rtl8188eu/hal/rtl8188e/sdio/sdio_halinit.c
Larry Finger 065126d8ce rtl8188eu: Place driver rtl8188EUS_rtl8189ES_linux_v4.1.8_9499.20131104 in branch v4.1.8_9499
Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
2014-12-11 15:15:04 -06:00

4218 lines
115 KiB
C
Executable file

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _SDIO_HALINIT_C_
#include <drv_conf.h>
#include <osdep_service.h>
#include <drv_types.h>
#ifndef CONFIG_SDIO_HCI
#error "CONFIG_SDIO_HCI shall be on!\n"
#endif
#include <rtw_efuse.h>
#include <rtl8188e_hal.h>
#include <rtl8188e_led.h>
#include <HalPwrSeqCmd.h>
#include <Hal8188EPwrSeq.h>
#include <sdio_ops.h>
#ifdef CONFIG_EFUSE_CONFIG_FILE
#include <linux/fs.h>
#include <asm/uaccess.h>
#endif //CONFIG_EFUSE_CONFIG_FILE
/*
* Description:
* Call this function to make sure power on successfully
*
* Return:
* _SUCCESS enable success
* _FAIL enable fail
*/
static int PowerOnCheck(PADAPTER padapter)
{
u32 val_offset0, val_offset1, val_offset2, val_offset3;
u32 val_mix = 0;
u32 res = 0;
u8 ret = _FAIL;
int index = 0;
val_offset0 = rtw_read8(padapter, REG_CR);
val_offset1 = rtw_read8(padapter, REG_CR+1);
val_offset2 = rtw_read8(padapter, REG_CR+2);
val_offset3 = rtw_read8(padapter, REG_CR+3);
if (val_offset0 == 0xEA || val_offset1 == 0xEA ||
val_offset2 == 0xEA || val_offset3 ==0xEA) {
DBG_871X("%s: power on fail, do Power on again\n", __func__);
return ret;
}
val_mix = val_offset3 << 24 | val_mix;
val_mix = val_offset2 << 16 | val_mix;
val_mix = val_offset1 << 8 | val_mix;
val_mix = val_offset0 | val_mix;
res = rtw_read32(padapter, REG_CR);
DBG_871X("%s: val_mix:0x%08x, res:0x%08x\n", __func__, val_mix, res);
while(index < 100) {
if (res == val_mix) {
DBG_871X("%s: 0x100 the result of cmd52 and cmd53 is the same.\n", __func__);
ret = _SUCCESS;
break;
} else {
DBG_871X("%s: 0x100 cmd52 and cmd53 is not the same(index:%d).\n", __func__, index);
res = rtw_read32(padapter, REG_CR);
index ++;
ret = _FAIL;
}
}
if (ret) {
index = 0;
while(index < 100) {
rtw_write32(padapter, 0x1B8, 0x12345678);
res = rtw_read32(padapter, 0x1B8);
if (res == 0x12345678) {
DBG_871X("%s: 0x1B8 test Pass.\n", __func__);
ret = _SUCCESS;
break;
} else {
index ++;
DBG_871X("%s: 0x1B8 test Fail(index: %d).\n", __func__, index);
ret = _FAIL;
}
}
} else {
DBG_871X("%s: fail at cmd52, cmd53.\n", __func__);
}
return ret;
}
#ifdef CONFIG_EXT_CLK
void EnableGpio5ClockReq(PADAPTER Adapter, u8 in_interrupt, u32 Enable)
{
u32 value32;
HAL_DATA_TYPE *pHalData;
pHalData = GET_HAL_DATA(Adapter);
if(IS_D_CUT(pHalData->VersionID))
return;
//dbgdump("%s Enable:%x time:%d", __RTL_FUNC__, Enable, rtw_get_current_time());
if(in_interrupt)
value32 = _sdio_read32(Adapter, REG_GPIO_PIN_CTRL);
else
value32 = rtw_read32(Adapter, REG_GPIO_PIN_CTRL);
//open GPIO 5
if (Enable)
value32 |= BIT(13);//5+8
else
value32 &= ~BIT(13);
//GPIO 5 out put
value32 |= BIT(21);//5+16
//if (Enable)
// rtw_write8(Adapter, REG_GPIO_PIN_CTRL + 1, 0x20);
//else
// rtw_write8(Adapter, REG_GPIO_PIN_CTRL + 1, 0x00);
if(in_interrupt)
_sdio_write32(Adapter, REG_GPIO_PIN_CTRL, value32);
else
rtw_write32(Adapter, REG_GPIO_PIN_CTRL, value32);
} //end of _rtl8192cs_disable_gpio()
void _InitClockTo26MHz(
IN PADAPTER Adapter
)
{
u8 u1temp = 0;
HAL_DATA_TYPE *pHalData;
pHalData = GET_HAL_DATA(Adapter);
if(IS_D_CUT(pHalData->VersionID)) {
//FW special init
u1temp = rtw_read8(Adapter, REG_XCK_OUT_CTRL);
u1temp |= 0x18;
rtw_write8(Adapter, REG_XCK_OUT_CTRL, u1temp);
MSG_8192C("D cut version\n");
}
EnableGpio5ClockReq(Adapter, _FALSE, 1);
//0x2c[3:0] = 5 will set clock to 26MHz
u1temp = rtw_read8(Adapter, REG_APE_PLL_CTRL_EXT);
u1temp = (u1temp & 0xF0) | 0x05;
rtw_write8(Adapter, REG_APE_PLL_CTRL_EXT, u1temp);
}
#endif
static void rtl8188es_interface_configure(PADAPTER padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
struct registry_priv *pregistrypriv = &padapter->registrypriv;
BOOLEAN bWiFiConfig = pregistrypriv->wifi_spec;
pdvobjpriv->RtOutPipe[0] = WLAN_TX_HIQ_DEVICE_ID;
pdvobjpriv->RtOutPipe[1] = WLAN_TX_MIQ_DEVICE_ID;
pdvobjpriv->RtOutPipe[2] = WLAN_TX_LOQ_DEVICE_ID;
if (bWiFiConfig)
pHalData->OutEpNumber = 2;
else
pHalData->OutEpNumber = SDIO_MAX_TX_QUEUE;
switch(pHalData->OutEpNumber){
case 3:
pHalData->OutEpQueueSel=TX_SELE_HQ| TX_SELE_LQ|TX_SELE_NQ;
break;
case 2:
pHalData->OutEpQueueSel=TX_SELE_HQ| TX_SELE_NQ;
break;
case 1:
pHalData->OutEpQueueSel=TX_SELE_HQ;
break;
default:
break;
}
Hal_MappingOutPipe(padapter, pHalData->OutEpNumber);
}
/*
* Description:
* Call power on sequence to enable card
*
* Return:
* _SUCCESS enable success
* _FAIL enable fail
*/
static u8 _CardEnable(PADAPTER padapter)
{
u8 bMacPwrCtrlOn;
u8 ret;
DBG_871X("=>%s\n", __FUNCTION__);
rtw_hal_get_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
if (bMacPwrCtrlOn == _FALSE)
{
#ifdef CONFIG_PLATFORM_SPRD
u8 val8;
#endif // CONFIG_PLATFORM_SPRD
// RSV_CTRL 0x1C[7:0] = 0x00
// unlock ISO/CLK/Power control register
rtw_write8(padapter, REG_RSV_CTRL, 0x0);
#ifdef CONFIG_PLATFORM_SPRD
#ifdef CONFIG_EXT_CLK
_InitClockTo26MHz(padapter);
#endif //CONFIG_EXT_CLK
val8 = rtw_read8(padapter, 0x4);
val8 = val8 & ~BIT(5);
rtw_write8(padapter, 0x4, val8);
#endif // CONFIG_PLATFORM_SPRD
ret = HalPwrSeqCmdParsing(padapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_SDIO_MSK, Rtl8188E_NIC_ENABLE_FLOW);
if (ret == _SUCCESS) {
u8 bMacPwrCtrlOn = _TRUE;
rtw_hal_set_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
}
else
{
DBG_871X(KERN_ERR "%s: run power on flow fail\n", __func__);
return _FAIL;
}
}
else
{
ret = _SUCCESS;
}
DBG_871X("<=%s\n", __FUNCTION__);
return ret;
}
static u32 InitPowerOn_rtl8188es(PADAPTER padapter)
{
u8 value8;
u16 value16;
u32 value32;
u8 ret;
DBG_871X("=>%s\n", __FUNCTION__);
ret = _CardEnable(padapter);
if (ret == _FAIL) {
return ret;
}
/*
// Radio-Off Pin Trigger
value8 = rtw_read8(padapter, REG_GPIO_INTM+1);
value8 |= BIT(1); // Enable falling edge triggering interrupt
rtw_write8(padapter, REG_GPIO_INTM+1, value8);
value8 = rtw_read8(padapter, REG_GPIO_IO_SEL_2+1);
value8 |= BIT(1);
rtw_write8(padapter, REG_GPIO_IO_SEL_2+1, value8);
*/
// Enable power down and GPIO interrupt
value16 = rtw_read16(padapter, REG_APS_FSMCO);
value16 |= EnPDN; // Enable HW power down and RF on
rtw_write16(padapter, REG_APS_FSMCO, value16);
// Enable MAC DMA/WMAC/SCHEDULE/SEC block
value16 = rtw_read16(padapter, REG_CR);
value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN
| PROTOCOL_EN | SCHEDULE_EN | ENSEC | CALTMR_EN);
// for SDIO - Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31.
rtw_write16(padapter, REG_CR, value16);
// Enable CMD53 R/W Operation
// bMacPwrCtrlOn = TRUE;
// rtw_hal_set_hwreg(padapter, HW_VAR_APFM_ON_MAC, (pu8)(&bMacPwrCtrlOn));
DBG_871X("<=%s\n", __FUNCTION__);
return _SUCCESS;
}
static void _InitQueueReservedPage(PADAPTER padapter)
{
#ifdef RTL8188ES_MAC_LOOPBACK
//#define MAC_LOOPBACK_PAGE_NUM_PUBQ 0x26
//#define MAC_LOOPBACK_PAGE_NUM_HPQ 0x0b
//#define MAC_LOOPBACK_PAGE_NUM_LPQ 0x0b
//#define MAC_LOOPBACK_PAGE_NUM_NPQ 0x0b // 71 pages=>9088 bytes, 8.875k
rtw_write16(padapter, REG_RQPN_NPQ, 0x0b0b);
rtw_write32(padapter, REG_RQPN, 0x80260b0b);
#else //TX_PAGE_BOUNDARY_LOOPBACK_MODE
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct registry_priv *pregistrypriv = &padapter->registrypriv;
u32 outEPNum = (u32)pHalData->OutEpNumber;
u32 numHQ = 0;
u32 numLQ = 0;
u32 numNQ = 0;
u32 numPubQ;
u32 value32;
u8 value8;
BOOLEAN bWiFiConfig = pregistrypriv->wifi_spec;
if(bWiFiConfig)
{
if (pHalData->OutEpQueueSel & TX_SELE_HQ)
{
numHQ = 0x29;
}
if (pHalData->OutEpQueueSel & TX_SELE_LQ)
{
numLQ = 0x1C;
}
// NOTE: This step shall be proceed before writting REG_RQPN.
if (pHalData->OutEpQueueSel & TX_SELE_NQ) {
numNQ = 0x1C;
}
value8 = (u8)_NPQ(numNQ);
rtw_write8(padapter, REG_RQPN_NPQ, value8);
numPubQ = 0xA9 - numHQ - numLQ - numNQ;
// TX DMA
value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
rtw_write32(padapter, REG_RQPN, value32);
}
else
{
rtw_write16(padapter, REG_RQPN_NPQ, 0x0000);
rtw_write32(padapter,REG_RQPN, 0x80a00900);
}
#endif
return;
}
static void _InitTxBufferBoundary(PADAPTER padapter, u8 txpktbuf_bndy)
{
struct registry_priv *pregistrypriv = &padapter->registrypriv;
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
//u16 txdmactrl;
rtw_write8(padapter, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
rtw_write8(padapter, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
rtw_write8(padapter, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy);
rtw_write8(padapter, REG_TRXFF_BNDY, txpktbuf_bndy);
rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
}
static VOID
_InitNormalChipRegPriority(
IN PADAPTER Adapter,
IN u16 beQ,
IN u16 bkQ,
IN u16 viQ,
IN u16 voQ,
IN u16 mgtQ,
IN u16 hiQ
)
{
u16 value16 = (rtw_read16(Adapter, REG_TRXDMA_CTRL) & 0x7);
value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) |
_TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) |
_TXDMA_MGQ_MAP(mgtQ)| _TXDMA_HIQ_MAP(hiQ);
rtw_write16(Adapter, REG_TRXDMA_CTRL, value16);
}
static VOID
_InitNormalChipOneOutEpPriority(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u16 value = 0;
switch(pHalData->OutEpQueueSel)
{
case TX_SELE_HQ:
value = QUEUE_HIGH;
break;
case TX_SELE_LQ:
value = QUEUE_LOW;
break;
case TX_SELE_NQ:
value = QUEUE_NORMAL;
break;
default:
//RT_ASSERT(FALSE,("Shall not reach here!\n"));
break;
}
_InitNormalChipRegPriority(Adapter,
value,
value,
value,
value,
value,
value
);
}
static VOID
_InitNormalChipTwoOutEpPriority(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u16 beQ,bkQ,viQ,voQ,mgtQ,hiQ;
u16 valueHi = 0;
u16 valueLow = 0;
switch(pHalData->OutEpQueueSel)
{
case (TX_SELE_HQ | TX_SELE_LQ):
valueHi = QUEUE_HIGH;
valueLow = QUEUE_LOW;
break;
case (TX_SELE_NQ | TX_SELE_LQ):
valueHi = QUEUE_NORMAL;
valueLow = QUEUE_LOW;
break;
case (TX_SELE_HQ | TX_SELE_NQ):
valueHi = QUEUE_HIGH;
valueLow = QUEUE_NORMAL;
break;
default:
//RT_ASSERT(FALSE,("Shall not reach here!\n"));
break;
}
if(!pregistrypriv->wifi_spec ){
beQ = valueLow;
bkQ = valueLow;
viQ = valueHi;
voQ = valueHi;
mgtQ = valueHi;
hiQ = valueHi;
}
else{//for WMM ,CONFIG_OUT_EP_WIFI_MODE
beQ = valueLow;
bkQ = valueHi;
viQ = valueHi;
voQ = valueLow;
mgtQ = valueHi;
hiQ = valueHi;
}
_InitNormalChipRegPriority(Adapter,beQ,bkQ,viQ,voQ,mgtQ,hiQ);
}
static VOID
_InitNormalChipThreeOutEpPriority(
IN PADAPTER padapter
)
{
struct registry_priv *pregistrypriv = &padapter->registrypriv;
u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
if (!pregistrypriv->wifi_spec){// typical setting
beQ = QUEUE_LOW;
bkQ = QUEUE_LOW;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_HIGH;
}
else {// for WMM
beQ = QUEUE_LOW;
bkQ = QUEUE_NORMAL;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_HIGH;
}
_InitNormalChipRegPriority(padapter,beQ,bkQ,viQ,voQ,mgtQ,hiQ);
}
static VOID
_InitNormalChipQueuePriority(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
switch(pHalData->OutEpNumber)
{
case 1:
_InitNormalChipOneOutEpPriority(Adapter);
break;
case 2:
_InitNormalChipTwoOutEpPriority(Adapter);
break;
case 3:
_InitNormalChipThreeOutEpPriority(Adapter);
break;
default:
//RT_ASSERT(FALSE,("Shall not reach here!\n"));
break;
}
}
static void _InitQueuePriority(PADAPTER padapter)
{
_InitNormalChipQueuePriority(padapter);
}
static void _InitPageBoundary(PADAPTER padapter)
{
// RX Page Boundary
u16 rxff_bndy = MAX_RX_DMA_BUFFER_SIZE_88E-1;
rtw_write16(padapter, (REG_TRXFF_BNDY + 2), rxff_bndy);
}
static void _InitTransferPageSize(PADAPTER padapter)
{
// Tx page size is always 128.
u8 value8;
value8 = _PSRX(PBP_128) | _PSTX(PBP_128);
rtw_write8(padapter, REG_PBP, value8);
}
void _InitDriverInfoSize(PADAPTER padapter, u8 drvInfoSize)
{
rtw_write8(padapter, REG_RX_DRVINFO_SZ, drvInfoSize);
}
void _InitNetworkType(PADAPTER padapter)
{
u32 value32;
value32 = rtw_read32(padapter, REG_CR);
// TODO: use the other function to set network type
// value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AD_HOC);
value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AP);
rtw_write32(padapter, REG_CR, value32);
}
void _InitWMACSetting(PADAPTER padapter)
{
u16 value16;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
//pHalData->ReceiveConfig = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_CBSSID_DATA | RCR_CBSSID_BCN | RCR_AMF | RCR_HTC_LOC_CTRL | RCR_APP_PHYSTS | RCR_APP_ICV | RCR_APP_MIC;
// don't turn on AAP, it will allow all packets to driver
pHalData->ReceiveConfig = RCR_APM | RCR_AM | RCR_AB | RCR_CBSSID_DATA | RCR_CBSSID_BCN | RCR_AMF | RCR_HTC_LOC_CTRL | RCR_APP_PHYST_RXFF | RCR_APP_ICV | RCR_APP_MIC;
rtw_write32(padapter, REG_RCR, pHalData->ReceiveConfig);
// Accept all data frames
value16 = 0xFFFF;
rtw_write16(padapter, REG_RXFLTMAP2, value16);
// 2010.09.08 hpfan
// Since ADF is removed from RCR, ps-poll will not be indicate to driver,
// RxFilterMap should mask ps-poll to gurantee AP mode can rx ps-poll.
value16 = 0x400;
rtw_write16(padapter, REG_RXFLTMAP1, value16);
// Accept all management frames
value16 = 0xFFFF;
rtw_write16(padapter, REG_RXFLTMAP0, value16);
}
void _InitAdaptiveCtrl(PADAPTER padapter)
{
u16 value16;
u32 value32;
// Response Rate Set
value32 = rtw_read32(padapter, REG_RRSR);
value32 &= ~RATE_BITMAP_ALL;
value32 |= RATE_RRSR_CCK_ONLY_1M;
rtw_write32(padapter, REG_RRSR, value32);
// CF-END Threshold
//m_spIoBase->rtw_write8(REG_CFEND_TH, 0x1);
// SIFS (used in NAV)
value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10);
rtw_write16(padapter, REG_SPEC_SIFS, value16);
// Retry Limit
value16 = _LRL(0x30) | _SRL(0x30);
rtw_write16(padapter, REG_RL, value16);
}
void _InitEDCA(PADAPTER padapter)
{
// Set Spec SIFS (used in NAV)
rtw_write16(padapter, REG_SPEC_SIFS, 0x100a);
rtw_write16(padapter, REG_MAC_SPEC_SIFS, 0x100a);
// Set SIFS for CCK
rtw_write16(padapter, REG_SIFS_CTX, 0x100a);
// Set SIFS for OFDM
rtw_write16(padapter, REG_SIFS_TRX, 0x100a);
// TXOP
rtw_write32(padapter, REG_EDCA_BE_PARAM, 0x005EA42B);
rtw_write32(padapter, REG_EDCA_BK_PARAM, 0x0000A44F);
rtw_write32(padapter, REG_EDCA_VI_PARAM, 0x005EA324);
rtw_write32(padapter, REG_EDCA_VO_PARAM, 0x002FA226);
}
void _InitRateFallback(PADAPTER padapter)
{
// Set Data Auto Rate Fallback Retry Count register.
rtw_write32(padapter, REG_DARFRC, 0x00000000);
rtw_write32(padapter, REG_DARFRC+4, 0x10080404);
rtw_write32(padapter, REG_RARFRC, 0x04030201);
rtw_write32(padapter, REG_RARFRC+4, 0x08070605);
}
void _InitRetryFunction(PADAPTER padapter)
{
u8 value8;
value8 = rtw_read8(padapter, REG_FWHW_TXQ_CTRL);
value8 |= EN_AMPDU_RTY_NEW;
rtw_write8(padapter, REG_FWHW_TXQ_CTRL, value8);
// Set ACK timeout
rtw_write8(padapter, REG_ACKTO, 0x40);
}
static void HalRxAggr8188ESdio(PADAPTER padapter)
{
#if 1
struct registry_priv *pregistrypriv;
u8 valueDMATimeout;
u8 valueDMAPageCount;
pregistrypriv = &padapter->registrypriv;
if (pregistrypriv->wifi_spec)
{
// 2010.04.27 hpfan
// Adjust RxAggrTimeout to close to zero disable RxAggr, suggested by designer
// Timeout value is calculated by 34 / (2^n)
valueDMATimeout = 0x0f;
valueDMAPageCount = 0x01;
}
else
{
valueDMATimeout = 0x06;
//valueDMAPageCount = 0x0F;
//valueDMATimeout = 0x0a;
valueDMAPageCount = 0x24;
}
rtw_write8(padapter, REG_RXDMA_AGG_PG_TH+1, valueDMATimeout);
rtw_write8(padapter, REG_RXDMA_AGG_PG_TH, valueDMAPageCount);
#endif
}
void sdio_AggSettingRxUpdate(PADAPTER padapter)
{
#if 1
//HAL_DATA_TYPE *pHalData;
u8 valueDMA;
//pHalData = GET_HAL_DATA(padapter);
valueDMA = rtw_read8(padapter, REG_TRXDMA_CTRL);
valueDMA |= RXDMA_AGG_EN;
rtw_write8(padapter, REG_TRXDMA_CTRL, valueDMA);
#if 0
switch (RX_PAGE_SIZE_REG_VALUE)
{
case PBP_64:
pHalData->HwRxPageSize = 64;
break;
case PBP_128:
pHalData->HwRxPageSize = 128;
break;
case PBP_256:
pHalData->HwRxPageSize = 256;
break;
case PBP_512:
pHalData->HwRxPageSize = 512;
break;
case PBP_1024:
pHalData->HwRxPageSize = 1024;
break;
default:
RT_TRACE(_module_hci_hal_init_c_, _drv_err_,
("%s: RX_PAGE_SIZE_REG_VALUE definition is incorrect!\n", __FUNCTION__));
break;
}
#endif
#endif
}
void _initSdioAggregationSetting(PADAPTER padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
// Tx aggregation setting
//sdio_AggSettingTxUpdate(padapter);
// Rx aggregation setting
HalRxAggr8188ESdio(padapter);
sdio_AggSettingRxUpdate(padapter);
// 201/12/10 MH Add for USB agg mode dynamic switch.
pHalData->UsbRxHighSpeedMode = _FALSE;
}
void _InitOperationMode(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
struct mlme_ext_priv *pmlmeext;
u8 regBwOpMode = 0;
u32 regRATR = 0, regRRSR = 0;
u8 MinSpaceCfg;
pHalData = GET_HAL_DATA(padapter);
pmlmeext = &padapter->mlmeextpriv;
//1 This part need to modified according to the rate set we filtered!!
//
// Set RRSR, RATR, and REG_BWOPMODE registers
//
switch(pmlmeext->cur_wireless_mode)
{
case WIRELESS_MODE_B:
regBwOpMode = BW_OPMODE_20MHZ;
regRATR = RATE_ALL_CCK;
regRRSR = RATE_ALL_CCK;
break;
case WIRELESS_MODE_A:
// RT_ASSERT(FALSE,("Error wireless a mode\n"));
#if 0
regBwOpMode = BW_OPMODE_5G |BW_OPMODE_20MHZ;
regRATR = RATE_ALL_OFDM_AG;
regRRSR = RATE_ALL_OFDM_AG;
#endif
break;
case WIRELESS_MODE_G:
regBwOpMode = BW_OPMODE_20MHZ;
regRATR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
regRRSR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
break;
case WIRELESS_MODE_AUTO:
#if 0
if (padapter->bInHctTest)
{
regBwOpMode = BW_OPMODE_20MHZ;
regRATR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
regRRSR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
}
else
#endif
{
regBwOpMode = BW_OPMODE_20MHZ;
regRATR = RATE_ALL_CCK | RATE_ALL_OFDM_AG | RATE_ALL_OFDM_1SS | RATE_ALL_OFDM_2SS;
regRRSR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
}
break;
case WIRELESS_MODE_N_24G:
// It support CCK rate by default.
// CCK rate will be filtered out only when associated AP does not support it.
regBwOpMode = BW_OPMODE_20MHZ;
regRATR = RATE_ALL_CCK | RATE_ALL_OFDM_AG | RATE_ALL_OFDM_1SS | RATE_ALL_OFDM_2SS;
regRRSR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
break;
case WIRELESS_MODE_N_5G:
// RT_ASSERT(FALSE,("Error wireless mode"));
#if 0
regBwOpMode = BW_OPMODE_5G;
regRATR = RATE_ALL_OFDM_AG | RATE_ALL_OFDM_1SS | RATE_ALL_OFDM_2SS;
regRRSR = RATE_ALL_OFDM_AG;
#endif
break;
default: //for MacOSX compiler warning.
break;
}
rtw_write8(padapter, REG_BWOPMODE, regBwOpMode);
// For Min Spacing configuration.
switch(pHalData->rf_type)
{
case RF_1T2R:
case RF_1T1R:
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Initializepadapter: RF_Type%s\n", (pHalData->rf_type==RF_1T1R? "(1T1R)":"(1T2R)")));
// padapter->MgntInfo.MinSpaceCfg = (MAX_MSS_DENSITY_1T<<3);
MinSpaceCfg = (MAX_MSS_DENSITY_1T << 3);
break;
case RF_2T2R:
case RF_2T2R_GREEN:
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Initializepadapter:RF_Type(2T2R)\n"));
// padapter->MgntInfo.MinSpaceCfg = (MAX_MSS_DENSITY_2T<<3);
MinSpaceCfg = (MAX_MSS_DENSITY_2T << 3);
break;
}
// rtw_write8(padapter, REG_AMPDU_MIN_SPACE, padapter->MgntInfo.MinSpaceCfg);
rtw_write8(padapter, REG_AMPDU_MIN_SPACE, MinSpaceCfg);
}
void _InitBeaconParameters(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
pHalData = GET_HAL_DATA(padapter);
rtw_write16(padapter, REG_BCN_CTRL, 0x1010);
// TODO: Remove these magic number
rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);// ms
rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);//ms
rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME);
// Suggested by designer timchen. Change beacon AIFS to the largest number
// beacause test chip does not contension before sending beacon. by tynli. 2009.11.03
rtw_write16(padapter, REG_BCNTCFG, 0x660F);
pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
}
void _InitBeaconMaxError(PADAPTER padapter, BOOLEAN InfraMode)
{
#ifdef RTL8192CU_ADHOC_WORKAROUND_SETTING
rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF);
#endif
}
void _InitInterrupt(PADAPTER padapter)
{
//HISR write one to clear
rtw_write32(padapter, REG_HISR_88E, 0xFFFFFFFF);
// HIMR - turn all off
rtw_write32(padapter, REG_HIMR_88E, 0);
//
// Initialize and enable SDIO Host Interrupt.
//
InitInterrupt8188ESdio(padapter);
//
// Initialize and enable system Host Interrupt.
//
//InitSysInterrupt8188ESdio(Adapter);//TODO:
//
// Enable SDIO Host Interrupt.
//
//EnableInterrupt8188ESdio(padapter);//Move to sd_intf_start()/stop
}
void _InitRDGSetting(PADAPTER padapter)
{
rtw_write8(padapter, REG_RD_CTRL, 0xFF);
rtw_write16(padapter, REG_RD_NAV_NXT, 0x200);
rtw_write8(padapter, REG_RD_RESP_PKT_TH, 0x05);
}
static void _InitRxSetting(PADAPTER padapter)
{
rtw_write32(padapter, REG_MACID, 0x87654321);
rtw_write32(padapter, 0x0700, 0x87654321);
}
static void _InitRFType(PADAPTER padapter)
{
struct registry_priv *pregpriv = &padapter->registrypriv;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
//BOOLEAN is92CU = IS_92C_SERIAL(pHalData->VersionID);
BOOLEAN is2T2R = IS_2T2R(pHalData->VersionID);
#if DISABLE_BB_RF
pHalData->rf_chip = RF_PSEUDO_11N;
return;
#endif
pHalData->rf_chip = RF_6052;
//if (_FALSE == is92CU) {
if(_FALSE == is2T2R){
pHalData->rf_type = RF_1T1R;
DBG_8192C("Set RF Chip ID to RF_6052 and RF type to 1T1R.\n");
return;
}
// TODO: Consider that EEPROM set 92CU to 1T1R later.
// Force to overwrite setting according to chip version. Ignore EEPROM setting.
//pHalData->RF_Type = is92CU ? RF_2T2R : RF_1T1R;
MSG_8192C("Set RF Chip ID to RF_6052 and RF type to %d.\n", pHalData->rf_type);
}
// Set CCK and OFDM Block "ON"
static void _BBTurnOnBlock(PADAPTER padapter)
{
#if (DISABLE_BB_RF)
return;
#endif
PHY_SetBBReg(padapter, rFPGA0_RFMOD, bCCKEn, 0x1);
PHY_SetBBReg(padapter, rFPGA0_RFMOD, bOFDMEn, 0x1);
}
#if 0
static void _InitAntenna_Selection(PADAPTER padapter)
{
rtw_write8(padapter, REG_LEDCFG2, 0x82);
}
#endif
static void _InitPABias(PADAPTER padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u8 pa_setting;
BOOLEAN is92C = IS_92C_SERIAL(pHalData->VersionID);
//FIXED PA current issue
//efuse_one_byte_read(padapter, 0x1FA, &pa_setting);
pa_setting = EFUSE_Read1Byte(padapter, 0x1FA);
//RT_TRACE(COMP_INIT, DBG_LOUD, ("_InitPABias 0x1FA 0x%x \n",pa_setting));
if(!(pa_setting & BIT0))
{
PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0x0F406);
PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0x4F406);
PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0x8F406);
PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0xCF406);
//RT_TRACE(COMP_INIT, DBG_LOUD, ("PA BIAS path A\n"));
}
if(!(pa_setting & BIT1) && is92C)
{
PHY_SetRFReg(padapter,RF_PATH_B, 0x15, 0x0FFFFF, 0x0F406);
PHY_SetRFReg(padapter,RF_PATH_B, 0x15, 0x0FFFFF, 0x4F406);
PHY_SetRFReg(padapter,RF_PATH_B, 0x15, 0x0FFFFF, 0x8F406);
PHY_SetRFReg(padapter,RF_PATH_B, 0x15, 0x0FFFFF, 0xCF406);
//RT_TRACE(COMP_INIT, DBG_LOUD, ("PA BIAS path B\n"));
}
if(!(pa_setting & BIT4))
{
pa_setting = rtw_read8(padapter, 0x16);
pa_setting &= 0x0F;
rtw_write8(padapter, 0x16, pa_setting | 0x80);
rtw_write8(padapter, 0x16, pa_setting | 0x90);
}
}
#if 0
VOID
_InitRDGSetting_8188E(
IN PADAPTER Adapter
)
{
PlatformEFIOWrite1Byte(Adapter,REG_RD_CTRL,0xFF);
PlatformEFIOWrite2Byte(Adapter, REG_RD_NAV_NXT, 0x200);
PlatformEFIOWrite1Byte(Adapter,REG_RD_RESP_PKT_TH,0x05);
}
#endif
static u32 rtl8188es_hal_init(PADAPTER padapter)
{
s32 ret;
u8 txpktbuf_bndy;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(padapter);
struct registry_priv *pregistrypriv = &padapter->registrypriv;
u8 is92C = IS_92C_SERIAL(pHalData->VersionID);
rt_rf_power_state eRfPowerStateToSet;
u8 value8;
u16 value16;
u32 init_start_time = rtw_get_current_time();
#ifdef DBG_HAL_INIT_PROFILING
enum HAL_INIT_STAGES {
HAL_INIT_STAGES_BEGIN = 0,
HAL_INIT_STAGES_INIT_PW_ON,
HAL_INIT_STAGES_MISC01,
HAL_INIT_STAGES_DOWNLOAD_FW,
HAL_INIT_STAGES_MAC,
HAL_INIT_STAGES_BB,
HAL_INIT_STAGES_RF,
HAL_INIT_STAGES_EFUSE_PATCH,
HAL_INIT_STAGES_INIT_LLTT,
HAL_INIT_STAGES_MISC02,
HAL_INIT_STAGES_TURN_ON_BLOCK,
HAL_INIT_STAGES_INIT_SECURITY,
HAL_INIT_STAGES_MISC11,
HAL_INIT_STAGES_INIT_HAL_DM,
//HAL_INIT_STAGES_RF_PS,
HAL_INIT_STAGES_IQK,
HAL_INIT_STAGES_PW_TRACK,
HAL_INIT_STAGES_LCK,
//HAL_INIT_STAGES_MISC21,
HAL_INIT_STAGES_INIT_PABIAS,
//HAL_INIT_STAGES_ANTENNA_SEL,
HAL_INIT_STAGES_MISC31,
HAL_INIT_STAGES_END,
HAL_INIT_STAGES_NUM
};
char * hal_init_stages_str[] = {
"HAL_INIT_STAGES_BEGIN",
"HAL_INIT_STAGES_INIT_PW_ON",
"HAL_INIT_STAGES_MISC01",
"HAL_INIT_STAGES_DOWNLOAD_FW",
"HAL_INIT_STAGES_MAC",
"HAL_INIT_STAGES_BB",
"HAL_INIT_STAGES_RF",
"HAL_INIT_STAGES_EFUSE_PATCH",
"HAL_INIT_STAGES_INIT_LLTT",
"HAL_INIT_STAGES_MISC02",
"HAL_INIT_STAGES_TURN_ON_BLOCK",
"HAL_INIT_STAGES_INIT_SECURITY",
"HAL_INIT_STAGES_MISC11",
"HAL_INIT_STAGES_INIT_HAL_DM",
//"HAL_INIT_STAGES_RF_PS",
"HAL_INIT_STAGES_IQK",
"HAL_INIT_STAGES_PW_TRACK",
"HAL_INIT_STAGES_LCK",
//"HAL_INIT_STAGES_MISC21",
"HAL_INIT_STAGES_INIT_PABIAS"
//"HAL_INIT_STAGES_ANTENNA_SEL",
"HAL_INIT_STAGES_MISC31",
"HAL_INIT_STAGES_END",
};
int hal_init_profiling_i;
u32 hal_init_stages_timestamp[HAL_INIT_STAGES_NUM]; //used to record the time of each stage's starting point
for(hal_init_profiling_i=0;hal_init_profiling_i<HAL_INIT_STAGES_NUM;hal_init_profiling_i++)
hal_init_stages_timestamp[hal_init_profiling_i]=0;
#define HAL_INIT_PROFILE_TAG(stage) hal_init_stages_timestamp[(stage)]=rtw_get_current_time();
#else
#define HAL_INIT_PROFILE_TAG(stage) do {} while(0)
#endif //DBG_HAL_INIT_PROFILING
DBG_8192C("+rtl8188es_hal_init\n");
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_BEGIN);
// Disable Interrupt first.
// rtw_hal_disable_interrupt(padapter);
// DisableInterrupt8188ESdio(padapter);
#ifdef CONFIG_WOWLAN
if(rtw_read8(padapter, REG_MCUFWDL)&BIT7 &&
(pwrctrlpriv->wowlan_wake_reason & FWDecisionDisconnect)) {
u8 reg_val=0;
DBG_8192C("+Reset Entry+\n");
rtw_write8(padapter, REG_MCUFWDL, 0x00);
_8051Reset88E(padapter);
//reset BB
reg_val = rtw_read8(padapter, REG_SYS_FUNC_EN);
reg_val &= ~(BIT(0) | BIT(1));
rtw_write8(padapter, REG_SYS_FUNC_EN, reg_val);
//reset RF
rtw_write8(padapter, REG_RF_CTRL, 0);
//reset TRX path
rtw_write16(padapter, REG_CR, 0);
//reset MAC, Digital Core
reg_val = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
reg_val &= ~(BIT(4) | BIT(7));
rtw_write8(padapter, REG_SYS_FUNC_EN+1, reg_val);
reg_val = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
reg_val |= BIT(4) | BIT(7);
rtw_write8(padapter, REG_SYS_FUNC_EN+1, reg_val);
DBG_8192C("-Reset Entry-\n");
}
#endif //CONFIG_WOWLAN
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PW_ON);
ret = InitPowerOn_rtl8188es(padapter);
if (_FAIL == ret) {
RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init Power On!\n"));
goto exit;
}
ret = PowerOnCheck(padapter);
if (_FAIL == ret ) {
DBG_871X("Power on Fail! do it again\n");
ret = InitPowerOn_rtl8188es(padapter);
if (_FAIL == ret) {
DBG_871X("Failed to init Power On!\n");
goto exit;
}
}
DBG_871X("Power on ok!\n");
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC01);
if (!pregistrypriv->wifi_spec) {
txpktbuf_bndy = TX_PAGE_BOUNDARY_88E;
} else {
// for WMM
txpktbuf_bndy = WMM_NORMAL_TX_PAGE_BOUNDARY_88E;
}
_InitQueueReservedPage(padapter);
_InitQueuePriority(padapter);
_InitPageBoundary(padapter);
_InitTransferPageSize(padapter);
#ifdef CONFIG_IOL_IOREG_CFG
_InitTxBufferBoundary(padapter, 0);
#endif
//
// Configure SDIO TxRx Control to enable Rx DMA timer masking.
// 2010.02.24.
//
value8 = SdioLocalCmd52Read1Byte(padapter, SDIO_REG_TX_CTRL);
SdioLocalCmd52Write1Byte(padapter, SDIO_REG_TX_CTRL, 0x02);
rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1, 0);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_DOWNLOAD_FW);
#if (MP_DRIVER == 1)
if (padapter->registrypriv.mp_mode == 1)
{
_InitRxSetting(padapter);
}
#endif //MP_DRIVER == 1
{
#if 0
padapter->bFWReady = _FALSE; //because no fw for test chip
pHalData->fw_ractrl = _FALSE;
#else
#ifdef CONFIG_WOWLAN
ret = rtl8188e_FirmwareDownload(padapter, _FALSE);
#else
ret = rtl8188e_FirmwareDownload(padapter);
#endif //CONFIG_WOWLAN
if (ret != _SUCCESS) {
DBG_871X("%s: Download Firmware failed!!\n", __FUNCTION__);
padapter->bFWReady = _FALSE;
pHalData->fw_ractrl = _FALSE;
goto exit;
} else {
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Initializepadapter8192CSdio(): Download Firmware Success!!\n"));
padapter->bFWReady = _TRUE;
pHalData->fw_ractrl = _FALSE;
}
#endif
}
rtl8188e_InitializeFirmwareVars(padapter);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MAC);
#if (HAL_MAC_ENABLE == 1)
ret = PHY_MACConfig8188E(padapter);
if(ret != _SUCCESS){
// RT_TRACE(COMP_INIT, DBG_LOUD, ("Initializepadapter8192CSdio(): Fail to configure MAC!!\n"));
goto exit;
}
#endif
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_BB);
//
//d. Initialize BB related configurations.
//
#if (HAL_BB_ENABLE == 1)
ret = PHY_BBConfig8188E(padapter);
if(ret != _SUCCESS){
// RT_TRACE(COMP_INIT, DBG_SERIOUS, ("Initializepadapter8192CSdio(): Fail to configure BB!!\n"));
goto exit;
}
#endif
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_RF);
#if (HAL_RF_ENABLE == 1)
ret = PHY_RFConfig8188E(padapter);
if(ret != _SUCCESS){
// RT_TRACE(COMP_INIT, DBG_LOUD, ("Initializepadapter8192CSdio(): Fail to configure RF!!\n"));
goto exit;
}
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_EFUSE_PATCH);
#if defined(CONFIG_IOL_EFUSE_PATCH)
ret = rtl8188e_iol_efuse_patch(padapter);
if(ret != _SUCCESS){
DBG_871X("%s rtl8188e_iol_efuse_patch failed \n",__FUNCTION__);
goto exit;
}
#endif
_InitTxBufferBoundary(padapter, txpktbuf_bndy);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_LLTT);
ret = InitLLTTable(padapter, txpktbuf_bndy);
if (_SUCCESS != ret) {
RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init LLT Table!\n"));
goto exit;
}
#if (RATE_ADAPTIVE_SUPPORT==1)
{//Enable TX Report
//Enable Tx Report Timer
value8 = rtw_read8(padapter, REG_TX_RPT_CTRL);
rtw_write8(padapter, REG_TX_RPT_CTRL, (value8|BIT1|BIT0));
//Set MAX RPT MACID
rtw_write8(padapter, REG_TX_RPT_CTRL+1, 2);//FOR sta mode ,0: bc/mc ,1:AP
//Tx RPT Timer. Unit: 32us
rtw_write16(padapter, REG_TX_RPT_TIME, 0xCdf0);
}
#endif
#if 0
if(pHTInfo->bRDGEnable){
_InitRDGSetting_8188E(Adapter);
}
#endif
#ifdef CONFIG_TX_EARLY_MODE
if( pHalData->bEarlyModeEnable)
{
RT_TRACE(_module_hci_hal_init_c_, _drv_info_,("EarlyMode Enabled!!!\n"));
value8 = rtw_read8(padapter, REG_EARLY_MODE_CONTROL);
#if RTL8188E_EARLY_MODE_PKT_NUM_10 == 1
value8 = value8|0x1f;
#else
value8 = value8|0xf;
#endif
rtw_write8(padapter, REG_EARLY_MODE_CONTROL, value8);
rtw_write8(padapter, REG_EARLY_MODE_CONTROL+3, 0x80);
value8 = rtw_read8(padapter, REG_TCR+1);
value8 = value8|0x40;
rtw_write8(padapter,REG_TCR+1, value8);
}
else
#endif
{
rtw_write8(padapter, REG_EARLY_MODE_CONTROL, 0);
}
#if(SIC_ENABLE == 1)
SIC_Init(padapter);
#endif
if (pwrctrlpriv->reg_rfoff == _TRUE) {
pwrctrlpriv->rf_pwrstate = rf_off;
}
// 2010/08/09 MH We need to check if we need to turnon or off RF after detecting
// HW GPIO pin. Before PHY_RFConfig8192C.
HalDetectPwrDownMode88E(padapter);
// Set RF type for BB/RF configuration
_InitRFType(padapter);
// Save target channel
// <Roger_Notes> Current Channel will be updated again later.
pHalData->CurrentChannel = 1;
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC02);
// Get Rx PHY status in order to report RSSI and others.
_InitDriverInfoSize(padapter, 4);
hal_init_macaddr(padapter);
_InitNetworkType(padapter);
_InitWMACSetting(padapter);
_InitAdaptiveCtrl(padapter);
_InitEDCA(padapter);
_InitRateFallback(padapter);
_InitRetryFunction(padapter);
_initSdioAggregationSetting(padapter);
_InitOperationMode(padapter);
_InitBeaconParameters(padapter);
_InitBeaconMaxError(padapter, _TRUE);
_InitInterrupt(padapter);
// Enable MACTXEN/MACRXEN block
value16 = rtw_read16(padapter, REG_CR);
value16 |= (MACTXEN | MACRXEN);
rtw_write8(padapter, REG_CR, value16);
rtw_write32(padapter,REG_MACID_NO_LINK_0,0xFFFFFFFF);
rtw_write32(padapter,REG_MACID_NO_LINK_1,0xFFFFFFFF);
#if defined(CONFIG_CONCURRENT_MODE) || defined(CONFIG_TX_MCAST2UNI)
#ifdef CONFIG_CHECK_AC_LIFETIME
// Enable lifetime check for the four ACs
rtw_write8(padapter, REG_LIFETIME_EN, 0x0F);
#endif // CONFIG_CHECK_AC_LIFETIME
#ifdef CONFIG_TX_MCAST2UNI
rtw_write16(padapter, REG_PKT_VO_VI_LIFE_TIME, 0x0400); // unit: 256us. 256ms
rtw_write16(padapter, REG_PKT_BE_BK_LIFE_TIME, 0x0400); // unit: 256us. 256ms
#else // CONFIG_TX_MCAST2UNI
rtw_write16(padapter, REG_PKT_VO_VI_LIFE_TIME, 0x3000); // unit: 256us. 3s
rtw_write16(padapter, REG_PKT_BE_BK_LIFE_TIME, 0x3000); // unit: 256us. 3s
#endif // CONFIG_TX_MCAST2UNI
#endif // CONFIG_CONCURRENT_MODE || CONFIG_TX_MCAST2UNI
#endif //HAL_RF_ENABLE == 1
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_TURN_ON_BLOCK);
_BBTurnOnBlock(padapter);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_SECURITY);
#if 1
invalidate_cam_all(padapter);
#else
CamResetAllEntry(padapter);
padapter->HalFunc.EnableHWSecCfgHandler(padapter);
#endif
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC11);
// 2010/12/17 MH We need to set TX power according to EFUSE content at first.
PHY_SetTxPowerLevel8188E(padapter, pHalData->CurrentChannel);
// Record original value for template. This is arough data, we can only use the data
// for power adjust. The value can not be adjustde according to different power!!!
// pHalData->OriginalCckTxPwrIdx = pHalData->CurrentCckTxPwrIdx;
// pHalData->OriginalOfdm24GTxPwrIdx = pHalData->CurrentOfdm24GTxPwrIdx;
// Move by Neo for USB SS to below setp
//_RfPowerSave(padapter);
#if 0 //ANTENNA_SELECTION_STATIC_SETTING
#if 0
if (!IS_92C_SERIAL( pHalData->VersionID) && (pHalData->AntDivCfg!=0))
#else
if (IS_1T1R( pHalData->VersionID) && (pHalData->AntDivCfg!=0))
#endif
{ //for 88CU ,1T1R
_InitAntenna_Selection(padapter);
}
#endif
//
// Disable BAR, suggested by Scott
// 2010.04.09 add by hpfan
//
rtw_write32(padapter, REG_BAR_MODE_CTRL, 0x0201ffff);
// HW SEQ CTRL
// set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM.
rtw_write8(padapter, REG_HWSEQ_CTRL, 0xFF);
#ifdef RTL8188ES_MAC_LOOPBACK
value8 = rtw_read8(padapter, REG_SYS_FUNC_EN);
value8 &= ~(FEN_BBRSTB|FEN_BB_GLB_RSTn);
rtw_write8(padapter, REG_SYS_FUNC_EN, value8);//disable BB, CCK/OFDM
rtw_write8(padapter, REG_RD_CTRL, 0x0F);
rtw_write8(padapter, REG_RD_CTRL+1, 0xCF);
//rtw_write8(padapter, REG_TXPKTBUF_WMAC_LBK_BF_HD, 0x80);//to check _InitPageBoundary()
rtw_write32(padapter, REG_CR, 0x0b0202ff);//0x100[28:24]=0x01011, enable mac loopback, no HW Security Eng.
#endif
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_HAL_DM);
// InitHalDm(padapter);
rtl8188e_InitHalDm(padapter);
#if (MP_DRIVER == 1)
if (padapter->registrypriv.mp_mode == 1)
{
padapter->mppriv.channel = pHalData->CurrentChannel;
MPT_InitializeAdapter(padapter, padapter->mppriv.channel);
}
else
#endif //(MP_DRIVER == 1)
{
//
// 2010/08/11 MH Merge from 8192SE for Minicard init. We need to confirm current radio status
// and then decide to enable RF or not.!!!??? For Selective suspend mode. We may not
// call init_adapter. May cause some problem??
//
// Fix the bug that Hw/Sw radio off before S3/S4, the RF off action will not be executed
// in MgntActSet_RF_State() after wake up, because the value of pHalData->eRFPowerState
// is the same as eRfOff, we should change it to eRfOn after we config RF parameters.
// Added by tynli. 2010.03.30.
pwrctrlpriv->rf_pwrstate = rf_on;
RT_CLEAR_PS_LEVEL(pwrctrlpriv, RT_RF_OFF_LEVL_HALT_NIC);
// 20100326 Joseph: Copy from GPIOChangeRFWorkItemCallBack() function to check HW radio on/off.
// 20100329 Joseph: Revise and integrate the HW/SW radio off code in initialization.
// pHalData->bHwRadioOff = _FALSE;
pwrctrlpriv->b_hw_radio_off = _FALSE;
eRfPowerStateToSet = rf_on;
// 2010/-8/09 MH For power down module, we need to enable register block contrl reg at 0x1c.
// Then enable power down control bit of register 0x04 BIT4 and BIT15 as 1.
if(pHalData->pwrdown && eRfPowerStateToSet == rf_off)
{
// Enable register area 0x0-0xc.
rtw_write8(padapter, REG_RSV_CTRL, 0x0);
//
// <Roger_Notes> We should configure HW PDn source for WiFi ONLY, and then
// our HW will be set in power-down mode if PDn source from all functions are configured.
// 2010.10.06.
//
if(IS_HARDWARE_TYPE_8723AS(padapter))
{
value8 = rtw_read8(padapter, REG_MULTI_FUNC_CTRL);
rtw_write8(padapter, REG_MULTI_FUNC_CTRL, (value8|WL_HWPDN_EN));
}
else
{
rtw_write16(padapter, REG_APS_FSMCO, 0x8812);
}
}
//DrvIFIndicateCurrentPhyStatus(padapter); // 2010/08/17 MH Disable to prevent BSOD.
// 2010/08/26 MH Merge from 8192CE.
if(pwrctrlpriv->rf_pwrstate == rf_on)
{
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_IQK);
if(pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized){
// PHY_IQCalibrate(padapter, _TRUE);
PHY_IQCalibrate_8188E(padapter,_TRUE);
}
else
{
// PHY_IQCalibrate(padapter, _FALSE);
PHY_IQCalibrate_8188E(padapter,_FALSE);
pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized = _TRUE;
}
// dm_CheckTXPowerTracking(padapter);
// PHY_LCCalibrate(padapter);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_PW_TRACK);
ODM_TXPowerTrackingCheck(&pHalData->odmpriv );
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_LCK);
PHY_LCCalibrate_8188E(padapter);
}
}
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PABIAS);
//if(pHalData->eRFPowerState == eRfOn)
{
_InitPABias(padapter);
}
// Init BT hw config.
// HALBT_InitHwConfig(padapter);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC31);
// 2010/05/20 MH We need to init timer after update setting. Otherwise, we can not get correct inf setting.
// 2010/05/18 MH For SE series only now. Init GPIO detect time
#if 0
if(pDevice->RegUsbSS)
{
RT_TRACE(COMP_INIT, DBG_LOUD, (" call GpioDetectTimerStart\n"));
GpioDetectTimerStart(padapter); // Disable temporarily
}
#endif
// 2010/08/23 MH According to Alfred's suggestion, we need to to prevent HW enter
// suspend mode automatically.
//HwSuspendModeEnable92Cu(padapter, FALSE);
// 2010/12/17 MH For TX power level OID modification from UI.
// padapter->HalFunc.GetTxPowerLevelHandler( padapter, &pHalData->DefaultTxPwrDbm );
//DbgPrint("pHalData->DefaultTxPwrDbm = %d\n", pHalData->DefaultTxPwrDbm);
// if(pHalData->SwBeaconType < HAL92CSDIO_DEFAULT_BEACON_TYPE) // The lowest Beacon Type that HW can support
// pHalData->SwBeaconType = HAL92CSDIO_DEFAULT_BEACON_TYPE;
//
// Update current Tx FIFO page status.
//
HalQueryTxBufferStatus8189ESdio(padapter);
if(pregistrypriv->wifi_spec)
rtw_write16(padapter,REG_FAST_EDCA_CTRL ,0);
//TODO:Setting HW_VAR_NAV_UPPER !!!!!!!!!!!!!!!!!!!!
//rtw_hal_set_hwreg(Adapter, HW_VAR_NAV_UPPER, ((pu1Byte)&NavUpper));
if(IS_HARDWARE_TYPE_8188ES(padapter))
{
value8= rtw_read8(padapter, 0x4d3);
rtw_write8(padapter, 0x4d3, (value8|0x1));
}
//pHalData->PreRpwmVal = PlatformEFSdioLocalCmd52Read1Byte(Adapter, SDIO_REG_HRPWM1)&0x80;
// enable Tx report.
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+1, 0x0F);
/*
// Suggested by SD1 pisa. Added by tynli. 2011.10.21.
PlatformEFIOWrite1Byte(Adapter, REG_EARLY_MODE_CONTROL+3, 0x01);
*/ //tynli_test_tx_report.
rtw_write16(padapter, REG_TX_RPT_TIME, 0x3DF0);
//RT_TRACE(COMP_INIT, DBG_TRACE, ("InitializeAdapter8188EUsb() <====\n"));
//enable tx DMA to drop the redundate data of packet
rtw_write16(padapter,REG_TXDMA_OFFSET_CHK, (rtw_read16(padapter,REG_TXDMA_OFFSET_CHK) | DROP_DATA_EN));
//#debug print for checking compile flags
//DBG_8192C("RTL8188E_FPGA_TRUE_PHY_VERIFICATION=%d\n", RTL8188E_FPGA_TRUE_PHY_VERIFICATION);
DBG_8192C("DISABLE_BB_RF=%d\n", DISABLE_BB_RF);
DBG_8192C("IS_HARDWARE_TYPE_8188ES=%d\n", IS_HARDWARE_TYPE_8188ES(padapter));
//#
#ifdef CONFIG_PLATFORM_SPRD
// For Power Consumption, set all GPIO pin to ouput mode
//0x44~0x47 (GPIO 0~7), Note:GPIO5 is enabled for controlling external 26MHz request
rtw_write8(padapter, GPIO_IO_SEL, 0xFF);//Reg0x46, set to o/p mode
//0x42~0x43 (GPIO 8~11)
value8 = rtw_read8(padapter, REG_GPIO_IO_SEL);
rtw_write8(padapter, REG_GPIO_IO_SEL, (value8<<4)|value8);
value8 = rtw_read8(padapter, REG_GPIO_IO_SEL+1);
rtw_write8(padapter, REG_GPIO_IO_SEL+1, value8|0x0F);//Reg0x43
#endif //CONFIG_PLATFORM_SPRD
#ifdef CONFIG_XMIT_ACK
//ack for xmit mgmt frames.
rtw_write32(padapter, REG_FWHW_TXQ_CTRL, rtw_read32(padapter, REG_FWHW_TXQ_CTRL)|BIT(12));
#endif //CONFIG_XMIT_ACK
//RT_TRACE(COMP_INIT, DBG_LOUD, ("<---Initializepadapter8192CSdio()\n"));
DBG_8192C("-rtl8188es_hal_init\n");
exit:
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_END);
DBG_871X("%s in %dms\n", __FUNCTION__, rtw_get_passing_time_ms(init_start_time));
#ifdef DBG_HAL_INIT_PROFILING
hal_init_stages_timestamp[HAL_INIT_STAGES_END]=rtw_get_current_time();
for(hal_init_profiling_i=0;hal_init_profiling_i<HAL_INIT_STAGES_NUM-1;hal_init_profiling_i++) {
DBG_871X("DBG_HAL_INIT_PROFILING: %35s, %u, %5u, %5u\n"
, hal_init_stages_str[hal_init_profiling_i]
, hal_init_stages_timestamp[hal_init_profiling_i]
, (hal_init_stages_timestamp[hal_init_profiling_i+1]-hal_init_stages_timestamp[hal_init_profiling_i])
, rtw_get_time_interval_ms(hal_init_stages_timestamp[hal_init_profiling_i], hal_init_stages_timestamp[hal_init_profiling_i+1])
);
}
#endif
return ret;
}
static void hal_poweroff_rtl8188es(PADAPTER padapter)
{
u8 u1bTmp;
u16 u2bTmp;
u32 u4bTmp;
u8 bMacPwrCtrlOn;
u8 ret;
#ifdef CONFIG_PLATFORM_SPRD
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
#endif //CONFIG_PLATFORM_SPRD
rtw_hal_get_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
if(bMacPwrCtrlOn == _FALSE)
return ;
DBG_871X("=>%s\n", __FUNCTION__);
//Stop Tx Report Timer. 0x4EC[Bit1]=b'0
u1bTmp = rtw_read8(padapter, REG_TX_RPT_CTRL);
rtw_write8(padapter, REG_TX_RPT_CTRL, u1bTmp&(~BIT1));
// stop rx
rtw_write8(padapter,REG_CR, 0x0);
#ifdef CONFIG_EXT_CLK //for sprd For Power Consumption.
EnableGpio5ClockReq(padapter, _FALSE, 0);
#endif //CONFIG_EXT_CLK
#if 1
// For Power Consumption.
u1bTmp = rtw_read8(padapter, GPIO_IN);
rtw_write8(padapter, GPIO_OUT, u1bTmp);
rtw_write8(padapter, GPIO_IO_SEL, 0xFF);//Reg0x46
u1bTmp = rtw_read8(padapter, REG_GPIO_IO_SEL);
rtw_write8(padapter, REG_GPIO_IO_SEL, (u1bTmp<<4)|u1bTmp);
u1bTmp = rtw_read8(padapter, REG_GPIO_IO_SEL+1);
rtw_write8(padapter, REG_GPIO_IO_SEL+1, u1bTmp|0x0F);//Reg0x43
#endif
// Run LPS WL RFOFF flow
ret = HalPwrSeqCmdParsing(padapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_SDIO_MSK, Rtl8188E_NIC_LPS_ENTER_FLOW);
if (ret == _FALSE) {
DBG_871X("%s: run RF OFF flow fail!\n", __func__);
}
// ==== Reset digital sequence ======
u1bTmp = rtw_read8(padapter, REG_MCUFWDL);
if ((u1bTmp & RAM_DL_SEL) && padapter->bFWReady) //8051 RAM code
{
//rtl8723a_FirmwareSelfReset(padapter);
//_8051Reset88E(padapter);
// Reset MCU 0x2[10]=0.
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
u1bTmp &= ~BIT(2); // 0x2[10], FEN_CPUEN
rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp);
}
//u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
//u1bTmp &= ~BIT(2); // 0x2[10], FEN_CPUEN
//rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp);
// MCUFWDL 0x80[1:0]=0
// reset MCU ready status
rtw_write8(padapter, REG_MCUFWDL, 0);
//==== Reset digital sequence end ======
bMacPwrCtrlOn = _FALSE; // Disable CMD53 R/W
rtw_hal_set_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
/*
if((pMgntInfo->RfOffReason & RF_CHANGE_BY_HW) && pHalData->pwrdown)
{// Power Down
// Card disable power action flow
ret = HalPwrSeqCmdParsing(Adapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_SDIO_MSK, Rtl8188E_NIC_PDN_FLOW);
}
else
*/
{ // Non-Power Down
// Card disable power action flow
ret = HalPwrSeqCmdParsing(padapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_SDIO_MSK, Rtl8188E_NIC_DISABLE_FLOW);
if (ret == _FALSE) {
DBG_871X("%s: run CARD DISABLE flow fail!\n", __func__);
}
}
/*
// Reset MCU IO Wrapper, added by Roger, 2011.08.30
u1bTmp = rtw_read8(padapter, REG_RSV_CTRL+1);
u1bTmp &= ~BIT(0);
rtw_write8(padapter, REG_RSV_CTRL+1, u1bTmp);
u1bTmp = rtw_read8(padapter, REG_RSV_CTRL+1);
u1bTmp |= BIT(0);
rtw_write8(padapter, REG_RSV_CTRL+1, u1bTmp);
*/
// RSV_CTRL 0x1C[7:0]=0x0E
// lock ISO/CLK/Power control register
rtw_write8(padapter, REG_RSV_CTRL, 0x0E);
padapter->bFWReady = _FALSE;
DBG_871X("<=%s\n", __FUNCTION__);
}
static u32 rtl8188es_hal_deinit(PADAPTER padapter)
{
DBG_871X("=>%s\n", __FUNCTION__);
if (padapter->hw_init_completed == _TRUE)
hal_poweroff_rtl8188es(padapter);
DBG_871X("<=%s\n", __FUNCTION__);
return _SUCCESS;
}
static u32 rtl8188es_inirp_init(PADAPTER padapter)
{
u32 status;
_func_enter_;
status = _SUCCESS;
_func_exit_;
return status;
}
static u32 rtl8188es_inirp_deinit(PADAPTER padapter)
{
RT_TRACE(_module_hci_hal_init_c_,_drv_info_,("+rtl8188es_inirp_deinit\n"));
RT_TRACE(_module_hci_hal_init_c_,_drv_info_,("-rtl8188es_inirp_deinit\n"));
return _SUCCESS;
}
static void rtl8188es_init_default_value(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
struct pwrctrl_priv *pwrctrlpriv;
struct dm_priv *pdmpriv;
u8 i;
pHalData = GET_HAL_DATA(padapter);
pwrctrlpriv = adapter_to_pwrctl(padapter);
pdmpriv = &pHalData->dmpriv;
//init default value
pHalData->fw_ractrl = _FALSE;
if(!pwrctrlpriv->bkeepfwalive)
pHalData->LastHMEBoxNum = 0;
//init dm default value
pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized = _FALSE;
pHalData->odmpriv.RFCalibrateInfo.TM_Trigger = 0;//for IQK
//pdmpriv->binitialized = _FALSE;
// pdmpriv->prv_traffic_idx = 3;
// pdmpriv->initialize = 0;
pHalData->pwrGroupCnt = 0;
pHalData->PGMaxGroup= 13;
pHalData->odmpriv.RFCalibrateInfo.ThermalValue_HP_index = 0;
for(i = 0; i < HP_THERMAL_NUM; i++)
pHalData->odmpriv.RFCalibrateInfo.ThermalValue_HP[i] = 0;
// interface related variable
pHalData->SdioRxFIFOCnt = 0;
}
//
// Description:
// We should set Efuse cell selection to WiFi cell in default.
//
// Assumption:
// PASSIVE_LEVEL
//
// Added by Roger, 2010.11.23.
//
static void _EfuseCellSel(
IN PADAPTER padapter
)
{
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u32 value32;
//if(INCLUDE_MULTI_FUNC_BT(padapter))
{
value32 = rtw_read32(padapter, EFUSE_TEST);
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
rtw_write32(padapter, EFUSE_TEST, value32);
}
}
static VOID
_ReadRFType(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
#if DISABLE_BB_RF
pHalData->rf_chip = RF_PSEUDO_11N;
#else
pHalData->rf_chip = RF_6052;
#endif
}
static void
Hal_EfuseParsePIDVID_8188ES(
IN PADAPTER pAdapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
// HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
//
// <Roger_Notes> The PID/VID info was parsed from CISTPL_MANFID Tuple in CIS area before.
// VID is parsed from Manufacture code field and PID is parsed from Manufacture information field.
// 2011.04.01.
//
// RT_TRACE(COMP_INIT, DBG_LOUD, ("EEPROM VID = 0x%4x\n", pHalData->EEPROMVID));
// RT_TRACE(COMP_INIT, DBG_LOUD, ("EEPROM PID = 0x%4x\n", pHalData->EEPROMPID));
}
static void
Hal_EfuseParseMACAddr_8188ES(
IN PADAPTER padapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
u16 i, usValue;
u8 sMacAddr[6] = {0x00, 0xE0, 0x4C, 0x81, 0x88, 0x77};
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
if (AutoLoadFail)
{
// sMacAddr[5] = (u1Byte)GetRandomNumber(1, 254);
for (i=0; i<6; i++)
pEEPROM->mac_addr[i] = sMacAddr[i];
}
else
{
//Read Permanent MAC address
_rtw_memcpy(pEEPROM->mac_addr, &hwinfo[EEPROM_MAC_ADDR_88ES], ETH_ALEN);
}
// NicIFSetMacAddress(pAdapter, pAdapter->PermanentAddress);
DBG_871X("Hal_EfuseParseMACAddr_8188ES: Permanent Address = %02x-%02x-%02x-%02x-%02x-%02x\n",
pEEPROM->mac_addr[0], pEEPROM->mac_addr[1],
pEEPROM->mac_addr[2], pEEPROM->mac_addr[3],
pEEPROM->mac_addr[4], pEEPROM->mac_addr[5]);
}
#ifdef CONFIG_EFUSE_CONFIG_FILE
static u32 Hal_readPGDataFromConfigFile(
PADAPTER padapter)
{
u32 i;
struct file *fp;
mm_segment_t fs;
u8 temp[3];
loff_t pos = 0;
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
u8 *PROMContent = pEEPROM->efuse_eeprom_data;
temp[2] = 0; // add end of string '\0'
fp = filp_open("/system/etc/wifi/wifi_efuse.map", O_RDONLY, 0);
if (IS_ERR(fp)) {
pEEPROM->bloadfile_fail_flag = _TRUE;
DBG_871X("Error, Efuse configure file doesn't exist.\n");
return _FAIL;
}
fs = get_fs();
set_fs(KERNEL_DS);
DBG_871X("Efuse configure file:\n");
for (i=0; i<HWSET_MAX_SIZE_88E; i++) {
vfs_read(fp, temp, 2, &pos);
PROMContent[i] = simple_strtoul(temp, NULL, 16 );
pos += 1; // Filter the space character
DBG_871X("%02X \n", PROMContent[i]);
}
DBG_871X("\n");
set_fs(fs);
filp_close(fp, NULL);
pEEPROM->bloadfile_fail_flag = _FALSE;
return _SUCCESS;
}
static void
Hal_ReadMACAddrFromFile_8188ES(
PADAPTER padapter
)
{
u32 i;
struct file *fp;
mm_segment_t fs;
u8 source_addr[18];
loff_t pos = 0;
u32 curtime = rtw_get_current_time();
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
u8 *head, *end;
u8 null_mac_addr[ETH_ALEN] = {0, 0, 0,0, 0, 0};
u8 multi_mac_addr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
_rtw_memset(source_addr, 0, 18);
_rtw_memset(pEEPROM->mac_addr, 0, ETH_ALEN);
fp = filp_open("/data/wifimac.txt", O_RDWR, 0644);
if (IS_ERR(fp)) {
pEEPROM->bloadmac_fail_flag = _TRUE;
DBG_871X("Error, wifi mac address file doesn't exist.\n");
} else {
fs = get_fs();
set_fs(KERNEL_DS);
DBG_871X("wifi mac address:\n");
vfs_read(fp, source_addr, 18, &pos);
source_addr[17] = ':';
head = end = source_addr;
for (i=0; i<ETH_ALEN; i++) {
while (end && (*end != ':') )
end++;
if (end && (*end == ':') )
*end = '\0';
pEEPROM->mac_addr[i] = simple_strtoul(head, NULL, 16 );
if (end) {
end++;
head = end;
}
DBG_871X("%02x \n", pEEPROM->mac_addr[i]);
}
DBG_871X("\n");
set_fs(fs);
pEEPROM->bloadmac_fail_flag = _FALSE;
filp_close(fp, NULL);
}
if ( (_rtw_memcmp(pEEPROM->mac_addr, null_mac_addr, ETH_ALEN)) ||
(_rtw_memcmp(pEEPROM->mac_addr, multi_mac_addr, ETH_ALEN)) ) {
pEEPROM->mac_addr[0] = 0x00;
pEEPROM->mac_addr[1] = 0xe0;
pEEPROM->mac_addr[2] = 0x4c;
pEEPROM->mac_addr[3] = (u8)(curtime & 0xff) ;
pEEPROM->mac_addr[4] = (u8)((curtime>>8) & 0xff) ;
pEEPROM->mac_addr[5] = (u8)((curtime>>16) & 0xff) ;
}
DBG_871X("Hal_ReadMACAddrFromFile_8188ES: Permanent Address = %02x-%02x-%02x-%02x-%02x-%02x\n",
pEEPROM->mac_addr[0], pEEPROM->mac_addr[1],
pEEPROM->mac_addr[2], pEEPROM->mac_addr[3],
pEEPROM->mac_addr[4], pEEPROM->mac_addr[5]);
}
#endif //CONFIG_EFUSE_CONFIG_FILE
static VOID
readAdapterInfo_8188ES(
IN PADAPTER padapter
)
{
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
/* parse the eeprom/efuse content */
Hal_EfuseParseIDCode88E(padapter, pEEPROM->efuse_eeprom_data);
Hal_EfuseParsePIDVID_8188ES(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
#ifdef CONFIG_EFUSE_CONFIG_FILE
Hal_ReadMACAddrFromFile_8188ES(padapter);
#else //CONFIG_EFUSE_CONFIG_FILE
Hal_EfuseParseMACAddr_8188ES(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
#endif //CONFIG_EFUSE_CONFIG_FILE
Hal_ReadPowerSavingMode88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_ReadTxPowerInfo88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_EfuseParseEEPROMVer88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
rtl8188e_EfuseParseChnlPlan(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_EfuseParseXtal_8188E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_EfuseParseCustomerID88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
//Hal_ReadAntennaDiversity88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_EfuseParseBoardType88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
Hal_ReadThermalMeter_88E(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
//
// The following part initialize some vars by PG info.
//
Hal_InitChannelPlan(padapter);
#ifdef CONFIG_WOWLAN
Hal_DetectWoWMode(padapter);
#endif //CONFIG_WOWLAN
#ifdef CONFIG_RF_GAIN_OFFSET
Hal_ReadRFGainOffset(padapter, pEEPROM->efuse_eeprom_data, pEEPROM->bautoload_fail_flag);
#endif //CONFIG_RF_GAIN_OFFSET
}
static void _ReadPROMContent(
IN PADAPTER padapter
)
{
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
u8 eeValue;
/* check system boot selection */
eeValue = rtw_read8(padapter, REG_9346CR);
pEEPROM->EepromOrEfuse = (eeValue & BOOT_FROM_EEPROM) ? _TRUE : _FALSE;
pEEPROM->bautoload_fail_flag = (eeValue & EEPROM_EN) ? _FALSE : _TRUE;
DBG_871X("%s: 9346CR=0x%02X, Boot from %s, Autoload %s\n",
__FUNCTION__, eeValue,
(pEEPROM->EepromOrEfuse ? "EEPROM" : "EFUSE"),
(pEEPROM->bautoload_fail_flag ? "Fail" : "OK"));
// pHalData->EEType = IS_BOOT_FROM_EEPROM(Adapter) ? EEPROM_93C46 : EEPROM_BOOT_EFUSE;
#ifdef CONFIG_EFUSE_CONFIG_FILE
Hal_readPGDataFromConfigFile(padapter);
#else //CONFIG_EFUSE_CONFIG_FILE
Hal_InitPGData88E(padapter);
#endif //CONFIG_EFUSE_CONFIG_FILE
readAdapterInfo_8188ES(padapter);
}
static VOID
_InitOtherVariable(
IN PADAPTER Adapter
)
{
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//if(Adapter->bInHctTest){
// pMgntInfo->PowerSaveControl.bInactivePs = FALSE;
// pMgntInfo->PowerSaveControl.bIPSModeBackup = FALSE;
// pMgntInfo->PowerSaveControl.bLeisurePs = FALSE;
// pMgntInfo->keepAliveLevel = 0;
//}
}
//
// Description:
// Read HW adapter information by E-Fuse or EEPROM according CR9346 reported.
//
// Assumption:
// PASSIVE_LEVEL (SDIO interface)
//
//
static s32 _ReadAdapterInfo8188ES(PADAPTER padapter)
{
u32 start;
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+_ReadAdapterInfo8188ES\n"));
// before access eFuse, make sure card enable has been called
if(_CardEnable(padapter) == _FAIL)
{
DBG_871X(KERN_ERR "%s: run power on flow fail\n", __func__);
return _FAIL;
}
start = rtw_get_current_time();
// Efuse_InitSomeVar(Adapter);
// pHalData->VersionID = ReadChipVersion(Adapter);
// _EfuseCellSel(padapter);
_ReadRFType(padapter);//rf_chip -> _InitRFType()
_ReadPROMContent(padapter);
// 2010/10/25 MH THe function must be called after borad_type & IC-Version recognize.
//ReadSilmComboMode(Adapter);
_InitOtherVariable(padapter);
//MSG_8192C("%s()(done), rf_chip=0x%x, rf_type=0x%x\n", __FUNCTION__, pHalData->rf_chip, pHalData->rf_type);
MSG_8192C("<==== ReadAdapterInfo8188ES in %d ms\n", rtw_get_passing_time_ms(start));
return _SUCCESS;
}
static void ReadAdapterInfo8188ES(PADAPTER padapter)
{
// Read EEPROM size before call any EEPROM function
padapter->EepromAddressSize = GetEEPROMSize8188E(padapter);
_ReadAdapterInfo8188ES(padapter);
}
static void ResumeTxBeacon(PADAPTER padapter)
{
HAL_DATA_TYPE* pHalData = GET_HAL_DATA(padapter);
// 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value
// which should be read from register to a global variable.
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+ResumeTxBeacon\n"));
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl) | BIT6);
pHalData->RegFwHwTxQCtrl |= BIT6;
rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
pHalData->RegReg542 |= BIT0;
rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
}
static void StopTxBeacon(PADAPTER padapter)
{
HAL_DATA_TYPE* pHalData = GET_HAL_DATA(padapter);
// 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value
// which should be read from register to a global variable.
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+StopTxBeacon\n"));
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl) & (~BIT6));
pHalData->RegFwHwTxQCtrl &= (~BIT6);
rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
pHalData->RegReg542 &= ~(BIT0);
rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
CheckFwRsvdPageContent(padapter); // 2010.06.23. Added by tynli.
}
// todo static
void hw_var_set_opmode(PADAPTER Adapter, u8 variable, u8* val)
{
u8 val8;
u8 mode = *((u8 *)val);
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
// disable Port1 TSF update
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(4));
// set net_type
val8 = rtw_read8(Adapter, MSR)&0x03;
val8 |= (mode<<2);
rtw_write8(Adapter, MSR, val8);
DBG_871X("%s()-%d mode = %d\n", __FUNCTION__, __LINE__, mode);
if((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
{
if(!check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
{
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms
UpdateInterruptMask8188ESdio(Adapter, 0, SDIO_HIMR_BCNERLY_INT_MSK);
#endif // CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8188ESdio(Adapter, 0, (SDIO_HIMR_TXBCNOK_MSK|SDIO_HIMR_TXBCNERR_MSK));
#endif// CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
StopTxBeacon(Adapter);
}
rtw_write8(Adapter,REG_BCN_CTRL_1, 0x11);//disable atim wnd and disable beacon function
//rtw_write8(Adapter,REG_BCN_CTRL_1, 0x18);
}
else if((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
{
ResumeTxBeacon(Adapter);
rtw_write8(Adapter,REG_BCN_CTRL_1, 0x1a);
//BIT4 - If set 0, hw will clr bcnq when tx becon ok/fail or port 1
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM)|BIT(3)|BIT(4));
}
else if(mode == _HW_STATE_AP_)
{
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8188ESdio(Adapter, SDIO_HIMR_BCNERLY_INT_MSK, 0);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8188ESdio(Adapter, (SDIO_HIMR_TXBCNOK_MSK|SDIO_HIMR_TXBCNERR_MSK), 0);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL_1, 0x12);
//enable SW Beacon
rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR)|BIT(8));
//Set RCR
//rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0
rtw_write32(Adapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,Reject ICV_ERROR packets
//enable to rx data frame
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
//enable to rx ps-poll
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
//Beacon Control related register for first time
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); // 2ms
//rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);
rtw_write8(Adapter, REG_ATIMWND_1, 0x0a); // 10ms for port1
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms)
//reset TSF2
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
//BIT4 - If set 0, hw will clr bcnq when tx becon ok/fail or port 1
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM)|BIT(3)|BIT(4));
//enable BCN1 Function for if2
//don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received)
rtw_write8(Adapter, REG_BCN_CTRL_1, (DIS_TSF_UDT0_NORMAL_CHIP|EN_BCN_FUNCTION | EN_TXBCN_RPT|BIT(1)));
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_fwstate(Adapter, WIFI_FW_NULL_STATE))
rtw_write8(Adapter, REG_BCN_CTRL,
rtw_read8(Adapter, REG_BCN_CTRL) & ~EN_BCN_FUNCTION);
#endif
//BCN1 TSF will sync to BCN0 TSF with offset(0x518) if if1_sta linked
//rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(5));
//rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(3));
//dis BCN0 ATIM WND if if1 is station
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(0));
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Reset TSF for STA+AP concurrent mode
if ( check_buddy_fwstate(Adapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)) ) {
if (reset_tsf(Adapter, IFACE_PORT1) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port1 TSF fail\n",
__FUNCTION__, __LINE__);
}
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
else
#endif //CONFIG_CONCURRENT_MODE
{
// disable Port0 TSF update
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
// set net_type
val8 = rtw_read8(Adapter, MSR)&0x0c;
val8 |= mode;
rtw_write8(Adapter, MSR, val8);
DBG_871X("%s()-%d mode = %d\n", __FUNCTION__, __LINE__, mode);
if((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
{
#ifdef CONFIG_CONCURRENT_MODE
if(!check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
#endif //CONFIG_CONCURRENT_MODE
{
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms
UpdateInterruptMask8188ESdio(Adapter, 0, SDIO_HIMR_BCNERLY_INT_MSK);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8188ESdio(Adapter, 0, (SDIO_HIMR_TXBCNOK_MSK|SDIO_HIMR_TXBCNERR_MSK));
#endif //CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
StopTxBeacon(Adapter);
}
rtw_write8(Adapter,REG_BCN_CTRL, 0x19);//disable atim wnd
//rtw_write8(Adapter,REG_BCN_CTRL, 0x18);
}
else if((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
{
ResumeTxBeacon(Adapter);
rtw_write8(Adapter,REG_BCN_CTRL, 0x1a);
//BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM)|BIT(3)|BIT(4));
}
else if(mode == _HW_STATE_AP_)
{
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8188ESdio(Adapter, SDIO_HIMR_BCNERLY_INT_MSK, 0);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8188ESdio(Adapter, (SDIO_HIMR_TXBCNOK_MSK|SDIO_HIMR_TXBCNERR_MSK), 0);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x12);
//enable SW Beacon
rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR)|BIT(8));
//Set RCR
//rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0
rtw_write32(Adapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,reject ICV_ERR packet
//enable to rx data frame
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
//enable to rx ps-poll
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
//Beacon Control related register for first time
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); // 2ms
//rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);
rtw_write8(Adapter, REG_ATIMWND, 0x0a); // 10ms
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms)
//reset TSF
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
//BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM)|BIT(3)|BIT(4));
//enable BCN0 Function for if1
//don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received)
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP|EN_BCN_FUNCTION | EN_TXBCN_RPT|BIT(1)));
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_fwstate(Adapter, WIFI_FW_NULL_STATE))
rtw_write8(Adapter, REG_BCN_CTRL_1,
rtw_read8(Adapter, REG_BCN_CTRL_1) & ~EN_BCN_FUNCTION);
#endif
//dis BCN1 ATIM WND if if2 is station
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(0));
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Reset TSF for STA+AP concurrent mode
if ( check_buddy_fwstate(Adapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)) ) {
if (reset_tsf(Adapter, IFACE_PORT0) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port0 TSF fail\n",
__FUNCTION__, __LINE__);
}
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
}
static void hw_var_set_macaddr(PADAPTER Adapter, u8 variable, u8* val)
{
u8 idx = 0;
u32 reg_macid;
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
reg_macid = REG_MACID1;
}
else
#endif
{
reg_macid = REG_MACID;
}
for(idx = 0 ; idx < 6; idx++)
{
rtw_write8(Adapter, (reg_macid+idx), val[idx]);
}
}
static void hw_var_set_bssid(PADAPTER Adapter, u8 variable, u8* val)
{
u8 idx = 0;
u32 reg_bssid;
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
reg_bssid = REG_BSSID1;
}
else
#endif
{
reg_bssid = REG_BSSID;
}
printk("hw_var_set_bssid reg=%x \n", reg_bssid);
for(idx = 0 ; idx < 6; idx++)
{
rtw_write8(Adapter, (reg_bssid+idx), val[idx]);
}
}
static void hw_var_set_bcn_func(PADAPTER Adapter, u8 variable, u8* val)
{
u32 bcn_ctrl_reg;
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
bcn_ctrl_reg = REG_BCN_CTRL_1;
}
else
#endif
{
bcn_ctrl_reg = REG_BCN_CTRL;
}
if(*((u8 *)val))
{
rtw_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
}
else
{
rtw_write8(Adapter, bcn_ctrl_reg, rtw_read8(Adapter, bcn_ctrl_reg)&(~(EN_BCN_FUNCTION | EN_TXBCN_RPT)));
}
}
static void hw_var_set_correct_tsf(PADAPTER Adapter, u8 variable, u8* val)
{
#ifdef CONFIG_CONCURRENT_MODE
u64 tsf;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
PADAPTER pbuddy_adapter = Adapter->pbuddy_adapter;
//tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us
tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; //us
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause |= STOP_BCNQ;BIT(6)
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)|BIT(6)));
StopTxBeacon(Adapter);
}
if(Adapter->iface_type == IFACE_PORT1)
{
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR1, tsf);
rtw_write32(Adapter, REG_TSFTR1+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(3));
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if ( (pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE
&& check_buddy_fwstate(Adapter, WIFI_AP_STATE)
) {
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR, tsf);
rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3));
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Update buddy port's TSF(TBTT) if it is SoftAP for beacon TX issue!
if (reset_tsf(Adapter, IFACE_PORT0) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port0 TSF fail\n",
__FUNCTION__, __LINE__);
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
else
{
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR, tsf);
rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3));
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if ( (pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE
&& check_buddy_fwstate(Adapter, WIFI_AP_STATE)
) {
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR1, tsf);
rtw_write32(Adapter, REG_TSFTR1+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(3));
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if (reset_tsf(Adapter, IFACE_PORT1) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port1 TSF fail\n",
__FUNCTION__, __LINE__);
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause &= (~STOP_BCNQ);
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)&(~BIT(6))));
ResumeTxBeacon(Adapter);
}
#endif
}
static void hw_var_set_mlme_disconnect(PADAPTER Adapter, u8 variable, u8* val)
{
#ifdef CONFIG_CONCURRENT_MODE
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PADAPTER pbuddy_adapter = Adapter->pbuddy_adapter;
if(check_buddy_mlmeinfo_state(Adapter, _HW_STATE_NOLINK_))
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
if(Adapter->iface_type == IFACE_PORT1)
{
//reset TSF1
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
//disable update TSF1
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(4));
// disable Port1's beacon function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));
}
else
{
//reset TSF
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
//disable update TSF
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
}
#endif
}
static void hw_var_set_mlme_sitesurvey(PADAPTER Adapter, u8 variable, u8* val)
{
#ifdef CONFIG_CONCURRENT_MODE
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if(*((u8 *)val))//under sitesurvey
{
//config RCR to receive different BSSID & not to receive data frame
u32 v = rtw_read32(Adapter, REG_RCR);
v &= ~(RCR_CBSSID_BCN);
rtw_write32(Adapter, REG_RCR, v);
//disable update TSF
if((pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE)
{
if(Adapter->iface_type == IFACE_PORT1)
{
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(4));
}
else
{
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
}
}
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
StopTxBeacon(Adapter);
}
}
else//sitesurvey done
{
//enable to rx data frame
//write32(Adapter, REG_RCR, read32(padapter, REG_RCR)|RCR_ADF);
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
//enable update TSF
if(Adapter->iface_type == IFACE_PORT1)
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(4)));
else
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
ResumeTxBeacon(Adapter);
}
}
#endif
}
static void hw_var_set_mlme_join(PADAPTER Adapter, u8 variable, u8* val)
{
#ifdef CONFIG_CONCURRENT_MODE
u8 RetryLimit = 0x30;
u8 type = *((u8 *)val);
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
if(type == 0) // prepare to join
{
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
StopTxBeacon(Adapter);
}
//enable to rx data frame.Accept all data frame
//rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF);
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
else
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
if(check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
{
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
}
else // Ad-hoc Mode
{
RetryLimit = 0x7;
}
}
else if(type == 1) //joinbss_event call back when join res < 0
{
if(check_buddy_mlmeinfo_state(Adapter, _HW_STATE_NOLINK_))
rtw_write16(Adapter, REG_RXFLTMAP2,0x00);
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
ResumeTxBeacon(Adapter);
//reset TSF 1/2 after ResumeTxBeacon
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0));
}
}
else if(type == 2) //sta add event call back
{
//enable update TSF
if(Adapter->iface_type == IFACE_PORT1)
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(4)));
else
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
if(check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
{
//fixed beacon issue for 8191su...........
rtw_write8(Adapter,0x542 ,0x02);
RetryLimit = 0x7;
}
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
ResumeTxBeacon(Adapter);
//reset TSF 1/2 after ResumeTxBeacon
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0));
}
}
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
#endif
}
static void SetHwReg8188ES(PADAPTER Adapter, u8 variable, u8* val)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct dm_priv *pdmpriv = &pHalData->dmpriv;
DM_ODM_T *podmpriv = &pHalData->odmpriv;
_func_enter_;
switch(variable)
{
case HW_VAR_MEDIA_STATUS:
{
u8 val8;
val8 = rtw_read8(Adapter, MSR)&0x0c;
val8 |= *((u8 *)val);
rtw_write8(Adapter, MSR, val8);
}
break;
case HW_VAR_MEDIA_STATUS1:
{
u8 val8;
val8 = rtw_read8(Adapter, MSR)&0x03;
val8 |= *((u8 *)val) <<2;
rtw_write8(Adapter, MSR, val8);
}
break;
case HW_VAR_SET_OPMODE:
hw_var_set_opmode(Adapter, variable, val);
break;
case HW_VAR_MAC_ADDR:
hw_var_set_macaddr(Adapter, variable, val);
break;
case HW_VAR_BSSID:
hw_var_set_bssid(Adapter, variable, val);
break;
case HW_VAR_BASIC_RATE:
{
u16 BrateCfg = 0;
u8 RateIndex = 0;
// 2007.01.16, by Emily
// Select RRSR (in Legacy-OFDM and CCK)
// For 8190, we select only 24M, 12M, 6M, 11M, 5.5M, 2M, and 1M from the Basic rate.
// We do not use other rates.
HalSetBrateCfg( Adapter, val, &BrateCfg );
DBG_8192C("HW_VAR_BASIC_RATE: BrateCfg(%#x)\n", BrateCfg);
//2011.03.30 add by Luke Lee
//CCK 2M ACK should be disabled for some BCM and Atheros AP IOT
//because CCK 2M has poor TXEVM
//CCK 5.5M & 11M ACK should be enabled for better performance
pHalData->BasicRateSet = BrateCfg = (BrateCfg |0xd) & 0x15d;
BrateCfg |= 0x01; // default enable 1M ACK rate
// Set RRSR rate table.
rtw_write8(Adapter, REG_RRSR, BrateCfg&0xff);
rtw_write8(Adapter, REG_RRSR+1, (BrateCfg>>8)&0xff);
rtw_write8(Adapter, REG_RRSR+2, rtw_read8(Adapter, REG_RRSR+2)&0xf0);
// Set RTS initial rate
while(BrateCfg > 0x1)
{
BrateCfg = (BrateCfg>> 1);
RateIndex++;
}
// Ziv - Check
rtw_write8(Adapter, REG_INIRTS_RATE_SEL, RateIndex);
}
break;
case HW_VAR_TXPAUSE:
rtw_write8(Adapter, REG_TXPAUSE, *((u8 *)val));
break;
case HW_VAR_BCN_FUNC:
hw_var_set_bcn_func(Adapter, variable, val);
break;
case HW_VAR_CORRECT_TSF:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_correct_tsf(Adapter, variable, val);
#else
{
u64 tsf;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
//f = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us
tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) - 1024; //us
if (((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) ||
((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause |= STOP_BCNQ;BIT(6)
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)|BIT(6)));
StopTxBeacon(Adapter);
}
// disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR, tsf);
rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);
// enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3));
if (((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) ||
((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause &= (~STOP_BCNQ);
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)&(~BIT(6))));
ResumeTxBeacon(Adapter);
}
}
#endif
break;
case HW_VAR_CHECK_BSSID:
if(*((u8 *)val))
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
}
else
{
u32 val32;
val32 = rtw_read32(Adapter, REG_RCR);
val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
rtw_write32(Adapter, REG_RCR, val32);
}
break;
case HW_VAR_MLME_DISCONNECT:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_mlme_disconnect(Adapter, variable, val);
#else
{
//Set RCR to not to receive data frame when NO LINK state
//rtw_write32(Adapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF);
//reject all data frames
rtw_write16(Adapter, REG_RXFLTMAP2,0x00);
//reset TSF
rtw_write8(Adapter, REG_DUAL_TSF_RST, (BIT(0)|BIT(1)));
//disable update TSF
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
}
#endif
break;
case HW_VAR_MLME_SITESURVEY:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_mlme_sitesurvey(Adapter, variable, val);
#else
if(*((u8 *)val))//under sitesurvey
{
//config RCR to receive different BSSID & not to receive data frame
u32 v = rtw_read32(Adapter, REG_RCR);
v &= ~(RCR_CBSSID_BCN);
rtw_write32(Adapter, REG_RCR, v);
//reject all data frame
rtw_write16(Adapter, REG_RXFLTMAP2,0x00);
//disable update TSF
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
}
else//sitesurvey done
{
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if ((is_client_associated_to_ap(Adapter) == _TRUE) ||
((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) )
{
//enable to rx data frame
//rtw_write32(Adapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF);
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
//enable update TSF
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
}
else if((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
{
//rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_ADF);
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
//enable update TSF
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
}
if(Adapter->in_cta_test)
{
if((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
}
else
{
u32 v = rtw_read32(Adapter, REG_RCR);
v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN );//| RCR_ADF
rtw_write32(Adapter, REG_RCR, v);
}
}
else
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
}
}
#endif
break;
case HW_VAR_MLME_JOIN:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_mlme_join(Adapter, variable, val);
#else
{
u8 RetryLimit = 0x30;
u8 type = *((u8 *)val);
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
if(type == 0) // prepare to join
{
//enable to rx data frame.Accept all data frame
//rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF);
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
if(Adapter->in_cta_test)
{
u32 v = rtw_read32(Adapter, REG_RCR);
v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN );//| RCR_ADF
rtw_write32(Adapter, REG_RCR, v);
}
else
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
}
if(check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
{
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
}
else // Ad-hoc Mode
{
RetryLimit = 0x7;
}
}
else if(type == 1) //joinbss_event call back when join res < 0
{
rtw_write16(Adapter, REG_RXFLTMAP2,0x00);
}
else if(type == 2) //sta add event call back
{
// enable update TSF
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
if(check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
{
RetryLimit = 0x7;
}
}
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
}
#endif
break;
case HW_VAR_ON_RCR_AM:
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_AM);
DBG_871X("%s, %d, RCR= %x \n", __FUNCTION__,__LINE__, rtw_read32(Adapter, REG_RCR));
break;
case HW_VAR_OFF_RCR_AM:
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)& (~RCR_AM));
DBG_871X("%s, %d, RCR= %x \n", __FUNCTION__,__LINE__, rtw_read32(Adapter, REG_RCR));
break;
case HW_VAR_BEACON_INTERVAL:
rtw_write16(Adapter, REG_BCN_INTERVAL, *((u16 *)val));
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
{
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
u16 bcn_interval = *((u16 *)val);
if((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE){
DBG_8192C("%s==> bcn_interval:%d, eraly_int:%d \n",__FUNCTION__,bcn_interval,bcn_interval>>1);
rtw_write8(Adapter, REG_DRVERLYINT, bcn_interval>>1);// 50ms for sdio
}
else{
}
}
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
break;
case HW_VAR_SLOT_TIME:
{
u8 u1bAIFS, aSifsTime;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
rtw_write8(Adapter, REG_SLOT, val[0]);
if(pmlmeinfo->WMM_enable == 0)
{
if( pmlmeext->cur_wireless_mode == WIRELESS_11B)
aSifsTime = 10;
else
aSifsTime = 16;
u1bAIFS = aSifsTime + (2 * pmlmeinfo->slotTime);
// <Roger_EXP> Temporary removed, 2008.06.20.
rtw_write8(Adapter, REG_EDCA_VO_PARAM, u1bAIFS);
rtw_write8(Adapter, REG_EDCA_VI_PARAM, u1bAIFS);
rtw_write8(Adapter, REG_EDCA_BE_PARAM, u1bAIFS);
rtw_write8(Adapter, REG_EDCA_BK_PARAM, u1bAIFS);
}
}
break;
case HW_VAR_RESP_SIFS:
{
#if 0
// SIFS for OFDM Data ACK
rtw_write8(Adapter, REG_SIFS_CTX+1, val[0]);
// SIFS for OFDM consecutive tx like CTS data!
rtw_write8(Adapter, REG_SIFS_TRX+1, val[1]);
rtw_write8(Adapter,REG_SPEC_SIFS+1, val[0]);
rtw_write8(Adapter,REG_MAC_SPEC_SIFS+1, val[0]);
// 20100719 Joseph: Revise SIFS setting due to Hardware register definition change.
rtw_write8(Adapter, REG_R2T_SIFS+1, val[0]);
rtw_write8(Adapter, REG_T2T_SIFS+1, val[0]);
#else
//SIFS_Timer = 0x0a0a0808;
//RESP_SIFS for CCK
rtw_write8(Adapter, REG_R2T_SIFS, val[0]); // SIFS_T2T_CCK (0x08)
rtw_write8(Adapter, REG_R2T_SIFS+1, val[1]); //SIFS_R2T_CCK(0x08)
//RESP_SIFS for OFDM
rtw_write8(Adapter, REG_T2T_SIFS, val[2]); //SIFS_T2T_OFDM (0x0a)
rtw_write8(Adapter, REG_T2T_SIFS+1, val[3]); //SIFS_R2T_OFDM(0x0a)
#endif
}
break;
case HW_VAR_ACK_PREAMBLE:
{
u8 regTmp;
u8 bShortPreamble = *( (PBOOLEAN)val );
// Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily)
regTmp = (pHalData->nCur40MhzPrimeSC)<<5;
//regTmp = 0;
if(bShortPreamble)
regTmp |= 0x80;
rtw_write8(Adapter, REG_RRSR+2, regTmp);
}
break;
case HW_VAR_SEC_CFG:
#ifdef CONFIG_CONCURRENT_MODE
rtw_write8(Adapter, REG_SECCFG, 0x0c|BIT(5));// enable tx enc and rx dec engine, and no key search for MC/BC
#else
rtw_write8(Adapter, REG_SECCFG, *((u8 *)val));
#endif
break;
case HW_VAR_DM_FLAG:
podmpriv->SupportAbility = *((u8 *)val);
break;
case HW_VAR_DM_FUNC_OP:
if(val[0])
{// save dm flag
podmpriv->BK_SupportAbility = podmpriv->SupportAbility;
}
else
{// restore dm flag
podmpriv->SupportAbility = podmpriv->BK_SupportAbility;
}
break;
case HW_VAR_DM_FUNC_SET:
if(*((u32 *)val) == DYNAMIC_ALL_FUNC_ENABLE){
pdmpriv->DMFlag = pdmpriv->InitDMFlag;
podmpriv->SupportAbility = pdmpriv->InitODMFlag;
}
else{
podmpriv->SupportAbility |= *((u32 *)val);
}
break;
case HW_VAR_DM_FUNC_CLR:
podmpriv->SupportAbility &= *((u32 *)val);
break;
case HW_VAR_CAM_EMPTY_ENTRY:
{
u8 ucIndex = *((u8 *)val);
u8 i;
u32 ulCommand=0;
u32 ulContent=0;
u32 ulEncAlgo=CAM_AES;
for(i=0;i<CAM_CONTENT_COUNT;i++)
{
// filled id in CAM config 2 byte
if( i == 0)
{
ulContent |=(ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
//ulContent |= CAM_VALID;
}
else
{
ulContent = 0;
}
// polling bit, and No Write enable, and address
ulCommand= CAM_CONTENT_COUNT*ucIndex+i;
ulCommand= ulCommand | CAM_POLLINIG|CAM_WRITE;
// write content 0 is equall to mark invalid
rtw_write32(Adapter, WCAMI, ulContent); //delay_ms(40);
//RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A4: %lx \n",ulContent));
rtw_write32(Adapter, RWCAM, ulCommand); //delay_ms(40);
//RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A0: %lx \n",ulCommand));
}
}
break;
case HW_VAR_CAM_INVALID_ALL:
rtw_write32(Adapter, RWCAM, BIT(31)|BIT(30));
break;
case HW_VAR_CAM_WRITE:
{
u32 cmd;
u32 *cam_val = (u32 *)val;
rtw_write32(Adapter, WCAMI, cam_val[0]);
cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
rtw_write32(Adapter, RWCAM, cmd);
}
break;
case HW_VAR_AC_PARAM_VO:
rtw_write32(Adapter, REG_EDCA_VO_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_VI:
rtw_write32(Adapter, REG_EDCA_VI_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_BE:
pHalData->AcParam_BE = ((u32 *)(val))[0];
rtw_write32(Adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_BK:
rtw_write32(Adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AMPDU_MIN_SPACE:
{
u8 MinSpacingToSet;
u8 SecMinSpace;
MinSpacingToSet = *((u8 *)val);
if(MinSpacingToSet <= 7)
{
switch(Adapter->securitypriv.dot11PrivacyAlgrthm)
{
case _NO_PRIVACY_:
case _AES_:
SecMinSpace = 0;
break;
case _WEP40_:
case _WEP104_:
case _TKIP_:
case _TKIP_WTMIC_:
SecMinSpace = 6;
break;
default:
SecMinSpace = 7;
break;
}
if(MinSpacingToSet < SecMinSpace){
MinSpacingToSet = SecMinSpace;
}
//RT_TRACE(COMP_MLME, DBG_LOUD, ("Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", Adapter->MgntInfo.MinSpaceCfg));
rtw_write8(Adapter, REG_AMPDU_MIN_SPACE, (rtw_read8(Adapter, REG_AMPDU_MIN_SPACE) & 0xf8) | MinSpacingToSet);
}
}
break;
case HW_VAR_AMPDU_FACTOR:
{
u8 RegToSet_Normal[4]={0x41,0xa8,0x72, 0xb9};
u8 RegToSet_BT[4]={0x31,0x74,0x42, 0x97};
u8 FactorToSet;
u8 *pRegToSet;
u8 index = 0;
#ifdef CONFIG_BT_COEXIST
if( (pHalData->bt_coexist.BT_Coexist) &&
(pHalData->bt_coexist.BT_CoexistType == BT_CSR_BC4) )
pRegToSet = RegToSet_BT; // 0x97427431;
else
#endif
pRegToSet = RegToSet_Normal; // 0xb972a841;
FactorToSet = *((u8 *)val);
if(FactorToSet <= 3)
{
FactorToSet = (1<<(FactorToSet + 2));
if(FactorToSet>0xf)
FactorToSet = 0xf;
for(index=0; index<4; index++)
{
if((pRegToSet[index] & 0xf0) > (FactorToSet<<4))
pRegToSet[index] = (pRegToSet[index] & 0x0f) | (FactorToSet<<4);
if((pRegToSet[index] & 0x0f) > FactorToSet)
pRegToSet[index] = (pRegToSet[index] & 0xf0) | (FactorToSet);
rtw_write8(Adapter, (REG_AGGLEN_LMT+index), pRegToSet[index]);
}
//RT_TRACE(COMP_MLME, DBG_LOUD, ("Set HW_VAR_AMPDU_FACTOR: %#x\n", FactorToSet));
}
}
break;
case HW_VAR_RXDMA_AGG_PG_TH:
rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, *((u8 *)val));
break;
case HW_VAR_SET_RPWM:
#ifdef CONFIG_LPS_LCLK
{
u8 ps_state = *((u8 *)val);
DBG_871X_LEVEL(_drv_debug_, "+%s: ps_state:0x%02x+\n", __func__, ps_state);
//rpwm value only use BIT0(clock bit) ,BIT6(Ack bit), and BIT7(Toggle bit) for 88e.
//BIT0 value - 1: 32k, 0:40MHz.
//BIT6 value - 1: report cpwm value after success set, 0:do not report.
//BIT7 value - Toggle bit change.
//modify by Thomas. 2012/4/2.
ps_state = ps_state & 0xC1;
#ifdef CONFIG_EXT_CLK //for sprd
if(ps_state&BIT(6)) // want to leave 32k
{
//enable ext clock req before leave LPS-32K
//DBG_871X("enable ext clock req before leaving LPS-32K\n");
EnableGpio5ClockReq(Adapter, _FALSE, 1);
}
#endif //CONFIG_EXT_CLK
//DBG_871X("##### Change RPWM value to = %x for switch clk #####\n",ps_state);
rtw_write8(Adapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1, ps_state);
DBG_871X_LEVEL(_drv_debug_, "-%s: ps_state:0x%02x-\n", __func__, ps_state);
}
#endif
break;
case HW_VAR_H2C_FW_PWRMODE:
{
u8 psmode = (*(u8 *)val);
// Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power
// saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang.
if( (psmode != PS_MODE_ACTIVE) && (!IS_92C_SERIAL(pHalData->VersionID)))
{
ODM_RF_Saving(podmpriv, _TRUE);
}
rtl8188e_set_FwPwrMode_cmd(Adapter, psmode);
}
break;
case HW_VAR_H2C_FW_JOINBSSRPT:
{
u8 mstatus = (*(u8 *)val);
rtl8188e_set_FwJoinBssReport_cmd(Adapter, mstatus);
}
break;
#ifdef CONFIG_P2P_PS
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
{
u8 p2p_ps_state = (*(u8 *)val);
rtl8188e_set_p2p_ps_offload_cmd(Adapter, p2p_ps_state);
}
break;
#endif // CONFIG_P2P_PS
case HW_VAR_INITIAL_GAIN:
{
DIG_T *pDigTable = &podmpriv->DM_DigTable;
u32 rx_gain = ((u32 *)(val))[0];
if(rx_gain == 0xff){//restore rx gain
ODM_Write_DIG(podmpriv,pDigTable->BackupIGValue);
}
else{
pDigTable->BackupIGValue = pDigTable->CurIGValue;
ODM_Write_DIG(podmpriv,rx_gain);
}
}
break;
case HW_VAR_TRIGGER_GPIO_0:
// rtl8192cu_trigger_gpio_0(Adapter);
break;
#ifdef CONFIG_BT_COEXIST
case HW_VAR_BT_SET_COEXIST:
{
u8 bStart = (*(u8 *)val);
rtl8192c_set_dm_bt_coexist(Adapter, bStart);
}
break;
case HW_VAR_BT_ISSUE_DELBA:
{
u8 dir = (*(u8 *)val);
rtl8192c_issue_delete_ba(Adapter, dir);
}
break;
#endif
#if (RATE_ADAPTIVE_SUPPORT==1)
case HW_VAR_RPT_TIMER_SETTING:
{
u16 min_rpt_time = (*(u16 *)val);
//DBG_8192C("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");
//PHY_SetBBReg(Adapter, rFPGA0_XA_RFInterfaceOE, 0x300, Optimum_antenna);
ODM_RA_Set_TxRPT_Time(podmpriv,min_rpt_time);
}
break;
#endif
#ifdef CONFIG_SW_ANTENNA_DIVERSITY
case HW_VAR_ANTENNA_DIVERSITY_LINK:
//SwAntDivRestAfterLink8192C(Adapter);
ODM_SwAntDivRestAfterLink(podmpriv);
break;
#endif
#ifdef CONFIG_ANTENNA_DIVERSITY
case HW_VAR_ANTENNA_DIVERSITY_SELECT:
{
u8 Optimum_antenna = (*(u8 *)val);
u8 Ant ;
//switch antenna to Optimum_antenna
//DBG_8192C("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");
if(pHalData->CurAntenna != Optimum_antenna)
{
Ant = (Optimum_antenna==2)?MAIN_ANT:AUX_ANT;
ODM_UpdateRxIdleAnt_88E(&pHalData->odmpriv, Ant);
pHalData->CurAntenna = Optimum_antenna ;
//DBG_8192C("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");
}
}
break;
#endif
case HW_VAR_EFUSE_BYTES: // To set EFUE total used bytes, added by Roger, 2008.12.22.
pHalData->EfuseUsedBytes = *((u16 *)val);
break;
case HW_VAR_FIFO_CLEARN_UP:
{
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(Adapter);
u8 trycnt = 100;
//pause tx
rtw_write8(Adapter,REG_TXPAUSE,0xff);
//keep sn
Adapter->xmitpriv.nqos_ssn = rtw_read16(Adapter,REG_NQOS_SEQ);
//RX DMA stop
rtw_write32(Adapter,REG_RXPKT_NUM,(rtw_read32(Adapter,REG_RXPKT_NUM)|RW_RELEASE_EN));
do{
if(!(rtw_read32(Adapter,REG_RXPKT_NUM)&RXDMA_IDLE))
break;
}while(trycnt--);
if(trycnt ==0)
DBG_8192C("Stop RX DMA failed...... \n");
//RQPN Load 0
rtw_write16(Adapter,REG_RQPN_NPQ,0x0);
rtw_write32(Adapter,REG_RQPN,0x80000000);
rtw_mdelay_os(10);
}
break;
case HW_VAR_CHECK_TXBUF:
#ifdef CONFIG_CONCURRENT_MODE
{
int i;
u8 RetryLimit = 0x01;
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
for(i=0;i<1000;i++)
{
if(rtw_read32(Adapter, 0x200) != rtw_read32(Adapter, 0x204))
{
//DBG_871X("packet in tx packet buffer - 0x204=%x, 0x200=%x (%d)\n", rtw_read32(Adapter, 0x204), rtw_read32(Adapter, 0x200), i);
rtw_msleep_os(10);
}
else
{
DBG_871X("no packet in tx packet buffer (%d)\n", i);
break;
}
}
RetryLimit = 0x30;
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
}
#endif
break;
#ifdef CONFIG_WOWLAN
case HW_VAR_WOWLAN:
{
struct wowlan_ioctl_param *poidparam;
struct recv_buf *precvbuf;
struct security_priv *psecuritypriv = &Adapter->securitypriv;
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(Adapter);
int res, i;
u32 tmp;
u16 len = 0;
u64 iv_low = 0, iv_high = 0;
u8 mstatus = (*(u8 *)val);
u8 trycnt = 100;
u8 data[4];
u8 val8;
poidparam = (struct wowlan_ioctl_param *)val;
switch (poidparam->subcode){
case WOWLAN_ENABLE:
DBG_871X_LEVEL(_drv_always_, "WOWLAN_ENABLE\n");
val8 = (psecuritypriv->dot11AuthAlgrthm == dot11AuthAlgrthm_8021X)? 0xcc: 0xcf;
rtw_write8(Adapter, REG_SECCFG, val8);
DBG_871X_LEVEL(_drv_always_, "REG_SECCFG: %02x\n", rtw_read8(Adapter, REG_SECCFG));
SetFwRelatedForWoWLAN8188ES(Adapter, _TRUE);
rtl8188e_set_FwJoinBssReport_cmd(Adapter, 1);
rtw_msleep_os(2);
//Set Pattern
//if(adapter_to_pwrctl(Adapter)->wowlan_pattern==_TRUE)
// rtw_wowlan_reload_pattern(Adapter);
//RX DMA stop
DBG_871X_LEVEL(_drv_always_, "Pause DMA\n");
rtw_write32(Adapter,REG_RXPKT_NUM,(rtw_read32(Adapter,REG_RXPKT_NUM)|RW_RELEASE_EN));
do{
if((rtw_read32(Adapter, REG_RXPKT_NUM)&RXDMA_IDLE)) {
DBG_871X_LEVEL(_drv_always_, "RX_DMA_IDLE is true\n");
break;
} else {
// If RX_DMA is not idle, receive one pkt from DMA
res = sdio_local_read(Adapter, SDIO_REG_RX0_REQ_LEN, 4, (u8*)&tmp);
//len = le16_to_cpu(*(u16*)data);
if (tmp == 0){
res = sdio_local_read(Adapter, SDIO_REG_HISR, 4, (u8*)&tmp);
DBG_871X_LEVEL(_drv_info_, "read SDIO_REG_HISR: 0x%08x\n", tmp);
}
res = RecvOnePkt(Adapter, tmp);
DBG_871X_LEVEL(_drv_always_, "RecvOnePkt Result: %d\n", res);
}
}while(trycnt--);
if(trycnt ==0)
DBG_871X_LEVEL(_drv_always_, "Stop RX DMA failed...... \n");
//Enable CPWM2 only.
DBG_871X_LEVEL(_drv_always_, "Enable only CPWM2\n");
res = sdio_local_read(Adapter, SDIO_REG_HIMR, 4, (u8*)&tmp);
if (!res)
DBG_871X_LEVEL(_drv_info_, "read SDIO_REG_HIMR: 0x%08x\n", tmp);
else
DBG_871X_LEVEL(_drv_info_, "sdio_local_read fail\n");
tmp = SDIO_HIMR_CPWM2_MSK;
res = sdio_local_write(Adapter, SDIO_REG_HIMR, 4, (u8*)&tmp);
if (!res){
res = sdio_local_read(Adapter, SDIO_REG_HIMR, 4, (u8*)&tmp);
DBG_871X_LEVEL(_drv_info_, "read again SDIO_REG_HIMR: 0x%08x\n", tmp);
}else
DBG_871X_LEVEL(_drv_info_, "sdio_local_write fail\n");
//Set WOWLAN H2C command.
DBG_871X_LEVEL(_drv_always_, "Set WOWLan cmd\n");
rtl8188es_set_wowlan_cmd(Adapter, 1);
mstatus = rtw_read8(Adapter, REG_WOW_CTRL);
trycnt = 10;
while(!(mstatus&BIT1) && trycnt>1) {
mstatus = rtw_read8(Adapter, REG_WOW_CTRL);
DBG_871X_LEVEL(_drv_always_, "Loop index: %d :0x%02x\n", trycnt, mstatus);
trycnt --;
rtw_msleep_os(2);
}
pwrctl->wowlan_wake_reason = rtw_read8(Adapter, REG_WOWLAN_WAKE_REASON);
DBG_871X_LEVEL(_drv_always_, "wowlan_wake_reason: 0x%02x\n", pwrctl->wowlan_wake_reason);
//rtw_msleep_os(10);
break;
case WOWLAN_DISABLE:
trycnt = 10;
DBG_871X_LEVEL(_drv_always_, "WOWLAN_DISABLE\n");
rtl8188e_set_FwJoinBssReport_cmd(Adapter, 0);
rtw_write8( Adapter, REG_SECCFG, 0x0c|BIT(5));// enable tx enc and rx dec engine, and no key search for MC/BC
DBG_871X_LEVEL(_drv_always_, "REG_SECCFG: %02x\n", rtw_read8(Adapter, REG_SECCFG));
pwrctl->wowlan_wake_reason = rtw_read8(Adapter, REG_WOWLAN_WAKE_REASON);
DBG_871X_LEVEL(_drv_always_, "wakeup_reason: 0x%02x\n", pwrctl->wowlan_wake_reason);
rtl8188es_set_wowlan_cmd(Adapter, 0);
mstatus = rtw_read8(Adapter, REG_WOW_CTRL);
DBG_871X_LEVEL(_drv_info_, "%s mstatus:0x%02x\n", __func__, mstatus);
while(mstatus&BIT1 && trycnt>1) {
mstatus = rtw_read8(Adapter, REG_WOW_CTRL);
DBG_871X_LEVEL(_drv_always_, "Loop index: %d :0x%02x\n", trycnt, mstatus);
trycnt --;
rtw_msleep_os(2);
}
if (mstatus & BIT1) {
printk("System did not release RX_DMA\n");
} else {
// 3.1 read fw iv
iv_low = rtw_read32(Adapter, REG_TXPKTBUF_IV_LOW);
iv_high = rtw_read32(Adapter, REG_TXPKTBUF_IV_HIGH);
pwrctl->wowlan_fw_iv = iv_high << 32 | iv_low;
DBG_871X_LEVEL(_drv_always_, "fw_iv: 0x%016llx\n", pwrctl->wowlan_fw_iv);
//Update TX iv data.
//rtw_set_sec_iv(Adapter);
SetFwRelatedForWoWLAN8188ES(Adapter, _FALSE);
}
if((pwrctl->wowlan_wake_reason != FWDecisionDisconnect) &&
(pwrctl->wowlan_wake_reason != Rx_Pairwisekey) &&
(pwrctl->wowlan_wake_reason != Rx_DisAssoc) &&
(pwrctl->wowlan_wake_reason != Rx_DeAuth))
rtl8188e_set_FwJoinBssReport_cmd(Adapter, 1);
rtw_msleep_os(5);
//rtw_msleep_os(10);
break;
default:
break;
}
}
break;
#endif //CONFIG_WOWLAN
case HW_VAR_APFM_ON_MAC:
pHalData->bMacPwrCtrlOn = *val;
DBG_871X("%s: bMacPwrCtrlOn=%d\n", __func__, pHalData->bMacPwrCtrlOn);
break;
#if (RATE_ADAPTIVE_SUPPORT == 1)
case HW_VAR_TX_RPT_MAX_MACID:
{
u8 maxMacid = *val;
DBG_8192C("### MacID(%d),Set Max Tx RPT MID(%d)\n",maxMacid,maxMacid+1);
rtw_write8(Adapter, REG_TX_RPT_CTRL+1, maxMacid+1);
}
break;
#endif // (RATE_ADAPTIVE_SUPPORT == 1)
case HW_VAR_H2C_MEDIA_STATUS_RPT:
{
rtl8188e_set_FwMediaStatus_cmd(Adapter , (*(u16 *)val));
}
break;
case HW_VAR_BCN_VALID:
//BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw
rtw_write8(Adapter, REG_TDECTRL+2, rtw_read8(Adapter, REG_TDECTRL+2) | BIT0);
break;
default:
break;
}
_func_exit_;
}
static void GetHwReg8188ES(PADAPTER padapter, u8 variable, u8 *val)
{
PHAL_DATA_TYPE pHalData= GET_HAL_DATA(padapter);
DM_ODM_T *podmpriv = &pHalData->odmpriv;
_func_enter_;
switch (variable)
{
case HW_VAR_BASIC_RATE:
*((u16*)val) = pHalData->BasicRateSet;
break;
case HW_VAR_TXPAUSE:
val[0] = rtw_read8(padapter, REG_TXPAUSE);
break;
case HW_VAR_BCN_VALID:
//BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2
val[0] = (BIT0 & rtw_read8(padapter, REG_TDECTRL+2))?_TRUE:_FALSE;
break;
case HW_VAR_DM_FLAG:
val[0] = podmpriv->SupportAbility;
break;
case HW_VAR_RF_TYPE:
val[0] = pHalData->rf_type;
break;
case HW_VAR_FWLPS_RF_ON:
{
//When we halt NIC, we should check if FW LPS is leave.
if ((padapter->bSurpriseRemoved == _TRUE) ||
(adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off))
{
// If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave,
// because Fw is unload.
val[0] = _TRUE;
}
else
{
u32 valRCR;
valRCR = rtw_read32(padapter, REG_RCR);
valRCR &= 0x00070000;
if(valRCR)
val[0] = _FALSE;
else
val[0] = _TRUE;
}
}
break;
#ifdef CONFIG_ANTENNA_DIVERSITY
case HW_VAR_CURRENT_ANTENNA:
val[0] = pHalData->CurAntenna;
break;
#endif
case HW_VAR_EFUSE_BYTES: // To get EFUE total used bytes, added by Roger, 2008.12.22.
*((u16*)val) = pHalData->EfuseUsedBytes;
break;
case HW_VAR_APFM_ON_MAC:
*val = pHalData->bMacPwrCtrlOn;
break;
case HW_VAR_CHK_HI_QUEUE_EMPTY:
*val = ((rtw_read32(padapter, REG_HGQ_INFORMATION)&0x0000ff00)==0) ? _TRUE:_FALSE;
break;
case HW_VAR_GET_CPWM:
*val = rtw_read8(padapter, SDIO_LOCAL_BASE | SDIO_REG_HCPWM1);
break;
case HW_VAR_C2HEVT_CLEAR:
*val = rtw_read8(padapter, REG_C2HEVT_CLEAR);
break;
case HW_VAR_C2HEVT_MSG_NORMAL:
*val = rtw_read8(padapter, REG_C2HEVT_MSG_NORMAL);
break;
case HW_VAR_SYS_CLKR:
*val = rtw_read8(padapter, REG_SYS_CLKR);
break;
default:
break;
}
_func_exit_;
}
//
// Description:
// Query setting of specified variable.
//
u8
GetHalDefVar8188ESDIO(
IN PADAPTER Adapter,
IN HAL_DEF_VARIABLE eVariable,
IN PVOID pValue
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 bResult = _SUCCESS;
switch(eVariable)
{
case HAL_DEF_UNDERCORATEDSMOOTHEDPWDB:
{
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
struct sta_priv * pstapriv = &Adapter->stapriv;
struct sta_info * psta;
psta = rtw_get_stainfo(pstapriv, pmlmepriv->cur_network.network.MacAddress);
if(psta)
{
*((int *)pValue) = psta->rssi_stat.UndecoratedSmoothedPWDB;
}
}
break;
case HAL_DEF_IS_SUPPORT_ANT_DIV:
#ifdef CONFIG_ANTENNA_DIVERSITY
*((u8 *)pValue) = (pHalData->AntDivCfg==0)?_FALSE:_TRUE;
#endif
break;
case HAL_DEF_CURRENT_ANTENNA:
#ifdef CONFIG_ANTENNA_DIVERSITY
*(( u8*)pValue) = pHalData->CurAntenna;
#endif
break;
#if (RATE_ADAPTIVE_SUPPORT == 1)
case HAL_DEF_RA_DECISION_RATE:
{
u8 MacID = *((u8*)pValue);
*((u8*)pValue) = ODM_RA_GetDecisionRate_8188E(&(pHalData->odmpriv), MacID);
}
break;
case HAL_DEF_RA_SGI:
{
u8 MacID = *((u8*)pValue);
*((u8*)pValue) = ODM_RA_GetShortGI_8188E(&(pHalData->odmpriv), MacID);
}
break;
#endif
case HAL_DEF_PT_PWR_STATUS:
#if(POWER_TRAINING_ACTIVE==1)
{
u8 MacID = *((u8*)pValue);
*((u8*)pValue) = ODM_RA_GetHwPwrStatus_8188E(&(pHalData->odmpriv), MacID);
}
#endif //(POWER_TRAINING_ACTIVE==1)
break;
case HW_VAR_MAX_RX_AMPDU_FACTOR:
*(( u32*)pValue) = MAX_AMPDU_FACTOR_16K;
break;
case HW_DEF_RA_INFO_DUMP:
#if (RATE_ADAPTIVE_SUPPORT == 1)
{
u8 entry_id = *((u8*)pValue);
u8 i;
u8 bLinked = _FALSE;
#ifdef CONFIG_CONCURRENT_MODE
PADAPTER pbuddy_adapter = Adapter->pbuddy_adapter;
#endif //CONFIG_CONCURRENT_MODE
//if(check_fwstate(&Adapter->mlmepriv, _FW_LINKED)== _TRUE)
if(rtw_linked_check(Adapter))
bLinked = _TRUE;
#ifdef CONFIG_CONCURRENT_MODE
if(pbuddy_adapter && rtw_linked_check(pbuddy_adapter))
bLinked = _TRUE;
#endif
if(bLinked){
DBG_871X("============ RA status check ===================\n");
if(Adapter->bRxRSSIDisplay >30)
Adapter->bRxRSSIDisplay = 1;
for(i=0;i< Adapter->bRxRSSIDisplay;i++){
DBG_8192C("Mac_id:%d ,RSSI:%d ,RateID = %d,RAUseRate = 0x%08x,RateSGI = %d, DecisionRate = 0x%02x ,PTStage = %d\n",
i,
pHalData->odmpriv.RAInfo[i].RssiStaRA,
pHalData->odmpriv.RAInfo[i].RateID,
pHalData->odmpriv.RAInfo[i].RAUseRate,
pHalData->odmpriv.RAInfo[i].RateSGI,
pHalData->odmpriv.RAInfo[i].DecisionRate,
pHalData->odmpriv.RAInfo[i].PTStage);
}
}
}
#endif // (RATE_ADAPTIVE_SUPPORT == 1)
break;
case HAL_DEF_DBG_DUMP_RXPKT:
*(( u8*)pValue) = pHalData->bDumpRxPkt;
break;
case HAL_DEF_DBG_DUMP_TXPKT:
*(( u8*)pValue) = pHalData->bDumpTxPkt;
break;
default:
bResult = GetHalDefVar(Adapter, eVariable, pValue);
break;
}
return bResult;
}
//
// Description:
// Change default setting of specified variable.
//
u8
SetHalDefVar8188ESDIO(
IN PADAPTER Adapter,
IN HAL_DEF_VARIABLE eVariable,
IN PVOID pValue
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 bResult = _TRUE;
switch(eVariable)
{
case HAL_DEF_DBG_DM_FUNC:
{
u8 dm_func = *(( u8*)pValue);
struct dm_priv *pdmpriv = &pHalData->dmpriv;
DM_ODM_T *podmpriv = &pHalData->odmpriv;
if(dm_func == 0){ //disable all dynamic func
podmpriv->SupportAbility = DYNAMIC_FUNC_DISABLE;
DBG_8192C("==> Disable all dynamic function...\n");
}
else if(dm_func == 1){//disable DIG
podmpriv->SupportAbility &= (~DYNAMIC_BB_DIG);
DBG_8192C("==> Disable DIG...\n");
}
else if(dm_func == 2){//disable High power
podmpriv->SupportAbility &= (~DYNAMIC_BB_DYNAMIC_TXPWR);
}
else if(dm_func == 3){//disable tx power tracking
podmpriv->SupportAbility &= (~DYNAMIC_RF_CALIBRATION);
DBG_8192C("==> Disable tx power tracking...\n");
}
//else if(dm_func == 4){//disable BT coexistence
// pdmpriv->DMFlag &= (~DYNAMIC_FUNC_BT);
//}
else if(dm_func == 5){//disable antenna diversity
podmpriv->SupportAbility &= (~DYNAMIC_BB_ANT_DIV);
}
else if(dm_func == 6){//turn on all dynamic func
if(!(podmpriv->SupportAbility & DYNAMIC_BB_DIG))
{
DIG_T *pDigTable = &podmpriv->DM_DigTable;
pDigTable->CurIGValue= rtw_read8(Adapter,0xc50);
}
//pdmpriv->DMFlag |= DYNAMIC_FUNC_BT;
podmpriv->SupportAbility = DYNAMIC_ALL_FUNC_ENABLE;
DBG_8192C("==> Turn on all dynamic function...\n");
}
}
break;
case HAL_DEF_DBG_DUMP_RXPKT:
pHalData->bDumpRxPkt = *(( u8*)pValue);
break;
case HAL_DEF_DBG_DUMP_TXPKT:
pHalData->bDumpTxPkt = *(( u8*)pValue);
break;
default:
bResult = SetHalDefVar(Adapter, eVariable, pValue);
break;
}
return bResult;
}
void UpdateHalRAMask8188ESdio(PADAPTER padapter, u32 mac_id, u8 rssi_level)
{
//volatile unsigned int result;
u8 init_rate=0;
u8 networkType, raid;
u32 mask,rate_bitmap;
u8 shortGIrate = _FALSE;
int supportRateNum = 0;
struct sta_info *psta;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
//struct dm_priv *pdmpriv = &pHalData->dmpriv;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network);
if (mac_id >= NUM_STA) //CAM_SIZE
{
return;
}
psta = pmlmeinfo->FW_sta_info[mac_id].psta;
if(psta == NULL)
{
return;
}
switch (mac_id)
{
case 0:// for infra mode
#ifdef CONFIG_CONCURRENT_MODE
case 2:// first station uses macid=0, second station uses macid=2
#endif
supportRateNum = rtw_get_rateset_len(cur_network->SupportedRates);
networkType = judge_network_type(padapter, cur_network->SupportedRates, supportRateNum) & 0xf;
//pmlmeext->cur_wireless_mode = networkType;
raid = networktype_to_raid(networkType);
mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
mask |= (pmlmeinfo->HT_enable)? update_MSC_rate(&(pmlmeinfo->HT_caps)): 0;
if (support_short_GI(padapter, &(pmlmeinfo->HT_caps)))
{
shortGIrate = _TRUE;
}
break;
case 1://for broadcast/multicast
supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
if(pmlmeext->cur_wireless_mode & WIRELESS_11B)
networkType = WIRELESS_11B;
else
networkType = WIRELESS_11G;
raid = networktype_to_raid(networkType);
mask = update_basic_rate(cur_network->SupportedRates, supportRateNum);
break;
default: //for each sta in IBSS
supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
networkType = judge_network_type(padapter, pmlmeinfo->FW_sta_info[mac_id].SupportedRates, supportRateNum) & 0xf;
//pmlmeext->cur_wireless_mode = networkType;
raid = networktype_to_raid(networkType);
mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
//todo: support HT in IBSS
break;
}
//mask &=0xffffffff;
rate_bitmap = 0x0fffffff;
#ifdef CONFIG_ODM_REFRESH_RAMASK
{
rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv,mac_id,mask,rssi_level);
DBG_8192C("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
__FUNCTION__,mac_id,networkType,mask,rssi_level,rate_bitmap);
}
#endif
mask &= rate_bitmap;
init_rate = get_highest_rate_idx(mask)&0x3f;
if(pHalData->fw_ractrl == _TRUE)
{
u8 arg = 0;
//arg = (cam_idx-4)&0x1f;//MACID
arg = mac_id&0x1f;//MACID
arg |= BIT(7);
if (shortGIrate==_TRUE)
arg |= BIT(5);
mask |= ((raid<<28)&0xf0000000);
DBG_871X("update raid entry, mask=0x%x, arg=0x%x\n", mask, arg);
psta->ra_mask=mask;
#ifdef CONFIG_INTEL_PROXIM
if(padapter->proximity.proxim_on ==_TRUE){
arg &= ~BIT(6);
}
else {
arg |= BIT(6);
}
#endif //CONFIG_INTEL_PROXIM
rtl8188e_set_raid_cmd(padapter, mask);
}
else
{
#if(RATE_ADAPTIVE_SUPPORT == 1)
ODM_RA_UpdateRateInfo_8188E(
&(pHalData->odmpriv),
mac_id,
raid,
mask,
shortGIrate
);
#endif
}
//set ra_id
psta->raid = raid;
psta->init_rate = init_rate;
}
static VOID
_BeaconFunctionEnable(
IN PADAPTER padapter,
IN BOOLEAN Enable,
IN BOOLEAN Linked
)
{
rtw_write8(padapter, REG_BCN_CTRL, (BIT4 | BIT3 | BIT1));
// RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("_BeaconFunctionEnable 0x550 0x%x\n", rtw_read8(padapter, 0x550)));
rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
}
void SetBeaconRelatedRegisters8188ESdio(PADAPTER padapter)
{
u32 value32;
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
u32 bcn_ctrl_reg = REG_BCN_CTRL;
//reset TSF, enable update TSF, correcting TSF On Beacon
//REG_BCN_INTERVAL
//REG_BCNDMATIM
//REG_ATIMWND
//REG_TBTT_PROHIBIT
//REG_DRVERLYINT
//REG_BCN_MAX_ERR
//REG_BCNTCFG //(0x510)
//REG_DUAL_TSF_RST
//REG_BCN_CTRL //(0x550)
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1){
bcn_ctrl_reg = REG_BCN_CTRL_1;
}
#endif
//
// ATIM window
//
rtw_write16(padapter, REG_ATIMWND, 2);
//
// Beacon interval (in unit of TU).
//
rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
_InitBeaconParameters(padapter);
rtw_write8(padapter, REG_SLOT, 0x09);
//
// Force beacon frame transmission even after receiving beacon frame from other ad hoc STA
//
//PlatformEFIOWrite1Byte(Adapter, BCN_ERR_THRESH, 0x0a); // We force beacon sent to prevent unexpect disconnect status in Ad hoc mode
//
// Reset TSF Timer to zero, added by Roger. 2008.06.24
//
value32 = rtw_read32(padapter, REG_TCR);
value32 &= ~TSFRST;
rtw_write32(padapter, REG_TCR, value32);
value32 |= TSFRST;
rtw_write32(padapter, REG_TCR, value32);
// TODO: Modify later (Find the right parameters)
// NOTE: Fix test chip's bug (about contention windows's randomness)
// if (OpMode == RT_OP_MODE_IBSS || OpMode == RT_OP_MODE_AP)
if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_AP_STATE) == _TRUE)
{
rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
}
_BeaconFunctionEnable(padapter, _TRUE, _TRUE);
ResumeTxBeacon(padapter);
rtw_write8(padapter, bcn_ctrl_reg, rtw_read8(padapter, bcn_ctrl_reg)|BIT(1));
}
void rtl8188es_set_hal_ops(PADAPTER padapter)
{
struct hal_ops *pHalFunc = &padapter->HalFunc;
_func_enter_;
#ifdef CONFIG_CONCURRENT_MODE
if(padapter->isprimary)
#endif //CONFIG_CONCURRENT_MODE
{
//set hardware operation functions
padapter->HalData = rtw_zmalloc(sizeof(HAL_DATA_TYPE));
if(padapter->HalData == NULL){
DBG_8192C("cant not alloc memory for HAL DATA \n");
}
}
padapter->hal_data_sz = sizeof(HAL_DATA_TYPE);
pHalFunc->hal_power_on = InitPowerOn_rtl8188es;
pHalFunc->hal_power_off = hal_poweroff_rtl8188es;
pHalFunc->hal_init = &rtl8188es_hal_init;
pHalFunc->hal_deinit = &rtl8188es_hal_deinit;
pHalFunc->inirp_init = &rtl8188es_inirp_init;
pHalFunc->inirp_deinit = &rtl8188es_inirp_deinit;
pHalFunc->init_xmit_priv = &rtl8188es_init_xmit_priv;
pHalFunc->free_xmit_priv = &rtl8188es_free_xmit_priv;
pHalFunc->init_recv_priv = &rtl8188es_init_recv_priv;
pHalFunc->free_recv_priv = &rtl8188es_free_recv_priv;
pHalFunc->InitSwLeds = &rtl8188es_InitSwLeds;
pHalFunc->DeInitSwLeds = &rtl8188es_DeInitSwLeds;
pHalFunc->init_default_value = &rtl8188es_init_default_value;
pHalFunc->intf_chip_configure = &rtl8188es_interface_configure;
pHalFunc->read_adapter_info = &ReadAdapterInfo8188ES;
pHalFunc->enable_interrupt = &EnableInterrupt8188ESdio;
pHalFunc->disable_interrupt = &DisableInterrupt8188ESdio;
#ifdef CONFIG_WOWLAN
pHalFunc->clear_interrupt = &ClearInterrupt8189ESdio;
#endif
pHalFunc->SetHwRegHandler = &SetHwReg8188ES;
pHalFunc->GetHwRegHandler = &GetHwReg8188ES;
pHalFunc->GetHalDefVarHandler = &GetHalDefVar8188ESDIO;
pHalFunc->SetHalDefVarHandler = &SetHalDefVar8188ESDIO;
pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8188ESdio;
pHalFunc->SetBeaconRelatedRegistersHandler = &SetBeaconRelatedRegisters8188ESdio;
pHalFunc->hal_xmit = &rtl8188es_hal_xmit;
pHalFunc->mgnt_xmit = &rtl8188es_mgnt_xmit;
pHalFunc->hal_xmitframe_enqueue = &rtl8188es_hal_xmitframe_enqueue;
#ifdef CONFIG_HOSTAPD_MLME
pHalFunc->hostap_mgnt_xmit_entry = NULL;
// pHalFunc->hostap_mgnt_xmit_entry = &rtl8192cu_hostap_mgnt_xmit_entry;
#endif
rtl8188e_set_hal_ops(pHalFunc);
_func_exit_;
}