmit_frame, 50);
else if (Rtl819XRadioA_Array_Table[i] == 0xfd)
rtw_IOL_append_DELAY_MS_cmd(xmit_frame, 5);
else if (Rtl819XRadioA_Array_Table[i] == 0xfc)
rtw_IOL_append_DELAY_MS_cmd(xmit_frame, 1);
else if (Rtl819XRadioA_Array_Table[i] == 0xfb)
rtw_IOL_append_DELAY_US_cmd(xmit_frame, 50);
else if (Rtl819XRadioA_Array_Table[i] == 0xfa)
rtw_IOL_append_DELAY_US_cmd(xmit_frame, 5);
else if (Rtl819XRadioA_Array_Table[i] == 0xf9)
rtw_IOL_append_DELAY_US_cmd(xmit_frame, 1);
else
{
BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset = 0;
u32 DataAndAddr = 0;
NewOffset = Rtl819XRadioA_Array_Table[i] & 0x3f;
DataAndAddr = ((NewOffset<<20) | (Rtl819XRadioA_Array_Table[i+1]&0x000fffff)) & 0x0fffffff; // T65 RF
rtw_IOL_append_WD_cmd(xmit_frame, pPhyReg->rf3wireOffset, DataAndAddr);
}
}
rtStatus = rtw_IOL_exec_cmds_sync(Adapter, xmit_frame, 1000,0);
}
#else
for(i = 0;i<RadioA_ArrayLen; i=i+2)
{
if(Rtl819XRadioA_Array_Table[i] == 0xfe) {
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(50);
#else
rtw_mdelay_os(50);
#endif
}
else if (Rtl819XRadioA_Array_Table[i] == 0xfd)
rtw_mdelay_os(5);
else if (Rtl819XRadioA_Array_Table[i] == 0xfc)
rtw_mdelay_os(1);
else if (Rtl819XRadioA_Array_Table[i] == 0xfb)
rtw_udelay_os(50);
else if (Rtl819XRadioA_Array_Table[i] == 0xfa)
rtw_udelay_os(5);
else if (Rtl819XRadioA_Array_Table[i] == 0xf9)
rtw_udelay_os(1);
else
{
PHY_SetRFReg(Adapter, eRFPath, Rtl819XRadioA_Array_Table[i], bRFRegOffsetMask, Rtl819XRadioA_Array_Table[i+1]);
// Add 1us delay between BB/RF register setting.
rtw_udelay_os(1);
}
}
#endif
//Add for High Power PA
PHY_ConfigRFExternalPA(Adapter, eRFPath);
break;
case RF_PATH_B:
#ifdef CONFIG_IOL_RF_RF_PATH_B
{
struct xmit_frame *xmit_frame;
if((xmit_frame=rtw_IOL_accquire_xmit_frame(Adapter)) == NULL) {
rtStatus = _FAIL;
goto exit;
}
for(i = 0;i<RadioB_ArrayLen; i=i+2)
{
if(Rtl819XRadioB_Array_Table[i] == 0xfe)
rtw_IOL_append_DELAY_MS_cmd(xmit_frame, 50);
else if (Rtl819XRadioB_Array_Table[i] == 0xfd)
rtw_IOL_append_DELAY_MS_cmd(xmit_frame, 5);
else if (Rtl819XRadioB_Array_Table[i] == 0xfc)
rtw_IOL_append_DELAY_MS_cmd(xmit_frame, 1);
else if (Rtl819XRadioB_Array_Table[i] == 0xfb)
rtw_IOL_append_DELAY_US_cmd(xmit_frame, 50);
else if (Rtl819XRadioB_Array_Table[i] == 0xfa)
rtw_IOL_append_DELAY_US_cmd(xmit_frame, 5);
else if (Rtl819XRadioB_Array_Table[i] == 0xf9)
rtw_IOL_append_DELAY_US_cmd(xmit_frame, 1);
else
{
BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset = 0;
u32 DataAndAddr = 0;
NewOffset = Rtl819XRadioB_Array_Table[i] & 0x3f;
DataAndAddr = ((NewOffset<<20) | (Rtl819XRadioB_Array_Table[i+1]&0x000fffff)) & 0x0fffffff; // T65 RF
rtw_IOL_append_WD_cmd(xmit_frame, pPhyReg->rf3wireOffset, DataAndAddr);
}
}
rtStatus = rtw_IOL_exec_cmds_sync(Adapter, xmit_frame, 1000,0);
}
#else
for(i = 0;i<RadioB_ArrayLen; i=i+2)
{
if(Rtl819XRadioB_Array_Table[i] == 0xfe)
{ // Deay specific ms. Only RF configuration require delay.
#if 0//#ifdef CONFIG_USB_HCI
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(1000);
#else
rtw_mdelay_os(1000);
#endif
#else
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(50);
#else
rtw_mdelay_os(50);
#endif
#endif
}
else if (Rtl819XRadioB_Array_Table[i] == 0xfd)
rtw_mdelay_os(5);
else if (Rtl819XRadioB_Array_Table[i] == 0xfc)
rtw_mdelay_os(1);
else if (Rtl819XRadioB_Array_Table[i] == 0xfb)
rtw_udelay_os(50);
else if (Rtl819XRadioB_Array_Table[i] == 0xfa)
rtw_udelay_os(5);
else if (Rtl819XRadioB_Array_Table[i] == 0xf9)
rtw_udelay_os(1);
else
{
PHY_SetRFReg(Adapter, eRFPath, Rtl819XRadioB_Array_Table[i], bRFRegOffsetMask, Rtl819XRadioB_Array_Table[i+1]);
// Add 1us delay between BB/RF register setting.
rtw_udelay_os(1);
}
}
#endif
break;
case RF_PATH_C:
break;
case RF_PATH_D:
break;
}
exit:
return rtStatus;
}
#endif//#ifndef CONFIG_PHY_SETTING_WITH_ODM
/*-----------------------------------------------------------------------------
* Function: PHY_CheckBBAndRFOK()
*
* Overview: This function is write register and then readback to make sure whether
* BB[PHY0, PHY1], RF[Patha, path b, path c, path d] is Ok
*
* Input: struct adapter * Adapter
* HW90_BLOCK_E CheckBlock
* RF_RADIO_PATH_E eRFPath // it is used only when CheckBlock is HW90_BLOCK_RF
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: PHY is OK
*
* Note: This function may be removed in the ASIC
*---------------------------------------------------------------------------*/
int
PHY_CheckBBAndRFOK(
IN struct adapter * Adapter,
IN HW90_BLOCK_E CheckBlock,
IN RF_RADIO_PATH_E eRFPath
)
{
int rtStatus = _SUCCESS;
u32 i, CheckTimes = 4,ulRegRead = 0;
u32 WriteAddr[4];
u32 WriteData[] = {0xfffff027, 0xaa55a02f, 0x00000027, 0x55aa502f};
// Initialize register address offset to be checked
WriteAddr[HW90_BLOCK_MAC] = 0x100;
WriteAddr[HW90_BLOCK_PHY0] = 0x900;
WriteAddr[HW90_BLOCK_PHY1] = 0x800;
WriteAddr[HW90_BLOCK_RF] = 0x3;
for(i=0 ; i < CheckTimes ; i++)
{
//
// Write Data to register and readback
//
switch(CheckBlock)
{
case HW90_BLOCK_MAC:
//RT_ASSERT(FALSE, ("PHY_CheckBBRFOK(): Never Write 0x100 here!"));
//RT_TRACE(COMP_INIT, DBG_LOUD, ("PHY_CheckBBRFOK(): Never Write 0x100 here!\n"));
break;
case HW90_BLOCK_PHY0:
case HW90_BLOCK_PHY1:
rtw_write32(Adapter, WriteAddr[CheckBlock], WriteData[i]);
ulRegRead = rtw_read32(Adapter, WriteAddr[CheckBlock]);
break;
case HW90_BLOCK_RF:
// When initialization, we want the delay function(delay_ms(), delay_us()
// ==> actually we call PlatformStallExecution()) to do NdisStallExecution()
// [busy wait] instead of NdisMSleep(). So we acquire RT_INITIAL_SPINLOCK
// to run at Dispatch level to achive it.
//cosa PlatformAcquireSpinLock(Adapter, RT_INITIAL_SPINLOCK);
WriteData[i] &= 0xfff;
PHY_SetRFReg(Adapter, eRFPath, WriteAddr[HW90_BLOCK_RF], bRFRegOffsetMask, WriteData[i]);
// TODO: we should not delay for such a long time. Ask SD3
rtw_mdelay_os(10);
ulRegRead = PHY_QueryRFReg(Adapter, eRFPath, WriteAddr[HW90_BLOCK_RF], bMaskDWord);
rtw_mdelay_os(10);
//cosa PlatformReleaseSpinLock(Adapter, RT_INITIAL_SPINLOCK);
break;
default:
rtStatus = _FAIL;
break;
}
//
// Check whether readback data is correct
//
if(ulRegRead != WriteData[i])
{
//RT_TRACE(COMP_FPGA, DBG_LOUD, ("ulRegRead: %lx, WriteData: %lx \n", ulRegRead, WriteData[i]));
rtStatus = _FAIL;
break;
}
}
return rtStatus;
}
VOID
rtl8192c_PHY_GetHWRegOriginalValue(
IN struct adapter * Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
// read rx initial gain
pHalData->DefaultInitialGain[0] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XAAGCCore1, bMaskByte0);
pHalData->DefaultInitialGain[1] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XBAGCCore1, bMaskByte0);
pHalData->DefaultInitialGain[2] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XCAGCCore1, bMaskByte0);
pHalData->DefaultInitialGain[3] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XDAGCCore1, bMaskByte0);
//RT_TRACE(COMP_INIT, DBG_LOUD,
//("Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x) \n",
//pHalData->DefaultInitialGain[0], pHalData->DefaultInitialGain[1],
//pHalData->DefaultInitialGain[2], pHalData->DefaultInitialGain[3]));
// read framesync
pHalData->framesync = (u8)PHY_QueryBBReg(Adapter, rOFDM0_RxDetector3, bMaskByte0);
pHalData->framesyncC34 = PHY_QueryBBReg(Adapter, rOFDM0_RxDetector2, bMaskDWord);
//RT_TRACE(COMP_INIT, DBG_LOUD, ("Default framesync (0x%x) = 0x%x \n",
// rOFDM0_RxDetector3, pHalData->framesync));
}
//
// Description:
// Map dBm into Tx power index according to
// current HW model, for example, RF and PA, and
// current wireless mode.
// By Bruce, 2008-01-29.
//
static u8
phy_DbmToTxPwrIdx(
IN struct adapter * Adapter,
IN WIRELESS_MODE WirelessMode,
IN int PowerInDbm
)
{
u8 TxPwrIdx = 0;
int Offset = 0;
//
// Tested by MP, we found that CCK Index 0 equals to 8dbm, OFDM legacy equals to
// 3dbm, and OFDM HT equals to 0dbm repectively.
// Note:
// The mapping may be different by different NICs. Do not use this formula for what needs accurate result.
// By Bruce, 2008-01-29.
//
switch(WirelessMode)
{
case WIRELESS_MODE_B:
Offset = -7;
break;
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
Offset = -8;
break;
default:
Offset = -8;
break;
}
if((PowerInDbm - Offset) > 0)
{
TxPwrIdx = (u8)((PowerInDbm - Offset) * 2);
}
else
{
TxPwrIdx = 0;
}
// Tx Power Index is too large.
if(TxPwrIdx > MAX_TXPWR_IDX_NMODE_92S)
TxPwrIdx = MAX_TXPWR_IDX_NMODE_92S;
return TxPwrIdx;
}
//
// Description:
// Map Tx power index into dBm according to
// current HW model, for example, RF and PA, and
// current wireless mode.
// By Bruce, 2008-01-29.
//
int
phy_TxPwrIdxToDbm(
IN struct adapter * Adapter,
IN WIRELESS_MODE WirelessMode,
IN u8 TxPwrIdx
)
{
int Offset = 0;
int PwrOutDbm = 0;
//
// Tested by MP, we found that CCK Index 0 equals to -7dbm, OFDM legacy equals to -8dbm.
// Note:
// The mapping may be different by different NICs. Do not use this formula for what needs accurate result.
// By Bruce, 2008-01-29.
//
switch(WirelessMode)
{
case WIRELESS_MODE_B:
Offset = -7;
break;
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
Offset = -8;
default:
Offset = -8;
break;
}
PwrOutDbm = TxPwrIdx / 2 + Offset; // Discard the decimal part.
return PwrOutDbm;
}
/*-----------------------------------------------------------------------------
* Function: GetTxPowerLevel8190()
*
* Overview: This function is export to "common" moudule
*
* Input: struct adapter * Adapter
* psByte Power Level
*
* Output: NONE
*
* Return: NONE
*
*---------------------------------------------------------------------------*/
VOID
PHY_GetTxPowerLevel8188E(
IN struct adapter * Adapter,
OUT u32* powerlevel
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 TxPwrLevel = 0;
int TxPwrDbm;
//
// Because the Tx power indexes are different, we report the maximum of them to
// meet the CCX TPC request. By Bruce, 2008-01-31.
//
// CCK
TxPwrLevel = pHalData->CurrentCckTxPwrIdx;
TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_B, TxPwrLevel);
// Legacy OFDM
TxPwrLevel = pHalData->CurrentOfdm24GTxPwrIdx + pHalData->LegacyHTTxPowerDiff;
// Compare with Legacy OFDM Tx power.
if(phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_G, TxPwrLevel) > TxPwrDbm)
TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_G, TxPwrLevel);
// HT OFDM
TxPwrLevel = pHalData->CurrentOfdm24GTxPwrIdx;
// Compare with HT OFDM Tx power.
if(phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_N_24G, TxPwrLevel) > TxPwrDbm)
TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_N_24G, TxPwrLevel);
*powerlevel = TxPwrDbm;
}
#if 0
static void getTxPowerIndex(
IN struct adapter * Adapter,
IN u8 channel,
IN OUT u8* cckPowerLevel,
IN OUT u8* ofdmPowerLevel
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 index = (channel -1);
// 1. CCK
cckPowerLevel[RF_PATH_A] = pHalData->TxPwrLevelCck[RF_PATH_A][index]; //RF-A
cckPowerLevel[RF_PATH_B] = pHalData->TxPwrLevelCck[RF_PATH_B][index]; //RF-B
// 2. OFDM for 1S or 2S
if (GET_RF_TYPE(Adapter) == RF_1T2R || GET_RF_TYPE(Adapter) == RF_1T1R)
{
// Read HT 40 OFDM TX power
ofdmPowerLevel[RF_PATH_A] = pHalData->TxPwrLevelHT40_1S[RF_PATH_A][index];
ofdmPowerLevel[RF_PATH_B] = pHalData->TxPwrLevelHT40_1S[RF_PATH_B][index];
}
else if (GET_RF_TYPE(Adapter) == RF_2T2R)
{
// Read HT 40 OFDM TX power
ofdmPowerLevel[RF_PATH_A] = pHalData->TxPwrLevelHT40_2S[RF_PATH_A][index];
ofdmPowerLevel[RF_PATH_B] = pHalData->TxPwrLevelHT40_2S[RF_PATH_B][index];
}
//RTPRINT(FPHY, PHY_TXPWR, ("Channel-%d, set tx power index !!\n", channel));
}
#endif
void getTxPowerIndex88E(
IN struct adapter * Adapter,
IN u8 channel,
IN OUT u8* cckPowerLevel,
IN OUT u8* ofdmPowerLevel,
IN OUT u8* BW20PowerLevel,
IN OUT u8* BW40PowerLevel
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 index = (channel -1);
u8 TxCount=0,path_nums;
if((RF_1T2R == pHalData->rf_type) ||(RF_1T1R ==pHalData->rf_type ))
path_nums = 1;
else
path_nums = 2;
for(TxCount=0;TxCount< path_nums ;TxCount++)
{
if(TxCount==RF_PATH_A)
{
// 1. CCK
cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index];
//2. OFDM
ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->OFDM_24G_Diff[TxCount][RF_PATH_A];
// 1. BW20
BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[TxCount][RF_PATH_A];
//2. BW40
BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index];
//RTPRINT(FPHY, PHY_TXPWR, ("getTxPowerIndex88E(): 40MBase=0x%x 20Mdiff=%d 20MBase=0x%x!!\n",
// pHalData->Index24G_BW40_Base[RF_PATH_A][index],
// pHalData->BW20_24G_Diff[TxCount][RF_PATH_A],
// BW20PowerLevel[TxCount]));
}
else if(TxCount==RF_PATH_B)
{
// 1. CCK
cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index];
//2. OFDM
ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[TxCount][index];
// 1. BW20
BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[TxCount][RF_PATH_A]+
pHalData->BW20_24G_Diff[TxCount][index];
//2. BW40
BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index];
}
else if(TxCount==RF_PATH_C)
{
// 1. CCK
cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index];
//2. OFDM
ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_B][index]+
pHalData->BW20_24G_Diff[TxCount][index];
// 1. BW20
BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_B][index]+
pHalData->BW20_24G_Diff[TxCount][index];
//2. BW40
BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index];
}
else if(TxCount==RF_PATH_D)
{
// 1. CCK
cckPowerLevel[TxCount] = pHalData->Index24G_CCK_Base[TxCount][index];
//2. OFDM
ofdmPowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_B][index]+
pHalData->BW20_24G_Diff[RF_PATH_C][index]+
pHalData->BW20_24G_Diff[TxCount][index];
// 1. BW20
BW20PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_A][index]+
pHalData->BW20_24G_Diff[RF_PATH_B][index]+
pHalData->BW20_24G_Diff[RF_PATH_C][index]+
pHalData->BW20_24G_Diff[TxCount][index];
//2. BW40
BW40PowerLevel[TxCount] = pHalData->Index24G_BW40_Base[TxCount][index];
}
else
{
}
}
#if 0 // (INTEL_PROXIMITY_SUPPORT == 1)
switch(pMgntInfo->IntelProximityModeInfo.PowerOutput){
case 1: // 100%
break;
case 2: // 70%
cckPowerLevel[0] -= 3;
cckPowerLevel[1] -= 3;
ofdmPowerLevel[0] -=3;
ofdmPowerLevel[1] -= 3;
break;
case 3: // 50%
cckPowerLevel[0] -= 6;
cckPowerLevel[1] -= 6;
ofdmPowerLevel[0] -=6;
ofdmPowerLevel[1] -= 6;
break;
case 4: // 35%
cckPowerLevel[0] -= 9;
cckPowerLevel[1] -= 9;
ofdmPowerLevel[0] -=9;
ofdmPowerLevel[1] -= 9;
break;
case 5: // 15%
cckPowerLevel[0] -= 17;
cckPowerLevel[1] -= 17;
ofdmPowerLevel[0] -=17;
ofdmPowerLevel[1] -= 17;
break;
default:
break;
}
#endif
//RTPRINT(FPHY, PHY_TXPWR, ("Channel-%d, set tx power index !!\n", channel));
}
void phy_PowerIndexCheck88E(
IN struct adapter *Adapter,
IN u8 channel,
IN OUT u8 * cckPowerLevel,
IN OUT u8 * ofdmPowerLevel,
IN OUT u8 * BW20PowerLevel,
IN OUT u8 * BW40PowerLevel
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
#if 0 // (CCX_SUPPORT == 1)
PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo);
PRT_CCX_INFO pCcxInfo = GET_CCX_INFO(pMgntInfo);
//
// CCX 2 S31, AP control of client transmit power:
// 1. We shall not exceed Cell Power Limit as possible as we can.
// 2. Tolerance is +/- 5dB.
// 3. 802.11h Power Contraint takes higher precedence over CCX Cell Power Limit.
//
// TODO:
// 1. 802.11h power contraint
//
// 071011, by rcnjko.
//
if( pMgntInfo->OpMode == RT_OP_MODE_INFRASTRUCTURE &&
pMgntInfo->mAssoc &&
pCcxInfo->bUpdateCcxPwr &&
pCcxInfo->bWithCcxCellPwr &&
channel == pMgntInfo->dot11CurrentChannelNumber)
{
u1Byte CckCellPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_B, pCcxInfo->CcxCellPwr);
u1Byte LegacyOfdmCellPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_G, pCcxInfo->CcxCellPwr);
u1Byte OfdmCellPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_N_24G, pCcxInfo->CcxCellPwr);
RT_TRACE(COMP_TXAGC, DBG_LOUD,
("CCX Cell Limit: %d dbm => CCK Tx power index : %d, Legacy OFDM Tx power index : %d, OFDM Tx power index: %d\n",
pCcxInfo->CcxCellPwr, CckCellPwrIdx, LegacyOfdmCellPwrIdx, OfdmCellPwrIdx));
RT_TRACE(COMP_TXAGC, DBG_LOUD,
("EEPROM channel(%d) => CCK Tx power index: %d, Legacy OFDM Tx power index : %d, OFDM Tx power index: %d\n",
channel, cckPowerLevel[0], ofdmPowerLevel[0] + pHalData->LegacyHTTxPowerDiff, ofdmPowerLevel[0]));
// CCK
if(cckPowerLevel[0] > CckCellPwrIdx)
cckPowerLevel[0] = CckCellPwrIdx;
// Legacy OFDM, HT OFDM
if(ofdmPowerLevel[0] + pHalData->LegacyHTTxPowerDiff > LegacyOfdmCellPwrIdx)
{
if((OfdmCellPwrIdx - pHalData->LegacyHTTxPowerDiff) > 0)
{
ofdmPowerLevel[0] = OfdmCellPwrIdx - pHalData->LegacyHTTxPowerDiff;
}
else
{
ofdmPowerLevel[0] = 0;
}
}
RT_TRACE(COMP_TXAGC, DBG_LOUD,
("Altered CCK Tx power index : %d, Legacy OFDM Tx power index: %d, OFDM Tx power index: %d\n",
cckPowerLevel[0], ofdmPowerLevel[0] + pHalData->LegacyHTTxPowerDiff, ofdmPowerLevel[0]));
}
#else
// Add or not ???
#endif
pHalData->CurrentCckTxPwrIdx = cckPowerLevel[0];
pHalData->CurrentOfdm24GTxPwrIdx = ofdmPowerLevel[0];
pHalData->CurrentBW2024GTxPwrIdx = BW20PowerLevel[0];
pHalData->CurrentBW4024GTxPwrIdx = BW40PowerLevel[0];
//DBG_871X("PHY_SetTxPowerLevel8188E(): CurrentCckTxPwrIdx : 0x%x,CurrentOfdm24GTxPwrIdx: 0x%x, CurrentBW2024GTxPwrIdx: 0x%dx, CurrentBW4024GTxPwrIdx: 0x%x \n",
// pHalData->CurrentCckTxPwrIdx, pHalData->CurrentOfdm24GTxPwrIdx, pHalData->CurrentBW2024GTxPwrIdx, pHalData->CurrentBW4024GTxPwrIdx);
}
/*-----------------------------------------------------------------------------
* Function: SetTxPowerLevel8190()
*
* Overview: This function is export to "HalCommon" moudule
* We must consider RF path later!!!!!!!
*
* Input: struct adapter * Adapter
* u1Byte channel
*
* Output: NONE
*
* Return: NONE
* 2008/11/04 MHC We remove EEPROM_93C56.
* We need to move CCX relative code to independet file.
* 2009/01/21 MHC Support new EEPROM format from SD3 requirement.
*
*---------------------------------------------------------------------------*/
VOID
PHY_SetTxPowerLevel8188E(
IN struct adapter * Adapter,
IN u8 channel
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 cckPowerLevel[MAX_TX_COUNT], ofdmPowerLevel[MAX_TX_COUNT];// [0]:RF-A, [1]:RF-B
u8 BW20PowerLevel[MAX_TX_COUNT], BW40PowerLevel[MAX_TX_COUNT];
u8 i=0;
/*
#if(MP_DRIVER == 1)
if (Adapter->registrypriv.mp_mode == 1)
return;
#endif
*/
//getTxPowerIndex(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0]);
getTxPowerIndex88E(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0],&BW20PowerLevel[0],&BW40PowerLevel[0]);
//printk("Channel-%d, cckPowerLevel = 0x%x, ofdmPowerLeve = 0x%x, BW20PowerLevel = 0x%x, BW40PowerLevel = 0x%x,\n",
// channel, cckPowerLevel[0], ofdmPowerLevel[0], BW20PowerLevel[0] ,BW40PowerLevel[0]);
//RTPRINT(FPHY, PHY_TXPWR, ("Channel-%d, cckPowerLevel (A / B) = 0x%x / 0x%x, ofdmPowerLevel (A / B) = 0x%x / 0x%x\n",
// channel, cckPowerLevel[0], cckPowerLevel[1], ofdmPowerLevel[0], ofdmPowerLevel[1]));
//ccxPowerIndexCheck(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0]);
phy_PowerIndexCheck88E(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0],&BW20PowerLevel[0],&BW40PowerLevel[0]);
rtl8188e_PHY_RF6052SetCckTxPower(Adapter, &cckPowerLevel[0]);
rtl8188e_PHY_RF6052SetOFDMTxPower(Adapter, &ofdmPowerLevel[0],&BW20PowerLevel[0],&BW40PowerLevel[0], channel);
#if 0
switch(pHalData->rf_chip)
{
case RF_8225:
PHY_SetRF8225CckTxPower(Adapter, cckPowerLevel[0]);
PHY_SetRF8225OfdmTxPower(Adapter, ofdmPowerLevel[0]);
break;
case RF_8256:
PHY_SetRF8256CCKTxPower(Adapter, cckPowerLevel[0]);
PHY_SetRF8256OFDMTxPower(Adapter, ofdmPowerLevel[0]);
break;
case RF_6052:
PHY_RF6052SetCckTxPower(Adapter, &cckPowerLevel[0]);
PHY_RF6052SetOFDMTxPower(Adapter, &ofdmPowerLevel[0], channel);
break;
case RF_8258:
break;
}
#endif
}
//
// Description:
// Update transmit power level of all channel supported.
//
// TODO:
// A mode.
// By Bruce, 2008-02-04.
//
BOOLEAN
PHY_UpdateTxPowerDbm8188E(
IN struct adapter *Adapter,
IN int powerInDbm
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 idx;
u8 rf_path;
// TODO: A mode Tx power.
u8 CckTxPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_B, powerInDbm);
u8 OfdmTxPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_N_24G, powerInDbm);
if(OfdmTxPwrIdx - pHalData->LegacyHTTxPowerDiff > 0)
OfdmTxPwrIdx -= pHalData->LegacyHTTxPowerDiff;
else
OfdmTxPwrIdx = 0;
//RT_TRACE(COMP_TXAGC, DBG_LOUD, ("PHY_UpdateTxPowerDbm8192S(): %ld dBm , CckTxPwrIdx = %d, OfdmTxPwrIdx = %d\n", powerInDbm, CckTxPwrIdx, OfdmTxPwrIdx));
for(idx = 0; idx < 14; idx++)
{
for (rf_path = 0; rf_path < 2; rf_path++)
{
pHalData->TxPwrLevelCck[rf_path][idx] = CckTxPwrIdx;
pHalData->TxPwrLevelHT40_1S[rf_path][idx] =
pHalData->TxPwrLevelHT40_2S[rf_path][idx] = OfdmTxPwrIdx;
}
}
//Adapter->HalFunc.SetTxPowerLevelHandler(Adapter, pHalData->CurrentChannel);//gtest:todo
return _TRUE;
}
/*
Description:
When beacon interval is changed, the values of the
hw registers should be modified.
By tynli, 2008.10.24.
*/
void
rtl8192c_PHY_SetBeaconHwReg(
IN struct adapter * Adapter,
IN u16 BeaconInterval
)
{
}
VOID
PHY_ScanOperationBackup8188E(
IN struct adapter *Adapter,
IN u8 Operation
)
{
#if 0
IO_TYPE IoType;
if(!Adapter->bDriverStopped)
{
switch(Operation)
{
case SCAN_OPT_BACKUP:
IoType = IO_CMD_PAUSE_DM_BY_SCAN;
rtw_hal_set_hwreg(Adapter,HW_VAR_IO_CMD, (pu1Byte)&IoType);
break;
case SCAN_OPT_RESTORE:
IoType = IO_CMD_RESUME_DM_BY_SCAN;
rtw_hal_set_hwreg(Adapter,HW_VAR_IO_CMD, (pu1Byte)&IoType);
break;
default:
RT_TRACE(COMP_SCAN, DBG_LOUD, ("Unknown Scan Backup Operation. \n"));
break;
}
}
#endif
}
/*-----------------------------------------------------------------------------
* Function: PHY_SetBWModeCallback8192C()
*
* Overview: Timer callback function for SetSetBWMode
*
* Input: PRT_TIMER pTimer
*
* Output: NONE
*
* Return: NONE
*
* Note: (1) We do not take j mode into consideration now
* (2) Will two workitem of "switch channel" and "switch channel bandwidth" run
* concurrently?
*---------------------------------------------------------------------------*/
static VOID
_PHY_SetBWMode92C(
IN struct adapter *Adapter
)
{
// struct adapter * Adapter = (PADAPTER)pTimer->Adapter;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 regBwOpMode;
u8 regRRSR_RSC;
//return;
// Added it for 20/40 mhz switch time evaluation by guangan 070531
//u4Byte NowL, NowH;
//u8Byte BeginTime, EndTime;
/*RT_TRACE(COMP_SCAN, DBG_LOUD, ("==>PHY_SetBWModeCallback8192C() Switch to %s bandwidth\n", \
pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_20?"20MHz":"40MHz"))*/
if(pHalData->rf_chip == RF_PSEUDO_11N)
{
//pHalData->SetBWModeInProgress= _FALSE;
return;
}
// There is no 40MHz mode in RF_8225.
if(pHalData->rf_chip==RF_8225)
return;
if(Adapter->bDriverStopped)
return;
// Added it for 20/40 mhz switch time evaluation by guangan 070531
//NowL = PlatformEFIORead4Byte(Adapter, TSFR);
//NowH = PlatformEFIORead4Byte(Adapter, TSFR+4);
//BeginTime = ((u8Byte)NowH << 32) + NowL;
//3//
//3//<1>Set MAC register
//3//
//Adapter->HalFunc.SetBWModeHandler();
regBwOpMode = rtw_read8(Adapter, REG_BWOPMODE);
regRRSR_RSC = rtw_read8(Adapter, REG_RRSR+2);
//regBwOpMode = rtw_hal_get_hwreg(Adapter,HW_VAR_BWMODE,(pu1Byte)&regBwOpMode);
switch(pHalData->CurrentChannelBW)
{
case HT_CHANNEL_WIDTH_20:
regBwOpMode |= BW_OPMODE_20MHZ;
// 2007/02/07 Mark by Emily becasue we have not verify whether this register works
rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode);
break;
case HT_CHANNEL_WIDTH_40:
regBwOpMode &= ~BW_OPMODE_20MHZ;
// 2007/02/07 Mark by Emily becasue we have not verify whether this register works
rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode);
regRRSR_RSC = (regRRSR_RSC&0x90) |(pHalData->nCur40MhzPrimeSC<<5);
rtw_write8(Adapter, REG_RRSR+2, regRRSR_RSC);
break;
default:
/*RT_TRACE(COMP_DBG, DBG_LOUD, ("PHY_SetBWModeCallback8192C():
unknown Bandwidth: %#X\n",pHalData->CurrentChannelBW));*/
break;
}
//3//
//3//<2>Set PHY related register
//3//
switch(pHalData->CurrentChannelBW)
{
/* 20 MHz channel*/
case HT_CHANNEL_WIDTH_20:
PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x0);
PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x0);
//PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 1);
break;
/* 40 MHz channel*/
case HT_CHANNEL_WIDTH_40:
PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x1);
PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x1);
// Set Control channel to upper or lower. These settings are required only for 40MHz
PHY_SetBBReg(Adapter, rCCK0_System, bCCKSideBand, (pHalData->nCur40MhzPrimeSC>>1));
PHY_SetBBReg(Adapter, rOFDM1_LSTF, 0xC00, pHalData->nCur40MhzPrimeSC);
//PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 0);
PHY_SetBBReg(Adapter, 0x818, (BIT26|BIT27), (pHalData->nCur40MhzPrimeSC==HAL_PRIME_CHNL_OFFSET_LOWER)?2:1);
break;
default:
/*RT_TRACE(COMP_DBG, DBG_LOUD, ("PHY_SetBWModeCallback8192C(): unknown Bandwidth: %#X\n"\
,pHalData->CurrentChannelBW));*/
break;
}
//Skip over setting of J-mode in BB register here. Default value is "None J mode". Emily 20070315
// Added it for 20/40 mhz switch time evaluation by guangan 070531
//NowL = PlatformEFIORead4Byte(Adapter, TSFR);
//NowH = PlatformEFIORead4Byte(Adapter, TSFR+4);
//EndTime = ((u8Byte)NowH << 32) + NowL;
//RT_TRACE(COMP_SCAN, DBG_LOUD, ("SetBWModeCallback8190Pci: time of SetBWMode = %I64d us!\n", (EndTime - BeginTime)));
//3<3>Set RF related register
switch(pHalData->rf_chip)
{
case RF_8225:
//PHY_SetRF8225Bandwidth(Adapter, pHalData->CurrentChannelBW);
break;
case RF_8256:
// Please implement this function in Hal8190PciPhy8256.c
//PHY_SetRF8256Bandwidth(Adapter, pHalData->CurrentChannelBW);
break;
case RF_8258:
// Please implement this function in Hal8190PciPhy8258.c
// PHY_SetRF8258Bandwidth();
break;
case RF_PSEUDO_11N:
// Do Nothing
break;
case RF_6052:
rtl8188e_PHY_RF6052SetBandwidth(Adapter, pHalData->CurrentChannelBW);
break;
default:
//RT_ASSERT(FALSE, ("Unknown RFChipID: %d\n", pHalData->RFChipID));
break;
}
//pHalData->SetBWModeInProgress= FALSE;
//RT_TRACE(COMP_SCAN, DBG_LOUD, ("<==PHY_SetBWModeCallback8192C() \n" ));
}
/*-----------------------------------------------------------------------------
* Function: SetBWMode8190Pci()
*
* Overview: This function is export to "HalCommon" moudule
*
* Input: struct adapter * Adapter
* HT_CHANNEL_WIDTH Bandwidth //20M or 40M
*
* Output: NONE
*
* Return: NONE
*
* Note: We do not take j mode into consideration now
*---------------------------------------------------------------------------*/
VOID
PHY_SetBWMode8188E(
IN struct adapter * Adapter,
IN HT_CHANNEL_WIDTH Bandwidth, // 20M or 40M
IN unsigned char Offset // Upper, Lower, or Don't care
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
HT_CHANNEL_WIDTH tmpBW= pHalData->CurrentChannelBW;
// Modified it for 20/40 mhz switch by guangan 070531
//PMGNT_INFO pMgntInfo=&Adapter->MgntInfo;
//return;
//if(pHalData->SwChnlInProgress)
// if(pMgntInfo->bScanInProgress)
// {
// RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SetBWMode8192C() %s Exit because bScanInProgress!\n",
// Bandwidth == HT_CHANNEL_WIDTH_20?"20MHz":"40MHz"));
// return;
// }
// if(pHalData->SetBWModeInProgress)
// {
// // Modified it for 20/40 mhz switch by guangan 070531
// RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SetBWMode8192C() %s cancel last timer because SetBWModeInProgress!\n",
// Bandwidth == HT_CHANNEL_WIDTH_20?"20MHz":"40MHz"));
// PlatformCancelTimer(Adapter, &pHalData->SetBWModeTimer);
// //return;
// }
//if(pHalData->SetBWModeInProgress)
// return;
//pHalData->SetBWModeInProgress= TRUE;
pHalData->CurrentChannelBW = Bandwidth;
#if 0
if(Offset==HT_EXTCHNL_OFFSET_LOWER)
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER;
else if(Offset==HT_EXTCHNL_OFFSET_UPPER)
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER;
else
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
#else
pHalData->nCur40MhzPrimeSC = Offset;
#endif
if((!Adapter->bDriverStopped) && (!Adapter->bSurpriseRemoved))
{
#if 0
//PlatformSetTimer(Adapter, &(pHalData->SetBWModeTimer), 0);
#else
_PHY_SetBWMode92C(Adapter);
#endif
}
else
{
//RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SetBWMode8192C() SetBWModeInProgress FALSE driver sleep or unload\n"));
//pHalData->SetBWModeInProgress= FALSE;
pHalData->CurrentChannelBW = tmpBW;
}
}
static void _PHY_SwChnl8192C(struct adapter *Adapter, u8 channel)
{
u8 eRFPath;
u32 param1, param2;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if ( Adapter->bNotifyChannelChange )
{
DBG_871X( "[%s] ch = %d\n", __FUNCTION__, channel );
}
//s1. pre common command - CmdID_SetTxPowerLevel
PHY_SetTxPowerLevel8188E(Adapter, channel);
//s2. RF dependent command - CmdID_RF_WriteReg, param1=RF_CHNLBW, param2=channel
param1 = RF_CHNLBW;
param2 = channel;
for(eRFPath = 0; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
{
pHalData->RfRegChnlVal[eRFPath] = ((pHalData->RfRegChnlVal[eRFPath] & 0xfffffc00) | param2);
PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)eRFPath, param1, bRFRegOffsetMask, pHalData->RfRegChnlVal[eRFPath]);
}
//s3. post common command - CmdID_End, None
}
// <20130708, James> A workaround to eliminate the 2480MHz spur for 8188E I-Cut
void
phy_SpurCalibration_8188E(
IN struct adapter * Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//DbgPrint("===> phy_SpurCalibration_8188E CurrentChannelBW = %d, CurrentChannel = %d\n", pHalData->CurrentChannelBW, pHalData->CurrentChannel);
if(pHalData->CurrentChannelBW == 0 && pHalData->CurrentChannel == 13){
PHY_SetBBReg(Adapter, rOFDM1_CFOTracking, BIT(28), 0x1); //enable CSI Mask
PHY_SetBBReg(Adapter, rOFDM1_csi_fix_mask, BIT(26)|BIT(25), 0x3); //Fix CSI Mask Tone
}
else{
PHY_SetBBReg(Adapter, rOFDM1_CFOTracking, BIT(28), 0x0); //disable CSI Mask
PHY_SetBBReg(Adapter, rOFDM1_csi_fix_mask, BIT(26)|BIT(25), 0x0);
}
}
VOID
PHY_SwChnl8188E( // Call after initialization
IN struct adapter *Adapter,
IN u8 channel
)
{
//struct adapter *Adapter = ADJUST_TO_ADAPTIVE_ADAPTER(pAdapter, _TRUE);
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 tmpchannel = pHalData->CurrentChannel;
BOOLEAN bResult = _TRUE;
if(pHalData->rf_chip == RF_PSEUDO_11N)
{
//pHalData->SwChnlInProgress=FALSE;
return; //return immediately if it is peudo-phy
}
//if(pHalData->SwChnlInProgress)
// return;
//if(pHalData->SetBWModeInProgress)
// return;
//--------------------------------------------
switch(pHalData->CurrentWirelessMode)
{
case WIRELESS_MODE_A:
case WIRELESS_MODE_N_5G:
//RT_ASSERT((channel>14), ("WIRELESS_MODE_A but channel<=14"));
break;
case WIRELESS_MODE_B:
//RT_ASSERT((channel<=14), ("WIRELESS_MODE_B but channel>14"));
break;
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
//RT_ASSERT((channel<=14), ("WIRELESS_MODE_G but channel>14"));
break;
default:
//RT_ASSERT(FALSE, ("Invalid WirelessMode(%#x)!!\n", pHalData->CurrentWirelessMode));
break;
}
//--------------------------------------------
//pHalData->SwChnlInProgress = TRUE;
if(channel == 0)
channel = 1;
pHalData->CurrentChannel=channel;
//pHalData->SwChnlStage=0;
//pHalData->SwChnlStep=0;
if((!Adapter->bDriverStopped) && (!Adapter->bSurpriseRemoved))
{
#if 0
//PlatformSetTimer(Adapter, &(pHalData->SwChnlTimer), 0);
#else
_PHY_SwChnl8192C(Adapter, channel);
#endif
if (IS_VENDOR_8188E_I_CUT_SERIES(Adapter))
phy_SpurCalibration_8188E( Adapter);
if(bResult)
{
//RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SwChnl8192C SwChnlInProgress TRUE schdule workitem done\n"));
}
else
{
//RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SwChnl8192C SwChnlInProgress FALSE schdule workitem error\n"));
//if(IS_HARDWARE_TYPE_8192SU(Adapter))
//{
// pHalData->SwChnlInProgress = FALSE;
pHalData->CurrentChannel = tmpchannel;
//}
}
}
else
{
//RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SwChnl8192C SwChnlInProgress FALSE driver sleep or unload\n"));
//if(IS_HARDWARE_TYPE_8192SU(Adapter))
//{
// pHalData->SwChnlInProgress = FALSE;
pHalData->CurrentChannel = tmpchannel;
//}
}
}
static BOOLEAN
phy_SwChnlStepByStep(
IN struct adapter *Adapter,
IN u8 channel,
IN u8 *stage,
IN u8 *step,
OUT u32 *delay
)
{
#if 0
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PCHANNEL_ACCESS_SETTING pChnlAccessSetting;
SwChnlCmd PreCommonCmd[MAX_PRECMD_CNT];
u4Byte PreCommonCmdCnt;
SwChnlCmd PostCommonCmd[MAX_POSTCMD_CNT];
u4Byte PostCommonCmdCnt;
SwChnlCmd RfDependCmd[MAX_RFDEPENDCMD_CNT];
u4Byte RfDependCmdCnt;
SwChnlCmd *CurrentCmd;
u1Byte eRFPath;
u4Byte RfTXPowerCtrl;
BOOLEAN bAdjRfTXPowerCtrl = _FALSE;
RT_ASSERT((Adapter != NULL), ("Adapter should not be NULL\n"));
#if(MP_DRIVER != 1)
RT_ASSERT(IsLegalChannel(Adapter, channel), ("illegal channel: %d\n", channel));
#endif
RT_ASSERT((pHalData != NULL), ("pHalData should not be NULL\n"));
pChnlAccessSetting = &Adapter->MgntInfo.Info8185.ChannelAccessSetting;
RT_ASSERT((pChnlAccessSetting != NULL), ("pChnlAccessSetting should not be NULL\n"));
//for(eRFPath = RF_PATH_A; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
//for(eRFPath = 0; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
//{
// <1> Fill up pre common command.
PreCommonCmdCnt = 0;
phy_SetSwChnlCmdArray(PreCommonCmd, PreCommonCmdCnt++, MAX_PRECMD_CNT,
CmdID_SetTxPowerLevel, 0, 0, 0);
phy_SetSwChnlCmdArray(PreCommonCmd, PreCommonCmdCnt++, MAX_PRECMD_CNT,
CmdID_End, 0, 0, 0);
// <2> Fill up post common command.
PostCommonCmdCnt = 0;
phy_SetSwChnlCmdArray(PostCommonCmd, PostCommonCmdCnt++, MAX_POSTCMD_CNT,
CmdID_End, 0, 0, 0);
// <3> Fill up RF dependent command.
RfDependCmdCnt = 0;
switch( pHalData->RFChipID )
{
case RF_8225:
RT_ASSERT((channel >= 1 && channel <= 14), ("illegal channel for Zebra: %d\n", channel));
// 2008/09/04 MH Change channel.
if(channel==14) channel++;
phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT,
CmdID_RF_WriteReg, rZebra1_Channel, (0x10+channel-1), 10);
phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT,
CmdID_End, 0, 0, 0);
break;
case RF_8256:
// TEST!! This is not the table for 8256!!
RT_ASSERT((channel >= 1 && channel <= 14), ("illegal channel for Zebra: %d\n", channel));
phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT,
CmdID_RF_WriteReg, rRfChannel, channel, 10);
phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT,
CmdID_End, 0, 0, 0);
break;
case RF_6052:
RT_ASSERT((channel >= 1 && channel <= 14), ("illegal channel for Zebra: %d\n", channel));
phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT,
CmdID_RF_WriteReg, RF_CHNLBW, channel, 10);
phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT,
CmdID_End, 0, 0, 0);
break;
case RF_8258:
break;
// For FPGA two MAC verification
case RF_PSEUDO_11N:
return TRUE;
default:
RT_ASSERT(FALSE, ("Unknown RFChipID: %d\n", pHalData->RFChipID));
return FALSE;
break;
}
do{
switch(*stage)
{
case 0:
CurrentCmd=&PreCommonCmd[*step];
break;
case 1:
CurrentCmd=&RfDependCmd[*step];
break;
case 2:
CurrentCmd=&PostCommonCmd[*step];
break;
}
if(CurrentCmd->CmdID==CmdID_End)
{
if((*stage)==2)
{
return TRUE;
}
else
{
(*stage)++;
(*step)=0;
continue;
}
}
switch(CurrentCmd->CmdID)
{
case CmdID_SetTxPowerLevel:
PHY_SetTxPowerLevel8192C(Adapter,channel);
break;
case CmdID_WritePortUlong:
PlatformEFIOWrite4Byte(Adapter, CurrentCmd->Para1, CurrentCmd->Para2);
break;
case CmdID_WritePortUshort:
PlatformEFIOWrite2Byte(Adapter, CurrentCmd->Para1, (u2Byte)CurrentCmd->Para2);
break;
case CmdID_WritePortUchar:
PlatformEFIOWrite1Byte(Adapter, CurrentCmd->Para1, (u1Byte)CurrentCmd->Para2);
break;
case CmdID_RF_WriteReg: // Only modify channel for the register now !!!!!
for(eRFPath = 0; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
{
#if 1
pHalData->RfRegChnlVal[eRFPath] = ((pHalData->RfRegChnlVal[eRFPath] & 0xfffffc00) | CurrentCmd->Para2);
PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)eRFPath, CurrentCmd->Para1, bRFRegOffsetMask, pHalData->RfRegChnlVal[eRFPath]);
#else
PHY_SetRFReg(Adapter, (RF_RADIO_PATH_E)eRFPath, CurrentCmd->Para1, bRFRegOffsetMask, (CurrentCmd->Para2));
#endif
}
break;
}
break;
}while(TRUE);
//cosa }/*for(Number of RF paths)*/
(*delay)=CurrentCmd->msDelay;
(*step)++;
return FALSE;
#endif
return _TRUE;
}
static BOOLEAN
phy_SetSwChnlCmdArray(
SwChnlCmd* CmdTable,
u32 CmdTableIdx,
u32 CmdTableSz,
SwChnlCmdID CmdID,
u32 Para1,
u32 Para2,
u32 msDelay
)
{
SwChnlCmd* pCmd;
if(CmdTable == NULL)
{
//RT_ASSERT(FALSE, ("phy_SetSwChnlCmdArray(): CmdTable cannot be NULL.\n"));
return _FALSE;
}
if(CmdTableIdx >= CmdTableSz)
{
//RT_ASSERT(FALSE,
// ("phy_SetSwChnlCmdArray(): Access invalid index, please check size of the table, CmdTableIdx:%ld, CmdTableSz:%ld\n",
// CmdTableIdx, CmdTableSz));
return _FALSE;
}
pCmd = CmdTable + CmdTableIdx;
pCmd->CmdID = CmdID;
pCmd->Para1 = Para1;
pCmd->Para2 = Para2;
pCmd->msDelay = msDelay;
return _TRUE;
}
static void
phy_FinishSwChnlNow( // We should not call this function directly
IN struct adapter *Adapter,
IN u8 channel
)
{
#if 0
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 delay;
while(!phy_SwChnlStepByStep(Adapter,channel,&pHalData->SwChnlStage,&pHalData->SwChnlStep,&delay))
{
if(delay>0)
rtw_mdelay_os(delay);
}
#endif
}
//
// Description:
// Switch channel synchronously. Called by SwChnlByDelayHandler.
//
// Implemented by Bruce, 2008-02-14.
// The following procedure is operted according to SwChanlCallback8190Pci().
// However, this procedure is performed synchronously which should be running under
// passive level.
//
VOID
PHY_SwChnlPhy8192C( // Only called during initialize
IN struct adapter *Adapter,
IN u8 channel
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//RT_TRACE(COMP_SCAN | COMP_RM, DBG_LOUD, ("==>PHY_SwChnlPhy8192S(), switch from channel %d to channel %d.\n", pHalData->CurrentChannel, channel));
// Cannot IO.
//if(RT_CANNOT_IO(Adapter))
// return;
// Channel Switching is in progress.
//if(pHalData->SwChnlInProgress)
// return;
//return immediately if it is peudo-phy
if(pHalData->rf_chip == RF_PSEUDO_11N)
{
//pHalData->SwChnlInProgress=FALSE;
return;
}
//pHalData->SwChnlInProgress = TRUE;
if( channel == 0)
channel = 1;
pHalData->CurrentChannel=channel;
//pHalData->SwChnlStage = 0;
//pHalData->SwChnlStep = 0;
phy_FinishSwChnlNow(Adapter,channel);
//pHalData->SwChnlInProgress = FALSE;
}
//
// Description:
// Configure H/W functionality to enable/disable Monitor mode.
// Note, because we possibly need to configure BB and RF in this function,
// so caller should in PASSIVE_LEVEL. 080118, by rcnjko.
//
VOID
PHY_SetMonitorMode8192C(
IN struct adapter * pAdapter,
IN BOOLEAN bEnableMonitorMode
)
{
#if 0
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
BOOLEAN bFilterOutNonAssociatedBSSID = FALSE;
//2 Note: we may need to stop antenna diversity.
if(bEnableMonitorMode)
{
bFilterOutNonAssociatedBSSID = FALSE;
RT_TRACE(COMP_RM, DBG_LOUD, ("PHY_SetMonitorMode8192S(): enable monitor mode\n"));
pHalData->bInMonitorMode = TRUE;
pAdapter->HalFunc.AllowAllDestAddrHandler(pAdapter, TRUE, TRUE);
rtw_hal_set_hwreg(pAdapter, HW_VAR_CHECK_BSSID, (pu1Byte)&bFilterOutNonAssociatedBSSID);
}
else
{
bFilterOutNonAssociatedBSSID = TRUE;
RT_TRACE(COMP_RM, DBG_LOUD, ("PHY_SetMonitorMode8192S(): disable monitor mode\n"));
pAdapter->HalFunc.AllowAllDestAddrHandler(pAdapter, FALSE, TRUE);
pHalData->bInMonitorMode = FALSE;
rtw_hal_set_hwreg(pAdapter, HW_VAR_CHECK_BSSID, (pu1Byte)&bFilterOutNonAssociatedBSSID);
}
#endif
}
/*-----------------------------------------------------------------------------
* Function: PHYCheckIsLegalRfPath8190Pci()
*
* Overview: Check different RF type to execute legal judgement. If RF Path is illegal
* We will return false.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/15/2007 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
BOOLEAN
PHY_CheckIsLegalRfPath8192C(
IN struct adapter *pAdapter,
IN u32 eRFPath)
{
// HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
BOOLEAN rtValue = _TRUE;
// NOt check RF Path now.!
#if 0
if (pHalData->RF_Type == RF_1T2R && eRFPath != RF_PATH_A)
{
rtValue = FALSE;
}
if (pHalData->RF_Type == RF_1T2R && eRFPath != RF_PATH_A)
{
}
#endif
return rtValue;
} /* PHY_CheckIsLegalRfPath8192C */
static VOID _PHY_SetRFPathSwitch(
IN struct adapter *pAdapter,
IN BOOLEAN bMain,
IN BOOLEAN is2T
)
{
u8 u1bTmp;
if(!pAdapter->hw_init_completed)
{
u1bTmp = rtw_read8(pAdapter, REG_LEDCFG2) | BIT7;
rtw_write8(pAdapter, REG_LEDCFG2, u1bTmp);
//PHY_SetBBReg(pAdapter, REG_LEDCFG0, BIT23, 0x01);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT13, 0x01);
}
if(is2T)
{
if(bMain)
PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6, 0x1); //92C_Path_A
else
PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6, 0x2); //BT
}
else
{
if(bMain)
PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300, 0x2); //Main
else
PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300, 0x1); //Aux
}
}
//return value TRUE => Main; FALSE => Aux
static BOOLEAN _PHY_QueryRFPathSwitch(
IN struct adapter *pAdapter,
IN BOOLEAN is2T
)
{
// if(is2T)
// return _TRUE;
if(!pAdapter->hw_init_completed)
{
PHY_SetBBReg(pAdapter, REG_LEDCFG0, BIT23, 0x01);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT13, 0x01);
}
if(is2T)
{
if(PHY_QueryBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6) == 0x01)
return _TRUE;
else
return _FALSE;
}
else
{
if(PHY_QueryBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300) == 0x02)
return _TRUE;
else
return _FALSE;
}
}
static VOID
_PHY_DumpRFReg(IN struct adapter *pAdapter)
{
u32 rfRegValue,rfRegOffset;
//RTPRINT(FINIT, INIT_RF, ("PHY_DumpRFReg()====>\n"));
for(rfRegOffset = 0x00;rfRegOffset<=0x30;rfRegOffset++){
rfRegValue = PHY_QueryRFReg(pAdapter,RF_PATH_A, rfRegOffset, bMaskDWord);
//RTPRINT(FINIT, INIT_RF, (" 0x%02x = 0x%08x\n",rfRegOffset,rfRegValue));
}
//RTPRINT(FINIT, INIT_RF, ("<===== PHY_DumpRFReg()\n"));
}
//
// Move from phycfg.c to gen.c to be code independent later
//
//-------------------------Move to other DIR later----------------------------*/
#ifdef CONFIG_USB_HCI
//
// Description:
// To dump all Tx FIFO LLT related link-list table.
// Added by Roger, 2009.03.10.
//
VOID
DumpBBDbgPort_92CU(
IN struct adapter * Adapter
)
{
//RT_TRACE(COMP_SEND, DBG_WARNING, ("\n>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n"));
//RT_TRACE(COMP_SEND, DBG_WARNING, ("BaseBand Debug Ports:\n"));
PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0000);
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord)));
PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0803);
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord)));
PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0a06);
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord)));
PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0007);
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord)));
PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0100);
PHY_SetBBReg(Adapter, 0x0a28, 0x00ff0000, 0x000f0000);
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord)));
PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0100);
PHY_SetBBReg(Adapter, 0x0a28, 0x00ff0000, 0x00150000);
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord)));
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0x800, PHY_QueryBBReg(Adapter, 0x0800, bMaskDWord)));
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0x900, PHY_QueryBBReg(Adapter, 0x0900, bMaskDWord)));
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xa00, PHY_QueryBBReg(Adapter, 0x0a00, bMaskDWord)));
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xa54, PHY_QueryBBReg(Adapter, 0x0a54, bMaskDWord)));
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xa58, PHY_QueryBBReg(Adapter, 0x0a58, bMaskDWord)));
}
#endif