rtl8188eu/hal/usb_halinit.c
Larry Finger 2525cdee47 rtl8188eu: Fis fall-through warning
Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
2019-09-28 13:14:03 -05:00

2334 lines
68 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _HCI_HAL_INIT_C_
#include <osdep_service.h>
#include <drv_types.h>
#include <rtw_efuse.h>
#include <rtl8188e_hal.h>
#include <rtl8188e_led.h>
#include <rtw_iol.h>
#include <usb_ops.h>
#include <usb_hal.h>
#include <usb_osintf.h>
#define HAL_MAC_ENABLE 1
#define HAL_BB_ENABLE 1
#define HAL_RF_ENABLE 1
static void _ConfigNormalChipOutEP_8188E(struct adapter *adapt, u8 NumOutPipe)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
switch (NumOutPipe) {
case 3:
haldata->OutEpQueueSel = TX_SELE_HQ | TX_SELE_LQ | TX_SELE_NQ;
haldata->OutEpNumber = 3;
break;
case 2:
haldata->OutEpQueueSel = TX_SELE_HQ | TX_SELE_NQ;
haldata->OutEpNumber = 2;
break;
case 1:
haldata->OutEpQueueSel = TX_SELE_HQ;
haldata->OutEpNumber = 1;
break;
default:
break;
}
DBG_88E("%s OutEpQueueSel(0x%02x), OutEpNumber(%d)\n", __func__, haldata->OutEpQueueSel, haldata->OutEpNumber);
}
static bool HalUsbSetQueuePipeMapping8188EUsb(struct adapter *adapt, u8 NumInPipe, u8 NumOutPipe)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
bool result = false;
_ConfigNormalChipOutEP_8188E(adapt, NumOutPipe);
/* Normal chip with one IN and one OUT doesn't have interrupt IN EP. */
if (1 == haldata->OutEpNumber) {
if (1 != NumInPipe)
return result;
}
/* All config other than above support one Bulk IN and one Interrupt IN. */
result = Hal_MappingOutPipe(adapt, NumOutPipe);
return result;
}
static void rtl8188eu_interface_configure(struct adapter *adapt)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(adapt);
if (pdvobjpriv->ishighspeed)
haldata->UsbBulkOutSize = USB_HIGH_SPEED_BULK_SIZE;/* 512 bytes */
else
haldata->UsbBulkOutSize = USB_FULL_SPEED_BULK_SIZE;/* 64 bytes */
haldata->interfaceIndex = pdvobjpriv->InterfaceNumber;
haldata->UsbTxAggMode = 1;
haldata->UsbTxAggDescNum = 0x6; /* only 4 bits */
haldata->UsbRxAggMode = USB_RX_AGG_DMA;/* USB_RX_AGG_DMA; */
haldata->UsbRxAggBlockCount = 8; /* unit : 512b */
haldata->UsbRxAggBlockTimeout = 0x6;
haldata->UsbRxAggPageCount = 48; /* uint :128 b 0x0A; 10 = MAX_RX_DMA_BUFFER_SIZE/2/haldata->UsbBulkOutSize */
haldata->UsbRxAggPageTimeout = 0x4; /* 6, absolute time = 34ms/(2^6) */
HalUsbSetQueuePipeMapping8188EUsb(adapt,
pdvobjpriv->RtNumInPipes, pdvobjpriv->RtNumOutPipes);
}
static u32 rtl8188eu_InitPowerOn(struct adapter *adapt)
{
u16 value16;
/* HW Power on sequence */
struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
if (haldata->bMacPwrCtrlOn)
return _SUCCESS;
if (!HalPwrSeqCmdParsing(adapt, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_PWR_ON_FLOW)) {
DBG_88E(KERN_ERR "%s: run power on flow fail\n", __func__);
return _FAIL;
}
/* Enable MAC DMA/WMAC/SCHEDULE/SEC block */
/* Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */
rtw_write16(adapt, REG_CR, 0x00); /* suggseted by zhouzhou, by page, 20111230 */
/* Enable MAC DMA/WMAC/SCHEDULE/SEC block */
value16 = rtw_read16(adapt, REG_CR);
value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN
| PROTOCOL_EN | SCHEDULE_EN | ENSEC | CALTMR_EN);
/* for SDIO - Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */
rtw_write16(adapt, REG_CR, value16);
haldata->bMacPwrCtrlOn = true;
return _SUCCESS;
}
/* Shall USB interface init this? */
static void _InitInterrupt(struct adapter *Adapter)
{
u32 imr, imr_ex;
u8 usb_opt;
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
/* HISR write one to clear */
rtw_write32(Adapter, REG_HISR_88E, 0xFFFFFFFF);
/* HIMR - */
imr = IMR_PSTIMEOUT_88E | IMR_TBDER_88E | IMR_CPWM_88E | IMR_CPWM2_88E;
rtw_write32(Adapter, REG_HIMR_88E, imr);
haldata->IntrMask[0] = imr;
imr_ex = IMR_TXERR_88E | IMR_RXERR_88E | IMR_TXFOVW_88E | IMR_RXFOVW_88E;
rtw_write32(Adapter, REG_HIMRE_88E, imr_ex);
haldata->IntrMask[1] = imr_ex;
/* REG_USB_SPECIAL_OPTION - BIT(4) */
/* 0; Use interrupt endpoint to upload interrupt pkt */
/* 1; Use bulk endpoint to upload interrupt pkt, */
usb_opt = rtw_read8(Adapter, REG_USB_SPECIAL_OPTION);
if (!adapter_to_dvobj(Adapter)->ishighspeed)
usb_opt = usb_opt & (~INT_BULK_SEL);
else
usb_opt = usb_opt | (INT_BULK_SEL);
rtw_write8(Adapter, REG_USB_SPECIAL_OPTION, usb_opt);
}
static void _InitQueueReservedPage(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u32 numHQ = 0;
u32 numLQ = 0;
u32 numNQ = 0;
u32 numPubQ;
u32 value32;
u8 value8;
bool bWiFiConfig = pregistrypriv->wifi_spec;
if (bWiFiConfig) {
if (haldata->OutEpQueueSel & TX_SELE_HQ)
numHQ = 0x29;
if (haldata->OutEpQueueSel & TX_SELE_LQ)
numLQ = 0x1C;
/* NOTE: This step shall be proceed before writting REG_RQPN. */
if (haldata->OutEpQueueSel & TX_SELE_NQ)
numNQ = 0x1C;
value8 = (u8)_NPQ(numNQ);
rtw_write8(Adapter, REG_RQPN_NPQ, value8);
numPubQ = 0xA8 - numHQ - numLQ - numNQ;
/* TX DMA */
value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
rtw_write32(Adapter, REG_RQPN, value32);
} else {
rtw_write16(Adapter, REG_RQPN_NPQ, 0x0000);/* Just follow MP Team,??? Georgia 03/28 */
rtw_write16(Adapter, REG_RQPN_NPQ, 0x0d);
rtw_write32(Adapter, REG_RQPN, 0x808E000d);/* reserve 7 page for LPS */
}
}
static void _InitTxBufferBoundary(struct adapter *Adapter, u8 txpktbuf_bndy)
{
rtw_write8(Adapter, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
rtw_write8(Adapter, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
rtw_write8(Adapter, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy);
rtw_write8(Adapter, REG_TRXFF_BNDY, txpktbuf_bndy);
rtw_write8(Adapter, REG_TDECTRL+1, txpktbuf_bndy);
}
static void _InitPageBoundary(struct adapter *Adapter)
{
/* RX Page Boundary */
/* */
u16 rxff_bndy = MAX_RX_DMA_BUFFER_SIZE_88E-1;
rtw_write16(Adapter, (REG_TRXFF_BNDY + 2), rxff_bndy);
}
static void _InitNormalChipRegPriority(struct adapter *Adapter, u16 beQ,
u16 bkQ, u16 viQ, u16 voQ, u16 mgtQ,
u16 hiQ)
{
u16 value16 = (rtw_read16(Adapter, REG_TRXDMA_CTRL) & 0x7);
value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) |
_TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) |
_TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ);
rtw_write16(Adapter, REG_TRXDMA_CTRL, value16);
}
static void _InitNormalChipOneOutEpPriority(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
u16 value = 0;
switch (haldata->OutEpQueueSel) {
case TX_SELE_HQ:
value = QUEUE_HIGH;
break;
case TX_SELE_LQ:
value = QUEUE_LOW;
break;
case TX_SELE_NQ:
value = QUEUE_NORMAL;
break;
default:
break;
}
_InitNormalChipRegPriority(Adapter, value, value, value, value,
value, value);
}
static void _InitNormalChipTwoOutEpPriority(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
u16 valueHi = 0;
u16 valueLow = 0;
switch (haldata->OutEpQueueSel) {
case (TX_SELE_HQ | TX_SELE_LQ):
valueHi = QUEUE_HIGH;
valueLow = QUEUE_LOW;
break;
case (TX_SELE_NQ | TX_SELE_LQ):
valueHi = QUEUE_NORMAL;
valueLow = QUEUE_LOW;
break;
case (TX_SELE_HQ | TX_SELE_NQ):
valueHi = QUEUE_HIGH;
valueLow = QUEUE_NORMAL;
break;
default:
break;
}
if (!pregistrypriv->wifi_spec) {
beQ = valueLow;
bkQ = valueLow;
viQ = valueHi;
voQ = valueHi;
mgtQ = valueHi;
hiQ = valueHi;
} else {/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */
beQ = valueLow;
bkQ = valueHi;
viQ = valueHi;
voQ = valueLow;
mgtQ = valueHi;
hiQ = valueHi;
}
_InitNormalChipRegPriority(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
}
static void _InitNormalChipThreeOutEpPriority(struct adapter *Adapter)
{
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
if (!pregistrypriv->wifi_spec) {/* typical setting */
beQ = QUEUE_LOW;
bkQ = QUEUE_LOW;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_HIGH;
} else {/* for WMM */
beQ = QUEUE_LOW;
bkQ = QUEUE_NORMAL;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_HIGH;
}
_InitNormalChipRegPriority(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
}
static void _InitQueuePriority(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
switch (haldata->OutEpNumber) {
case 1:
_InitNormalChipOneOutEpPriority(Adapter);
break;
case 2:
_InitNormalChipTwoOutEpPriority(Adapter);
break;
case 3:
_InitNormalChipThreeOutEpPriority(Adapter);
break;
default:
break;
}
}
static void _InitNetworkType(struct adapter *Adapter)
{
u32 value32;
value32 = rtw_read32(Adapter, REG_CR);
/* TODO: use the other function to set network type */
value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AP);
rtw_write32(Adapter, REG_CR, value32);
}
static void _InitTransferPageSize(struct adapter *Adapter)
{
/* Tx page size is always 128. */
u8 value8;
value8 = _PSRX(PBP_128) | _PSTX(PBP_128);
rtw_write8(Adapter, REG_PBP, value8);
}
static void _InitDriverInfoSize(struct adapter *Adapter, u8 drvInfoSize)
{
rtw_write8(Adapter, REG_RX_DRVINFO_SZ, drvInfoSize);
}
static void _InitWMACSetting(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
haldata->ReceiveConfig = RCR_AAP | RCR_APM | RCR_AM | RCR_AB |
RCR_CBSSID_DATA | RCR_CBSSID_BCN |
RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL |
RCR_APP_MIC | RCR_APP_PHYSTS;
/* some REG_RCR will be modified later by phy_ConfigMACWithHeaderFile() */
rtw_write32(Adapter, REG_RCR, haldata->ReceiveConfig);
/* Accept all multicast address */
rtw_write32(Adapter, REG_MAR, 0xFFFFFFFF);
rtw_write32(Adapter, REG_MAR + 4, 0xFFFFFFFF);
}
static void _InitAdaptiveCtrl(struct adapter *Adapter)
{
u16 value16;
u32 value32;
/* Response Rate Set */
value32 = rtw_read32(Adapter, REG_RRSR);
value32 &= ~RATE_BITMAP_ALL;
value32 |= RATE_RRSR_CCK_ONLY_1M;
rtw_write32(Adapter, REG_RRSR, value32);
/* CF-END Threshold */
/* SIFS (used in NAV) */
value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10);
rtw_write16(Adapter, REG_SPEC_SIFS, value16);
/* Retry Limit */
value16 = _LRL(0x30) | _SRL(0x30);
rtw_write16(Adapter, REG_RL, value16);
}
static void _InitEDCA(struct adapter *Adapter)
{
/* Set Spec SIFS (used in NAV) */
rtw_write16(Adapter, REG_SPEC_SIFS, 0x100a);
rtw_write16(Adapter, REG_MAC_SPEC_SIFS, 0x100a);
/* Set SIFS for CCK */
rtw_write16(Adapter, REG_SIFS_CTX, 0x100a);
/* Set SIFS for OFDM */
rtw_write16(Adapter, REG_SIFS_TRX, 0x100a);
/* TXOP */
rtw_write32(Adapter, REG_EDCA_BE_PARAM, 0x005EA42B);
rtw_write32(Adapter, REG_EDCA_BK_PARAM, 0x0000A44F);
rtw_write32(Adapter, REG_EDCA_VI_PARAM, 0x005EA324);
rtw_write32(Adapter, REG_EDCA_VO_PARAM, 0x002FA226);
}
static void _InitBeaconMaxError(struct adapter *Adapter, bool InfraMode)
{
}
static void _InitHWLed(struct adapter *Adapter)
{
struct led_priv *pledpriv = &(Adapter->ledpriv);
if (pledpriv->LedStrategy != HW_LED)
return;
/* HW led control */
/* to do .... */
/* must consider cases of antenna diversity/ commbo card/solo card/mini card */
}
static void _InitRDGSetting(struct adapter *Adapter)
{
rtw_write8(Adapter, REG_RD_CTRL, 0xFF);
rtw_write16(Adapter, REG_RD_NAV_NXT, 0x200);
rtw_write8(Adapter, REG_RD_RESP_PKT_TH, 0x05);
}
static void _InitRxSetting(struct adapter *Adapter)
{
rtw_write32(Adapter, REG_MACID, 0x87654321);
rtw_write32(Adapter, 0x0700, 0x87654321);
}
static void _InitRetryFunction(struct adapter *Adapter)
{
u8 value8;
value8 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL);
value8 |= EN_AMPDU_RTY_NEW;
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL, value8);
/* Set ACK timeout */
rtw_write8(Adapter, REG_ACKTO, 0x40);
}
/*-----------------------------------------------------------------------------
* Function: usb_AggSettingTxUpdate()
*
* Overview: Separate TX/RX parameters update independent for TP detection and
* dynamic TX/RX aggreagtion parameters update.
*
* Input: struct adapter *
*
* Output/Return: NONE
*
* Revised History:
* When Who Remark
* 12/10/2010 MHC Separate to smaller function.
*
*---------------------------------------------------------------------------*/
static void usb_AggSettingTxUpdate(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
u32 value32;
if (Adapter->registrypriv.wifi_spec)
haldata->UsbTxAggMode = false;
if (haldata->UsbTxAggMode) {
value32 = rtw_read32(Adapter, REG_TDECTRL);
value32 = value32 & ~(BLK_DESC_NUM_MASK << BLK_DESC_NUM_SHIFT);
value32 |= ((haldata->UsbTxAggDescNum & BLK_DESC_NUM_MASK) << BLK_DESC_NUM_SHIFT);
rtw_write32(Adapter, REG_TDECTRL, value32);
}
} /* usb_AggSettingTxUpdate */
/*-----------------------------------------------------------------------------
* Function: usb_AggSettingRxUpdate()
*
* Overview: Separate TX/RX parameters update independent for TP detection and
* dynamic TX/RX aggreagtion parameters update.
*
* Input: struct adapter *
*
* Output/Return: NONE
*
* Revised History:
* When Who Remark
* 12/10/2010 MHC Separate to smaller function.
*
*---------------------------------------------------------------------------*/
static void
usb_AggSettingRxUpdate(
struct adapter *Adapter
)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
u8 valueDMA;
u8 valueUSB;
valueDMA = rtw_read8(Adapter, REG_TRXDMA_CTRL);
valueUSB = rtw_read8(Adapter, REG_USB_SPECIAL_OPTION);
switch (haldata->UsbRxAggMode) {
case USB_RX_AGG_DMA:
valueDMA |= RXDMA_AGG_EN;
valueUSB &= ~USB_AGG_EN;
break;
case USB_RX_AGG_USB:
valueDMA &= ~RXDMA_AGG_EN;
valueUSB |= USB_AGG_EN;
break;
case USB_RX_AGG_MIX:
valueDMA |= RXDMA_AGG_EN;
valueUSB |= USB_AGG_EN;
break;
case USB_RX_AGG_DISABLE:
default:
valueDMA &= ~RXDMA_AGG_EN;
valueUSB &= ~USB_AGG_EN;
break;
}
rtw_write8(Adapter, REG_TRXDMA_CTRL, valueDMA);
rtw_write8(Adapter, REG_USB_SPECIAL_OPTION, valueUSB);
switch (haldata->UsbRxAggMode) {
case USB_RX_AGG_DMA:
rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, haldata->UsbRxAggPageCount);
rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH+1, haldata->UsbRxAggPageTimeout);
break;
case USB_RX_AGG_USB:
rtw_write8(Adapter, REG_USB_AGG_TH, haldata->UsbRxAggBlockCount);
rtw_write8(Adapter, REG_USB_AGG_TO, haldata->UsbRxAggBlockTimeout);
break;
case USB_RX_AGG_MIX:
rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, haldata->UsbRxAggPageCount);
rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH+1, (haldata->UsbRxAggPageTimeout & 0x1F));/* 0x280[12:8] */
rtw_write8(Adapter, REG_USB_AGG_TH, haldata->UsbRxAggBlockCount);
rtw_write8(Adapter, REG_USB_AGG_TO, haldata->UsbRxAggBlockTimeout);
break;
case USB_RX_AGG_DISABLE:
default:
/* TODO: */
break;
}
switch (PBP_128) {
case PBP_128:
haldata->HwRxPageSize = 128;
break;
case PBP_64:
haldata->HwRxPageSize = 64;
break;
case PBP_256:
haldata->HwRxPageSize = 256;
break;
case PBP_512:
haldata->HwRxPageSize = 512;
break;
case PBP_1024:
haldata->HwRxPageSize = 1024;
break;
default:
break;
}
} /* usb_AggSettingRxUpdate */
static void InitUsbAggregationSetting(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
/* Tx aggregation setting */
usb_AggSettingTxUpdate(Adapter);
/* Rx aggregation setting */
usb_AggSettingRxUpdate(Adapter);
/* 201/12/10 MH Add for USB agg mode dynamic switch. */
haldata->UsbRxHighSpeedMode = false;
}
static void _InitOperationMode(struct adapter *Adapter)
{
}
static void _InitBeaconParameters(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
rtw_write16(Adapter, REG_BCN_CTRL, 0x1010);
/* TODO: Remove these magic number */
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0x6404);/* ms */
rtw_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);/* 5ms */
rtw_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME); /* 2ms */
/* Suggested by designer timchen. Change beacon AIFS to the largest number */
/* beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
rtw_write16(Adapter, REG_BCNTCFG, 0x660F);
haldata->RegBcnCtrlVal = rtw_read8(Adapter, REG_BCN_CTRL);
haldata->RegTxPause = rtw_read8(Adapter, REG_TXPAUSE);
haldata->RegFwHwTxQCtrl = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL+2);
haldata->RegReg542 = rtw_read8(Adapter, REG_TBTT_PROHIBIT+2);
haldata->RegCR_1 = rtw_read8(Adapter, REG_CR+1);
}
static void _BeaconFunctionEnable(struct adapter *Adapter,
bool Enable, bool Linked)
{
rtw_write8(Adapter, REG_BCN_CTRL, (BIT4 | BIT3 | BIT1));
rtw_write8(Adapter, REG_RD_CTRL+1, 0x6F);
}
/* Set CCK and OFDM Block "ON" */
static void _BBTurnOnBlock(struct adapter *Adapter)
{
PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bCCKEn, 0x1);
PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bOFDMEn, 0x1);
}
enum {
Antenna_Lfet = 1,
Antenna_Right = 2,
};
static void _InitAntenna_Selection(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
if (haldata->AntDivCfg == 0)
return;
DBG_88E("==> %s ....\n", __func__);
rtw_write32(Adapter, REG_LEDCFG0, rtw_read32(Adapter, REG_LEDCFG0)|BIT23);
PHY_SetBBReg(Adapter, rFPGA0_XAB_RFParameter, BIT13, 0x01);
if (PHY_QueryBBReg(Adapter, rFPGA0_XA_RFInterfaceOE, 0x300) == Antenna_A)
haldata->CurAntenna = Antenna_A;
else
haldata->CurAntenna = Antenna_B;
DBG_88E("%s,Cur_ant:(%x)%s\n", __func__, haldata->CurAntenna, (haldata->CurAntenna == Antenna_A) ? "Antenna_A" : "Antenna_B");
}
/*-----------------------------------------------------------------------------
* Function: HwSuspendModeEnable92Cu()
*
* Overview: HW suspend mode switch.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 08/23/2010 MHC HW suspend mode switch test..
*---------------------------------------------------------------------------*/
enum rt_rf_power_state RfOnOffDetect(struct adapter *adapt)
{
u8 val8;
enum rt_rf_power_state rfpowerstate = rf_off;
if (adapt->pwrctrlpriv.bHWPowerdown) {
val8 = rtw_read8(adapt, REG_HSISR);
DBG_88E("pwrdown, 0x5c(BIT7)=%02x\n", val8);
rfpowerstate = (val8 & BIT7) ? rf_off : rf_on;
} else { /* rf on/off */
rtw_write8(adapt, REG_MAC_PINMUX_CFG, rtw_read8(adapt, REG_MAC_PINMUX_CFG)&~(BIT3));
val8 = rtw_read8(adapt, REG_GPIO_IO_SEL);
DBG_88E("GPIO_IN=%02x\n", val8);
rfpowerstate = (val8 & BIT3) ? rf_on : rf_off;
}
return rfpowerstate;
} /* HalDetectPwrDownMode */
static u32 rtl8188eu_hal_init(struct adapter *Adapter)
{
u8 value8 = 0;
u16 value16;
u8 txpktbuf_bndy;
u32 status = _SUCCESS;
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
struct pwrctrl_priv *pwrctrlpriv = &Adapter->pwrctrlpriv;
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u32 init_start_time = jiffies;
#define HAL_INIT_PROFILE_TAG(stage) do {} while (0)
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_BEGIN);
if (Adapter->pwrctrlpriv.bkeepfwalive) {
_ps_open_RF(Adapter);
if (haldata->odmpriv.RFCalibrateInfo.bIQKInitialized) {
PHY_IQCalibrate_8188E(Adapter, true);
} else {
PHY_IQCalibrate_8188E(Adapter, false);
haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = true;
}
ODM_TXPowerTrackingCheck(&haldata->odmpriv);
PHY_LCCalibrate_8188E(Adapter);
goto exit;
}
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PW_ON);
status = rtl8188eu_InitPowerOn(Adapter);
if (status == _FAIL) {
RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init power on!\n"));
goto exit;
}
/* Save target channel */
haldata->CurrentChannel = 6;/* default set to 6 */
if (pwrctrlpriv->reg_rfoff) {
pwrctrlpriv->rf_pwrstate = rf_off;
}
/* 2010/08/09 MH We need to check if we need to turnon or off RF after detecting */
/* HW GPIO pin. Before PHY_RFConfig8192C. */
/* 2010/08/26 MH If Efuse does not support sective suspend then disable the function. */
if (!pregistrypriv->wifi_spec) {
txpktbuf_bndy = TX_PAGE_BOUNDARY_88E;
} else {
/* for WMM */
txpktbuf_bndy = WMM_NORMAL_TX_PAGE_BOUNDARY_88E;
}
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC01);
_InitQueueReservedPage(Adapter);
_InitQueuePriority(Adapter);
_InitPageBoundary(Adapter);
_InitTransferPageSize(Adapter);
_InitTxBufferBoundary(Adapter, 0);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_DOWNLOAD_FW);
if (Adapter->registrypriv.mp_mode == 1) {
_InitRxSetting(Adapter);
Adapter->bFWReady = false;
haldata->fw_ractrl = false;
} else {
status = rtl8188e_FirmwareDownload(Adapter);
if (status != _SUCCESS) {
DBG_88E("%s: Download Firmware failed!!\n", __func__);
Adapter->bFWReady = false;
haldata->fw_ractrl = false;
return status;
} else {
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Initializeadapt8192CSdio(): Download Firmware Success!!\n"));
Adapter->bFWReady = true;
haldata->fw_ractrl = false;
}
}
rtl8188e_InitializeFirmwareVars(Adapter);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MAC);
#if (HAL_MAC_ENABLE == 1)
status = PHY_MACConfig8188E(Adapter);
if (status == _FAIL) {
DBG_88E(" ### Failed to init MAC ......\n ");
goto exit;
}
#endif
/* */
/* d. Initialize BB related configurations. */
/* */
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_BB);
#if (HAL_BB_ENABLE == 1)
status = PHY_BBConfig8188E(Adapter);
if (status == _FAIL) {
DBG_88E(" ### Failed to init BB ......\n ");
goto exit;
}
#endif
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_RF);
#if (HAL_RF_ENABLE == 1)
status = PHY_RFConfig8188E(Adapter);
if (status == _FAIL) {
DBG_88E(" ### Failed to init RF ......\n ");
goto exit;
}
#endif
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_EFUSE_PATCH);
status = rtl8188e_iol_efuse_patch(Adapter);
if (status == _FAIL) {
DBG_88E("%s rtl8188e_iol_efuse_patch failed\n", __func__);
goto exit;
}
_InitTxBufferBoundary(Adapter, txpktbuf_bndy);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_LLTT);
status = InitLLTTable(Adapter, txpktbuf_bndy);
if (status == _FAIL) {
RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init LLT table\n"));
goto exit;
}
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC02);
/* Get Rx PHY status in order to report RSSI and others. */
_InitDriverInfoSize(Adapter, DRVINFO_SZ);
_InitInterrupt(Adapter);
hal_init_macaddr(Adapter);/* set mac_address */
_InitNetworkType(Adapter);/* set msr */
_InitWMACSetting(Adapter);
_InitAdaptiveCtrl(Adapter);
_InitEDCA(Adapter);
_InitRetryFunction(Adapter);
InitUsbAggregationSetting(Adapter);
_InitOperationMode(Adapter);/* todo */
_InitBeaconParameters(Adapter);
_InitBeaconMaxError(Adapter, true);
/* */
/* Init CR MACTXEN, MACRXEN after setting RxFF boundary REG_TRXFF_BNDY to patch */
/* Hw bug which Hw initials RxFF boundary size to a value which is larger than the real Rx buffer size in 88E. */
/* */
/* Enable MACTXEN/MACRXEN block */
value16 = rtw_read16(Adapter, REG_CR);
value16 |= (MACTXEN | MACRXEN);
rtw_write8(Adapter, REG_CR, value16);
if (haldata->bRDGEnable)
_InitRDGSetting(Adapter);
/* Enable TX Report */
/* Enable Tx Report Timer */
value8 = rtw_read8(Adapter, REG_TX_RPT_CTRL);
rtw_write8(Adapter, REG_TX_RPT_CTRL, (value8|BIT1|BIT0));
/* Set MAX RPT MACID */
rtw_write8(Adapter, REG_TX_RPT_CTRL+1, 2);/* FOR sta mode ,0: bc/mc ,1:AP */
/* Tx RPT Timer. Unit: 32us */
rtw_write16(Adapter, REG_TX_RPT_TIME, 0xCdf0);
rtw_write8(Adapter, REG_EARLY_MODE_CONTROL, 0);
rtw_write16(Adapter, REG_PKT_VO_VI_LIFE_TIME, 0x0400); /* unit: 256us. 256ms */
rtw_write16(Adapter, REG_PKT_BE_BK_LIFE_TIME, 0x0400); /* unit: 256us. 256ms */
_InitHWLed(Adapter);
/* Keep RfRegChnlVal for later use. */
haldata->RfRegChnlVal[0] = PHY_QueryRFReg(Adapter, (enum rf_radio_path)0, RF_CHNLBW, bRFRegOffsetMask);
haldata->RfRegChnlVal[1] = PHY_QueryRFReg(Adapter, (enum rf_radio_path)1, RF_CHNLBW, bRFRegOffsetMask);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_TURN_ON_BLOCK);
_BBTurnOnBlock(Adapter);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_SECURITY);
invalidate_cam_all(Adapter);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC11);
/* 2010/12/17 MH We need to set TX power according to EFUSE content at first. */
PHY_SetTxPowerLevel8188E(Adapter, haldata->CurrentChannel);
/* Move by Neo for USB SS to below setp */
/* _RfPowerSave(Adapter); */
_InitAntenna_Selection(Adapter);
/* */
/* Disable BAR, suggested by Scott */
/* 2010.04.09 add by hpfan */
/* */
rtw_write32(Adapter, REG_BAR_MODE_CTRL, 0x0201ffff);
/* HW SEQ CTRL */
/* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */
rtw_write8(Adapter, REG_HWSEQ_CTRL, 0xFF);
if (pregistrypriv->wifi_spec)
rtw_write16(Adapter, REG_FAST_EDCA_CTRL, 0);
/* Nav limit , suggest by scott */
rtw_write8(Adapter, 0x652, 0x0);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_HAL_DM);
rtl8188e_InitHalDm(Adapter);
if (Adapter->registrypriv.mp_mode == 1) {
Adapter->mppriv.channel = haldata->CurrentChannel;
MPT_InitializeAdapter(Adapter, Adapter->mppriv.channel);
} else {
/* 2010/08/11 MH Merge from 8192SE for Minicard init. We need to confirm current radio status */
/* and then decide to enable RF or not.!!!??? For Selective suspend mode. We may not */
/* call initstruct adapter. May cause some problem?? */
/* Fix the bug that Hw/Sw radio off before S3/S4, the RF off action will not be executed */
/* in MgntActSet_RF_State() after wake up, because the value of haldata->eRFPowerState */
/* is the same as eRfOff, we should change it to eRfOn after we config RF parameters. */
/* Added by tynli. 2010.03.30. */
pwrctrlpriv->rf_pwrstate = rf_on;
/* enable Tx report. */
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL+1, 0x0F);
/* Suggested by SD1 pisa. Added by tynli. 2011.10.21. */
rtw_write8(Adapter, REG_EARLY_MODE_CONTROL+3, 0x01);/* Pretx_en, for WEP/TKIP SEC */
/* tynli_test_tx_report. */
rtw_write16(Adapter, REG_TX_RPT_TIME, 0x3DF0);
/* enable tx DMA to drop the redundate data of packet */
rtw_write16(Adapter, REG_TXDMA_OFFSET_CHK, (rtw_read16(Adapter, REG_TXDMA_OFFSET_CHK) | DROP_DATA_EN));
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_IQK);
/* 2010/08/26 MH Merge from 8192CE. */
if (pwrctrlpriv->rf_pwrstate == rf_on) {
if (haldata->odmpriv.RFCalibrateInfo.bIQKInitialized) {
PHY_IQCalibrate_8188E(Adapter, true);
} else {
PHY_IQCalibrate_8188E(Adapter, false);
haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = true;
}
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_PW_TRACK);
ODM_TXPowerTrackingCheck(&haldata->odmpriv);
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_LCK);
PHY_LCCalibrate_8188E(Adapter);
}
}
/* HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PABIAS); */
/* _InitPABias(Adapter); */
rtw_write8(Adapter, REG_USB_HRPWM, 0);
/* ack for xmit mgmt frames. */
rtw_write32(Adapter, REG_FWHW_TXQ_CTRL, rtw_read32(Adapter, REG_FWHW_TXQ_CTRL)|BIT(12));
exit:
HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_END);
DBG_88E("%s in %dms\n", __func__, rtw_get_passing_time_ms(init_start_time));
return status;
}
void _ps_open_RF(struct adapter *adapt)
{
/* here call with bRegSSPwrLvl 1, bRegSSPwrLvl 2 needs to be verified */
/* phy_SsPwrSwitch92CU(adapt, rf_on, 1); */
}
static void _ps_close_RF(struct adapter *adapt)
{
/* here call with bRegSSPwrLvl 1, bRegSSPwrLvl 2 needs to be verified */
/* phy_SsPwrSwitch92CU(adapt, rf_off, 1); */
}
static void CardDisableRTL8188EU(struct adapter *Adapter)
{
u8 val8;
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("CardDisableRTL8188EU\n"));
/* Stop Tx Report Timer. 0x4EC[Bit1]=b'0 */
val8 = rtw_read8(Adapter, REG_TX_RPT_CTRL);
rtw_write8(Adapter, REG_TX_RPT_CTRL, val8&(~BIT1));
/* stop rx */
rtw_write8(Adapter, REG_CR, 0x0);
/* Run LPS WL RFOFF flow */
HalPwrSeqCmdParsing(Adapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_LPS_ENTER_FLOW);
/* 2. 0x1F[7:0] = 0 turn off RF */
val8 = rtw_read8(Adapter, REG_MCUFWDL);
if ((val8 & RAM_DL_SEL) && Adapter->bFWReady) { /* 8051 RAM code */
/* Reset MCU 0x2[10]=0. */
val8 = rtw_read8(Adapter, REG_SYS_FUNC_EN+1);
val8 &= ~BIT(2); /* 0x2[10], FEN_CPUEN */
rtw_write8(Adapter, REG_SYS_FUNC_EN+1, val8);
}
/* reset MCU ready status */
rtw_write8(Adapter, REG_MCUFWDL, 0);
/* YJ,add,111212 */
/* Disable 32k */
val8 = rtw_read8(Adapter, REG_32K_CTRL);
rtw_write8(Adapter, REG_32K_CTRL, val8&(~BIT0));
/* Card disable power action flow */
HalPwrSeqCmdParsing(Adapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_DISABLE_FLOW);
/* Reset MCU IO Wrapper */
val8 = rtw_read8(Adapter, REG_RSV_CTRL+1);
rtw_write8(Adapter, REG_RSV_CTRL+1, (val8&(~BIT3)));
val8 = rtw_read8(Adapter, REG_RSV_CTRL+1);
rtw_write8(Adapter, REG_RSV_CTRL+1, val8|BIT3);
/* YJ,test add, 111207. For Power Consumption. */
val8 = rtw_read8(Adapter, GPIO_IN);
rtw_write8(Adapter, GPIO_OUT, val8);
rtw_write8(Adapter, GPIO_IO_SEL, 0xFF);/* Reg0x46 */
val8 = rtw_read8(Adapter, REG_GPIO_IO_SEL);
rtw_write8(Adapter, REG_GPIO_IO_SEL, (val8<<4));
val8 = rtw_read8(Adapter, REG_GPIO_IO_SEL+1);
rtw_write8(Adapter, REG_GPIO_IO_SEL+1, val8|0x0F);/* Reg0x43 */
rtw_write32(Adapter, REG_BB_PAD_CTRL, 0x00080808);/* set LNA ,TRSW,EX_PA Pin to output mode */
haldata->bMacPwrCtrlOn = false;
Adapter->bFWReady = false;
}
static void rtl8192cu_hw_power_down(struct adapter *adapt)
{
/* 2010/-8/09 MH For power down module, we need to enable register block contrl reg at 0x1c. */
/* Then enable power down control bit of register 0x04 BIT4 and BIT15 as 1. */
/* Enable register area 0x0-0xc. */
rtw_write8(adapt, REG_RSV_CTRL, 0x0);
rtw_write16(adapt, REG_APS_FSMCO, 0x8812);
}
static u32 rtl8188eu_hal_deinit(struct adapter *Adapter)
{
DBG_88E("==> %s\n", __func__);
rtw_write32(Adapter, REG_HIMR_88E, IMR_DISABLED_88E);
rtw_write32(Adapter, REG_HIMRE_88E, IMR_DISABLED_88E);
DBG_88E("bkeepfwalive(%x)\n", Adapter->pwrctrlpriv.bkeepfwalive);
if (Adapter->pwrctrlpriv.bkeepfwalive) {
_ps_close_RF(Adapter);
if ((Adapter->pwrctrlpriv.bHWPwrPindetect) && (Adapter->pwrctrlpriv.bHWPowerdown))
rtl8192cu_hw_power_down(Adapter);
} else {
if (Adapter->hw_init_completed) {
CardDisableRTL8188EU(Adapter);
if ((Adapter->pwrctrlpriv.bHWPwrPindetect) && (Adapter->pwrctrlpriv.bHWPowerdown))
rtl8192cu_hw_power_down(Adapter);
}
}
return _SUCCESS;
}
static unsigned int rtl8188eu_inirp_init(struct adapter *Adapter)
{
u8 i;
struct recv_buf *precvbuf;
uint status;
struct intf_hdl *pintfhdl = &Adapter->iopriv.intf;
struct recv_priv *precvpriv = &(Adapter->recvpriv);
u32 (*_read_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
_read_port = pintfhdl->io_ops._read_port;
status = _SUCCESS;
RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
("===> usb_inirp_init\n"));
precvpriv->ff_hwaddr = RECV_BULK_IN_ADDR;
/* issue Rx irp to receive data */
precvbuf = (struct recv_buf *)precvpriv->precv_buf;
for (i = 0; i < NR_RECVBUFF; i++) {
if (_read_port(pintfhdl, precvpriv->ff_hwaddr, 0, (unsigned char *)precvbuf) == false) {
RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("usb_rx_init: usb_read_port error\n"));
status = _FAIL;
goto exit;
}
precvbuf++;
precvpriv->free_recv_buf_queue_cnt--;
}
exit:
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("<=== usb_inirp_init\n"));
return status;
}
static unsigned int rtl8188eu_inirp_deinit(struct adapter *Adapter)
{
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("\n ===> usb_rx_deinit\n"));
rtw_read_port_cancel(Adapter);
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("\n <=== usb_rx_deinit\n"));
return _SUCCESS;
}
/* */
/* */
/* EEPROM/EFUSE Content Parsing */
/* */
/* */
static void _ReadLEDSetting(struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail)
{
struct led_priv *pledpriv = &(Adapter->ledpriv);
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
pledpriv->bRegUseLed = true;
pledpriv->LedStrategy = SW_LED_MODE1;
haldata->bLedOpenDrain = true;/* Support Open-drain arrangement for controlling the LED. */
}
static void Hal_EfuseParsePIDVID_8188EU(struct adapter *adapt, u8 *hwinfo, bool AutoLoadFail)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
if (!AutoLoadFail) {
/* VID, PID */
haldata->EEPROMVID = EF2BYTE(*(__le16 *)&hwinfo[EEPROM_VID_88EU]);
haldata->EEPROMPID = EF2BYTE(*(__le16 *)&hwinfo[EEPROM_PID_88EU]);
/* Customer ID, 0x00 and 0xff are reserved for Realtek. */
haldata->EEPROMCustomerID = *(u8 *)&hwinfo[EEPROM_CUSTOMERID_88E];
haldata->EEPROMSubCustomerID = EEPROM_Default_SubCustomerID;
} else {
haldata->EEPROMVID = EEPROM_Default_VID;
haldata->EEPROMPID = EEPROM_Default_PID;
/* Customer ID, 0x00 and 0xff are reserved for Realtek. */
haldata->EEPROMCustomerID = EEPROM_Default_CustomerID;
haldata->EEPROMSubCustomerID = EEPROM_Default_SubCustomerID;
}
DBG_88E("VID = 0x%04X, PID = 0x%04X\n", haldata->EEPROMVID, haldata->EEPROMPID);
DBG_88E("Customer ID: 0x%02X, SubCustomer ID: 0x%02X\n", haldata->EEPROMCustomerID, haldata->EEPROMSubCustomerID);
}
static void Hal_EfuseParseMACAddr_8188EU(struct adapter *adapt, u8 *hwinfo, bool AutoLoadFail)
{
u16 i;
u8 sMacAddr[6] = {0x00, 0xE0, 0x4C, 0x81, 0x88, 0x02};
struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(adapt);
if (AutoLoadFail) {
for (i = 0; i < 6; i++)
eeprom->mac_addr[i] = sMacAddr[i];
} else {
/* Read Permanent MAC address */
memcpy(eeprom->mac_addr, &hwinfo[EEPROM_MAC_ADDR_88EU], ETH_ALEN);
}
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_,
("Hal_EfuseParseMACAddr_8188EU: Permanent Address = %02x-%02x-%02x-%02x-%02x-%02x\n",
eeprom->mac_addr[0], eeprom->mac_addr[1],
eeprom->mac_addr[2], eeprom->mac_addr[3],
eeprom->mac_addr[4], eeprom->mac_addr[5]));
}
static void Hal_CustomizeByCustomerID_8188EU(struct adapter *adapt)
{
}
static void
readAdapterInfo_8188EU(
struct adapter *adapt
)
{
struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(adapt);
/* parse the eeprom/efuse content */
Hal_EfuseParseIDCode88E(adapt, eeprom->efuse_eeprom_data);
Hal_EfuseParsePIDVID_8188EU(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
Hal_EfuseParseMACAddr_8188EU(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
Hal_ReadPowerSavingMode88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
Hal_ReadTxPowerInfo88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
Hal_EfuseParseEEPROMVer88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
rtl8188e_EfuseParseChnlPlan(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
Hal_EfuseParseXtal_8188E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
Hal_EfuseParseCustomerID88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
Hal_ReadAntennaDiversity88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
Hal_EfuseParseBoardType88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
Hal_ReadThermalMeter_88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
/* */
/* The following part initialize some vars by PG info. */
/* */
Hal_InitChannelPlan(adapt);
Hal_CustomizeByCustomerID_8188EU(adapt);
_ReadLEDSetting(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
}
static void _ReadPROMContent(
struct adapter *Adapter
)
{
struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(Adapter);
u8 eeValue;
/* check system boot selection */
eeValue = rtw_read8(Adapter, REG_9346CR);
eeprom->EepromOrEfuse = (eeValue & BOOT_FROM_EEPROM) ? true : false;
eeprom->bautoload_fail_flag = (eeValue & EEPROM_EN) ? false : true;
DBG_88E("Boot from %s, Autoload %s !\n", (eeprom->EepromOrEfuse ? "EEPROM" : "EFUSE"),
(eeprom->bautoload_fail_flag ? "Fail" : "OK"));
Hal_InitPGData88E(Adapter);
readAdapterInfo_8188EU(Adapter);
}
static void _ReadRFType(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
haldata->rf_chip = RF_6052;
}
static int _ReadAdapterInfo8188EU(struct adapter *Adapter)
{
u32 start = jiffies;
MSG_88E("====> %s\n", __func__);
_ReadRFType(Adapter);/* rf_chip -> _InitRFType() */
_ReadPROMContent(Adapter);
MSG_88E("<==== %s in %d ms\n", __func__, rtw_get_passing_time_ms(start));
return _SUCCESS;
}
static void ReadAdapterInfo8188EU(struct adapter *Adapter)
{
/* Read EEPROM size before call any EEPROM function */
Adapter->EepromAddressSize = GetEEPROMSize8188E(Adapter);
_ReadAdapterInfo8188EU(Adapter);
}
#define GPIO_DEBUG_PORT_NUM 0
static void rtl8192cu_trigger_gpio_0(struct adapter *adapt)
{
}
static void ResumeTxBeacon(struct adapter *adapt)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
/* 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
/* which should be read from register to a global variable. */
rtw_write8(adapt, REG_FWHW_TXQ_CTRL+2, (haldata->RegFwHwTxQCtrl) | BIT6);
haldata->RegFwHwTxQCtrl |= BIT6;
rtw_write8(adapt, REG_TBTT_PROHIBIT+1, 0xff);
haldata->RegReg542 |= BIT0;
rtw_write8(adapt, REG_TBTT_PROHIBIT+2, haldata->RegReg542);
}
static void StopTxBeacon(struct adapter *adapt)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
/* 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
/* which should be read from register to a global variable. */
rtw_write8(adapt, REG_FWHW_TXQ_CTRL+2, (haldata->RegFwHwTxQCtrl) & (~BIT6));
haldata->RegFwHwTxQCtrl &= (~BIT6);
rtw_write8(adapt, REG_TBTT_PROHIBIT+1, 0x64);
haldata->RegReg542 &= ~(BIT0);
rtw_write8(adapt, REG_TBTT_PROHIBIT+2, haldata->RegReg542);
/* todo: CheckFwRsvdPageContent(Adapter); 2010.06.23. Added by tynli. */
}
static void hw_var_set_opmode(struct adapter *Adapter, u8 variable, u8 *val)
{
u8 val8;
u8 mode = *((u8 *)val);
/* disable Port0 TSF update */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
/* set net_type */
val8 = rtw_read8(Adapter, MSR)&0x0c;
val8 |= mode;
rtw_write8(Adapter, MSR, val8);
DBG_88E("%s()-%d mode = %d\n", __func__, __LINE__, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
StopTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x19);/* disable atim wnd */
} else if ((mode == _HW_STATE_ADHOC_)) {
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x1a);
} else if (mode == _HW_STATE_AP_) {
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x12);
/* Set RCR */
rtw_write32(Adapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0,reject ICV_ERR packet */
/* enable to rx data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/* enable to rx ps-poll */
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
/* Beacon Control related register for first time */
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */
rtw_write8(Adapter, REG_ATIMWND, 0x0a); /* 10ms */
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/* reset TSF */
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
/* BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0 */
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4));
/* enable BCN0 Function for if1 */
/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP|EN_BCN_FUNCTION | BIT(1)));
/* dis BCN1 ATIM WND if if2 is station */
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) | BIT(0));
}
}
static void hw_var_set_macaddr(struct adapter *Adapter, u8 variable, u8 *val)
{
u8 idx = 0;
u32 reg_macid;
reg_macid = REG_MACID;
for (idx = 0; idx < 6; idx++)
rtw_write8(Adapter, (reg_macid+idx), val[idx]);
}
static void hw_var_set_bssid(struct adapter *Adapter, u8 variable, u8 *val)
{
u8 idx = 0;
u32 reg_bssid;
reg_bssid = REG_BSSID;
for (idx = 0; idx < 6; idx++)
rtw_write8(Adapter, (reg_bssid+idx), val[idx]);
}
static void hw_var_set_bcn_func(struct adapter *Adapter, u8 variable, u8 *val)
{
u32 bcn_ctrl_reg;
bcn_ctrl_reg = REG_BCN_CTRL;
if (*((u8 *)val))
rtw_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
else
rtw_write8(Adapter, bcn_ctrl_reg, rtw_read8(Adapter, bcn_ctrl_reg)&(~(EN_BCN_FUNCTION | EN_TXBCN_RPT)));
}
static void SetHwReg8188EU(struct adapter *Adapter, u8 variable, u8 *val)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
struct dm_priv *pdmpriv = &haldata->dmpriv;
struct odm_dm_struct *podmpriv = &haldata->odmpriv;
switch (variable) {
case HW_VAR_MEDIA_STATUS:
{
u8 val8;
val8 = rtw_read8(Adapter, MSR)&0x0c;
val8 |= *((u8 *)val);
rtw_write8(Adapter, MSR, val8);
}
break;
case HW_VAR_MEDIA_STATUS1:
{
u8 val8;
val8 = rtw_read8(Adapter, MSR) & 0x03;
val8 |= *((u8 *)val) << 2;
rtw_write8(Adapter, MSR, val8);
}
break;
case HW_VAR_SET_OPMODE:
hw_var_set_opmode(Adapter, variable, val);
break;
case HW_VAR_MAC_ADDR:
hw_var_set_macaddr(Adapter, variable, val);
break;
case HW_VAR_BSSID:
hw_var_set_bssid(Adapter, variable, val);
break;
case HW_VAR_BASIC_RATE:
{
u16 BrateCfg = 0;
u8 RateIndex = 0;
/* 2007.01.16, by Emily */
/* Select RRSR (in Legacy-OFDM and CCK) */
/* For 8190, we select only 24M, 12M, 6M, 11M, 5.5M, 2M, and 1M from the Basic rate. */
/* We do not use other rates. */
HalSetBrateCfg(Adapter, val, &BrateCfg);
DBG_88E("HW_VAR_BASIC_RATE: BrateCfg(%#x)\n", BrateCfg);
/* 2011.03.30 add by Luke Lee */
/* CCK 2M ACK should be disabled for some BCM and Atheros AP IOT */
/* because CCK 2M has poor TXEVM */
/* CCK 5.5M & 11M ACK should be enabled for better performance */
BrateCfg = (BrateCfg | 0xd) & 0x15d;
haldata->BasicRateSet = BrateCfg;
BrateCfg |= 0x01; /* default enable 1M ACK rate */
/* Set RRSR rate table. */
rtw_write8(Adapter, REG_RRSR, BrateCfg & 0xff);
rtw_write8(Adapter, REG_RRSR+1, (BrateCfg >> 8) & 0xff);
rtw_write8(Adapter, REG_RRSR+2, rtw_read8(Adapter, REG_RRSR+2)&0xf0);
/* Set RTS initial rate */
while (BrateCfg > 0x1) {
BrateCfg = (BrateCfg >> 1);
RateIndex++;
}
/* Ziv - Check */
rtw_write8(Adapter, REG_INIRTS_RATE_SEL, RateIndex);
}
break;
case HW_VAR_TXPAUSE:
rtw_write8(Adapter, REG_TXPAUSE, *((u8 *)val));
break;
case HW_VAR_BCN_FUNC:
hw_var_set_bcn_func(Adapter, variable, val);
break;
case HW_VAR_CORRECT_TSF:
{
u64 tsf;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) - 1024; /* us */
if (((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
StopTxBeacon(Adapter);
/* disable related TSF function */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR, tsf);
rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);
/* enable related TSF function */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3));
if (((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
ResumeTxBeacon(Adapter);
}
break;
case HW_VAR_CHECK_BSSID:
if (*((u8 *)val)) {
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
} else {
u32 val32;
val32 = rtw_read32(Adapter, REG_RCR);
val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
rtw_write32(Adapter, REG_RCR, val32);
}
break;
case HW_VAR_MLME_DISCONNECT:
/* Set RCR to not to receive data frame when NO LINK state */
/* reject all data frames */
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
/* reset TSF */
rtw_write8(Adapter, REG_DUAL_TSF_RST, (BIT(0)|BIT(1)));
/* disable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
break;
case HW_VAR_MLME_SITESURVEY:
if (*((u8 *)val)) { /* under sitesurvey */
/* config RCR to receive different BSSID & not to receive data frame */
u32 v = rtw_read32(Adapter, REG_RCR);
v &= ~(RCR_CBSSID_BCN);
rtw_write32(Adapter, REG_RCR, v);
/* reject all data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
/* disable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
} else { /* sitesurvey done */
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if ((is_client_associated_to_ap(Adapter)) ||
((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE)) {
/* enable to rx data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/* enable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
} else if ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE) {
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/* enable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
}
if ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE) {
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
} else {
if (Adapter->in_cta_test) {
u32 v = rtw_read32(Adapter, REG_RCR);
v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/* RCR_ADF */
rtw_write32(Adapter, REG_RCR, v);
} else {
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
}
}
}
break;
case HW_VAR_MLME_JOIN:
{
u8 RetryLimit = 0x30;
u8 type = *((u8 *)val);
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
if (type == 0) { /* prepare to join */
/* enable to rx data frame.Accept all data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
if (Adapter->in_cta_test) {
u32 v = rtw_read32(Adapter, REG_RCR);
v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/* RCR_ADF */
rtw_write32(Adapter, REG_RCR, v);
} else {
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
}
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE))
RetryLimit = (haldata->CustomerID == RT_CID_CCX) ? 7 : 48;
else /* Ad-hoc Mode */
RetryLimit = 0x7;
} else if (type == 1) {
/* joinbss_event call back when join res < 0 */
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
} else if (type == 2) {
/* sta add event call back */
/* enable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
RetryLimit = 0x7;
}
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
}
break;
case HW_VAR_BEACON_INTERVAL:
rtw_write16(Adapter, REG_BCN_INTERVAL, *((u16 *)val));
break;
case HW_VAR_SLOT_TIME:
{
u8 u1bAIFS, aSifsTime;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
rtw_write8(Adapter, REG_SLOT, val[0]);
if (pmlmeinfo->WMM_enable == 0) {
if (pmlmeext->cur_wireless_mode == WIRELESS_11B)
aSifsTime = 10;
else
aSifsTime = 16;
u1bAIFS = aSifsTime + (2 * pmlmeinfo->slotTime);
/* <Roger_EXP> Temporary removed, 2008.06.20. */
rtw_write8(Adapter, REG_EDCA_VO_PARAM, u1bAIFS);
rtw_write8(Adapter, REG_EDCA_VI_PARAM, u1bAIFS);
rtw_write8(Adapter, REG_EDCA_BE_PARAM, u1bAIFS);
rtw_write8(Adapter, REG_EDCA_BK_PARAM, u1bAIFS);
}
}
break;
case HW_VAR_RESP_SIFS:
/* RESP_SIFS for CCK */
rtw_write8(Adapter, REG_R2T_SIFS, val[0]); /* SIFS_T2T_CCK (0x08) */
rtw_write8(Adapter, REG_R2T_SIFS+1, val[1]); /* SIFS_R2T_CCK(0x08) */
/* RESP_SIFS for OFDM */
rtw_write8(Adapter, REG_T2T_SIFS, val[2]); /* SIFS_T2T_OFDM (0x0a) */
rtw_write8(Adapter, REG_T2T_SIFS+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
break;
case HW_VAR_ACK_PREAMBLE:
{
u8 regTmp;
u8 bShortPreamble = *((bool *)val);
/* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
regTmp = (haldata->nCur40MhzPrimeSC)<<5;
if (bShortPreamble)
regTmp |= 0x80;
rtw_write8(Adapter, REG_RRSR+2, regTmp);
}
break;
case HW_VAR_SEC_CFG:
rtw_write8(Adapter, REG_SECCFG, *((u8 *)val));
break;
case HW_VAR_DM_FLAG:
podmpriv->SupportAbility = *((u8 *)val);
break;
case HW_VAR_DM_FUNC_OP:
if (val[0])
podmpriv->BK_SupportAbility = podmpriv->SupportAbility;
else
podmpriv->SupportAbility = podmpriv->BK_SupportAbility;
break;
case HW_VAR_DM_FUNC_SET:
if (*((u32 *)val) == DYNAMIC_ALL_FUNC_ENABLE) {
pdmpriv->DMFlag = pdmpriv->InitDMFlag;
podmpriv->SupportAbility = pdmpriv->InitODMFlag;
} else {
podmpriv->SupportAbility |= *((u32 *)val);
}
break;
case HW_VAR_DM_FUNC_CLR:
podmpriv->SupportAbility &= *((u32 *)val);
break;
case HW_VAR_CAM_EMPTY_ENTRY:
{
u8 ucIndex = *((u8 *)val);
u8 i;
u32 ulCommand = 0;
u32 ulContent = 0;
u32 ulEncAlgo = CAM_AES;
for (i = 0; i < CAM_CONTENT_COUNT; i++) {
/* filled id in CAM config 2 byte */
if (i == 0)
ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
else
ulContent = 0;
/* polling bit, and No Write enable, and address */
ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
ulCommand = ulCommand | CAM_POLLINIG|CAM_WRITE;
/* write content 0 is equall to mark invalid */
rtw_write32(Adapter, WCAMI, ulContent); /* delay_ms(40); */
rtw_write32(Adapter, RWCAM, ulCommand); /* delay_ms(40); */
}
}
break;
case HW_VAR_CAM_INVALID_ALL:
rtw_write32(Adapter, RWCAM, BIT(31)|BIT(30));
break;
case HW_VAR_CAM_WRITE:
{
u32 cmd;
u32 *cam_val = (u32 *)val;
rtw_write32(Adapter, WCAMI, cam_val[0]);
cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
rtw_write32(Adapter, RWCAM, cmd);
}
break;
case HW_VAR_AC_PARAM_VO:
rtw_write32(Adapter, REG_EDCA_VO_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_VI:
rtw_write32(Adapter, REG_EDCA_VI_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_BE:
haldata->AcParam_BE = ((u32 *)(val))[0];
rtw_write32(Adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_BK:
rtw_write32(Adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_ACM_CTRL:
{
u8 acm_ctrl = *((u8 *)val);
u8 AcmCtrl = rtw_read8(Adapter, REG_ACMHWCTRL);
if (acm_ctrl > 1)
AcmCtrl = AcmCtrl | 0x1;
if (acm_ctrl & BIT(3))
AcmCtrl |= AcmHw_VoqEn;
else
AcmCtrl &= (~AcmHw_VoqEn);
if (acm_ctrl & BIT(2))
AcmCtrl |= AcmHw_ViqEn;
else
AcmCtrl &= (~AcmHw_ViqEn);
if (acm_ctrl & BIT(1))
AcmCtrl |= AcmHw_BeqEn;
else
AcmCtrl &= (~AcmHw_BeqEn);
DBG_88E("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);
rtw_write8(Adapter, REG_ACMHWCTRL, AcmCtrl);
}
break;
case HW_VAR_AMPDU_MIN_SPACE:
{
u8 MinSpacingToSet;
u8 SecMinSpace;
MinSpacingToSet = *((u8 *)val);
if (MinSpacingToSet <= 7) {
switch (Adapter->securitypriv.dot11PrivacyAlgrthm) {
case _NO_PRIVACY_:
case _AES_:
SecMinSpace = 0;
break;
case _WEP40_:
case _WEP104_:
case _TKIP_:
case _TKIP_WTMIC_:
SecMinSpace = 6;
break;
default:
SecMinSpace = 7;
break;
}
if (MinSpacingToSet < SecMinSpace)
MinSpacingToSet = SecMinSpace;
rtw_write8(Adapter, REG_AMPDU_MIN_SPACE, (rtw_read8(Adapter, REG_AMPDU_MIN_SPACE) & 0xf8) | MinSpacingToSet);
}
}
break;
case HW_VAR_AMPDU_FACTOR:
{
u8 RegToSet_Normal[4] = {0x41, 0xa8, 0x72, 0xb9};
u8 FactorToSet;
u8 *pRegToSet;
u8 index = 0;
pRegToSet = RegToSet_Normal; /* 0xb972a841; */
FactorToSet = *((u8 *)val);
if (FactorToSet <= 3) {
FactorToSet = (1<<(FactorToSet + 2));
if (FactorToSet > 0xf)
FactorToSet = 0xf;
for (index = 0; index < 4; index++) {
if ((pRegToSet[index] & 0xf0) > (FactorToSet<<4))
pRegToSet[index] = (pRegToSet[index] & 0x0f) | (FactorToSet<<4);
if ((pRegToSet[index] & 0x0f) > FactorToSet)
pRegToSet[index] = (pRegToSet[index] & 0xf0) | (FactorToSet);
rtw_write8(Adapter, (REG_AGGLEN_LMT+index), pRegToSet[index]);
}
}
}
break;
case HW_VAR_RXDMA_AGG_PG_TH:
{
u8 threshold = *((u8 *)val);
if (threshold == 0)
threshold = haldata->UsbRxAggPageCount;
rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, threshold);
}
break;
case HW_VAR_SET_RPWM:
break;
case HW_VAR_H2C_FW_PWRMODE:
{
u8 psmode = (*(u8 *)val);
/* Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
/* saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
if ((psmode != PS_MODE_ACTIVE) && (!IS_92C_SERIAL(haldata->VersionID)))
ODM_RF_Saving(podmpriv, true);
rtl8188e_set_FwPwrMode_cmd(Adapter, psmode);
}
break;
case HW_VAR_H2C_FW_JOINBSSRPT:
{
u8 mstatus = (*(u8 *)val);
rtl8188e_set_FwJoinBssReport_cmd(Adapter, mstatus);
}
break;
#ifdef CONFIG_88EU_P2P
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
{
u8 p2p_ps_state = (*(u8 *)val);
rtl8188e_set_p2p_ps_offload_cmd(Adapter, p2p_ps_state);
}
break;
#endif
case HW_VAR_INITIAL_GAIN:
{
struct rtw_dig *pDigTable = &podmpriv->DM_DigTable;
u32 rx_gain = ((u32 *)(val))[0];
if (rx_gain == 0xff) {/* restore rx gain */
ODM_Write_DIG(podmpriv, pDigTable->BackupIGValue);
} else {
pDigTable->BackupIGValue = pDigTable->CurIGValue;
ODM_Write_DIG(podmpriv, rx_gain);
}
}
break;
case HW_VAR_TRIGGER_GPIO_0:
rtl8192cu_trigger_gpio_0(Adapter);
break;
case HW_VAR_RPT_TIMER_SETTING:
{
u16 min_rpt_time = (*(u16 *)val);
ODM_RA_Set_TxRPT_Time(podmpriv, min_rpt_time);
}
break;
case HW_VAR_ANTENNA_DIVERSITY_SELECT:
{
u8 Optimum_antenna = (*(u8 *)val);
u8 Ant;
/* switch antenna to Optimum_antenna */
if (haldata->CurAntenna != Optimum_antenna) {
Ant = (Optimum_antenna == 2) ? MAIN_ANT : AUX_ANT;
ODM_UpdateRxIdleAnt_88E(&haldata->odmpriv, Ant);
haldata->CurAntenna = Optimum_antenna;
}
}
break;
case HW_VAR_EFUSE_BYTES: /* To set EFUE total used bytes, added by Roger, 2008.12.22. */
haldata->EfuseUsedBytes = *((u16 *)val);
break;
case HW_VAR_FIFO_CLEARN_UP:
{
struct pwrctrl_priv *pwrpriv = &Adapter->pwrctrlpriv;
u8 trycnt = 100;
/* pause tx */
rtw_write8(Adapter, REG_TXPAUSE, 0xff);
/* keep sn */
Adapter->xmitpriv.nqos_ssn = rtw_read16(Adapter, REG_NQOS_SEQ);
if (!pwrpriv->bkeepfwalive) {
/* RX DMA stop */
rtw_write32(Adapter, REG_RXPKT_NUM, (rtw_read32(Adapter, REG_RXPKT_NUM)|RW_RELEASE_EN));
do {
if (!(rtw_read32(Adapter, REG_RXPKT_NUM)&RXDMA_IDLE))
break;
} while (trycnt--);
if (trycnt == 0)
DBG_88E("Stop RX DMA failed......\n");
/* RQPN Load 0 */
rtw_write16(Adapter, REG_RQPN_NPQ, 0x0);
rtw_write32(Adapter, REG_RQPN, 0x80000000);
rtw_mdelay_os(10);
}
}
break;
case HW_VAR_CHECK_TXBUF:
break;
case HW_VAR_APFM_ON_MAC:
haldata->bMacPwrCtrlOn = *val;
DBG_88E("%s: bMacPwrCtrlOn=%d\n", __func__, haldata->bMacPwrCtrlOn);
break;
case HW_VAR_TX_RPT_MAX_MACID:
{
u8 maxMacid = *val;
DBG_88E("### MacID(%d),Set Max Tx RPT MID(%d)\n", maxMacid, maxMacid+1);
rtw_write8(Adapter, REG_TX_RPT_CTRL+1, maxMacid+1);
}
break;
case HW_VAR_H2C_MEDIA_STATUS_RPT:
rtl8188e_set_FwMediaStatus_cmd(Adapter , (*(__le16 *)val));
break;
case HW_VAR_BCN_VALID:
/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
rtw_write8(Adapter, REG_TDECTRL+2, rtw_read8(Adapter, REG_TDECTRL+2) | BIT0);
break;
default:
break;
}
}
static void GetHwReg8188EU(struct adapter *Adapter, u8 variable, u8 *val)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
struct odm_dm_struct *podmpriv = &haldata->odmpriv;
switch (variable) {
case HW_VAR_BASIC_RATE:
*((u16 *)(val)) = haldata->BasicRateSet;
__attribute__((fallthrough));
case HW_VAR_TXPAUSE:
val[0] = rtw_read8(Adapter, REG_TXPAUSE);
break;
case HW_VAR_BCN_VALID:
/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
val[0] = (BIT0 & rtw_read8(Adapter, REG_TDECTRL+2)) ? true : false;
break;
case HW_VAR_DM_FLAG:
val[0] = podmpriv->SupportAbility;
break;
case HW_VAR_RF_TYPE:
val[0] = haldata->rf_type;
break;
case HW_VAR_FWLPS_RF_ON:
{
/* When we halt NIC, we should check if FW LPS is leave. */
if (Adapter->pwrctrlpriv.rf_pwrstate == rf_off) {
/* If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
/* because Fw is unload. */
val[0] = true;
} else {
u32 valRCR;
valRCR = rtw_read32(Adapter, REG_RCR);
valRCR &= 0x00070000;
if (valRCR)
val[0] = false;
else
val[0] = true;
}
}
break;
case HW_VAR_CURRENT_ANTENNA:
val[0] = haldata->CurAntenna;
break;
case HW_VAR_EFUSE_BYTES: /* To get EFUE total used bytes, added by Roger, 2008.12.22. */
*((u16 *)(val)) = haldata->EfuseUsedBytes;
break;
case HW_VAR_APFM_ON_MAC:
*val = haldata->bMacPwrCtrlOn;
break;
case HW_VAR_CHK_HI_QUEUE_EMPTY:
*val = ((rtw_read32(Adapter, REG_HGQ_INFORMATION)&0x0000ff00) == 0) ? true : false;
break;
default:
break;
}
}
/* */
/* Description: */
/* Query setting of specified variable. */
/* */
static u8
GetHalDefVar8188EUsb(
struct adapter *Adapter,
enum hal_def_variable eVariable,
void *pValue
)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
u8 bResult = _SUCCESS;
switch (eVariable) {
case HAL_DEF_UNDERCORATEDSMOOTHEDPWDB:
{
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
struct sta_priv *pstapriv = &Adapter->stapriv;
struct sta_info *psta;
psta = rtw_get_stainfo(pstapriv, pmlmepriv->cur_network.network.MacAddress);
if (psta)
*((int *)pValue) = psta->rssi_stat.UndecoratedSmoothedPWDB;
}
break;
case HAL_DEF_IS_SUPPORT_ANT_DIV:
*((u8 *)pValue) = (haldata->AntDivCfg == 0) ? false : true;
break;
case HAL_DEF_CURRENT_ANTENNA:
*((u8 *)pValue) = haldata->CurAntenna;
break;
case HAL_DEF_DRVINFO_SZ:
*((u32 *)pValue) = DRVINFO_SZ;
break;
case HAL_DEF_MAX_RECVBUF_SZ:
*((u32 *)pValue) = MAX_RECVBUF_SZ;
break;
case HAL_DEF_RX_PACKET_OFFSET:
*((u32 *)pValue) = RXDESC_SIZE + DRVINFO_SZ;
break;
case HAL_DEF_DBG_DM_FUNC:
*((u32 *)pValue) = haldata->odmpriv.SupportAbility;
break;
case HAL_DEF_RA_DECISION_RATE:
{
u8 MacID = *((u8 *)pValue);
*((u8 *)pValue) = ODM_RA_GetDecisionRate_8188E(&(haldata->odmpriv), MacID);
}
break;
case HAL_DEF_RA_SGI:
{
u8 MacID = *((u8 *)pValue);
*((u8 *)pValue) = ODM_RA_GetShortGI_8188E(&(haldata->odmpriv), MacID);
}
break;
case HAL_DEF_PT_PWR_STATUS:
{
u8 MacID = *((u8 *)pValue);
*((u8 *)pValue) = ODM_RA_GetHwPwrStatus_8188E(&(haldata->odmpriv), MacID);
}
break;
case HW_VAR_MAX_RX_AMPDU_FACTOR:
*((u32 *)pValue) = MAX_AMPDU_FACTOR_64K;
break;
case HW_DEF_RA_INFO_DUMP:
{
u8 entry_id = *((u8 *)pValue);
if (check_fwstate(&Adapter->mlmepriv, _FW_LINKED)) {
DBG_88E("============ RA status check ===================\n");
DBG_88E("Mac_id:%d , RateID = %d, RAUseRate = 0x%08x, RateSGI = %d, DecisionRate = 0x%02x ,PTStage = %d\n",
entry_id,
haldata->odmpriv.RAInfo[entry_id].RateID,
haldata->odmpriv.RAInfo[entry_id].RAUseRate,
haldata->odmpriv.RAInfo[entry_id].RateSGI,
haldata->odmpriv.RAInfo[entry_id].DecisionRate,
haldata->odmpriv.RAInfo[entry_id].PTStage);
}
}
break;
case HW_DEF_ODM_DBG_FLAG:
{
struct odm_dm_struct *dm_ocm = &(haldata->odmpriv);
pr_info("dm_ocm->DebugComponents = 0x%llx\n", dm_ocm->DebugComponents);
}
break;
case HAL_DEF_DBG_DUMP_RXPKT:
*((u8 *)pValue) = haldata->bDumpRxPkt;
break;
case HAL_DEF_DBG_DUMP_TXPKT:
*((u8 *)pValue) = haldata->bDumpTxPkt;
break;
default:
bResult = _FAIL;
break;
}
return bResult;
}
/* */
/* Description: */
/* Change default setting of specified variable. */
/* */
static u8 SetHalDefVar8188EUsb(struct adapter *Adapter, enum hal_def_variable eVariable, void *pValue)
{
struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
u8 bResult = _SUCCESS;
switch (eVariable) {
case HAL_DEF_DBG_DM_FUNC:
{
u8 dm_func = *((u8 *)pValue);
struct odm_dm_struct *podmpriv = &haldata->odmpriv;
if (dm_func == 0) { /* disable all dynamic func */
podmpriv->SupportAbility = DYNAMIC_FUNC_DISABLE;
DBG_88E("==> Disable all dynamic function...\n");
} else if (dm_func == 1) {/* disable DIG */
podmpriv->SupportAbility &= (~DYNAMIC_BB_DIG);
DBG_88E("==> Disable DIG...\n");
} else if (dm_func == 2) {/* disable High power */
podmpriv->SupportAbility &= (~DYNAMIC_BB_DYNAMIC_TXPWR);
} else if (dm_func == 3) {/* disable tx power tracking */
podmpriv->SupportAbility &= (~DYNAMIC_RF_CALIBRATION);
DBG_88E("==> Disable tx power tracking...\n");
} else if (dm_func == 5) {/* disable antenna diversity */
podmpriv->SupportAbility &= (~DYNAMIC_BB_ANT_DIV);
} else if (dm_func == 6) {/* turn on all dynamic func */
if (!(podmpriv->SupportAbility & DYNAMIC_BB_DIG)) {
struct rtw_dig *pDigTable = &podmpriv->DM_DigTable;
pDigTable->CurIGValue = rtw_read8(Adapter, 0xc50);
}
podmpriv->SupportAbility = DYNAMIC_ALL_FUNC_ENABLE;
DBG_88E("==> Turn on all dynamic function...\n");
}
}
break;
case HAL_DEF_DBG_DUMP_RXPKT:
haldata->bDumpRxPkt = *((u8 *)pValue);
break;
case HAL_DEF_DBG_DUMP_TXPKT:
haldata->bDumpTxPkt = *((u8 *)pValue);
break;
case HW_DEF_FA_CNT_DUMP:
{
u8 bRSSIDump = *((u8 *)pValue);
struct odm_dm_struct *dm_ocm = &(haldata->odmpriv);
if (bRSSIDump)
dm_ocm->DebugComponents = ODM_COMP_DIG|ODM_COMP_FA_CNT ;
else
dm_ocm->DebugComponents = 0;
}
break;
case HW_DEF_ODM_DBG_FLAG:
{
u64 DebugComponents = *((u64 *)pValue);
struct odm_dm_struct *dm_ocm = &(haldata->odmpriv);
dm_ocm->DebugComponents = DebugComponents;
}
break;
default:
bResult = _FAIL;
break;
}
return bResult;
}
static void UpdateHalRAMask8188EUsb(struct adapter *adapt, u32 mac_id, u8 rssi_level)
{
u8 init_rate = 0;
u8 networkType, raid;
u32 mask, rate_bitmap;
u8 shortGIrate = false;
int supportRateNum = 0;
struct sta_info *psta;
struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
struct mlme_ext_priv *pmlmeext = &adapt->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct wlan_bssid_ex *cur_network = &(pmlmeinfo->network);
if (mac_id >= NUM_STA) /* CAM_SIZE */
return;
psta = pmlmeinfo->FW_sta_info[mac_id].psta;
if (psta == NULL)
return;
switch (mac_id) {
case 0:/* for infra mode */
supportRateNum = rtw_get_rateset_len(cur_network->SupportedRates);
networkType = judge_network_type(adapt, cur_network->SupportedRates, supportRateNum) & 0xf;
raid = networktype_to_raid(networkType);
mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
mask |= (pmlmeinfo->HT_enable) ? update_MSC_rate(&(pmlmeinfo->HT_caps)) : 0;
if (support_short_GI(adapt, &(pmlmeinfo->HT_caps)))
shortGIrate = true;
break;
case 1:/* for broadcast/multicast */
supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
if (pmlmeext->cur_wireless_mode & WIRELESS_11B)
networkType = WIRELESS_11B;
else
networkType = WIRELESS_11G;
raid = networktype_to_raid(networkType);
mask = update_basic_rate(cur_network->SupportedRates, supportRateNum);
break;
default: /* for each sta in IBSS */
supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
networkType = judge_network_type(adapt, pmlmeinfo->FW_sta_info[mac_id].SupportedRates, supportRateNum) & 0xf;
raid = networktype_to_raid(networkType);
mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
/* todo: support HT in IBSS */
break;
}
rate_bitmap = 0x0fffffff;
rate_bitmap = ODM_Get_Rate_Bitmap(&haldata->odmpriv, mac_id, mask, rssi_level);
DBG_88E("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
__func__, mac_id, networkType, mask, rssi_level, rate_bitmap);
mask &= rate_bitmap;
init_rate = get_highest_rate_idx(mask)&0x3f;
if (haldata->fw_ractrl) {
u8 arg;
arg = mac_id & 0x1f;/* MACID */
arg |= BIT(7);
if (shortGIrate)
arg |= BIT(5);
mask |= ((raid << 28) & 0xf0000000);
DBG_88E("update raid entry, mask=0x%x, arg=0x%x\n", mask, arg);
psta->ra_mask = mask;
mask |= ((raid << 28) & 0xf0000000);
/* to do ,for 8188E-SMIC */
rtl8188e_set_raid_cmd(adapt, mask);
} else {
ODM_RA_UpdateRateInfo_8188E(&(haldata->odmpriv),
mac_id,
raid,
mask,
shortGIrate
);
}
/* set ra_id */
psta->raid = raid;
psta->init_rate = init_rate;
}
static void SetBeaconRelatedRegisters8188EUsb(struct adapter *adapt)
{
u32 value32;
struct mlme_ext_priv *pmlmeext = &(adapt->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
u32 bcn_ctrl_reg = REG_BCN_CTRL;
/* reset TSF, enable update TSF, correcting TSF On Beacon */
/* BCN interval */
rtw_write16(adapt, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
rtw_write8(adapt, REG_ATIMWND, 0x02);/* 2ms */
_InitBeaconParameters(adapt);
rtw_write8(adapt, REG_SLOT, 0x09);
value32 = rtw_read32(adapt, REG_TCR);
value32 &= ~TSFRST;
rtw_write32(adapt, REG_TCR, value32);
value32 |= TSFRST;
rtw_write32(adapt, REG_TCR, value32);
/* NOTE: Fix test chip's bug (about contention windows's randomness) */
rtw_write8(adapt, REG_RXTSF_OFFSET_CCK, 0x50);
rtw_write8(adapt, REG_RXTSF_OFFSET_OFDM, 0x50);
_BeaconFunctionEnable(adapt, true, true);
ResumeTxBeacon(adapt);
rtw_write8(adapt, bcn_ctrl_reg, rtw_read8(adapt, bcn_ctrl_reg)|BIT(1));
}
static void rtl8188eu_init_default_value(struct adapter *adapt)
{
struct hal_data_8188e *haldata;
struct pwrctrl_priv *pwrctrlpriv;
u8 i;
haldata = GET_HAL_DATA(adapt);
pwrctrlpriv = &adapt->pwrctrlpriv;
/* init default value */
haldata->fw_ractrl = false;
if (!pwrctrlpriv->bkeepfwalive)
haldata->LastHMEBoxNum = 0;
/* init dm default value */
haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = false;
haldata->odmpriv.RFCalibrateInfo.TM_Trigger = 0;/* for IQK */
haldata->pwrGroupCnt = 0;
haldata->PGMaxGroup = 13;
haldata->odmpriv.RFCalibrateInfo.ThermalValue_HP_index = 0;
for (i = 0; i < HP_THERMAL_NUM; i++)
haldata->odmpriv.RFCalibrateInfo.ThermalValue_HP[i] = 0;
}
static u8 rtl8188eu_ps_func(struct adapter *Adapter, enum hal_intf_ps_func efunc_id, u8 *val)
{
u8 bResult = true;
return bResult;
}
void rtl8188eu_set_hal_ops(struct adapter *adapt)
{
struct hal_ops *halfunc = &adapt->HalFunc;
adapt->HalData = rtw_zmalloc(sizeof(struct hal_data_8188e));
if (adapt->HalData == NULL)
DBG_88E("cant not alloc memory for HAL DATA\n");
adapt->hal_data_sz = sizeof(struct hal_data_8188e);
halfunc->hal_power_on = rtl8188eu_InitPowerOn;
halfunc->hal_init = &rtl8188eu_hal_init;
halfunc->hal_deinit = &rtl8188eu_hal_deinit;
halfunc->inirp_init = &rtl8188eu_inirp_init;
halfunc->inirp_deinit = &rtl8188eu_inirp_deinit;
halfunc->init_xmit_priv = &rtl8188eu_init_xmit_priv;
halfunc->free_xmit_priv = &rtl8188eu_free_xmit_priv;
halfunc->init_recv_priv = &rtl8188eu_init_recv_priv;
halfunc->free_recv_priv = &rtl8188eu_free_recv_priv;
halfunc->InitSwLeds = &rtl8188eu_InitSwLeds;
halfunc->DeInitSwLeds = &rtl8188eu_DeInitSwLeds;
halfunc->init_default_value = &rtl8188eu_init_default_value;
halfunc->intf_chip_configure = &rtl8188eu_interface_configure;
halfunc->read_adapter_info = &ReadAdapterInfo8188EU;
halfunc->SetHwRegHandler = &SetHwReg8188EU;
halfunc->GetHwRegHandler = &GetHwReg8188EU;
halfunc->GetHalDefVarHandler = &GetHalDefVar8188EUsb;
halfunc->SetHalDefVarHandler = &SetHalDefVar8188EUsb;
halfunc->UpdateRAMaskHandler = &UpdateHalRAMask8188EUsb;
halfunc->SetBeaconRelatedRegistersHandler = &SetBeaconRelatedRegisters8188EUsb;
halfunc->hal_xmit = &rtl8188eu_hal_xmit;
halfunc->mgnt_xmit = &rtl8188eu_mgnt_xmit;
halfunc->interface_ps_func = &rtl8188eu_ps_func;
rtl8188e_set_hal_ops(halfunc);
}