rtl8188eu/core/rtw_mp.c
Larry Finger e3e242b712 rtl8188eu: Remove tests on macro CONFIG_80211N_HT
This one is always selected.

Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
2018-11-12 14:06:58 -06:00

2636 lines
66 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _RTW_MP_C_
#include <drv_types.h>
#include "../hal/phydm/phydm_precomp.h"
#ifdef CONFIG_MP_VHT_HW_TX_MODE
#define CEILING_POS(X) ((X - (int)(X)) > 0 ? (int)(X + 1) : (int)(X))
#define CEILING_NEG(X) ((X - (int)(X)) < 0 ? (int)(X - 1) : (int)(X))
#define ceil(X) (((X) > 0) ? CEILING_POS(X) : CEILING_NEG(X))
int rtfloor(float x)
{
int i = x - 2;
while
(++i <= x - 1)
;
return i;
}
#endif
#ifdef CONFIG_MP_INCLUDED
u32 read_macreg(_adapter *padapter, u32 addr, u32 sz)
{
u32 val = 0;
switch (sz) {
case 1:
val = rtw_read8(padapter, addr);
break;
case 2:
val = rtw_read16(padapter, addr);
break;
case 4:
val = rtw_read32(padapter, addr);
break;
default:
val = 0xffffffff;
break;
}
return val;
}
void write_macreg(_adapter *padapter, u32 addr, u32 val, u32 sz)
{
switch (sz) {
case 1:
rtw_write8(padapter, addr, (u8)val);
break;
case 2:
rtw_write16(padapter, addr, (u16)val);
break;
case 4:
rtw_write32(padapter, addr, val);
break;
default:
break;
}
}
u32 read_bbreg(_adapter *padapter, u32 addr, u32 bitmask)
{
return rtw_hal_read_bbreg(padapter, addr, bitmask);
}
void write_bbreg(_adapter *padapter, u32 addr, u32 bitmask, u32 val)
{
rtw_hal_write_bbreg(padapter, addr, bitmask, val);
}
u32 _read_rfreg(PADAPTER padapter, u8 rfpath, u32 addr, u32 bitmask)
{
return rtw_hal_read_rfreg(padapter, rfpath, addr, bitmask);
}
void _write_rfreg(PADAPTER padapter, u8 rfpath, u32 addr, u32 bitmask, u32 val)
{
rtw_hal_write_rfreg(padapter, rfpath, addr, bitmask, val);
}
u32 read_rfreg(PADAPTER padapter, u8 rfpath, u32 addr)
{
return _read_rfreg(padapter, rfpath, addr, bRFRegOffsetMask);
}
void write_rfreg(PADAPTER padapter, u8 rfpath, u32 addr, u32 val)
{
_write_rfreg(padapter, rfpath, addr, bRFRegOffsetMask, val);
}
static void _init_mp_priv_(struct mp_priv *pmp_priv)
{
WLAN_BSSID_EX *pnetwork;
_rtw_memset(pmp_priv, 0, sizeof(struct mp_priv));
pmp_priv->mode = MP_OFF;
pmp_priv->channel = 1;
pmp_priv->bandwidth = CHANNEL_WIDTH_20;
pmp_priv->prime_channel_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
pmp_priv->rateidx = RATE_1M;
pmp_priv->txpoweridx = 0x2A;
pmp_priv->antenna_tx = ANTENNA_A;
pmp_priv->antenna_rx = ANTENNA_AB;
pmp_priv->check_mp_pkt = 0;
pmp_priv->tx_pktcount = 0;
pmp_priv->rx_bssidpktcount = 0;
pmp_priv->rx_pktcount = 0;
pmp_priv->rx_crcerrpktcount = 0;
pmp_priv->network_macaddr[0] = 0x00;
pmp_priv->network_macaddr[1] = 0xE0;
pmp_priv->network_macaddr[2] = 0x4C;
pmp_priv->network_macaddr[3] = 0x87;
pmp_priv->network_macaddr[4] = 0x66;
pmp_priv->network_macaddr[5] = 0x55;
pmp_priv->bSetRxBssid = _FALSE;
pmp_priv->bRTWSmbCfg = _FALSE;
pmp_priv->bloopback = _FALSE;
pmp_priv->bloadefusemap = _FALSE;
pnetwork = &pmp_priv->mp_network.network;
_rtw_memcpy(pnetwork->MacAddress, pmp_priv->network_macaddr, ETH_ALEN);
pnetwork->Ssid.SsidLength = 8;
_rtw_memcpy(pnetwork->Ssid.Ssid, "mp_871x", pnetwork->Ssid.SsidLength);
pmp_priv->tx.payload = 2;
pmp_priv->tx.attrib.ht_en = 1;
}
static int init_mp_priv_by_os(struct mp_priv *pmp_priv)
{
int i, res;
struct mp_xmit_frame *pmp_xmitframe;
if (pmp_priv == NULL)
return _FAIL;
_rtw_init_queue(&pmp_priv->free_mp_xmitqueue);
pmp_priv->pallocated_mp_xmitframe_buf = NULL;
pmp_priv->pallocated_mp_xmitframe_buf = rtw_zmalloc(NR_MP_XMITFRAME * sizeof(struct mp_xmit_frame) + 4);
if (pmp_priv->pallocated_mp_xmitframe_buf == NULL) {
res = _FAIL;
goto _exit_init_mp_priv;
}
pmp_priv->pmp_xmtframe_buf = pmp_priv->pallocated_mp_xmitframe_buf + 4 - ((SIZE_PTR)(pmp_priv->pallocated_mp_xmitframe_buf) & 3);
pmp_xmitframe = (struct mp_xmit_frame *)pmp_priv->pmp_xmtframe_buf;
for (i = 0; i < NR_MP_XMITFRAME; i++) {
_rtw_init_listhead(&pmp_xmitframe->list);
rtw_list_insert_tail(&pmp_xmitframe->list, &pmp_priv->free_mp_xmitqueue.queue);
pmp_xmitframe->pkt = NULL;
pmp_xmitframe->frame_tag = MP_FRAMETAG;
pmp_xmitframe->padapter = pmp_priv->papdater;
pmp_xmitframe++;
}
pmp_priv->free_mp_xmitframe_cnt = NR_MP_XMITFRAME;
res = _SUCCESS;
_exit_init_mp_priv:
return res;
}
static void mp_init_xmit_attrib(struct mp_tx *pmptx, PADAPTER padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct pkt_attrib *pattrib;
/* init xmitframe attribute */
pattrib = &pmptx->attrib;
_rtw_memset(pattrib, 0, sizeof(struct pkt_attrib));
_rtw_memset(pmptx->desc, 0, TXDESC_SIZE);
pattrib->ether_type = 0x8712;
_rtw_memset(pattrib->dst, 0xFF, ETH_ALEN);
pattrib->ack_policy = 0;
pattrib->hdrlen = WLAN_HDR_A3_LEN;
pattrib->subtype = WIFI_DATA;
pattrib->priority = 0;
pattrib->qsel = pattrib->priority;
pattrib->nr_frags = 1;
pattrib->encrypt = 0;
pattrib->bswenc = _FALSE;
pattrib->qos_en = _FALSE;
pattrib->pktlen = 1500;
}
s32 init_mp_priv(PADAPTER padapter)
{
struct mp_priv *pmppriv = &padapter->mppriv;
PHAL_DATA_TYPE pHalData;
pHalData = GET_HAL_DATA(padapter);
_init_mp_priv_(pmppriv);
pmppriv->papdater = padapter;
pmppriv->mp_dm = 0;
pmppriv->tx.stop = 1;
pmppriv->bSetTxPower = 0; /*for manually set tx power*/
pmppriv->bTxBufCkFail = _FALSE;
pmppriv->pktInterval = 0;
pmppriv->pktLength = 1000;
mp_init_xmit_attrib(&pmppriv->tx, padapter);
switch (padapter->registrypriv.rf_config) {
case RF_1T1R:
pmppriv->antenna_tx = ANTENNA_A;
pmppriv->antenna_rx = ANTENNA_A;
break;
case RF_1T2R:
default:
pmppriv->antenna_tx = ANTENNA_A;
pmppriv->antenna_rx = ANTENNA_AB;
break;
case RF_2T2R:
case RF_2T2R_GREEN:
pmppriv->antenna_tx = ANTENNA_AB;
pmppriv->antenna_rx = ANTENNA_AB;
break;
case RF_2T4R:
pmppriv->antenna_tx = ANTENNA_BC;
pmppriv->antenna_rx = ANTENNA_ABCD;
break;
}
pHalData->AntennaRxPath = pmppriv->antenna_rx;
pHalData->antenna_tx_path = pmppriv->antenna_tx;
return _SUCCESS;
}
void free_mp_priv(struct mp_priv *pmp_priv)
{
if (pmp_priv->pallocated_mp_xmitframe_buf) {
rtw_mfree(pmp_priv->pallocated_mp_xmitframe_buf, 0);
pmp_priv->pallocated_mp_xmitframe_buf = NULL;
}
pmp_priv->pmp_xmtframe_buf = NULL;
}
static VOID PHY_IQCalibrate_default(
IN PADAPTER pAdapter,
IN BOOLEAN bReCovery
)
{
RTW_INFO("%s\n", __func__);
}
static VOID PHY_LCCalibrate_default(
IN PADAPTER pAdapter
)
{
RTW_INFO("%s\n", __func__);
}
static VOID PHY_SetRFPathSwitch_default(
IN PADAPTER pAdapter,
IN BOOLEAN bMain
)
{
RTW_INFO("%s\n", __func__);
}
static void mpt_InitHWConfig(PADAPTER Adapter)
{
}
static void PHY_IQCalibrate(PADAPTER padapter, u8 bReCovery)
{
PHAL_DATA_TYPE pHalData;
u8 b2ant; /* false:1ant, true:2-ant */
u8 RF_Path; /* 0:S1, 1:S0 */
if (IS_HARDWARE_TYPE_8188E(padapter))
phy_iq_calibrate_8188e(padapter, bReCovery);
}
static void PHY_LCCalibrate(PADAPTER padapter)
{
if (IS_HARDWARE_TYPE_8188E(padapter))
phy_lc_calibrate_8188e(&(GET_HAL_DATA(padapter)->odmpriv));
}
static u8 PHY_QueryRFPathSwitch(PADAPTER padapter)
{
return 0;
}
static void PHY_SetRFPathSwitch(PADAPTER padapter , BOOLEAN bMain) {
if (IS_HARDWARE_TYPE_8188E(padapter))
phy_set_rf_path_switch_8188e(padapter, bMain);
}
s32
MPT_InitializeAdapter(
IN PADAPTER pAdapter,
IN u8 Channel
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
s32 rtStatus = _SUCCESS;
PMPT_CONTEXT pMptCtx = &pAdapter->mppriv.mpt_ctx;
u32 ledsetting;
struct mlme_priv *pmlmepriv = &pAdapter->mlmepriv;
pMptCtx->bMptDrvUnload = _FALSE;
pMptCtx->bMassProdTest = _FALSE;
pMptCtx->bMptIndexEven = _TRUE; /* default gain index is -6.0db */
pMptCtx->h2cReqNum = 0x0;
/* init for BT MP */
mpt_InitHWConfig(pAdapter);
pMptCtx->bMptWorkItemInProgress = _FALSE;
pMptCtx->CurrMptAct = NULL;
pMptCtx->mpt_rf_path = ODM_RF_PATH_A;
/* ------------------------------------------------------------------------- */
/* Don't accept any packets */
rtw_write32(pAdapter, REG_RCR, 0);
ledsetting = rtw_read32(pAdapter, REG_LEDCFG0);
PHY_LCCalibrate(pAdapter);
PHY_IQCalibrate(pAdapter, _FALSE);
PHY_SetRFPathSwitch(pAdapter, 1/*pHalData->bDefaultAntenna*/); /* default use Main */
pMptCtx->backup0xc50 = (u1Byte)phy_query_bb_reg(pAdapter, rOFDM0_XAAGCCore1, bMaskByte0);
pMptCtx->backup0xc58 = (u1Byte)phy_query_bb_reg(pAdapter, rOFDM0_XBAGCCore1, bMaskByte0);
pMptCtx->backup0xc30 = (u1Byte)phy_query_bb_reg(pAdapter, rOFDM0_RxDetector1, bMaskByte0);
pMptCtx->backup0x52_RF_A = (u1Byte)phy_query_rf_reg(pAdapter, RF_PATH_A, RF_0x52, 0x000F0);
pMptCtx->backup0x52_RF_B = (u1Byte)phy_query_rf_reg(pAdapter, RF_PATH_B, RF_0x52, 0x000F0);
rtw_write32(pAdapter, REG_MACID_NO_LINK_0, 0x0);
rtw_write32(pAdapter, REG_MACID_NO_LINK_1, 0x0);
return rtStatus;
}
/*-----------------------------------------------------------------------------
* Function: MPT_DeInitAdapter()
*
* Overview: Extra DeInitialization for Mass Production Test.
*
* Input: PADAPTER pAdapter
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 05/08/2007 MHC Create Version 0.
* 05/18/2007 MHC Add normal driver MPHalt code.
*
*---------------------------------------------------------------------------*/
VOID
MPT_DeInitAdapter(
IN PADAPTER pAdapter
)
{
PMPT_CONTEXT pMptCtx = &pAdapter->mppriv.mpt_ctx;
pMptCtx->bMptDrvUnload = _TRUE;
}
static u8 mpt_ProStartTest(PADAPTER padapter)
{
PMPT_CONTEXT pMptCtx = &padapter->mppriv.mpt_ctx;
pMptCtx->bMassProdTest = _TRUE;
pMptCtx->is_start_cont_tx = _FALSE;
pMptCtx->bCckContTx = _FALSE;
pMptCtx->bOfdmContTx = _FALSE;
pMptCtx->bSingleCarrier = _FALSE;
pMptCtx->is_carrier_suppression = _FALSE;
pMptCtx->is_single_tone = _FALSE;
pMptCtx->HWTxmode = PACKETS_TX;
return _SUCCESS;
}
/*
* General use
*/
s32 SetPowerTracking(PADAPTER padapter, u8 enable)
{
hal_mpt_SetPowerTracking(padapter, enable);
return 0;
}
void GetPowerTracking(PADAPTER padapter, u8 *enable)
{
hal_mpt_GetPowerTracking(padapter, enable);
}
void rtw_mp_trigger_iqk(PADAPTER padapter)
{
PHY_IQCalibrate(padapter, _FALSE);
}
void rtw_mp_trigger_lck(PADAPTER padapter)
{
PHY_LCCalibrate(padapter);
}
static void disable_dm(PADAPTER padapter)
{
u8 v8;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct PHY_DM_STRUCT *pDM_Odm = &pHalData->odmpriv;
/* 3 1. disable firmware dynamic mechanism */
/* disable Power Training, Rate Adaptive */
v8 = rtw_read8(padapter, REG_BCN_CTRL);
v8 &= ~EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL, v8);
/* 3 2. disable driver dynamic mechanism */
rtw_phydm_func_disable_all(padapter);
/* enable APK, LCK and IQK but disable power tracking */
pDM_Odm->rf_calibrate_info.txpowertrack_control = _FALSE;
rtw_phydm_func_set(padapter, ODM_RF_CALIBRATION);
/* #ifdef CONFIG_BT_COEXIST */
/* rtw_btcoex_Switch(padapter, 0); */ /* remove for BT MP Down. */
/* #endif */
}
void MPT_PwrCtlDM(PADAPTER padapter, u32 bstart)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct PHY_DM_STRUCT *pDM_Odm = &pHalData->odmpriv;
if (bstart == 1) {
RTW_INFO("in MPT_PwrCtlDM start\n");
rtw_phydm_func_set(padapter, ODM_RF_TX_PWR_TRACK | ODM_RF_CALIBRATION);
pDM_Odm->rf_calibrate_info.txpowertrack_control = _TRUE;
padapter->mppriv.mp_dm = 1;
} else {
RTW_INFO("in MPT_PwrCtlDM stop\n");
disable_dm(padapter);
pDM_Odm->rf_calibrate_info.txpowertrack_control = _FALSE;
padapter->mppriv.mp_dm = 0;
{
struct _TXPWRTRACK_CFG c;
u1Byte chnl = 0 ;
_rtw_memset(&c, 0, sizeof(struct _TXPWRTRACK_CFG));
configure_txpower_track(pDM_Odm, &c);
odm_clear_txpowertracking_state(pDM_Odm);
if (*c.odm_tx_pwr_track_set_pwr) {
if (pDM_Odm->support_ic_type == ODM_RTL8188F)
(*c.odm_tx_pwr_track_set_pwr)(pDM_Odm, MIX_MODE, ODM_RF_PATH_A, chnl);
else if (pDM_Odm->support_ic_type == ODM_RTL8723D) {
(*c.odm_tx_pwr_track_set_pwr)(pDM_Odm, BBSWING, ODM_RF_PATH_A, chnl);
SetTxPower(padapter);
} else {
(*c.odm_tx_pwr_track_set_pwr)(pDM_Odm, BBSWING, ODM_RF_PATH_A, chnl);
(*c.odm_tx_pwr_track_set_pwr)(pDM_Odm, BBSWING, ODM_RF_PATH_B, chnl);
}
}
}
}
}
u32 mp_join(PADAPTER padapter, u8 mode)
{
WLAN_BSSID_EX bssid;
struct sta_info *psta;
u32 length;
u8 val8, join_type;
_irqL irqL;
s32 res = _SUCCESS;
struct mp_priv *pmppriv = &padapter->mppriv;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct wlan_network *tgt_network = &pmlmepriv->cur_network;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
WLAN_BSSID_EX *pnetwork = (WLAN_BSSID_EX *)(&(pmlmeinfo->network));
#ifdef CONFIG_IOCTL_CFG80211
struct wireless_dev *pwdev = padapter->rtw_wdev;
#endif /* #ifdef CONFIG_IOCTL_CFG80211 */
/* 1. initialize a new WLAN_BSSID_EX */
_rtw_memset(&bssid, 0, sizeof(WLAN_BSSID_EX));
RTW_INFO("%s ,pmppriv->network_macaddr=%x %x %x %x %x %x\n", __func__,
pmppriv->network_macaddr[0], pmppriv->network_macaddr[1], pmppriv->network_macaddr[2], pmppriv->network_macaddr[3], pmppriv->network_macaddr[4],
pmppriv->network_macaddr[5]);
_rtw_memcpy(bssid.MacAddress, pmppriv->network_macaddr, ETH_ALEN);
if (mode == WIFI_FW_ADHOC_STATE) {
bssid.Ssid.SsidLength = strlen("mp_pseudo_adhoc");
_rtw_memcpy(bssid.Ssid.Ssid, (u8 *)"mp_pseudo_adhoc", bssid.Ssid.SsidLength);
bssid.InfrastructureMode = Ndis802_11IBSS;
bssid.NetworkTypeInUse = Ndis802_11DS;
bssid.IELength = 0;
bssid.Configuration.DSConfig = pmppriv->channel;
} else if (mode == WIFI_FW_STATION_STATE) {
bssid.Ssid.SsidLength = strlen("mp_pseudo_STATION");
_rtw_memcpy(bssid.Ssid.Ssid, (u8 *)"mp_pseudo_STATION", bssid.Ssid.SsidLength);
bssid.InfrastructureMode = Ndis802_11Infrastructure;
bssid.NetworkTypeInUse = Ndis802_11DS;
bssid.IELength = 0;
}
length = get_WLAN_BSSID_EX_sz(&bssid);
if (length % 4)
bssid.Length = ((length >> 2) + 1) << 2; /* round up to multiple of 4 bytes. */
else
bssid.Length = length;
_enter_critical_bh(&pmlmepriv->lock, &irqL);
if (check_fwstate(pmlmepriv, WIFI_MP_STATE) == _TRUE)
goto end_of_mp_start_test;
/* init mp_start_test status */
if (check_fwstate(pmlmepriv, _FW_LINKED) == _TRUE) {
rtw_disassoc_cmd(padapter, 500, _TRUE);
rtw_indicate_disconnect(padapter, 0, _FALSE);
rtw_free_assoc_resources(padapter, 1);
}
pmppriv->prev_fw_state = get_fwstate(pmlmepriv);
/*pmlmepriv->fw_state = WIFI_MP_STATE;*/
init_fwstate(pmlmepriv, WIFI_MP_STATE);
set_fwstate(pmlmepriv, _FW_UNDER_LINKING);
/* 3 2. create a new psta for mp driver */
/* clear psta in the cur_network, if any */
psta = rtw_get_stainfo(&padapter->stapriv, tgt_network->network.MacAddress);
if (psta)
rtw_free_stainfo(padapter, psta);
psta = rtw_alloc_stainfo(&padapter->stapriv, bssid.MacAddress);
if (psta == NULL) {
/*pmlmepriv->fw_state = pmppriv->prev_fw_state;*/
init_fwstate(pmlmepriv, pmppriv->prev_fw_state);
res = _FAIL;
goto end_of_mp_start_test;
}
if (mode == WIFI_FW_ADHOC_STATE)
set_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE);
else
set_fwstate(pmlmepriv, WIFI_STATION_STATE);
/* 3 3. join psudo AdHoc */
tgt_network->join_res = 1;
tgt_network->aid = psta->aid = 1;
_rtw_memcpy(&padapter->registrypriv.dev_network, &bssid, length);
rtw_update_registrypriv_dev_network(padapter);
_rtw_memcpy(&tgt_network->network, &padapter->registrypriv.dev_network, padapter->registrypriv.dev_network.Length);
_rtw_memcpy(pnetwork, &padapter->registrypriv.dev_network, padapter->registrypriv.dev_network.Length);
rtw_indicate_connect(padapter);
_clr_fwstate_(pmlmepriv, _FW_UNDER_LINKING);
set_fwstate(pmlmepriv, _FW_LINKED);
end_of_mp_start_test:
_exit_critical_bh(&pmlmepriv->lock, &irqL);
if (1) { /* (res == _SUCCESS) */
/* set MSR to WIFI_FW_ADHOC_STATE */
if (mode == WIFI_FW_ADHOC_STATE) {
/* set msr to WIFI_FW_ADHOC_STATE */
pmlmeinfo->state = WIFI_FW_ADHOC_STATE;
Set_MSR(padapter, (pmlmeinfo->state & 0x3));
rtw_hal_set_hwreg(padapter, HW_VAR_BSSID, padapter->registrypriv.dev_network.MacAddress);
join_type = 0;
rtw_hal_set_hwreg(padapter, HW_VAR_MLME_JOIN, (u8 *)(&join_type));
report_join_res(padapter, 1);
pmlmeinfo->state |= WIFI_FW_ASSOC_SUCCESS;
} else {
Set_MSR(padapter, WIFI_FW_STATION_STATE);
RTW_INFO("%s , pmppriv->network_macaddr =%x %x %x %x %x %x\n", __func__,
pmppriv->network_macaddr[0], pmppriv->network_macaddr[1], pmppriv->network_macaddr[2], pmppriv->network_macaddr[3], pmppriv->network_macaddr[4],
pmppriv->network_macaddr[5]);
rtw_hal_set_hwreg(padapter, HW_VAR_BSSID, pmppriv->network_macaddr);
}
}
return res;
}
/* This function initializes the DUT to the MP test mode */
s32 mp_start_test(PADAPTER padapter)
{
struct mp_priv *pmppriv = &padapter->mppriv;
s32 res = _SUCCESS;
padapter->registrypriv.mp_mode = 1;
/* 3 disable dynamic mechanism */
disable_dm(padapter);
rtl8188e_InitHalDm(padapter);
/* 3 0. update mp_priv */
if (!RF_TYPE_VALID(padapter->registrypriv.rf_config)) {
/* switch (phal->rf_type) { */
switch (GET_RF_TYPE(padapter)) {
case RF_1T1R:
pmppriv->antenna_tx = ANTENNA_A;
pmppriv->antenna_rx = ANTENNA_A;
break;
case RF_1T2R:
default:
pmppriv->antenna_tx = ANTENNA_A;
pmppriv->antenna_rx = ANTENNA_AB;
break;
case RF_2T2R:
case RF_2T2R_GREEN:
pmppriv->antenna_tx = ANTENNA_AB;
pmppriv->antenna_rx = ANTENNA_AB;
break;
case RF_2T4R:
pmppriv->antenna_tx = ANTENNA_AB;
pmppriv->antenna_rx = ANTENNA_ABCD;
break;
}
}
mpt_ProStartTest(padapter);
mp_join(padapter, WIFI_FW_ADHOC_STATE);
return res;
}
/* ------------------------------------------------------------------------------
* This function change the DUT from the MP test mode into normal mode */
void mp_stop_test(PADAPTER padapter)
{
struct mp_priv *pmppriv = &padapter->mppriv;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct wlan_network *tgt_network = &pmlmepriv->cur_network;
struct sta_info *psta;
_irqL irqL;
if (pmppriv->mode == MP_ON) {
pmppriv->bSetTxPower = 0;
_enter_critical_bh(&pmlmepriv->lock, &irqL);
if (check_fwstate(pmlmepriv, WIFI_MP_STATE) == _FALSE)
goto end_of_mp_stop_test;
/* 3 1. disconnect psudo AdHoc */
rtw_indicate_disconnect(padapter, 0, _FALSE);
/* 3 2. clear psta used in mp test mode.
* rtw_free_assoc_resources(padapter, 1); */
psta = rtw_get_stainfo(&padapter->stapriv, tgt_network->network.MacAddress);
if (psta)
rtw_free_stainfo(padapter, psta);
/* 3 3. return to normal state (default:station mode) */
/*pmlmepriv->fw_state = pmppriv->prev_fw_state; */ /* WIFI_STATION_STATE;*/
init_fwstate(pmlmepriv, pmppriv->prev_fw_state);
/* flush the cur_network */
_rtw_memset(tgt_network, 0, sizeof(struct wlan_network));
_clr_fwstate_(pmlmepriv, WIFI_MP_STATE);
end_of_mp_stop_test:
_exit_critical_bh(&pmlmepriv->lock, &irqL);
}
}
/*---------------------------hal\rtl8192c\MPT_Phy.c---------------------------*/
/*-----------------------------------------------------------------------------
* Function: mpt_SwitchRfSetting
*
* Overview: Change RF Setting when we siwthc channel/rate/BW for MP.
*
* Input: IN PADAPTER pAdapter
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 01/08/2009 MHC Suggestion from SD3 Willis for 92S series.
* 01/09/2009 MHC Add CCK modification for 40MHZ. Suggestion from SD3.
*
*---------------------------------------------------------------------------*/
static void mpt_SwitchRfSetting(PADAPTER pAdapter)
{
hal_mpt_SwitchRfSetting(pAdapter);
}
/*---------------------------hal\rtl8192c\MPT_Phy.c---------------------------*/
/*---------------------------hal\rtl8192c\MPT_HelperFunc.c---------------------------*/
static void MPT_CCKTxPowerAdjust(PADAPTER Adapter, BOOLEAN bInCH14)
{
hal_mpt_CCKTxPowerAdjust(Adapter, bInCH14);
}
/*---------------------------hal\rtl8192c\MPT_HelperFunc.c---------------------------*/
/*
* SetChannel
* Description
* Use H2C command to change channel,
* not only modify rf register, but also other setting need to be done.
*/
void SetChannel(PADAPTER pAdapter)
{
hal_mpt_SetChannel(pAdapter);
}
/*
* Notice
* Switch bandwitdth may change center frequency(channel)
*/
void SetBandwidth(PADAPTER pAdapter)
{
hal_mpt_SetBandwidth(pAdapter);
}
void SetAntenna(PADAPTER pAdapter)
{
hal_mpt_SetAntenna(pAdapter);
}
int SetTxPower(PADAPTER pAdapter)
{
hal_mpt_SetTxPower(pAdapter);
return _TRUE;
}
static void SetTxAGCOffset(PADAPTER pAdapter, u32 ulTxAGCOffset)
{
u32 TxAGCOffset_B, TxAGCOffset_C, TxAGCOffset_D, tmpAGC;
TxAGCOffset_B = (ulTxAGCOffset & 0x000000ff);
TxAGCOffset_C = ((ulTxAGCOffset & 0x0000ff00) >> 8);
TxAGCOffset_D = ((ulTxAGCOffset & 0x00ff0000) >> 16);
tmpAGC = (TxAGCOffset_D << 8 | TxAGCOffset_C << 4 | TxAGCOffset_B);
write_bbreg(pAdapter, rFPGA0_TxGainStage,
(bXBTxAGC | bXCTxAGC | bXDTxAGC), tmpAGC);
}
void SetDataRate(PADAPTER pAdapter)
{
hal_mpt_SetDataRate(pAdapter);
}
void MP_PHY_SetRFPathSwitch(PADAPTER pAdapter , BOOLEAN bMain)
{
PHY_SetRFPathSwitch(pAdapter, bMain);
}
u8 MP_PHY_QueryRFPathSwitch(PADAPTER pAdapter)
{
return PHY_QueryRFPathSwitch(pAdapter);
}
s32 SetThermalMeter(PADAPTER pAdapter, u8 target_ther)
{
return hal_mpt_SetThermalMeter(pAdapter, target_ther);
}
static void TriggerRFThermalMeter(PADAPTER pAdapter)
{
hal_mpt_TriggerRFThermalMeter(pAdapter);
}
static u8 ReadRFThermalMeter(PADAPTER pAdapter)
{
return hal_mpt_ReadRFThermalMeter(pAdapter);
}
void GetThermalMeter(PADAPTER pAdapter, u8 *value)
{
hal_mpt_GetThermalMeter(pAdapter, value);
}
void SetSingleCarrierTx(PADAPTER pAdapter, u8 bStart)
{
PhySetTxPowerLevel(pAdapter);
hal_mpt_SetSingleCarrierTx(pAdapter, bStart);
}
void SetSingleToneTx(PADAPTER pAdapter, u8 bStart)
{
PhySetTxPowerLevel(pAdapter);
hal_mpt_SetSingleToneTx(pAdapter, bStart);
}
void SetCarrierSuppressionTx(PADAPTER pAdapter, u8 bStart)
{
PhySetTxPowerLevel(pAdapter);
hal_mpt_SetCarrierSuppressionTx(pAdapter, bStart);
}
void SetContinuousTx(PADAPTER pAdapter, u8 bStart)
{
PhySetTxPowerLevel(pAdapter);
hal_mpt_SetContinuousTx(pAdapter, bStart);
}
void PhySetTxPowerLevel(PADAPTER pAdapter)
{
struct mp_priv *pmp_priv = &pAdapter->mppriv;
if (pmp_priv->bSetTxPower == 0) /* for NO manually set power index */
rtw_hal_set_tx_power_level(pAdapter, pmp_priv->channel);
}
/* ------------------------------------------------------------------------------ */
static void dump_mpframe(PADAPTER padapter, struct xmit_frame *pmpframe)
{
rtw_hal_mgnt_xmit(padapter, pmpframe);
}
static struct xmit_frame *alloc_mp_xmitframe(struct xmit_priv *pxmitpriv)
{
struct xmit_frame *pmpframe;
struct xmit_buf *pxmitbuf;
pmpframe = rtw_alloc_xmitframe(pxmitpriv);
if (pmpframe == NULL)
return NULL;
pxmitbuf = rtw_alloc_xmitbuf(pxmitpriv);
if (pxmitbuf == NULL) {
rtw_free_xmitframe(pxmitpriv, pmpframe);
return NULL;
}
pmpframe->frame_tag = MP_FRAMETAG;
pmpframe->pxmitbuf = pxmitbuf;
pmpframe->buf_addr = pxmitbuf->pbuf;
pxmitbuf->priv_data = pmpframe;
return pmpframe;
}
static thread_return mp_xmit_packet_thread(thread_context context)
{
struct xmit_frame *pxmitframe;
struct mp_tx *pmptx;
struct mp_priv *pmp_priv;
struct xmit_priv *pxmitpriv;
PADAPTER padapter;
pmp_priv = (struct mp_priv *)context;
pmptx = &pmp_priv->tx;
padapter = pmp_priv->papdater;
pxmitpriv = &(padapter->xmitpriv);
thread_enter("RTW_MP_THREAD");
RTW_INFO("%s:pkTx Start\n", __func__);
while (1) {
pxmitframe = alloc_mp_xmitframe(pxmitpriv);
if (pxmitframe == NULL) {
if (pmptx->stop ||
RTW_CANNOT_RUN(padapter))
goto exit;
else {
rtw_usleep_os(10);
continue;
}
}
_rtw_memcpy((u8 *)(pxmitframe->buf_addr + TXDESC_OFFSET), pmptx->buf, pmptx->write_size);
_rtw_memcpy(&(pxmitframe->attrib), &(pmptx->attrib), sizeof(struct pkt_attrib));
rtw_usleep_os(padapter->mppriv.pktInterval);
dump_mpframe(padapter, pxmitframe);
pmptx->sended++;
pmp_priv->tx_pktcount++;
if (pmptx->stop ||
RTW_CANNOT_RUN(padapter))
goto exit;
if ((pmptx->count != 0) &&
(pmptx->count == pmptx->sended))
goto exit;
flush_signals_thread();
}
exit:
/* RTW_INFO("%s:pkTx Exit\n", __func__); */
rtw_mfree(pmptx->pallocated_buf, pmptx->buf_size);
pmptx->pallocated_buf = NULL;
pmptx->stop = 1;
thread_exit();
}
void fill_txdesc_for_mp(PADAPTER padapter, u8 *ptxdesc)
{
struct mp_priv *pmp_priv = &padapter->mppriv;
_rtw_memcpy(ptxdesc, pmp_priv->tx.desc, TXDESC_SIZE);
}
static void fill_tx_desc_8188e(PADAPTER padapter)
{
struct mp_priv *pmp_priv = &padapter->mppriv;
struct tx_desc *desc = (struct tx_desc *)&(pmp_priv->tx.desc);
struct pkt_attrib *pattrib = &(pmp_priv->tx.attrib);
u32 pkt_size = pattrib->last_txcmdsz;
s32 bmcast = IS_MCAST(pattrib->ra);
/* offset 0 */
desc->txdw0 |= cpu_to_le32(OWN | FSG | LSG);
desc->txdw0 |= cpu_to_le32(pkt_size & 0x0000FFFF); /* packet size */
desc->txdw0 |= cpu_to_le32(((TXDESC_SIZE + OFFSET_SZ) << OFFSET_SHT) & 0x00FF0000); /* 32 bytes for TX Desc */
if (bmcast)
desc->txdw0 |= cpu_to_le32(BMC); /* broadcast packet */
desc->txdw1 |= cpu_to_le32((0x01 << 26) & 0xff000000);
desc->txdw1 |= cpu_to_le32((pattrib->mac_id) & 0x3F); /* CAM_ID(MAC_ID) */
desc->txdw1 |= cpu_to_le32((pattrib->qsel << QSEL_SHT) & 0x00001F00); /* Queue Select, TID */
desc->txdw1 |= cpu_to_le32((pattrib->raid << RATE_ID_SHT) & 0x000F0000); /* Rate Adaptive ID */
/* offset 8 */
/* desc->txdw2 |= cpu_to_le32(AGG_BK); */ /* AGG BK */
desc->txdw3 |= cpu_to_le32((pattrib->seqnum << 16) & 0x0fff0000);
desc->txdw4 |= cpu_to_le32(HW_SSN);
desc->txdw4 |= cpu_to_le32(USERATE);
desc->txdw4 |= cpu_to_le32(DISDATAFB);
if (pmp_priv->preamble) {
if (HwRateToMPTRate(pmp_priv->rateidx) <= MPT_RATE_54M)
desc->txdw4 |= cpu_to_le32(DATA_SHORT); /* CCK Short Preamble */
}
if (pmp_priv->bandwidth == CHANNEL_WIDTH_40)
desc->txdw4 |= cpu_to_le32(DATA_BW);
/* offset 20 */
desc->txdw5 |= cpu_to_le32(pmp_priv->rateidx & 0x0000001F);
if (pmp_priv->preamble) {
if (HwRateToMPTRate(pmp_priv->rateidx) > MPT_RATE_54M)
desc->txdw5 |= cpu_to_le32(SGI); /* MCS Short Guard Interval */
}
desc->txdw5 |= cpu_to_le32(RTY_LMT_EN); /* retry limit enable */
desc->txdw5 |= cpu_to_le32(0x00180000); /* DATA/RTS Rate Fallback Limit */
}
static void Rtw_MPSetMacTxEDCA(PADAPTER padapter)
{
rtw_write32(padapter, 0x508 , 0x00a422); /* Disable EDCA BE Txop for MP pkt tx adjust Packet interval */
phy_set_mac_reg(padapter, 0x458 , bMaskDWord , 0x0);
phy_set_mac_reg(padapter, 0x460 , bMaskLWord , 0x0); /* fast EDCA queue packet interval & time out value*/
RTW_INFO("%s()!!!!! 0x460 = 0x%x\n" , __func__, phy_query_bb_reg(padapter, 0x460, bMaskDWord));
}
void SetPacketTx(PADAPTER padapter)
{
u8 *ptr, *pkt_start, *pkt_end, *fctrl;
u32 pkt_size, offset, startPlace, i;
struct rtw_ieee80211_hdr *hdr;
u8 payload;
s32 bmcast;
struct pkt_attrib *pattrib;
struct mp_priv *pmp_priv;
pmp_priv = &padapter->mppriv;
if (pmp_priv->tx.stop)
return;
pmp_priv->tx.sended = 0;
pmp_priv->tx.stop = 0;
pmp_priv->tx_pktcount = 0;
/* 3 1. update_attrib() */
pattrib = &pmp_priv->tx.attrib;
_rtw_memcpy(pattrib->src, adapter_mac_addr(padapter), ETH_ALEN);
_rtw_memcpy(pattrib->ta, pattrib->src, ETH_ALEN);
_rtw_memcpy(pattrib->ra, pattrib->dst, ETH_ALEN);
bmcast = IS_MCAST(pattrib->ra);
if (bmcast) {
pattrib->mac_id = 1;
pattrib->psta = rtw_get_bcmc_stainfo(padapter);
} else {
pattrib->mac_id = 0;
pattrib->psta = rtw_get_stainfo(&padapter->stapriv, get_bssid(&padapter->mlmepriv));
}
pattrib->mbssid = 0;
pattrib->last_txcmdsz = pattrib->hdrlen + pattrib->pktlen;
/* 3 2. allocate xmit buffer */
pkt_size = pattrib->last_txcmdsz;
if (pmp_priv->tx.pallocated_buf)
rtw_mfree(pmp_priv->tx.pallocated_buf, pmp_priv->tx.buf_size);
pmp_priv->tx.write_size = pkt_size;
pmp_priv->tx.buf_size = pkt_size + XMITBUF_ALIGN_SZ;
pmp_priv->tx.pallocated_buf = rtw_zmalloc(pmp_priv->tx.buf_size);
if (pmp_priv->tx.pallocated_buf == NULL) {
RTW_INFO("%s: malloc(%d) fail!!\n", __func__, pmp_priv->tx.buf_size);
return;
}
pmp_priv->tx.buf = (u8 *)N_BYTE_ALIGMENT((SIZE_PTR)(pmp_priv->tx.pallocated_buf), XMITBUF_ALIGN_SZ);
ptr = pmp_priv->tx.buf;
_rtw_memset(pmp_priv->tx.desc, 0, TXDESC_SIZE);
pkt_start = ptr;
pkt_end = pkt_start + pkt_size;
/* 3 3. init TX descriptor */
if (IS_HARDWARE_TYPE_8188E(padapter))
fill_tx_desc_8188e(padapter);
/* 3 4. make wlan header, make_wlanhdr() */
hdr = (struct rtw_ieee80211_hdr *)pkt_start;
set_frame_sub_type(&hdr->frame_ctl, pattrib->subtype);
_rtw_memcpy(hdr->addr1, pattrib->dst, ETH_ALEN); /* DA */
_rtw_memcpy(hdr->addr2, pattrib->src, ETH_ALEN); /* SA */
_rtw_memcpy(hdr->addr3, get_bssid(&padapter->mlmepriv), ETH_ALEN); /* RA, BSSID */
/* 3 5. make payload */
ptr = pkt_start + pattrib->hdrlen;
switch (pmp_priv->tx.payload) {
case 0:
payload = 0x00;
break;
case 1:
payload = 0x5a;
break;
case 2:
payload = 0xa5;
break;
case 3:
payload = 0xff;
break;
default:
payload = 0x00;
break;
}
pmp_priv->TXradomBuffer = rtw_zmalloc(4096);
if (pmp_priv->TXradomBuffer == NULL) {
RTW_INFO("mp create random buffer fail!\n");
goto exit;
}
for (i = 0; i < 4096; i++)
pmp_priv->TXradomBuffer[i] = rtw_random32() % 0xFF;
/* startPlace = (u32)(rtw_random32() % 3450); */
_rtw_memcpy(ptr, pmp_priv->TXradomBuffer, pkt_end - ptr);
/* _rtw_memset(ptr, payload, pkt_end - ptr); */
rtw_mfree(pmp_priv->TXradomBuffer, 4096);
/* 3 6. start thread */
pmp_priv->tx.PktTxThread = kthread_run(mp_xmit_packet_thread, pmp_priv, "RTW_MP_THREAD");
if (IS_ERR(pmp_priv->tx.PktTxThread))
RTW_INFO("Create PktTx Thread Fail !!!!!\n");
Rtw_MPSetMacTxEDCA(padapter);
exit:
return;
}
void SetPacketRx(PADAPTER pAdapter, u8 bStartRx, u8 bAB)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
struct mp_priv *pmppriv = &pAdapter->mppriv;
if (bStartRx) {
pHalData->ReceiveConfig = RCR_AAP | RCR_APM | RCR_AM | RCR_AMF | RCR_HTC_LOC_CTRL;
pHalData->ReceiveConfig |= RCR_ACRC32;
pHalData->ReceiveConfig |= RCR_APP_PHYST_RXFF | RCR_APP_ICV | RCR_APP_MIC;
if (pmppriv->bSetRxBssid == _TRUE) {
RTW_INFO("%s: pmppriv->network_macaddr=" MAC_FMT "\n", __func__,
MAC_ARG(pmppriv->network_macaddr));
pHalData->ReceiveConfig = 0;
pHalData->ReceiveConfig |= RCR_CBSSID_DATA | RCR_CBSSID_BCN |RCR_APM | RCR_AM | RCR_AB |RCR_AMF;
rtw_write16(pAdapter, REG_RXFLTMAP0, 0xFFEF); /* REG_RXFLTMAP0 (RX Filter Map Group 0) */
} else {
pHalData->ReceiveConfig |= RCR_ADF;
/* Accept all data frames */
rtw_write16(pAdapter, REG_RXFLTMAP2, 0xFFFF);
}
if (bAB)
pHalData->ReceiveConfig |= RCR_AB;
} else {
pHalData->ReceiveConfig = 0;
rtw_write16(pAdapter, REG_RXFLTMAP0, 0xFFFF); /* REG_RXFLTMAP0 (RX Filter Map Group 0) */
}
rtw_write32(pAdapter, REG_RCR, pHalData->ReceiveConfig);
}
void ResetPhyRxPktCount(PADAPTER pAdapter)
{
u32 i, phyrx_set = 0;
for (i = 0; i <= 0xF; i++) {
phyrx_set = 0;
phyrx_set |= _RXERR_RPT_SEL(i); /* select */
phyrx_set |= RXERR_RPT_RST; /* set counter to zero */
rtw_write32(pAdapter, REG_RXERR_RPT, phyrx_set);
}
}
static u32 GetPhyRxPktCounts(PADAPTER pAdapter, u32 selbit)
{
/* selection */
u32 phyrx_set = 0, count = 0;
phyrx_set = _RXERR_RPT_SEL(selbit & 0xF);
rtw_write32(pAdapter, REG_RXERR_RPT, phyrx_set);
/* Read packet count */
count = rtw_read32(pAdapter, REG_RXERR_RPT) & RXERR_COUNTER_MASK;
return count;
}
u32 GetPhyRxPktReceived(PADAPTER pAdapter)
{
u32 OFDM_cnt = 0, CCK_cnt = 0, HT_cnt = 0;
OFDM_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_OFDM_MPDU_OK);
CCK_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_CCK_MPDU_OK);
HT_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_HT_MPDU_OK);
return OFDM_cnt + CCK_cnt + HT_cnt;
}
u32 GetPhyRxPktCRC32Error(PADAPTER pAdapter)
{
u32 OFDM_cnt = 0, CCK_cnt = 0, HT_cnt = 0;
OFDM_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_OFDM_MPDU_FAIL);
CCK_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_CCK_MPDU_FAIL);
HT_cnt = GetPhyRxPktCounts(pAdapter, RXERR_TYPE_HT_MPDU_FAIL);
return OFDM_cnt + CCK_cnt + HT_cnt;
}
/* reg 0x808[9:0]: FFT data x
* reg 0x808[22]: 0 --> 1 to get 1 FFT data y
* reg 0x8B4[15:0]: FFT data y report */
static u32 rtw_GetPSDData(PADAPTER pAdapter, u32 point)
{
u32 psd_val = 0;
u16 psd_reg = 0x808;
u16 psd_regL = 0x8B4;
psd_val = rtw_read32(pAdapter, psd_reg);
psd_val &= 0xFFBFFC00;
psd_val |= point;
rtw_write32(pAdapter, psd_reg, psd_val);
rtw_mdelay_os(1);
psd_val |= 0x00400000;
rtw_write32(pAdapter, psd_reg, psd_val);
rtw_mdelay_os(1);
psd_val = rtw_read32(pAdapter, psd_regL);
psd_val &= 0x0000FFFF;
return psd_val;
}
/*
* pts start_point_min stop_point_max
* 128 64 64 + 128 = 192
* 256 128 128 + 256 = 384
* 512 256 256 + 512 = 768
* 1024 512 512 + 1024 = 1536
*
*/
u32 mp_query_psd(PADAPTER pAdapter, u8 *data)
{
u32 i, psd_pts = 0, psd_start = 0, psd_stop = 0;
u32 psd_data = 0;
if (!netif_running(pAdapter->pnetdev)) {
return 0;
}
if (check_fwstate(&pAdapter->mlmepriv, WIFI_MP_STATE) == _FALSE) {
return 0;
}
if (strlen(data) == 0) { /* default value */
psd_pts = 128;
psd_start = 64;
psd_stop = 128;
} else
sscanf(data, "pts=%d,start=%d,stop=%d", &psd_pts, &psd_start, &psd_stop);
data[0] = '\0';
i = psd_start;
while (i < psd_stop) {
if (i >= psd_pts)
psd_data = rtw_GetPSDData(pAdapter, i - psd_pts);
else
psd_data = rtw_GetPSDData(pAdapter, i);
sprintf(data, "%s%x ", data, psd_data);
i++;
}
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(100);
#else
rtw_mdelay_os(100);
#endif
return strlen(data) + 1;
}
u8
mpt_to_mgnt_rate(
IN ULONG MptRateIdx
)
{
/* Mapped to MGN_XXX defined in MgntGen.h */
switch (MptRateIdx) {
/* CCK rate. */
case MPT_RATE_1M:
return MGN_1M;
case MPT_RATE_2M:
return MGN_2M;
case MPT_RATE_55M:
return MGN_5_5M;
case MPT_RATE_11M:
return MGN_11M;
/* OFDM rate. */
case MPT_RATE_6M:
return MGN_6M;
case MPT_RATE_9M:
return MGN_9M;
case MPT_RATE_12M:
return MGN_12M;
case MPT_RATE_18M:
return MGN_18M;
case MPT_RATE_24M:
return MGN_24M;
case MPT_RATE_36M:
return MGN_36M;
case MPT_RATE_48M:
return MGN_48M;
case MPT_RATE_54M:
return MGN_54M;
/* HT rate. */
case MPT_RATE_MCS0:
return MGN_MCS0;
case MPT_RATE_MCS1:
return MGN_MCS1;
case MPT_RATE_MCS2:
return MGN_MCS2;
case MPT_RATE_MCS3:
return MGN_MCS3;
case MPT_RATE_MCS4:
return MGN_MCS4;
case MPT_RATE_MCS5:
return MGN_MCS5;
case MPT_RATE_MCS6:
return MGN_MCS6;
case MPT_RATE_MCS7:
return MGN_MCS7;
case MPT_RATE_MCS8:
return MGN_MCS8;
case MPT_RATE_MCS9:
return MGN_MCS9;
case MPT_RATE_MCS10:
return MGN_MCS10;
case MPT_RATE_MCS11:
return MGN_MCS11;
case MPT_RATE_MCS12:
return MGN_MCS12;
case MPT_RATE_MCS13:
return MGN_MCS13;
case MPT_RATE_MCS14:
return MGN_MCS14;
case MPT_RATE_MCS15:
return MGN_MCS15;
case MPT_RATE_MCS16:
return MGN_MCS16;
case MPT_RATE_MCS17:
return MGN_MCS17;
case MPT_RATE_MCS18:
return MGN_MCS18;
case MPT_RATE_MCS19:
return MGN_MCS19;
case MPT_RATE_MCS20:
return MGN_MCS20;
case MPT_RATE_MCS21:
return MGN_MCS21;
case MPT_RATE_MCS22:
return MGN_MCS22;
case MPT_RATE_MCS23:
return MGN_MCS23;
case MPT_RATE_MCS24:
return MGN_MCS24;
case MPT_RATE_MCS25:
return MGN_MCS25;
case MPT_RATE_MCS26:
return MGN_MCS26;
case MPT_RATE_MCS27:
return MGN_MCS27;
case MPT_RATE_MCS28:
return MGN_MCS28;
case MPT_RATE_MCS29:
return MGN_MCS29;
case MPT_RATE_MCS30:
return MGN_MCS30;
case MPT_RATE_MCS31:
return MGN_MCS31;
/* VHT rate. */
case MPT_RATE_VHT1SS_MCS0:
return MGN_VHT1SS_MCS0;
case MPT_RATE_VHT1SS_MCS1:
return MGN_VHT1SS_MCS1;
case MPT_RATE_VHT1SS_MCS2:
return MGN_VHT1SS_MCS2;
case MPT_RATE_VHT1SS_MCS3:
return MGN_VHT1SS_MCS3;
case MPT_RATE_VHT1SS_MCS4:
return MGN_VHT1SS_MCS4;
case MPT_RATE_VHT1SS_MCS5:
return MGN_VHT1SS_MCS5;
case MPT_RATE_VHT1SS_MCS6:
return MGN_VHT1SS_MCS6;
case MPT_RATE_VHT1SS_MCS7:
return MGN_VHT1SS_MCS7;
case MPT_RATE_VHT1SS_MCS8:
return MGN_VHT1SS_MCS8;
case MPT_RATE_VHT1SS_MCS9:
return MGN_VHT1SS_MCS9;
case MPT_RATE_VHT2SS_MCS0:
return MGN_VHT2SS_MCS0;
case MPT_RATE_VHT2SS_MCS1:
return MGN_VHT2SS_MCS1;
case MPT_RATE_VHT2SS_MCS2:
return MGN_VHT2SS_MCS2;
case MPT_RATE_VHT2SS_MCS3:
return MGN_VHT2SS_MCS3;
case MPT_RATE_VHT2SS_MCS4:
return MGN_VHT2SS_MCS4;
case MPT_RATE_VHT2SS_MCS5:
return MGN_VHT2SS_MCS5;
case MPT_RATE_VHT2SS_MCS6:
return MGN_VHT2SS_MCS6;
case MPT_RATE_VHT2SS_MCS7:
return MGN_VHT2SS_MCS7;
case MPT_RATE_VHT2SS_MCS8:
return MGN_VHT2SS_MCS8;
case MPT_RATE_VHT2SS_MCS9:
return MGN_VHT2SS_MCS9;
case MPT_RATE_VHT3SS_MCS0:
return MGN_VHT3SS_MCS0;
case MPT_RATE_VHT3SS_MCS1:
return MGN_VHT3SS_MCS1;
case MPT_RATE_VHT3SS_MCS2:
return MGN_VHT3SS_MCS2;
case MPT_RATE_VHT3SS_MCS3:
return MGN_VHT3SS_MCS3;
case MPT_RATE_VHT3SS_MCS4:
return MGN_VHT3SS_MCS4;
case MPT_RATE_VHT3SS_MCS5:
return MGN_VHT3SS_MCS5;
case MPT_RATE_VHT3SS_MCS6:
return MGN_VHT3SS_MCS6;
case MPT_RATE_VHT3SS_MCS7:
return MGN_VHT3SS_MCS7;
case MPT_RATE_VHT3SS_MCS8:
return MGN_VHT3SS_MCS8;
case MPT_RATE_VHT3SS_MCS9:
return MGN_VHT3SS_MCS9;
case MPT_RATE_VHT4SS_MCS0:
return MGN_VHT4SS_MCS0;
case MPT_RATE_VHT4SS_MCS1:
return MGN_VHT4SS_MCS1;
case MPT_RATE_VHT4SS_MCS2:
return MGN_VHT4SS_MCS2;
case MPT_RATE_VHT4SS_MCS3:
return MGN_VHT4SS_MCS3;
case MPT_RATE_VHT4SS_MCS4:
return MGN_VHT4SS_MCS4;
case MPT_RATE_VHT4SS_MCS5:
return MGN_VHT4SS_MCS5;
case MPT_RATE_VHT4SS_MCS6:
return MGN_VHT4SS_MCS6;
case MPT_RATE_VHT4SS_MCS7:
return MGN_VHT4SS_MCS7;
case MPT_RATE_VHT4SS_MCS8:
return MGN_VHT4SS_MCS8;
case MPT_RATE_VHT4SS_MCS9:
return MGN_VHT4SS_MCS9;
case MPT_RATE_LAST: /* fully automatiMGN_VHT2SS_MCS1; */
default:
RTW_INFO("<===mpt_to_mgnt_rate(), Invalid Rate: %d!!\n", MptRateIdx);
return 0x0;
}
}
u8 HwRateToMPTRate(u8 rate)
{
u8 ret_rate = MGN_1M;
switch (rate) {
case DESC_RATE1M:
ret_rate = MPT_RATE_1M;
break;
case DESC_RATE2M:
ret_rate = MPT_RATE_2M;
break;
case DESC_RATE5_5M:
ret_rate = MPT_RATE_55M;
break;
case DESC_RATE11M:
ret_rate = MPT_RATE_11M;
break;
case DESC_RATE6M:
ret_rate = MPT_RATE_6M;
break;
case DESC_RATE9M:
ret_rate = MPT_RATE_9M;
break;
case DESC_RATE12M:
ret_rate = MPT_RATE_12M;
break;
case DESC_RATE18M:
ret_rate = MPT_RATE_18M;
break;
case DESC_RATE24M:
ret_rate = MPT_RATE_24M;
break;
case DESC_RATE36M:
ret_rate = MPT_RATE_36M;
break;
case DESC_RATE48M:
ret_rate = MPT_RATE_48M;
break;
case DESC_RATE54M:
ret_rate = MPT_RATE_54M;
break;
case DESC_RATEMCS0:
ret_rate = MPT_RATE_MCS0;
break;
case DESC_RATEMCS1:
ret_rate = MPT_RATE_MCS1;
break;
case DESC_RATEMCS2:
ret_rate = MPT_RATE_MCS2;
break;
case DESC_RATEMCS3:
ret_rate = MPT_RATE_MCS3;
break;
case DESC_RATEMCS4:
ret_rate = MPT_RATE_MCS4;
break;
case DESC_RATEMCS5:
ret_rate = MPT_RATE_MCS5;
break;
case DESC_RATEMCS6:
ret_rate = MPT_RATE_MCS6;
break;
case DESC_RATEMCS7:
ret_rate = MPT_RATE_MCS7;
break;
case DESC_RATEMCS8:
ret_rate = MPT_RATE_MCS8;
break;
case DESC_RATEMCS9:
ret_rate = MPT_RATE_MCS9;
break;
case DESC_RATEMCS10:
ret_rate = MPT_RATE_MCS10;
break;
case DESC_RATEMCS11:
ret_rate = MPT_RATE_MCS11;
break;
case DESC_RATEMCS12:
ret_rate = MPT_RATE_MCS12;
break;
case DESC_RATEMCS13:
ret_rate = MPT_RATE_MCS13;
break;
case DESC_RATEMCS14:
ret_rate = MPT_RATE_MCS14;
break;
case DESC_RATEMCS15:
ret_rate = MPT_RATE_MCS15;
break;
case DESC_RATEMCS16:
ret_rate = MPT_RATE_MCS16;
break;
case DESC_RATEMCS17:
ret_rate = MPT_RATE_MCS17;
break;
case DESC_RATEMCS18:
ret_rate = MPT_RATE_MCS18;
break;
case DESC_RATEMCS19:
ret_rate = MPT_RATE_MCS19;
break;
case DESC_RATEMCS20:
ret_rate = MPT_RATE_MCS20;
break;
case DESC_RATEMCS21:
ret_rate = MPT_RATE_MCS21;
break;
case DESC_RATEMCS22:
ret_rate = MPT_RATE_MCS22;
break;
case DESC_RATEMCS23:
ret_rate = MPT_RATE_MCS23;
break;
case DESC_RATEMCS24:
ret_rate = MPT_RATE_MCS24;
break;
case DESC_RATEMCS25:
ret_rate = MPT_RATE_MCS25;
break;
case DESC_RATEMCS26:
ret_rate = MPT_RATE_MCS26;
break;
case DESC_RATEMCS27:
ret_rate = MPT_RATE_MCS27;
break;
case DESC_RATEMCS28:
ret_rate = MPT_RATE_MCS28;
break;
case DESC_RATEMCS29:
ret_rate = MPT_RATE_MCS29;
break;
case DESC_RATEMCS30:
ret_rate = MPT_RATE_MCS30;
break;
case DESC_RATEMCS31:
ret_rate = MPT_RATE_MCS31;
break;
case DESC_RATEVHTSS1MCS0:
ret_rate = MPT_RATE_VHT1SS_MCS0;
break;
case DESC_RATEVHTSS1MCS1:
ret_rate = MPT_RATE_VHT1SS_MCS1;
break;
case DESC_RATEVHTSS1MCS2:
ret_rate = MPT_RATE_VHT1SS_MCS2;
break;
case DESC_RATEVHTSS1MCS3:
ret_rate = MPT_RATE_VHT1SS_MCS3;
break;
case DESC_RATEVHTSS1MCS4:
ret_rate = MPT_RATE_VHT1SS_MCS4;
break;
case DESC_RATEVHTSS1MCS5:
ret_rate = MPT_RATE_VHT1SS_MCS5;
break;
case DESC_RATEVHTSS1MCS6:
ret_rate = MPT_RATE_VHT1SS_MCS6;
break;
case DESC_RATEVHTSS1MCS7:
ret_rate = MPT_RATE_VHT1SS_MCS7;
break;
case DESC_RATEVHTSS1MCS8:
ret_rate = MPT_RATE_VHT1SS_MCS8;
break;
case DESC_RATEVHTSS1MCS9:
ret_rate = MPT_RATE_VHT1SS_MCS9;
break;
case DESC_RATEVHTSS2MCS0:
ret_rate = MPT_RATE_VHT2SS_MCS0;
break;
case DESC_RATEVHTSS2MCS1:
ret_rate = MPT_RATE_VHT2SS_MCS1;
break;
case DESC_RATEVHTSS2MCS2:
ret_rate = MPT_RATE_VHT2SS_MCS2;
break;
case DESC_RATEVHTSS2MCS3:
ret_rate = MPT_RATE_VHT2SS_MCS3;
break;
case DESC_RATEVHTSS2MCS4:
ret_rate = MPT_RATE_VHT2SS_MCS4;
break;
case DESC_RATEVHTSS2MCS5:
ret_rate = MPT_RATE_VHT2SS_MCS5;
break;
case DESC_RATEVHTSS2MCS6:
ret_rate = MPT_RATE_VHT2SS_MCS6;
break;
case DESC_RATEVHTSS2MCS7:
ret_rate = MPT_RATE_VHT2SS_MCS7;
break;
case DESC_RATEVHTSS2MCS8:
ret_rate = MPT_RATE_VHT2SS_MCS8;
break;
case DESC_RATEVHTSS2MCS9:
ret_rate = MPT_RATE_VHT2SS_MCS9;
break;
case DESC_RATEVHTSS3MCS0:
ret_rate = MPT_RATE_VHT3SS_MCS0;
break;
case DESC_RATEVHTSS3MCS1:
ret_rate = MPT_RATE_VHT3SS_MCS1;
break;
case DESC_RATEVHTSS3MCS2:
ret_rate = MPT_RATE_VHT3SS_MCS2;
break;
case DESC_RATEVHTSS3MCS3:
ret_rate = MPT_RATE_VHT3SS_MCS3;
break;
case DESC_RATEVHTSS3MCS4:
ret_rate = MPT_RATE_VHT3SS_MCS4;
break;
case DESC_RATEVHTSS3MCS5:
ret_rate = MPT_RATE_VHT3SS_MCS5;
break;
case DESC_RATEVHTSS3MCS6:
ret_rate = MPT_RATE_VHT3SS_MCS6;
break;
case DESC_RATEVHTSS3MCS7:
ret_rate = MPT_RATE_VHT3SS_MCS7;
break;
case DESC_RATEVHTSS3MCS8:
ret_rate = MPT_RATE_VHT3SS_MCS8;
break;
case DESC_RATEVHTSS3MCS9:
ret_rate = MPT_RATE_VHT3SS_MCS9;
break;
case DESC_RATEVHTSS4MCS0:
ret_rate = MPT_RATE_VHT4SS_MCS0;
break;
case DESC_RATEVHTSS4MCS1:
ret_rate = MPT_RATE_VHT4SS_MCS1;
break;
case DESC_RATEVHTSS4MCS2:
ret_rate = MPT_RATE_VHT4SS_MCS2;
break;
case DESC_RATEVHTSS4MCS3:
ret_rate = MPT_RATE_VHT4SS_MCS3;
break;
case DESC_RATEVHTSS4MCS4:
ret_rate = MPT_RATE_VHT4SS_MCS4;
break;
case DESC_RATEVHTSS4MCS5:
ret_rate = MPT_RATE_VHT4SS_MCS5;
break;
case DESC_RATEVHTSS4MCS6:
ret_rate = MPT_RATE_VHT4SS_MCS6;
break;
case DESC_RATEVHTSS4MCS7:
ret_rate = MPT_RATE_VHT4SS_MCS7;
break;
case DESC_RATEVHTSS4MCS8:
ret_rate = MPT_RATE_VHT4SS_MCS8;
break;
case DESC_RATEVHTSS4MCS9:
ret_rate = MPT_RATE_VHT4SS_MCS9;
break;
default:
RTW_INFO("hw_rate_to_m_rate(): Non supported Rate [%x]!!!\n", rate);
break;
}
return ret_rate;
}
u8 rtw_mpRateParseFunc(PADAPTER pAdapter, u8 *targetStr)
{
u16 i = 0;
u8 *rateindex_Array[] = { "1M", "2M", "5.5M", "11M", "6M", "9M", "12M", "18M", "24M", "36M", "48M", "54M",
"HTMCS0", "HTMCS1", "HTMCS2", "HTMCS3", "HTMCS4", "HTMCS5", "HTMCS6", "HTMCS7",
"HTMCS8", "HTMCS9", "HTMCS10", "HTMCS11", "HTMCS12", "HTMCS13", "HTMCS14", "HTMCS15",
"HTMCS16", "HTMCS17", "HTMCS18", "HTMCS19", "HTMCS20", "HTMCS21", "HTMCS22", "HTMCS23",
"HTMCS24", "HTMCS25", "HTMCS26", "HTMCS27", "HTMCS28", "HTMCS29", "HTMCS30", "HTMCS31",
"VHT1MCS0", "VHT1MCS1", "VHT1MCS2", "VHT1MCS3", "VHT1MCS4", "VHT1MCS5", "VHT1MCS6", "VHT1MCS7", "VHT1MCS8", "VHT1MCS9",
"VHT2MCS0", "VHT2MCS1", "VHT2MCS2", "VHT2MCS3", "VHT2MCS4", "VHT2MCS5", "VHT2MCS6", "VHT2MCS7", "VHT2MCS8", "VHT2MCS9",
"VHT3MCS0", "VHT3MCS1", "VHT3MCS2", "VHT3MCS3", "VHT3MCS4", "VHT3MCS5", "VHT3MCS6", "VHT3MCS7", "VHT3MCS8", "VHT3MCS9",
"VHT4MCS0", "VHT4MCS1", "VHT4MCS2", "VHT4MCS3", "VHT4MCS4", "VHT4MCS5", "VHT4MCS6", "VHT4MCS7", "VHT4MCS8", "VHT4MCS9"
};
for (i = 0; i <= 83; i++) {
if (strcmp(targetStr, rateindex_Array[i]) == 0) {
RTW_INFO("%s , index = %d\n", __func__ , i);
return i;
}
}
RTW_INFO("%s ,please input a Data RATE String as:", __func__);
for (i = 0; i <= 83; i++) {
RTW_INFO("%s ", rateindex_Array[i]);
if (i % 10 == 0)
RTW_INFO("\n");
}
return _FAIL;
}
ULONG mpt_ProQueryCalTxPower(
PADAPTER pAdapter,
u8 RfPath
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.mpt_ctx);
ULONG TxPower = 1;
u1Byte rate = 0;
struct txpwr_idx_comp tic;
u8 mgn_rate = mpt_to_mgnt_rate(pMptCtx->mpt_rate_index);
TxPower = rtw_hal_get_tx_power_index(pAdapter, RfPath, mgn_rate, pHalData->current_channel_bw, pHalData->current_channel, &tic);
RTW_INFO("bw=%d, ch=%d, rate=%d, txPower:%u = %u + (%d=%d:%d) + (%d) + (%d)\n",
pHalData->current_channel_bw, pHalData->current_channel, mgn_rate
, TxPower, tic.base, (tic.by_rate > tic.limit ? tic.limit : tic.by_rate), tic.by_rate, tic.limit, tic.tpt, tic.ebias);
pAdapter->mppriv.txpoweridx = (u8)TxPower;
pMptCtx->TxPwrLevel[ODM_RF_PATH_A] = (u8)TxPower;
pMptCtx->TxPwrLevel[ODM_RF_PATH_B] = (u8)TxPower;
pMptCtx->TxPwrLevel[ODM_RF_PATH_C] = (u8)TxPower;
pMptCtx->TxPwrLevel[ODM_RF_PATH_D] = (u8)TxPower;
hal_mpt_SetTxPower(pAdapter);
return TxPower;
}
#ifdef CONFIG_MP_VHT_HW_TX_MODE
static inline void dump_buf(u8 *buf, u32 len)
{
u32 i;
RTW_INFO("-----------------Len %d----------------\n", len);
for (i = 0; i < len; i++)
RTW_INFO("%2.2x-", *(buf + i));
RTW_INFO("\n");
}
void ByteToBit(
UCHAR *out,
bool *in,
UCHAR in_size)
{
UCHAR i = 0, j = 0;
for (i = 0; i < in_size; i++) {
for (j = 0; j < 8; j++) {
if (in[8 * i + j])
out[i] |= (1 << j);
}
}
}
void CRC16_generator(
bool *out,
bool *in,
UCHAR in_size
)
{
UCHAR i = 0;
bool temp = 0, reg[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
for (i = 0; i < in_size; i++) {/* take one's complement and bit reverse*/
temp = in[i] ^ reg[15];
reg[15] = reg[14];
reg[14] = reg[13];
reg[13] = reg[12];
reg[12] = reg[11];
reg[11] = reg[10];
reg[10] = reg[9];
reg[9] = reg[8];
reg[8] = reg[7];
reg[7] = reg[6];
reg[6] = reg[5];
reg[5] = reg[4];
reg[4] = reg[3];
reg[3] = reg[2];
reg[2] = reg[1];
reg[1] = reg[0];
reg[12] = reg[12] ^ temp;
reg[5] = reg[5] ^ temp;
reg[0] = temp;
}
for (i = 0; i < 16; i++) /* take one's complement and bit reverse*/
out[i] = 1 - reg[15 - i];
}
/*========================================
SFD SIGNAL SERVICE LENGTH CRC
16 bit 8 bit 8 bit 16 bit 16 bit
========================================*/
void CCK_generator(
PRT_PMAC_TX_INFO pPMacTxInfo,
PRT_PMAC_PKT_INFO pPMacPktInfo
)
{
double ratio = 0;
bool crc16_in[32] = {0}, crc16_out[16] = {0};
bool LengthExtBit;
double LengthExact;
double LengthPSDU;
UCHAR i;
UINT PacketLength = pPMacTxInfo->PacketLength;
if (pPMacTxInfo->bSPreamble)
pPMacTxInfo->SFD = 0x05CF;
else
pPMacTxInfo->SFD = 0xF3A0;
switch (pPMacPktInfo->MCS) {
case 0:
pPMacTxInfo->SignalField = 0xA;
ratio = 8;
/*CRC16_in(1,0:7)=[0 1 0 1 0 0 0 0]*/
crc16_in[1] = crc16_in[3] = 1;
break;
case 1:
pPMacTxInfo->SignalField = 0x14;
ratio = 4;
/*CRC16_in(1,0:7)=[0 0 1 0 1 0 0 0];*/
crc16_in[2] = crc16_in[4] = 1;
break;
case 2:
pPMacTxInfo->SignalField = 0x37;
ratio = 8.0 / 5.5;
/*CRC16_in(1,0:7)=[1 1 1 0 1 1 0 0];*/
crc16_in[0] = crc16_in[1] = crc16_in[2] = crc16_in[4] = crc16_in[5] = 1;
break;
case 3:
pPMacTxInfo->SignalField = 0x6E;
ratio = 8.0 / 11.0;
/*CRC16_in(1,0:7)=[0 1 1 1 0 1 1 0];*/
crc16_in[1] = crc16_in[2] = crc16_in[3] = crc16_in[5] = crc16_in[6] = 1;
break;
}
LengthExact = PacketLength * ratio;
LengthPSDU = ceil(LengthExact);
if ((pPMacPktInfo->MCS == 3) &&
((LengthPSDU - LengthExact) >= 0.727 || (LengthPSDU - LengthExact) <= -0.727))
LengthExtBit = 1;
else
LengthExtBit = 0;
pPMacTxInfo->LENGTH = (UINT)LengthPSDU;
/* CRC16_in(1,16:31) = LengthPSDU[0:15]*/
for (i = 0; i < 16; i++)
crc16_in[i + 16] = (pPMacTxInfo->LENGTH >> i) & 0x1;
if (LengthExtBit == 0) {
pPMacTxInfo->ServiceField = 0x0;
/* CRC16_in(1,8:15) = [0 0 0 0 0 0 0 0];*/
} else {
pPMacTxInfo->ServiceField = 0x80;
/*CRC16_in(1,8:15)=[0 0 0 0 0 0 0 1];*/
crc16_in[15] = 1;
}
CRC16_generator(crc16_out, crc16_in, 32);
_rtw_memset(pPMacTxInfo->CRC16, 0, 2);
ByteToBit(pPMacTxInfo->CRC16, crc16_out, 2);
}
void PMAC_Get_Pkt_Param(
PRT_PMAC_TX_INFO pPMacTxInfo,
PRT_PMAC_PKT_INFO pPMacPktInfo)
{
UCHAR TX_RATE_HEX = 0, MCS = 0;
UCHAR TX_RATE = pPMacTxInfo->TX_RATE;
/* TX_RATE & Nss */
if (MPT_IS_2SS_RATE(TX_RATE))
pPMacPktInfo->Nss = 2;
else if (MPT_IS_3SS_RATE(TX_RATE))
pPMacPktInfo->Nss = 3;
else if (MPT_IS_4SS_RATE(TX_RATE))
pPMacPktInfo->Nss = 4;
else
pPMacPktInfo->Nss = 1;
RTW_INFO("PMacTxInfo.Nss =%d\n", pPMacPktInfo->Nss);
/* MCS & TX_RATE_HEX*/
if (MPT_IS_CCK_RATE(TX_RATE)) {
switch (TX_RATE) {
case MPT_RATE_1M:
TX_RATE_HEX = MCS = 0;
break;
case MPT_RATE_2M:
TX_RATE_HEX = MCS = 1;
break;
case MPT_RATE_55M:
TX_RATE_HEX = MCS = 2;
break;
case MPT_RATE_11M:
TX_RATE_HEX = MCS = 3;
break;
}
} else if (MPT_IS_OFDM_RATE(TX_RATE)) {
MCS = TX_RATE - MPT_RATE_6M;
TX_RATE_HEX = MCS + 4;
} else if (MPT_IS_HT_RATE(TX_RATE)) {
MCS = TX_RATE - MPT_RATE_MCS0;
TX_RATE_HEX = MCS + 12;
} else if (MPT_IS_VHT_RATE(TX_RATE)) {
TX_RATE_HEX = TX_RATE - MPT_RATE_VHT1SS_MCS0 + 44;
if (MPT_IS_VHT_2S_RATE(TX_RATE))
MCS = TX_RATE - MPT_RATE_VHT2SS_MCS0;
else if (MPT_IS_VHT_3S_RATE(TX_RATE))
MCS = TX_RATE - MPT_RATE_VHT3SS_MCS0;
else if (MPT_IS_VHT_4S_RATE(TX_RATE))
MCS = TX_RATE - MPT_RATE_VHT4SS_MCS0;
else
MCS = TX_RATE - MPT_RATE_VHT1SS_MCS0;
}
pPMacPktInfo->MCS = MCS;
pPMacTxInfo->TX_RATE_HEX = TX_RATE_HEX;
RTW_INFO(" MCS=%d, TX_RATE_HEX =0x%x\n", MCS, pPMacTxInfo->TX_RATE_HEX);
/* mSTBC & Nsts*/
pPMacPktInfo->Nsts = pPMacPktInfo->Nss;
if (pPMacTxInfo->bSTBC) {
if (pPMacPktInfo->Nss == 1) {
pPMacTxInfo->m_STBC = 2;
pPMacPktInfo->Nsts = pPMacPktInfo->Nss * 2;
} else
pPMacTxInfo->m_STBC = 1;
} else
pPMacTxInfo->m_STBC = 1;
}
UINT LDPC_parameter_generator(
UINT N_pld_int,
UINT N_CBPSS,
UINT N_SS,
UINT R,
UINT m_STBC,
UINT N_TCB_int
)
{
double CR = 0.;
double N_pld = (double)N_pld_int;
double N_TCB = (double)N_TCB_int;
double N_CW = 0., N_shrt = 0., N_spcw = 0., N_fshrt = 0.;
double L_LDPC = 0., K_LDPC = 0., L_LDPC_info = 0.;
double N_punc = 0., N_ppcw = 0., N_fpunc = 0., N_rep = 0., N_rpcw = 0., N_frep = 0.;
double R_eff = 0.;
UINT VHTSIGA2B3 = 0;/* extra symbol from VHT-SIG-A2 Bit 3*/
if (R == 0)
CR = 0.5;
else if (R == 1)
CR = 2. / 3.;
else if (R == 2)
CR = 3. / 4.;
else if (R == 3)
CR = 5. / 6.;
if (N_TCB <= 648.) {
N_CW = 1.;
if (N_TCB >= N_pld + 912.*(1. - CR))
L_LDPC = 1296.;
else
L_LDPC = 648.;
} else if (N_TCB <= 1296.) {
N_CW = 1.;
if (N_TCB >= (double)N_pld + 1464.*(1. - CR))
L_LDPC = 1944.;
else
L_LDPC = 1296.;
} else if (N_TCB <= 1944.) {
N_CW = 1.;
L_LDPC = 1944.;
} else if (N_TCB <= 2592.) {
N_CW = 2.;
if (N_TCB >= N_pld + 2916.*(1. - CR))
L_LDPC = 1944.;
else
L_LDPC = 1296.;
} else {
N_CW = ceil(N_pld / 1944. / CR);
L_LDPC = 1944.;
}
/* Number of information bits per CW*/
K_LDPC = L_LDPC * CR;
/* Number of shortening bits max(0, (N_CW * L_LDPC * R) - N_pld)*/
N_shrt = (N_CW * K_LDPC - N_pld) > 0. ? (N_CW * K_LDPC - N_pld) : 0.;
/* Number of shortening bits per CW N_spcw = rtfloor(N_shrt/N_CW)*/
N_spcw = rtfloor(N_shrt / N_CW);
/* The first N_fshrt CWs shorten 1 bit more*/
N_fshrt = (double)((int)N_shrt % (int)N_CW);
/* Number of data bits for the last N_CW-N_fshrt CWs*/
L_LDPC_info = K_LDPC - N_spcw;
/* Number of puncturing bits*/
N_punc = (N_CW * L_LDPC - N_TCB - N_shrt) > 0. ? (N_CW * L_LDPC - N_TCB - N_shrt) : 0.;
if (((N_punc > .1 * N_CW * L_LDPC * (1. - CR)) && (N_shrt < 1.2 * N_punc * CR / (1. - CR))) ||
(N_punc > 0.3 * N_CW * L_LDPC * (1. - CR))) {
/*cout << "*** N_TCB and N_punc are Recomputed ***" << endl;*/
VHTSIGA2B3 = 1;
N_TCB += (double)N_CBPSS * N_SS * m_STBC;
N_punc = (N_CW * L_LDPC - N_TCB - N_shrt) > 0. ? (N_CW * L_LDPC - N_TCB - N_shrt) : 0.;
} else
VHTSIGA2B3 = 0;
return VHTSIGA2B3;
} /* function end of LDPC_parameter_generator */
/*========================================
Data field of PPDU
Get N_sym and SIGA2BB3
========================================*/
void PMAC_Nsym_generator(
PRT_PMAC_TX_INFO pPMacTxInfo,
PRT_PMAC_PKT_INFO pPMacPktInfo)
{
UINT SIGA2B3 = 0;
UCHAR TX_RATE = pPMacTxInfo->TX_RATE;
UINT R, R_list[10] = {0, 0, 2, 0, 2, 1, 2, 3, 2, 3};
double CR = 0;
UINT N_SD, N_BPSC_list[10] = {1, 2, 2, 4, 4, 6, 6, 6, 8, 8};
UINT N_BPSC = 0, N_CBPS = 0, N_DBPS = 0, N_ES = 0, N_SYM = 0, N_pld = 0, N_TCB = 0;
int D_R = 0;
RTW_INFO("TX_RATE = %d\n", TX_RATE);
/* N_SD*/
if (pPMacTxInfo->BandWidth == 0)
N_SD = 52;
else if (pPMacTxInfo->BandWidth == 1)
N_SD = 108;
else
N_SD = 234;
if (MPT_IS_HT_RATE(TX_RATE)) {
UCHAR MCS_temp;
if (pPMacPktInfo->MCS > 23)
MCS_temp = pPMacPktInfo->MCS - 24;
else if (pPMacPktInfo->MCS > 15)
MCS_temp = pPMacPktInfo->MCS - 16;
else if (pPMacPktInfo->MCS > 7)
MCS_temp = pPMacPktInfo->MCS - 8;
else
MCS_temp = pPMacPktInfo->MCS;
R = R_list[MCS_temp];
switch (R) {
case 0:
CR = .5;
break;
case 1:
CR = 2. / 3.;
break;
case 2:
CR = 3. / 4.;
break;
case 3:
CR = 5. / 6.;
break;
}
N_BPSC = N_BPSC_list[MCS_temp];
N_CBPS = N_BPSC * N_SD * pPMacPktInfo->Nss;
N_DBPS = (UINT)((double)N_CBPS * CR);
if (pPMacTxInfo->bLDPC == FALSE) {
N_ES = (UINT)ceil((double)(N_DBPS * pPMacPktInfo->Nss) / 4. / 300.);
RTW_INFO("N_ES = %d\n", N_ES);
/* N_SYM = m_STBC* (8*length+16+6*N_ES) / (m_STBC*N_DBPS)*/
N_SYM = pPMacTxInfo->m_STBC * (UINT)ceil((double)(pPMacTxInfo->PacketLength * 8 + 16 + N_ES * 6) /
(double)(N_DBPS * pPMacTxInfo->m_STBC));
} else {
N_ES = 1;
/* N_pld = length * 8 + 16*/
N_pld = pPMacTxInfo->PacketLength * 8 + 16;
RTW_INFO("N_pld = %d\n", N_pld);
N_SYM = pPMacTxInfo->m_STBC * (UINT)ceil((double)(N_pld) /
(double)(N_DBPS * pPMacTxInfo->m_STBC));
RTW_INFO("N_SYM = %d\n", N_SYM);
/* N_avbits = N_CBPS *m_STBC *(N_pld/N_CBPS*R*m_STBC)*/
N_TCB = N_CBPS * N_SYM;
RTW_INFO("N_TCB = %d\n", N_TCB);
SIGA2B3 = LDPC_parameter_generator(N_pld, N_CBPS, pPMacPktInfo->Nss, R, pPMacTxInfo->m_STBC, N_TCB);
RTW_INFO("SIGA2B3 = %d\n", SIGA2B3);
N_SYM = N_SYM + SIGA2B3 * pPMacTxInfo->m_STBC;
RTW_INFO("N_SYM = %d\n", N_SYM);
}
} else if (MPT_IS_VHT_RATE(TX_RATE)) {
R = R_list[pPMacPktInfo->MCS];
switch (R) {
case 0:
CR = .5;
break;
case 1:
CR = 2. / 3.;
break;
case 2:
CR = 3. / 4.;
break;
case 3:
CR = 5. / 6.;
break;
}
N_BPSC = N_BPSC_list[pPMacPktInfo->MCS];
N_CBPS = N_BPSC * N_SD * pPMacPktInfo->Nss;
N_DBPS = (UINT)((double)N_CBPS * CR);
if (pPMacTxInfo->bLDPC == FALSE) {
if (pPMacTxInfo->bSGI)
N_ES = (UINT)ceil((double)(N_DBPS) / 3.6 / 600.);
else
N_ES = (UINT)ceil((double)(N_DBPS) / 4. / 600.);
/* N_SYM = m_STBC* (8*length+16+6*N_ES) / (m_STBC*N_DBPS)*/
N_SYM = pPMacTxInfo->m_STBC * (UINT)ceil((double)(pPMacTxInfo->PacketLength * 8 + 16 + N_ES * 6) / (double)(N_DBPS * pPMacTxInfo->m_STBC));
SIGA2B3 = 0;
} else {
N_ES = 1;
/* N_SYM = m_STBC* (8*length+N_service) / (m_STBC*N_DBPS)*/
N_SYM = pPMacTxInfo->m_STBC * (UINT)ceil((double)(pPMacTxInfo->PacketLength * 8 + 16) / (double)(N_DBPS * pPMacTxInfo->m_STBC));
/* N_avbits = N_sys_init * N_CBPS*/
N_TCB = N_CBPS * N_SYM;
/* N_pld = N_sys_init * N_DBPS*/
N_pld = N_SYM * N_DBPS;
SIGA2B3 = LDPC_parameter_generator(N_pld, N_CBPS, pPMacPktInfo->Nss, R, pPMacTxInfo->m_STBC, N_TCB);
N_SYM = N_SYM + SIGA2B3 * pPMacTxInfo->m_STBC;
}
switch (R) {
case 0:
D_R = 2;
break;
case 1:
D_R = 3;
break;
case 2:
D_R = 4;
break;
case 3:
D_R = 6;
break;
}
if (((N_CBPS / N_ES) % D_R) != 0) {
RTW_INFO("MCS= %d is not supported when Nss=%d and BW= %d !!\n", pPMacPktInfo->MCS, pPMacPktInfo->Nss, pPMacTxInfo->BandWidth);
return;
}
RTW_INFO("MCS= %d Nss=%d and BW= %d !!\n", pPMacPktInfo->MCS, pPMacPktInfo->Nss, pPMacTxInfo->BandWidth);
}
pPMacPktInfo->N_sym = N_SYM;
pPMacPktInfo->SIGA2B3 = SIGA2B3;
}
/*========================================
L-SIG Rate R Length P Tail
4b 1b 12b 1b 6b
========================================*/
void L_SIG_generator(
UINT N_SYM, /* Max: 750*/
PRT_PMAC_TX_INFO pPMacTxInfo,
PRT_PMAC_PKT_INFO pPMacPktInfo)
{
u8 sig_bi[24] = {0}; /* 24 BIT*/
UINT mode, LENGTH;
int i;
if (MPT_IS_OFDM_RATE(pPMacTxInfo->TX_RATE)) {
mode = pPMacPktInfo->MCS;
LENGTH = pPMacTxInfo->PacketLength;
} else {
UCHAR N_LTF;
double T_data;
UINT OFDM_symbol;
mode = 0;
/* Table 20-13 Num of HT-DLTFs request*/
if (pPMacPktInfo->Nsts <= 2)
N_LTF = pPMacPktInfo->Nsts;
else
N_LTF = 4;
if (pPMacTxInfo->bSGI)
T_data = 3.6;
else
T_data = 4.0;
/*(L-SIG, HT-SIG, HT-STF, HT-LTF....HT-LTF, Data)*/
if (MPT_IS_VHT_RATE(pPMacTxInfo->TX_RATE))
OFDM_symbol = (UINT)ceil((double)(8 + 4 + N_LTF * 4 + N_SYM * T_data + 4) / 4.);
else
OFDM_symbol = (UINT)ceil((double)(8 + 4 + N_LTF * 4 + N_SYM * T_data) / 4.);
RTW_INFO("%s , OFDM_symbol =%d\n", __func__, OFDM_symbol);
LENGTH = OFDM_symbol * 3 - 3;
RTW_INFO("%s , LENGTH =%d\n", __func__, LENGTH);
}
/* Rate Field*/
switch (mode) {
case 0:
sig_bi[0] = 1;
sig_bi[1] = 1;
sig_bi[2] = 0;
sig_bi[3] = 1;
break;
case 1:
sig_bi[0] = 1;
sig_bi[1] = 1;
sig_bi[2] = 1;
sig_bi[3] = 1;
break;
case 2:
sig_bi[0] = 0;
sig_bi[1] = 1;
sig_bi[2] = 0;
sig_bi[3] = 1;
break;
case 3:
sig_bi[0] = 0;
sig_bi[1] = 1;
sig_bi[2] = 1;
sig_bi[3] = 1;
break;
case 4:
sig_bi[0] = 1;
sig_bi[1] = 0;
sig_bi[2] = 0;
sig_bi[3] = 1;
break;
case 5:
sig_bi[0] = 1;
sig_bi[1] = 0;
sig_bi[2] = 1;
sig_bi[3] = 1;
break;
case 6:
sig_bi[0] = 0;
sig_bi[1] = 0;
sig_bi[2] = 0;
sig_bi[3] = 1;
break;
case 7:
sig_bi[0] = 0;
sig_bi[1] = 0;
sig_bi[2] = 1;
sig_bi[3] = 1;
break;
}
/*Reserved bit*/
sig_bi[4] = 0;
/* Length Field*/
for (i = 0; i < 12; i++)
sig_bi[i + 5] = (LENGTH >> i) & 1;
/* Parity Bit*/
sig_bi[17] = 0;
for (i = 0; i < 17; i++)
sig_bi[17] = sig_bi[17] + sig_bi[i];
sig_bi[17] %= 2;
/* Tail Field*/
for (i = 18; i < 24; i++)
sig_bi[i] = 0;
/* dump_buf(sig_bi,24);*/
_rtw_memset(pPMacTxInfo->LSIG, 0, 3);
ByteToBit(pPMacTxInfo->LSIG, (bool *)sig_bi, 3);
}
void CRC8_generator(
bool *out,
bool *in,
UCHAR in_size
)
{
UCHAR i = 0;
bool temp = 0, reg[] = {1, 1, 1, 1, 1, 1, 1, 1};
for (i = 0; i < in_size; i++) { /* take one's complement and bit reverse*/
temp = in[i] ^ reg[7];
reg[7] = reg[6];
reg[6] = reg[5];
reg[5] = reg[4];
reg[4] = reg[3];
reg[3] = reg[2];
reg[2] = reg[1] ^ temp;
reg[1] = reg[0] ^ temp;
reg[0] = temp;
}
for (i = 0; i < 8; i++)/* take one's complement and bit reverse*/
out[i] = reg[7 - i] ^ 1;
}
/*/================================================================================
HT-SIG1 MCS CW Length 24BIT + 24BIT
7b 1b 16b
HT-SIG2 Smoothing Not sounding Rsvd AGG STBC FEC SGI N_ELTF CRC Tail
1b 1b 1b 1b 2b 1b 1b 2b 8b 6b
================================================================================*/
void HT_SIG_generator(
PRT_PMAC_TX_INFO pPMacTxInfo,
PRT_PMAC_PKT_INFO pPMacPktInfo
)
{
UINT i;
bool sig_bi[48] = {0}, crc8[8] = {0};
/* MCS Field*/
for (i = 0; i < 7; i++)
sig_bi[i] = (pPMacPktInfo->MCS >> i) & 0x1;
/* Packet BW Setting*/
sig_bi[7] = pPMacTxInfo->BandWidth;
/* HT-Length Field*/
for (i = 0; i < 16; i++)
sig_bi[i + 8] = (pPMacTxInfo->PacketLength >> i) & 0x1;
/* Smoothing; 1->allow smoothing*/
sig_bi[24] = 1;
/*Not Sounding*/
sig_bi[25] = 1 - pPMacTxInfo->NDP_sound;
/*Reserved bit*/
sig_bi[26] = 1;
/*/Aggregate*/
sig_bi[27] = 0;
/*STBC Field*/
if (pPMacTxInfo->bSTBC) {
sig_bi[28] = 1;
sig_bi[29] = 0;
} else {
sig_bi[28] = 0;
sig_bi[29] = 0;
}
/*Advance Coding, 0: BCC, 1: LDPC*/
sig_bi[30] = pPMacTxInfo->bLDPC;
/* Short GI*/
sig_bi[31] = pPMacTxInfo->bSGI;
/* N_ELTFs*/
if (pPMacTxInfo->NDP_sound == FALSE) {
sig_bi[32] = 0;
sig_bi[33] = 0;
} else {
int N_ELTF = pPMacTxInfo->Ntx - pPMacPktInfo->Nss;
for (i = 0; i < 2; i++)
sig_bi[32 + i] = (N_ELTF >> i) % 2;
}
/* CRC-8*/
CRC8_generator(crc8, sig_bi, 34);
for (i = 0; i < 8; i++)
sig_bi[34 + i] = crc8[i];
/*Tail*/
for (i = 42; i < 48; i++)
sig_bi[i] = 0;
_rtw_memset(pPMacTxInfo->HT_SIG, 0, 6);
ByteToBit(pPMacTxInfo->HT_SIG, sig_bi, 6);
}
/*======================================================================================
VHT-SIG-A1
BW Reserved STBC G_ID SU_Nsts P_AID TXOP_PS_NOT_ALLOW Reserved
2b 1b 1b 6b 3b 9b 1b 2b 1b
VHT-SIG-A2
SGI SGI_Nsym SU/MU coding LDPC_Extra SU_NCS Beamformed Reserved CRC Tail
1b 1b 1b 1b 4b 1b 1b 8b 6b
======================================================================================*/
void VHT_SIG_A_generator(
PRT_PMAC_TX_INFO pPMacTxInfo,
PRT_PMAC_PKT_INFO pPMacPktInfo)
{
UINT i;
bool sig_bi[48], crc8[8];
_rtw_memset(sig_bi, 0, 48);
_rtw_memset(crc8, 0, 8);
/* BW Setting*/
for (i = 0; i < 2; i++)
sig_bi[i] = (pPMacTxInfo->BandWidth >> i) & 0x1;
/* Reserved Bit*/
sig_bi[2] = 1;
/*STBC Field*/
sig_bi[3] = pPMacTxInfo->bSTBC;
/*Group ID: Single User->A value of 0 or 63 indicates an SU PPDU. */
for (i = 0; i < 6; i++)
sig_bi[4 + i] = 0;
/* N_STS/Partial AID*/
for (i = 0; i < 12; i++) {
if (i < 3)
sig_bi[10 + i] = ((pPMacPktInfo->Nsts - 1) >> i) & 0x1;
else
sig_bi[10 + i] = 0;
}
/*TXOP_PS_NOT_ALLPWED*/
sig_bi[22] = 0;
/*Reserved Bits*/
sig_bi[23] = 1;
/*Short GI*/
sig_bi[24] = pPMacTxInfo->bSGI;
if (pPMacTxInfo->bSGI > 0 && (pPMacPktInfo->N_sym % 10) == 9)
sig_bi[25] = 1;
else
sig_bi[25] = 0;
/* SU/MU[0] Coding*/
sig_bi[26] = pPMacTxInfo->bLDPC; /* 0:BCC, 1:LDPC */
sig_bi[27] = pPMacPktInfo->SIGA2B3; /*/ Record Extra OFDM Symols is added or not when LDPC is used*/
/*SU MCS/MU[1-3] Coding*/
for (i = 0; i < 4; i++)
sig_bi[28 + i] = (pPMacPktInfo->MCS >> i) & 0x1;
/*SU Beamform */
sig_bi[32] = 0; /*packet.TXBF_en;*/
/*Reserved Bit*/
sig_bi[33] = 1;
/*CRC-8*/
CRC8_generator(crc8, sig_bi, 34);
for (i = 0; i < 8; i++)
sig_bi[34 + i] = crc8[i];
/*Tail*/
for (i = 42; i < 48; i++)
sig_bi[i] = 0;
_rtw_memset(pPMacTxInfo->VHT_SIG_A, 0, 6);
ByteToBit(pPMacTxInfo->VHT_SIG_A, sig_bi, 6);
}
/*======================================================================================
VHT-SIG-B
Length Resesrved Trail
17/19/21 BIT 3/2/2 BIT 6b
======================================================================================*/
void VHT_SIG_B_generator(
PRT_PMAC_TX_INFO pPMacTxInfo)
{
bool sig_bi[32], crc8_bi[8];
UINT i, len, res, tail = 6, total_len, crc8_in_len;
UINT sigb_len;
_rtw_memset(sig_bi, 0, 32);
_rtw_memset(crc8_bi, 0, 8);
/*Sounding Packet*/
if (pPMacTxInfo->NDP_sound == 1) {
if (pPMacTxInfo->BandWidth == 0) {
bool sigb_temp[26] = {0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0};
_rtw_memcpy(sig_bi, sigb_temp, 26);
} else if (pPMacTxInfo->BandWidth == 1) {
bool sigb_temp[27] = {1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0};
_rtw_memcpy(sig_bi, sigb_temp, 27);
} else if (pPMacTxInfo->BandWidth == 2) {
bool sigb_temp[29] = {0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0};
_rtw_memcpy(sig_bi, sigb_temp, 29);
}
} else { /* Not NDP Sounding*/
bool *sigb_temp[29] = {0};
if (pPMacTxInfo->BandWidth == 0) {
len = 17;
res = 3;
} else if (pPMacTxInfo->BandWidth == 1) {
len = 19;
res = 2;
} else if (pPMacTxInfo->BandWidth == 2) {
len = 21;
res = 2;
} else {
len = 21;
res = 2;
}
total_len = len + res + tail;
crc8_in_len = len + res;
/*Length Field*/
sigb_len = (pPMacTxInfo->PacketLength + 3) >> 2;
for (i = 0; i < len; i++)
sig_bi[i] = (sigb_len >> i) & 0x1;
/*Reserved Field*/
for (i = 0; i < res; i++)
sig_bi[len + i] = 1;
/* CRC-8*/
CRC8_generator(crc8_bi, sig_bi, crc8_in_len);
/* Tail */
for (i = 0; i < tail; i++)
sig_bi[len + res + i] = 0;
}
_rtw_memset(pPMacTxInfo->VHT_SIG_B, 0, 4);
ByteToBit(pPMacTxInfo->VHT_SIG_B, sig_bi, 4);
pPMacTxInfo->VHT_SIG_B_CRC = 0;
ByteToBit(&(pPMacTxInfo->VHT_SIG_B_CRC), crc8_bi, 1);
}
/*=======================
VHT Delimiter
=======================*/
void VHT_Delimiter_generator(
PRT_PMAC_TX_INFO pPMacTxInfo
)
{
bool sig_bi[32] = {0}, crc8[8] = {0};
UINT crc8_in_len = 16;
UINT PacketLength = pPMacTxInfo->PacketLength;
int j;
/* Delimiter[0]: EOF*/
sig_bi[0] = 1;
/* Delimiter[1]: Reserved*/
sig_bi[1] = 0;
/* Delimiter[3:2]: MPDU Length High*/
sig_bi[2] = ((PacketLength - 4) >> 12) % 2;
sig_bi[3] = ((PacketLength - 4) >> 13) % 2;
/* Delimiter[15:4]: MPDU Length Low*/
for (j = 4; j < 16; j++)
sig_bi[j] = ((PacketLength - 4) >> (j - 4)) % 2;
CRC8_generator(crc8, sig_bi, crc8_in_len);
for (j = 16; j < 24; j++) /* Delimiter[23:16]: CRC 8*/
sig_bi[j] = crc8[j - 16];
for (j = 24; j < 32; j++) /* Delimiter[31:24]: Signature ('4E' in Hex, 78 in Dec)*/
sig_bi[j] = (78 >> (j - 24)) % 2;
_rtw_memset(pPMacTxInfo->VHT_Delimiter, 0, 4);
ByteToBit(pPMacTxInfo->VHT_Delimiter, sig_bi, 4);
}
#endif
#endif