mirror of
https://github.com/lwfinger/rtl8188eu.git
synced 2024-11-24 21:43:40 +00:00
3ff6f7d84c
Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
1739 lines
38 KiB
C
1739 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright(c) 2007 - 2016 Realtek Corporation. All rights reserved. */
|
|
|
|
|
|
|
|
#define _OSDEP_SERVICE_C_
|
|
|
|
#include <drv_types.h>
|
|
|
|
#define RT_TAG '1178'
|
|
|
|
/*
|
|
* Translate the OS dependent @param error_code to OS independent RTW_STATUS_CODE
|
|
* @return: one of RTW_STATUS_CODE
|
|
*/
|
|
inline int RTW_STATUS_CODE(int error_code)
|
|
{
|
|
if (error_code >= 0)
|
|
return _SUCCESS;
|
|
|
|
switch (error_code) {
|
|
/* case -ETIMEDOUT: */
|
|
/* return RTW_STATUS_TIMEDOUT; */
|
|
default:
|
|
return _FAIL;
|
|
}
|
|
}
|
|
|
|
u32 rtw_atoi(u8 *s)
|
|
{
|
|
int num = 0, flag = 0;
|
|
int i;
|
|
for (i = 0; i <= strlen(s); i++) {
|
|
if (s[i] >= '0' && s[i] <= '9')
|
|
num = num * 10 + s[i] - '0';
|
|
else if (s[0] == '-' && i == 0)
|
|
flag = 1;
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (flag == 1)
|
|
num = num * -1;
|
|
|
|
return num;
|
|
|
|
}
|
|
|
|
inline u8 *_rtw_zvmalloc(u32 sz)
|
|
{
|
|
u8 *pbuf;
|
|
pbuf = vmalloc(sz);
|
|
if (pbuf != NULL)
|
|
memset(pbuf, 0, sz);
|
|
return pbuf;
|
|
}
|
|
|
|
inline void _rtw_vmfree(u8 *pbuf, u32 sz)
|
|
{
|
|
vfree(pbuf);
|
|
}
|
|
|
|
u8 *_rtw_malloc(u32 sz)
|
|
{
|
|
u8 *pbuf = NULL;
|
|
|
|
#ifdef RTK_DMP_PLATFORM
|
|
if (sz > 0x4000)
|
|
pbuf = (u8 *)dvr_malloc(sz);
|
|
else
|
|
#endif
|
|
pbuf = kmalloc(sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
|
|
|
|
return pbuf;
|
|
}
|
|
|
|
u8 *_rtw_zmalloc(u32 sz)
|
|
{
|
|
u8 *pbuf = _rtw_malloc(sz);
|
|
|
|
if (pbuf != NULL)
|
|
memset(pbuf, 0, sz);
|
|
return pbuf;
|
|
}
|
|
|
|
void _rtw_mfree(u8 *pbuf, u32 sz)
|
|
{
|
|
#ifdef RTK_DMP_PLATFORM
|
|
if (sz > 0x4000)
|
|
dvr_free(pbuf);
|
|
else
|
|
#endif
|
|
kfree(pbuf);
|
|
}
|
|
|
|
inline struct sk_buff *_rtw_skb_alloc(u32 sz)
|
|
{
|
|
return __dev_alloc_skb(sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
|
|
}
|
|
|
|
inline void _rtw_skb_free(struct sk_buff *skb)
|
|
{
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
inline struct sk_buff *_rtw_skb_copy(const struct sk_buff *skb)
|
|
{
|
|
return skb_copy(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
|
|
}
|
|
|
|
inline struct sk_buff *_rtw_skb_clone(struct sk_buff *skb)
|
|
{
|
|
return skb_clone(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
|
|
}
|
|
inline struct sk_buff *_rtw_pskb_copy(struct sk_buff *skb)
|
|
{
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36))
|
|
return pskb_copy(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
|
|
#else
|
|
return skb_clone(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
|
|
#endif
|
|
}
|
|
|
|
inline int _rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb)
|
|
{
|
|
skb->dev = ndev;
|
|
return netif_rx(skb);
|
|
}
|
|
|
|
#ifdef CONFIG_RTW_NAPI
|
|
inline int _rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb)
|
|
{
|
|
skb->dev = ndev;
|
|
return netif_receive_skb(skb);
|
|
}
|
|
|
|
#ifdef CONFIG_RTW_GRO
|
|
inline gro_result_t _rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
|
|
{
|
|
return napi_gro_receive(napi, skb);
|
|
}
|
|
#endif /* CONFIG_RTW_GRO */
|
|
#endif /* CONFIG_RTW_NAPI */
|
|
|
|
void _rtw_skb_queue_purge(struct sk_buff_head *list)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = skb_dequeue(list)) != NULL)
|
|
_rtw_skb_free(skb);
|
|
}
|
|
|
|
inline void *_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma)
|
|
{
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
|
|
return usb_alloc_coherent(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma);
|
|
#else
|
|
return usb_buffer_alloc(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma);
|
|
#endif
|
|
}
|
|
|
|
inline void _rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma)
|
|
{
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
|
|
usb_free_coherent(dev, size, addr, dma);
|
|
#else
|
|
usb_buffer_free(dev, size, addr, dma);
|
|
#endif
|
|
}
|
|
|
|
#if defined(DBG_MEM_ALLOC)
|
|
|
|
struct rtw_mem_stat {
|
|
ATOMIC_T alloc; /* the memory bytes we allocate currently */
|
|
ATOMIC_T peak; /* the peak memory bytes we allocate */
|
|
ATOMIC_T alloc_cnt; /* the alloc count for alloc currently */
|
|
ATOMIC_T alloc_err_cnt; /* the error times we fail to allocate memory */
|
|
};
|
|
|
|
struct rtw_mem_stat rtw_mem_type_stat[mstat_tf_idx(MSTAT_TYPE_MAX)];
|
|
#ifdef RTW_MEM_FUNC_STAT
|
|
struct rtw_mem_stat rtw_mem_func_stat[mstat_ff_idx(MSTAT_FUNC_MAX)];
|
|
#endif
|
|
|
|
char *MSTAT_TYPE_str[] = {
|
|
"VIR",
|
|
"PHY",
|
|
"SKB",
|
|
"USB",
|
|
};
|
|
|
|
#ifdef RTW_MEM_FUNC_STAT
|
|
char *MSTAT_FUNC_str[] = {
|
|
"UNSP",
|
|
"IO",
|
|
"TXIO",
|
|
"RXIO",
|
|
"TX",
|
|
"RX",
|
|
};
|
|
#endif
|
|
|
|
void rtw_mstat_dump(void *sel)
|
|
{
|
|
int i;
|
|
int value_t[4][mstat_tf_idx(MSTAT_TYPE_MAX)];
|
|
#ifdef RTW_MEM_FUNC_STAT
|
|
int value_f[4][mstat_ff_idx(MSTAT_FUNC_MAX)];
|
|
#endif
|
|
|
|
int vir_alloc, vir_peak, vir_alloc_err, phy_alloc, phy_peak, phy_alloc_err;
|
|
int tx_alloc, tx_peak, tx_alloc_err, rx_alloc, rx_peak, rx_alloc_err;
|
|
|
|
for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++) {
|
|
value_t[0][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc));
|
|
value_t[1][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].peak));
|
|
value_t[2][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc_cnt));
|
|
value_t[3][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc_err_cnt));
|
|
}
|
|
|
|
#ifdef RTW_MEM_FUNC_STAT
|
|
for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++) {
|
|
value_f[0][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc));
|
|
value_f[1][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].peak));
|
|
value_f[2][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc_cnt));
|
|
value_f[3][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc_err_cnt));
|
|
}
|
|
#endif
|
|
|
|
RTW_PRINT_SEL(sel, "===================== MSTAT =====================\n");
|
|
RTW_PRINT_SEL(sel, "%4s %10s %10s %10s %10s\n", "TAG", "alloc", "peak", "aloc_cnt", "err_cnt");
|
|
RTW_PRINT_SEL(sel, "-------------------------------------------------\n");
|
|
for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++)
|
|
RTW_PRINT_SEL(sel, "%4s %10d %10d %10d %10d\n", MSTAT_TYPE_str[i], value_t[0][i], value_t[1][i], value_t[2][i], value_t[3][i]);
|
|
#ifdef RTW_MEM_FUNC_STAT
|
|
RTW_PRINT_SEL(sel, "-------------------------------------------------\n");
|
|
for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++)
|
|
RTW_PRINT_SEL(sel, "%4s %10d %10d %10d %10d\n", MSTAT_FUNC_str[i], value_f[0][i], value_f[1][i], value_f[2][i], value_f[3][i]);
|
|
#endif
|
|
}
|
|
|
|
void rtw_mstat_update(const enum mstat_f flags, const MSTAT_STATUS status, u32 sz)
|
|
{
|
|
static u32 update_time = 0;
|
|
int peak, alloc;
|
|
int i;
|
|
|
|
/* initialization */
|
|
if (!update_time) {
|
|
for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++) {
|
|
ATOMIC_SET(&(rtw_mem_type_stat[i].alloc), 0);
|
|
ATOMIC_SET(&(rtw_mem_type_stat[i].peak), 0);
|
|
ATOMIC_SET(&(rtw_mem_type_stat[i].alloc_cnt), 0);
|
|
ATOMIC_SET(&(rtw_mem_type_stat[i].alloc_err_cnt), 0);
|
|
}
|
|
#ifdef RTW_MEM_FUNC_STAT
|
|
for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++) {
|
|
ATOMIC_SET(&(rtw_mem_func_stat[i].alloc), 0);
|
|
ATOMIC_SET(&(rtw_mem_func_stat[i].peak), 0);
|
|
ATOMIC_SET(&(rtw_mem_func_stat[i].alloc_cnt), 0);
|
|
ATOMIC_SET(&(rtw_mem_func_stat[i].alloc_err_cnt), 0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
switch (status) {
|
|
case MSTAT_ALLOC_SUCCESS:
|
|
ATOMIC_INC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_cnt));
|
|
alloc = ATOMIC_ADD_RETURN(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc), sz);
|
|
peak = ATOMIC_READ(&(rtw_mem_type_stat[mstat_tf_idx(flags)].peak));
|
|
if (peak < alloc)
|
|
ATOMIC_SET(&(rtw_mem_type_stat[mstat_tf_idx(flags)].peak), alloc);
|
|
|
|
#ifdef RTW_MEM_FUNC_STAT
|
|
ATOMIC_INC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_cnt));
|
|
alloc = ATOMIC_ADD_RETURN(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc), sz);
|
|
peak = ATOMIC_READ(&(rtw_mem_func_stat[mstat_ff_idx(flags)].peak));
|
|
if (peak < alloc)
|
|
ATOMIC_SET(&(rtw_mem_func_stat[mstat_ff_idx(flags)].peak), alloc);
|
|
#endif
|
|
break;
|
|
|
|
case MSTAT_ALLOC_FAIL:
|
|
ATOMIC_INC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_err_cnt));
|
|
#ifdef RTW_MEM_FUNC_STAT
|
|
ATOMIC_INC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_err_cnt));
|
|
#endif
|
|
break;
|
|
|
|
case MSTAT_FREE:
|
|
ATOMIC_DEC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_cnt));
|
|
ATOMIC_SUB(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc), sz);
|
|
#ifdef RTW_MEM_FUNC_STAT
|
|
ATOMIC_DEC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_cnt));
|
|
ATOMIC_SUB(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc), sz);
|
|
#endif
|
|
break;
|
|
};
|
|
|
|
/* if (rtw_get_passing_time_ms(update_time) > 5000) { */
|
|
/* rtw_mstat_dump(RTW_DBGDUMP); */
|
|
update_time = jiffies;
|
|
/* } */
|
|
}
|
|
|
|
#ifndef SIZE_MAX
|
|
#define SIZE_MAX (~(size_t)0)
|
|
#endif
|
|
|
|
struct mstat_sniff_rule {
|
|
enum mstat_f flags;
|
|
size_t lb;
|
|
size_t hb;
|
|
};
|
|
|
|
struct mstat_sniff_rule mstat_sniff_rules[] = {
|
|
{MSTAT_TYPE_PHY, 4097, SIZE_MAX},
|
|
};
|
|
|
|
int mstat_sniff_rule_num = sizeof(mstat_sniff_rules) / sizeof(struct mstat_sniff_rule);
|
|
|
|
bool match_mstat_sniff_rules(const enum mstat_f flags, const size_t size)
|
|
{
|
|
int i;
|
|
for (i = 0; i < mstat_sniff_rule_num; i++) {
|
|
if (mstat_sniff_rules[i].flags == flags
|
|
&& mstat_sniff_rules[i].lb <= size
|
|
&& mstat_sniff_rules[i].hb >= size)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
inline u8 *dbg_rtw_vmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
|
|
{
|
|
u8 *p;
|
|
|
|
if (match_mstat_sniff_rules(flags, sz))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __func__, (sz));
|
|
|
|
p = vmalloc((sz));
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
|
|
, sz
|
|
);
|
|
|
|
return p;
|
|
}
|
|
|
|
inline u8 *dbg_rtw_zvmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
|
|
{
|
|
u8 *p;
|
|
|
|
if (match_mstat_sniff_rules(flags, sz))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __func__, (sz));
|
|
|
|
p = _rtw_zvmalloc((sz));
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
|
|
, sz
|
|
);
|
|
|
|
return p;
|
|
}
|
|
|
|
inline void dbg_rtw_vmfree(u8 *pbuf, u32 sz, const enum mstat_f flags, const char *func, const int line)
|
|
{
|
|
|
|
if (match_mstat_sniff_rules(flags, sz))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __func__, (sz));
|
|
|
|
_rtw_vmfree((pbuf), (sz));
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, MSTAT_FREE
|
|
, sz
|
|
);
|
|
}
|
|
|
|
inline u8 *dbg_rtw_malloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
|
|
{
|
|
u8 *p;
|
|
|
|
if (match_mstat_sniff_rules(flags, sz))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __func__, (sz));
|
|
|
|
p = _rtw_malloc((sz));
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
|
|
, sz
|
|
);
|
|
|
|
return p;
|
|
}
|
|
|
|
inline u8 *dbg_rtw_zmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
|
|
{
|
|
u8 *p;
|
|
|
|
if (match_mstat_sniff_rules(flags, sz))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __func__, (sz));
|
|
|
|
p = _rtw_zmalloc((sz));
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
|
|
, sz
|
|
);
|
|
|
|
return p;
|
|
}
|
|
|
|
inline void dbg_rtw_mfree(u8 *pbuf, u32 sz, const enum mstat_f flags, const char *func, const int line)
|
|
{
|
|
if (match_mstat_sniff_rules(flags, sz))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __func__, (sz));
|
|
|
|
_rtw_mfree((pbuf), (sz));
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, MSTAT_FREE
|
|
, sz
|
|
);
|
|
}
|
|
|
|
inline struct sk_buff *dbg_rtw_skb_alloc(unsigned int size, const enum mstat_f flags, const char *func, int line)
|
|
{
|
|
struct sk_buff *skb;
|
|
unsigned int truesize = 0;
|
|
|
|
skb = _rtw_skb_alloc(size);
|
|
|
|
if (skb)
|
|
truesize = skb->truesize;
|
|
|
|
if (!skb || truesize < size || match_mstat_sniff_rules(flags, truesize))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d), skb:%p, truesize=%u\n", func, line, __func__, size, skb, truesize);
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, skb ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
|
|
, truesize
|
|
);
|
|
|
|
return skb;
|
|
}
|
|
|
|
inline void dbg_rtw_skb_free(struct sk_buff *skb, const enum mstat_f flags, const char *func, int line)
|
|
{
|
|
unsigned int truesize = skb->truesize;
|
|
|
|
if (match_mstat_sniff_rules(flags, truesize))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __func__, truesize);
|
|
|
|
_rtw_skb_free(skb);
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, MSTAT_FREE
|
|
, truesize
|
|
);
|
|
}
|
|
|
|
inline struct sk_buff *dbg_rtw_skb_copy(const struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line)
|
|
{
|
|
struct sk_buff *skb_cp;
|
|
unsigned int truesize = skb->truesize;
|
|
unsigned int cp_truesize = 0;
|
|
|
|
skb_cp = _rtw_skb_copy(skb);
|
|
if (skb_cp)
|
|
cp_truesize = skb_cp->truesize;
|
|
|
|
if (!skb_cp || cp_truesize < truesize || match_mstat_sniff_rules(flags, cp_truesize))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%u), skb_cp:%p, cp_truesize=%u\n", func, line, __func__, truesize, skb_cp, cp_truesize);
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, skb_cp ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
|
|
, truesize
|
|
);
|
|
|
|
return skb_cp;
|
|
}
|
|
|
|
inline struct sk_buff *dbg_rtw_skb_clone(struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line)
|
|
{
|
|
struct sk_buff *skb_cl;
|
|
unsigned int truesize = skb->truesize;
|
|
unsigned int cl_truesize = 0;
|
|
|
|
skb_cl = _rtw_skb_clone(skb);
|
|
if (skb_cl)
|
|
cl_truesize = skb_cl->truesize;
|
|
|
|
if (!skb_cl || cl_truesize < truesize || match_mstat_sniff_rules(flags, cl_truesize))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%u), skb_cl:%p, cl_truesize=%u\n", func, line, __func__, truesize, skb_cl, cl_truesize);
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, skb_cl ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
|
|
, truesize
|
|
);
|
|
|
|
return skb_cl;
|
|
}
|
|
|
|
inline int dbg_rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line)
|
|
{
|
|
int ret;
|
|
unsigned int truesize = skb->truesize;
|
|
|
|
if (match_mstat_sniff_rules(flags, truesize))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __func__, truesize);
|
|
|
|
ret = _rtw_netif_rx(ndev, skb);
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, MSTAT_FREE
|
|
, truesize
|
|
);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_RTW_NAPI
|
|
inline int dbg_rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line)
|
|
{
|
|
int ret;
|
|
unsigned int truesize = skb->truesize;
|
|
|
|
if (match_mstat_sniff_rules(flags, truesize))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __func__, truesize);
|
|
|
|
ret = _rtw_netif_receive_skb(ndev, skb);
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, MSTAT_FREE
|
|
, truesize
|
|
);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_RTW_GRO
|
|
inline gro_result_t dbg_rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line)
|
|
{
|
|
int ret;
|
|
unsigned int truesize = skb->truesize;
|
|
|
|
if (match_mstat_sniff_rules(flags, truesize))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __func__, truesize);
|
|
|
|
ret = _rtw_napi_gro_receive(napi, skb);
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, MSTAT_FREE
|
|
, truesize
|
|
);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_RTW_GRO */
|
|
#endif /* CONFIG_RTW_NAPI */
|
|
|
|
inline void dbg_rtw_skb_queue_purge(struct sk_buff_head *list, enum mstat_f flags, const char *func, int line)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = skb_dequeue(list)) != NULL)
|
|
dbg_rtw_skb_free(skb, flags, func, line);
|
|
}
|
|
|
|
inline void *dbg_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma, const enum mstat_f flags, const char *func, int line)
|
|
{
|
|
void *p;
|
|
|
|
if (match_mstat_sniff_rules(flags, size))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%zu)\n", func, line, __func__, size);
|
|
|
|
p = _rtw_usb_buffer_alloc(dev, size, dma);
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
|
|
, size
|
|
);
|
|
|
|
return p;
|
|
}
|
|
|
|
inline void dbg_rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma, const enum mstat_f flags, const char *func, int line)
|
|
{
|
|
|
|
if (match_mstat_sniff_rules(flags, size))
|
|
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%zu)\n", func, line, __func__, size);
|
|
|
|
_rtw_usb_buffer_free(dev, size, addr, dma);
|
|
|
|
rtw_mstat_update(
|
|
flags
|
|
, MSTAT_FREE
|
|
, size
|
|
);
|
|
}
|
|
|
|
#endif /* defined(DBG_MEM_ALLOC) */
|
|
|
|
void *rtw_malloc2d(int h, int w, size_t size)
|
|
{
|
|
int j;
|
|
|
|
void **a = (void **) rtw_zmalloc(h * sizeof(void *) + h * w * size);
|
|
if (a == NULL) {
|
|
RTW_INFO("%s: alloc memory fail!\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
for (j = 0; j < h; j++)
|
|
a[j] = ((char *)(a + h)) + j * w * size;
|
|
|
|
return a;
|
|
}
|
|
|
|
void rtw_mfree2d(void *pbuf, int h, int w, int size)
|
|
{
|
|
rtw_mfree((u8 *)pbuf, h * sizeof(void *) + w * h * size);
|
|
}
|
|
|
|
u32 _rtw_down_sema(_sema *sema)
|
|
{
|
|
if (down_interruptible(sema))
|
|
return _FAIL;
|
|
return _SUCCESS;
|
|
}
|
|
|
|
void _rtw_mutex_init(_mutex *pmutex)
|
|
{
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
|
|
mutex_init(pmutex);
|
|
#else
|
|
init_MUTEX(pmutex);
|
|
#endif
|
|
}
|
|
|
|
void _rtw_mutex_free(_mutex *pmutex)
|
|
{
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
|
|
mutex_destroy(pmutex);
|
|
#endif
|
|
}
|
|
|
|
void _rtw_init_queue(_queue *pqueue)
|
|
{
|
|
INIT_LIST_HEAD(&(pqueue->queue));
|
|
spin_lock_init(&(pqueue->lock));
|
|
}
|
|
|
|
u32 _rtw_queue_empty(_queue *pqueue)
|
|
{
|
|
return list_empty(&(pqueue->queue));
|
|
}
|
|
|
|
|
|
u32 rtw_end_of_queue_search(_list *head, _list *plist)
|
|
{
|
|
if (head == plist)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
inline u32 rtw_systime_to_ms(u32 systime)
|
|
{
|
|
return systime * 1000 / HZ;
|
|
}
|
|
|
|
inline u32 rtw_ms_to_systime(u32 ms)
|
|
{
|
|
return ms * HZ / 1000;
|
|
}
|
|
|
|
/* the input parameter start use the same unit as returned by rtw_get_current_time */
|
|
inline s32 rtw_get_passing_time_ms(u32 start)
|
|
{
|
|
return rtw_systime_to_ms(jiffies - start);
|
|
}
|
|
|
|
inline s32 rtw_get_time_interval_ms(u32 start, u32 end)
|
|
{
|
|
return rtw_systime_to_ms(end - start);
|
|
}
|
|
|
|
void rtw_sleep_schedulable(int ms)
|
|
{
|
|
u32 delta;
|
|
|
|
delta = (ms * HZ) / 1000; /* (ms) */
|
|
if (delta == 0) {
|
|
delta = 1;/* 1 ms */
|
|
}
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (schedule_timeout(delta) != 0)
|
|
return ;
|
|
return;
|
|
}
|
|
|
|
void rtw_msleep_os(int ms)
|
|
{
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36))
|
|
if (ms < 20) {
|
|
unsigned long us = ms * 1000UL;
|
|
usleep_range(us, us + 1000UL);
|
|
} else
|
|
#endif
|
|
msleep((unsigned int)ms);
|
|
}
|
|
void rtw_usleep_os(int us)
|
|
{
|
|
/* msleep((unsigned int)us); */
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36))
|
|
usleep_range(us, us + 1);
|
|
#else
|
|
if (1 < (us / 1000))
|
|
msleep(1);
|
|
else
|
|
msleep((us / 1000) + 1);
|
|
#endif
|
|
}
|
|
|
|
#ifdef DBG_DELAY_OS
|
|
void _rtw_mdelay_os(int ms, const char *func, const int line)
|
|
{
|
|
RTW_INFO("%s:%d %s(%d)\n", func, line, __func__, ms);
|
|
mdelay((unsigned long)ms);
|
|
}
|
|
|
|
void _rtw_udelay_os(int us, const char *func, const int line)
|
|
{
|
|
RTW_INFO("%s:%d %s(%d)\n", func, line, __func__, us);
|
|
|
|
udelay((unsigned long)us);
|
|
}
|
|
#else
|
|
void rtw_mdelay_os(int ms)
|
|
{
|
|
mdelay((unsigned long)ms);
|
|
}
|
|
|
|
void rtw_udelay_os(int us)
|
|
{
|
|
udelay((unsigned long)us);
|
|
}
|
|
#endif
|
|
|
|
void rtw_yield_os(void)
|
|
{
|
|
yield();
|
|
}
|
|
|
|
#define RTW_SUSPEND_LOCK_NAME "rtw_wifi"
|
|
#define RTW_SUSPEND_EXT_LOCK_NAME "rtw_wifi_ext"
|
|
#define RTW_SUSPEND_RX_LOCK_NAME "rtw_wifi_rx"
|
|
#define RTW_SUSPEND_TRAFFIC_LOCK_NAME "rtw_wifi_traffic"
|
|
#define RTW_SUSPEND_RESUME_LOCK_NAME "rtw_wifi_resume"
|
|
#define RTW_RESUME_SCAN_LOCK_NAME "rtw_wifi_scan"
|
|
#ifdef CONFIG_WAKELOCK
|
|
static struct wake_lock rtw_suspend_lock;
|
|
static struct wake_lock rtw_suspend_ext_lock;
|
|
static struct wake_lock rtw_suspend_rx_lock;
|
|
static struct wake_lock rtw_suspend_traffic_lock;
|
|
static struct wake_lock rtw_suspend_resume_lock;
|
|
static struct wake_lock rtw_resume_scan_lock;
|
|
#elif defined(CONFIG_ANDROID_POWER)
|
|
static android_suspend_lock_t rtw_suspend_lock = {
|
|
.name = RTW_SUSPEND_LOCK_NAME
|
|
};
|
|
static android_suspend_lock_t rtw_suspend_ext_lock = {
|
|
.name = RTW_SUSPEND_EXT_LOCK_NAME
|
|
};
|
|
static android_suspend_lock_t rtw_suspend_rx_lock = {
|
|
.name = RTW_SUSPEND_RX_LOCK_NAME
|
|
};
|
|
static android_suspend_lock_t rtw_suspend_traffic_lock = {
|
|
.name = RTW_SUSPEND_TRAFFIC_LOCK_NAME
|
|
};
|
|
static android_suspend_lock_t rtw_suspend_resume_lock = {
|
|
.name = RTW_SUSPEND_RESUME_LOCK_NAME
|
|
};
|
|
static android_suspend_lock_t rtw_resume_scan_lock = {
|
|
.name = RTW_RESUME_SCAN_LOCK_NAME
|
|
};
|
|
#endif
|
|
|
|
inline void rtw_suspend_lock_init(void)
|
|
{
|
|
#ifdef CONFIG_WAKELOCK
|
|
wake_lock_init(&rtw_suspend_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_LOCK_NAME);
|
|
wake_lock_init(&rtw_suspend_ext_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_EXT_LOCK_NAME);
|
|
wake_lock_init(&rtw_suspend_rx_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_RX_LOCK_NAME);
|
|
wake_lock_init(&rtw_suspend_traffic_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_TRAFFIC_LOCK_NAME);
|
|
wake_lock_init(&rtw_suspend_resume_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_RESUME_LOCK_NAME);
|
|
wake_lock_init(&rtw_resume_scan_lock, WAKE_LOCK_SUSPEND, RTW_RESUME_SCAN_LOCK_NAME);
|
|
#elif defined(CONFIG_ANDROID_POWER)
|
|
android_init_suspend_lock(&rtw_suspend_lock);
|
|
android_init_suspend_lock(&rtw_suspend_ext_lock);
|
|
android_init_suspend_lock(&rtw_suspend_rx_lock);
|
|
android_init_suspend_lock(&rtw_suspend_traffic_lock);
|
|
android_init_suspend_lock(&rtw_suspend_resume_lock);
|
|
android_init_suspend_lock(&rtw_resume_scan_lock);
|
|
#endif
|
|
}
|
|
|
|
inline void rtw_suspend_lock_uninit(void)
|
|
{
|
|
#ifdef CONFIG_WAKELOCK
|
|
wake_lock_destroy(&rtw_suspend_lock);
|
|
wake_lock_destroy(&rtw_suspend_ext_lock);
|
|
wake_lock_destroy(&rtw_suspend_rx_lock);
|
|
wake_lock_destroy(&rtw_suspend_traffic_lock);
|
|
wake_lock_destroy(&rtw_suspend_resume_lock);
|
|
wake_lock_destroy(&rtw_resume_scan_lock);
|
|
#elif defined(CONFIG_ANDROID_POWER)
|
|
android_uninit_suspend_lock(&rtw_suspend_lock);
|
|
android_uninit_suspend_lock(&rtw_suspend_ext_lock);
|
|
android_uninit_suspend_lock(&rtw_suspend_rx_lock);
|
|
android_uninit_suspend_lock(&rtw_suspend_traffic_lock);
|
|
android_uninit_suspend_lock(&rtw_suspend_resume_lock);
|
|
android_uninit_suspend_lock(&rtw_resume_scan_lock);
|
|
#endif
|
|
}
|
|
|
|
inline void rtw_lock_suspend(void)
|
|
{
|
|
#ifdef CONFIG_WAKELOCK
|
|
wake_lock(&rtw_suspend_lock);
|
|
#elif defined(CONFIG_ANDROID_POWER)
|
|
android_lock_suspend(&rtw_suspend_lock);
|
|
#endif
|
|
|
|
#if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER)
|
|
/* RTW_INFO("####%s: suspend_lock_count:%d####\n", __func__, rtw_suspend_lock.stat.count); */
|
|
#endif
|
|
}
|
|
|
|
inline void rtw_unlock_suspend(void)
|
|
{
|
|
#ifdef CONFIG_WAKELOCK
|
|
wake_unlock(&rtw_suspend_lock);
|
|
#elif defined(CONFIG_ANDROID_POWER)
|
|
android_unlock_suspend(&rtw_suspend_lock);
|
|
#endif
|
|
|
|
#if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER)
|
|
/* RTW_INFO("####%s: suspend_lock_count:%d####\n", __func__, rtw_suspend_lock.stat.count); */
|
|
#endif
|
|
}
|
|
|
|
inline void rtw_resume_lock_suspend(void)
|
|
{
|
|
#ifdef CONFIG_WAKELOCK
|
|
wake_lock(&rtw_suspend_resume_lock);
|
|
#elif defined(CONFIG_ANDROID_POWER)
|
|
android_lock_suspend(&rtw_suspend_resume_lock);
|
|
#endif
|
|
|
|
#if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER)
|
|
/* RTW_INFO("####%s: suspend_lock_count:%d####\n", __func__, rtw_suspend_lock.stat.count); */
|
|
#endif
|
|
}
|
|
|
|
inline void rtw_resume_unlock_suspend(void)
|
|
{
|
|
#ifdef CONFIG_WAKELOCK
|
|
wake_unlock(&rtw_suspend_resume_lock);
|
|
#elif defined(CONFIG_ANDROID_POWER)
|
|
android_unlock_suspend(&rtw_suspend_resume_lock);
|
|
#endif
|
|
|
|
#if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER)
|
|
/* RTW_INFO("####%s: suspend_lock_count:%d####\n", __func__, rtw_suspend_lock.stat.count); */
|
|
#endif
|
|
}
|
|
|
|
inline void rtw_lock_suspend_timeout(u32 timeout_ms)
|
|
{
|
|
#ifdef CONFIG_WAKELOCK
|
|
wake_lock_timeout(&rtw_suspend_lock, rtw_ms_to_systime(timeout_ms));
|
|
#elif defined(CONFIG_ANDROID_POWER)
|
|
android_lock_suspend_auto_expire(&rtw_suspend_lock, rtw_ms_to_systime(timeout_ms));
|
|
#endif
|
|
}
|
|
|
|
inline void rtw_lock_ext_suspend_timeout(u32 timeout_ms)
|
|
{
|
|
#ifdef CONFIG_WAKELOCK
|
|
wake_lock_timeout(&rtw_suspend_ext_lock, rtw_ms_to_systime(timeout_ms));
|
|
#elif defined(CONFIG_ANDROID_POWER)
|
|
android_lock_suspend_auto_expire(&rtw_suspend_ext_lock, rtw_ms_to_systime(timeout_ms));
|
|
#endif
|
|
/* RTW_INFO("EXT lock timeout:%d\n", timeout_ms); */
|
|
}
|
|
|
|
inline void rtw_lock_rx_suspend_timeout(u32 timeout_ms)
|
|
{
|
|
#ifdef CONFIG_WAKELOCK
|
|
wake_lock_timeout(&rtw_suspend_rx_lock, rtw_ms_to_systime(timeout_ms));
|
|
#elif defined(CONFIG_ANDROID_POWER)
|
|
android_lock_suspend_auto_expire(&rtw_suspend_rx_lock, rtw_ms_to_systime(timeout_ms));
|
|
#endif
|
|
/* RTW_INFO("RX lock timeout:%d\n", timeout_ms); */
|
|
}
|
|
|
|
|
|
inline void rtw_lock_traffic_suspend_timeout(u32 timeout_ms)
|
|
{
|
|
#ifdef CONFIG_WAKELOCK
|
|
wake_lock_timeout(&rtw_suspend_traffic_lock, rtw_ms_to_systime(timeout_ms));
|
|
#elif defined(CONFIG_ANDROID_POWER)
|
|
android_lock_suspend_auto_expire(&rtw_suspend_traffic_lock, rtw_ms_to_systime(timeout_ms));
|
|
#endif
|
|
/* RTW_INFO("traffic lock timeout:%d\n", timeout_ms); */
|
|
}
|
|
|
|
inline void rtw_lock_resume_scan_timeout(u32 timeout_ms)
|
|
{
|
|
#ifdef CONFIG_WAKELOCK
|
|
wake_lock_timeout(&rtw_resume_scan_lock, rtw_ms_to_systime(timeout_ms));
|
|
#elif defined(CONFIG_ANDROID_POWER)
|
|
android_lock_suspend_auto_expire(&rtw_resume_scan_lock, rtw_ms_to_systime(timeout_ms));
|
|
#endif
|
|
/* RTW_INFO("resume scan lock:%d\n", timeout_ms); */
|
|
}
|
|
|
|
inline void ATOMIC_SET(ATOMIC_T *v, int i)
|
|
{
|
|
atomic_set(v, i);
|
|
}
|
|
|
|
inline int ATOMIC_READ(ATOMIC_T *v)
|
|
{
|
|
return atomic_read(v);
|
|
}
|
|
|
|
inline void ATOMIC_ADD(ATOMIC_T *v, int i)
|
|
{
|
|
atomic_add(i, v);
|
|
}
|
|
inline void ATOMIC_SUB(ATOMIC_T *v, int i)
|
|
{
|
|
atomic_sub(i, v);
|
|
}
|
|
|
|
inline void ATOMIC_INC(ATOMIC_T *v)
|
|
{
|
|
atomic_inc(v);
|
|
}
|
|
|
|
inline void ATOMIC_DEC(ATOMIC_T *v)
|
|
{
|
|
atomic_dec(v);
|
|
}
|
|
|
|
inline int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i)
|
|
{
|
|
return atomic_add_return(i, v);
|
|
}
|
|
|
|
inline int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i)
|
|
{
|
|
return atomic_sub_return(i, v);
|
|
}
|
|
|
|
inline int ATOMIC_INC_RETURN(ATOMIC_T *v)
|
|
{
|
|
return atomic_inc_return(v);
|
|
}
|
|
|
|
inline int ATOMIC_DEC_RETURN(ATOMIC_T *v)
|
|
{
|
|
return atomic_dec_return(v);
|
|
}
|
|
|
|
/*
|
|
* Open a file with the specific @param path, @param flag, @param mode
|
|
* @param fpp the pointer of struct file pointer to get struct file pointer while file opening is success
|
|
* @param path the path of the file to open
|
|
* @param flag file operation flags, please refer to linux document
|
|
* @param mode please refer to linux document
|
|
* @return Linux specific error code
|
|
*/
|
|
static int openFile(struct file **fpp, const char *path, int flag, int mode)
|
|
{
|
|
struct file *fp;
|
|
|
|
fp = filp_open(path, flag, mode);
|
|
if (IS_ERR(fp)) {
|
|
*fpp = NULL;
|
|
return PTR_ERR(fp);
|
|
} else {
|
|
*fpp = fp;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Close the file with the specific @param fp
|
|
* @param fp the pointer of struct file to close
|
|
* @return always 0
|
|
*/
|
|
static int closeFile(struct file *fp)
|
|
{
|
|
filp_close(fp, NULL);
|
|
return 0;
|
|
}
|
|
|
|
static int readFile(struct file *fp, char *buf, int len)
|
|
{
|
|
int rlen = 0, sum = 0;
|
|
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0))
|
|
if (!(fp->f_mode & FMODE_CAN_READ))
|
|
#else
|
|
if (!fp->f_op || !fp->f_op->read)
|
|
#endif
|
|
return -EPERM;
|
|
|
|
while (sum < len) {
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0))
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0))
|
|
rlen = kernel_read(fp, buf + sum, len - sum, &fp->f_pos);
|
|
#else
|
|
rlen = __vfs_read(fp, buf + sum, len - sum, &fp->f_pos);
|
|
#endif
|
|
#else
|
|
rlen = fp->f_op->read(fp, buf + sum, len - sum, &fp->f_pos);
|
|
#endif
|
|
if (rlen > 0)
|
|
sum += rlen;
|
|
else if (0 != rlen)
|
|
return rlen;
|
|
else
|
|
break;
|
|
}
|
|
|
|
return sum;
|
|
|
|
}
|
|
|
|
static int writeFile(struct file *fp, char *buf, int len)
|
|
{
|
|
int wlen = 0, sum = 0;
|
|
|
|
if (!fp->f_op || !fp->f_op->write)
|
|
return -EPERM;
|
|
|
|
while (sum < len) {
|
|
wlen = fp->f_op->write(fp, (char __user *)buf + sum, len - sum, &fp->f_pos);
|
|
if (wlen > 0)
|
|
sum += wlen;
|
|
else if (0 != wlen)
|
|
return wlen;
|
|
else
|
|
break;
|
|
}
|
|
|
|
return sum;
|
|
|
|
}
|
|
|
|
/*
|
|
* Test if the specifi @param path is a file and readable
|
|
* If readable, @param sz is got
|
|
* @param path the path of the file to test
|
|
* @return Linux specific error code
|
|
*/
|
|
static int isFileReadable(const char *path, u32 *sz)
|
|
{
|
|
struct file *fp;
|
|
int ret = 0;
|
|
#ifdef set_fs
|
|
mm_segment_t oldfs;
|
|
#endif
|
|
char buf;
|
|
|
|
fp = filp_open(path, O_RDONLY, 0);
|
|
if (IS_ERR(fp))
|
|
ret = PTR_ERR(fp);
|
|
else {
|
|
#ifdef set_fs
|
|
oldfs = get_fs();
|
|
set_fs(KERNEL_DS);
|
|
#endif
|
|
|
|
if (1 != readFile(fp, &buf, 1))
|
|
ret = PTR_ERR(fp);
|
|
|
|
if (ret == 0 && sz) {
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0))
|
|
*sz = i_size_read(fp->f_path.dentry->d_inode);
|
|
#else
|
|
*sz = i_size_read(fp->f_dentry->d_inode);
|
|
#endif
|
|
}
|
|
|
|
#ifdef set_fs
|
|
set_fs(oldfs);
|
|
#endif
|
|
filp_close(fp, NULL);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most
|
|
* @param path the path of the file to open and read
|
|
* @param buf the starting address of the buffer to store file content
|
|
* @param sz how many bytes to read at most
|
|
* @return the byte we've read, or Linux specific error code
|
|
*/
|
|
static int retriveFromFile(const char *path, u8 *buf, u32 sz)
|
|
{
|
|
int ret = -1;
|
|
#ifdef set_fs
|
|
mm_segment_t oldfs;
|
|
#endif
|
|
struct file *fp;
|
|
|
|
if (path && buf) {
|
|
ret = openFile(&fp, path, O_RDONLY, 0);
|
|
if (0 == ret) {
|
|
RTW_INFO("%s openFile path:%s fp=%p\n", __func__, path , fp);
|
|
|
|
#ifdef set_fs
|
|
oldfs = get_fs();
|
|
set_fs(KERNEL_DS);
|
|
#endif
|
|
ret = readFile(fp, buf, sz);
|
|
#ifdef set_fs
|
|
set_fs(oldfs);
|
|
#endif
|
|
closeFile(fp);
|
|
|
|
RTW_INFO("%s readFile, ret:%d\n", __func__, ret);
|
|
|
|
} else
|
|
RTW_INFO("%s openFile path:%s Fail, ret:%d\n", __func__, path, ret);
|
|
} else {
|
|
RTW_INFO("%s NULL pointer\n", __func__);
|
|
ret = -EINVAL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file
|
|
* @param path the path of the file to open and write
|
|
* @param buf the starting address of the data to write into file
|
|
* @param sz how many bytes to write at most
|
|
* @return the byte we've written, or Linux specific error code
|
|
*/
|
|
static int storeToFile(const char *path, u8 *buf, u32 sz)
|
|
{
|
|
int ret = 0;
|
|
#ifdef set_fs
|
|
mm_segment_t oldfs;
|
|
#endif
|
|
struct file *fp;
|
|
|
|
if (path && buf) {
|
|
ret = openFile(&fp, path, O_CREAT | O_WRONLY, 0666);
|
|
if (0 == ret) {
|
|
RTW_INFO("%s openFile path:%s fp=%p\n", __func__, path , fp);
|
|
|
|
#ifdef set_fs
|
|
oldfs = get_fs();
|
|
set_fs(KERNEL_DS);
|
|
#endif
|
|
ret = writeFile(fp, buf, sz);
|
|
#ifdef set_fs
|
|
set_fs(oldfs);
|
|
#endif
|
|
closeFile(fp);
|
|
|
|
RTW_INFO("%s writeFile, ret:%d\n", __func__, ret);
|
|
|
|
} else
|
|
RTW_INFO("%s openFile path:%s Fail, ret:%d\n", __func__, path, ret);
|
|
} else {
|
|
RTW_INFO("%s NULL pointer\n", __func__);
|
|
ret = -EINVAL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Test if the specifi @param path is a file and readable
|
|
* @param path the path of the file to test
|
|
* @return true or false
|
|
*/
|
|
int rtw_is_file_readable(const char *path)
|
|
{
|
|
if (isFileReadable(path, NULL) == 0)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Test if the specifi @param path is a file and readable.
|
|
* If readable, @param sz is got
|
|
* @param path the path of the file to test
|
|
* @return true or false
|
|
*/
|
|
int rtw_is_file_readable_with_size(const char *path, u32 *sz)
|
|
{
|
|
if (isFileReadable(path, sz) == 0)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most
|
|
* @param path the path of the file to open and read
|
|
* @param buf the starting address of the buffer to store file content
|
|
* @param sz how many bytes to read at most
|
|
* @return the byte we've read
|
|
*/
|
|
int rtw_retrieve_from_file(const char *path, u8 *buf, u32 sz)
|
|
{
|
|
int ret = retriveFromFile(path, buf, sz);
|
|
|
|
return ret >= 0 ? ret : 0;
|
|
}
|
|
|
|
/*
|
|
* Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file
|
|
* @param path the path of the file to open and write
|
|
* @param buf the starting address of the data to write into file
|
|
* @param sz how many bytes to write at most
|
|
* @return the byte we've written
|
|
*/
|
|
int rtw_store_to_file(const char *path, u8 *buf, u32 sz)
|
|
{
|
|
int ret = storeToFile(path, buf, sz);
|
|
return ret >= 0 ? ret : 0;
|
|
}
|
|
|
|
struct net_device *rtw_alloc_etherdev_with_old_priv(int sizeof_priv, void *old_priv)
|
|
{
|
|
struct net_device *pnetdev;
|
|
struct rtw_netdev_priv_indicator *pnpi;
|
|
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
|
|
pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4);
|
|
#else
|
|
pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator));
|
|
#endif
|
|
if (!pnetdev)
|
|
goto RETURN;
|
|
|
|
pnpi = netdev_priv(pnetdev);
|
|
pnpi->priv = old_priv;
|
|
pnpi->sizeof_priv = sizeof_priv;
|
|
|
|
RETURN:
|
|
return pnetdev;
|
|
}
|
|
|
|
struct net_device *rtw_alloc_etherdev(int sizeof_priv)
|
|
{
|
|
struct net_device *pnetdev;
|
|
struct rtw_netdev_priv_indicator *pnpi;
|
|
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
|
|
pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4);
|
|
#else
|
|
pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator));
|
|
#endif
|
|
if (!pnetdev)
|
|
goto RETURN;
|
|
|
|
pnpi = netdev_priv(pnetdev);
|
|
|
|
pnpi->priv = rtw_zvmalloc(sizeof_priv);
|
|
if (!pnpi->priv) {
|
|
free_netdev(pnetdev);
|
|
pnetdev = NULL;
|
|
goto RETURN;
|
|
}
|
|
|
|
pnpi->sizeof_priv = sizeof_priv;
|
|
RETURN:
|
|
return pnetdev;
|
|
}
|
|
|
|
void rtw_free_netdev(struct net_device *netdev)
|
|
{
|
|
struct rtw_netdev_priv_indicator *pnpi;
|
|
|
|
if (!netdev)
|
|
goto RETURN;
|
|
|
|
pnpi = netdev_priv(netdev);
|
|
|
|
if (!pnpi->priv)
|
|
goto RETURN;
|
|
|
|
free_netdev(netdev);
|
|
|
|
RETURN:
|
|
return;
|
|
}
|
|
|
|
int rtw_change_ifname(_adapter *padapter, const char *ifname)
|
|
{
|
|
struct dvobj_priv *dvobj;
|
|
struct net_device *pnetdev;
|
|
struct net_device *cur_pnetdev;
|
|
struct rereg_nd_name_data *rereg_priv;
|
|
int ret;
|
|
u8 rtnl_lock_needed;
|
|
|
|
if (!padapter)
|
|
goto error;
|
|
|
|
dvobj = adapter_to_dvobj(padapter);
|
|
cur_pnetdev = padapter->pnetdev;
|
|
rereg_priv = &padapter->rereg_nd_name_priv;
|
|
|
|
/* free the old_pnetdev */
|
|
if (rereg_priv->old_pnetdev) {
|
|
free_netdev(rereg_priv->old_pnetdev);
|
|
rereg_priv->old_pnetdev = NULL;
|
|
}
|
|
|
|
rtnl_lock_needed = rtw_rtnl_lock_needed(dvobj);
|
|
|
|
if (rtnl_lock_needed)
|
|
unregister_netdev(cur_pnetdev);
|
|
else
|
|
unregister_netdevice(cur_pnetdev);
|
|
|
|
rereg_priv->old_pnetdev = cur_pnetdev;
|
|
|
|
pnetdev = rtw_init_netdev(padapter);
|
|
if (!pnetdev) {
|
|
ret = -1;
|
|
goto error;
|
|
}
|
|
|
|
SET_NETDEV_DEV(pnetdev, dvobj_to_dev(adapter_to_dvobj(padapter)));
|
|
|
|
rtw_init_netdev_name(pnetdev, ifname);
|
|
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 15, 0)
|
|
memcpy(pnetdev->dev_addr, adapter_mac_addr(padapter), ETH_ALEN);
|
|
#else
|
|
dev_addr_set(pnetdev, adapter_mac_addr(padapter));
|
|
#endif
|
|
|
|
if (rtnl_lock_needed)
|
|
ret = register_netdev(pnetdev);
|
|
else
|
|
ret = register_netdevice(pnetdev);
|
|
|
|
if (ret != 0) {
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
#ifdef CONFIG_PLATFORM_SPRD
|
|
#ifdef do_div
|
|
#undef do_div
|
|
#endif
|
|
#include <asm-generic/div64.h>
|
|
#endif
|
|
|
|
u64 rtw_modular64(u64 x, u64 y)
|
|
{
|
|
return do_div(x, y);
|
|
}
|
|
|
|
u64 rtw_division64(u64 x, u64 y)
|
|
{
|
|
do_div(x, y);
|
|
return x;
|
|
}
|
|
|
|
inline u32 rtw_random32(void)
|
|
{
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
|
|
#if LINUX_VERSION_CODE >- KERNEL_VERSION(6, 1, 0)
|
|
return get_random_u32();
|
|
#else
|
|
return prandom_u32();
|
|
#endif
|
|
#elif (LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 18))
|
|
u32 random_int;
|
|
get_random_bytes(&random_int , 4);
|
|
return random_int;
|
|
#else
|
|
return random32();
|
|
#endif
|
|
}
|
|
|
|
void rtw_buf_free(u8 **buf, u32 *buf_len)
|
|
{
|
|
u32 ori_len;
|
|
|
|
if (!buf || !buf_len)
|
|
return;
|
|
|
|
ori_len = *buf_len;
|
|
|
|
if (*buf) {
|
|
u32 tmp_buf_len = *buf_len;
|
|
*buf_len = 0;
|
|
rtw_mfree(*buf, tmp_buf_len);
|
|
*buf = NULL;
|
|
}
|
|
}
|
|
|
|
void rtw_buf_update(u8 **buf, u32 *buf_len, u8 *src, u32 src_len)
|
|
{
|
|
u32 ori_len = 0, dup_len = 0;
|
|
u8 *ori = NULL;
|
|
u8 *dup = NULL;
|
|
|
|
if (!buf || !buf_len)
|
|
return;
|
|
|
|
if (!src || !src_len)
|
|
goto keep_ori;
|
|
|
|
/* duplicate src */
|
|
dup = rtw_malloc(src_len);
|
|
if (dup) {
|
|
dup_len = src_len;
|
|
memcpy(dup, src, dup_len);
|
|
}
|
|
|
|
keep_ori:
|
|
ori = *buf;
|
|
ori_len = *buf_len;
|
|
|
|
/* replace buf with dup */
|
|
*buf_len = 0;
|
|
*buf = dup;
|
|
*buf_len = dup_len;
|
|
|
|
/* free ori */
|
|
if (ori && ori_len > 0)
|
|
rtw_mfree(ori, ori_len);
|
|
}
|
|
|
|
|
|
/**
|
|
* rtw_cbuf_full - test if cbuf is full
|
|
* @cbuf: pointer of struct rtw_cbuf
|
|
*
|
|
* Returns: true if cbuf is full
|
|
*/
|
|
inline bool rtw_cbuf_full(struct rtw_cbuf *cbuf)
|
|
{
|
|
return (cbuf->write == cbuf->read - 1) ? true : false;
|
|
}
|
|
|
|
/**
|
|
* rtw_cbuf_empty - test if cbuf is empty
|
|
* @cbuf: pointer of struct rtw_cbuf
|
|
*
|
|
* Returns: true if cbuf is empty
|
|
*/
|
|
inline bool rtw_cbuf_empty(struct rtw_cbuf *cbuf)
|
|
{
|
|
return (cbuf->write == cbuf->read) ? true : false;
|
|
}
|
|
|
|
/**
|
|
* rtw_cbuf_push - push a pointer into cbuf
|
|
* @cbuf: pointer of struct rtw_cbuf
|
|
* @buf: pointer to push in
|
|
*
|
|
* Lock free operation, be careful of the use scheme
|
|
* Returns: true push success
|
|
*/
|
|
bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf)
|
|
{
|
|
if (rtw_cbuf_full(cbuf))
|
|
return _FAIL;
|
|
|
|
if (0)
|
|
RTW_INFO("%s on %u\n", __func__, cbuf->write);
|
|
cbuf->bufs[cbuf->write] = buf;
|
|
cbuf->write = (cbuf->write + 1) % cbuf->size;
|
|
|
|
return _SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* rtw_cbuf_pop - pop a pointer from cbuf
|
|
* @cbuf: pointer of struct rtw_cbuf
|
|
*
|
|
* Lock free operation, be careful of the use scheme
|
|
* Returns: pointer popped out
|
|
*/
|
|
void *rtw_cbuf_pop(struct rtw_cbuf *cbuf)
|
|
{
|
|
void *buf;
|
|
if (rtw_cbuf_empty(cbuf))
|
|
return NULL;
|
|
|
|
if (0)
|
|
RTW_INFO("%s on %u\n", __func__, cbuf->read);
|
|
buf = cbuf->bufs[cbuf->read];
|
|
cbuf->read = (cbuf->read + 1) % cbuf->size;
|
|
|
|
return buf;
|
|
}
|
|
|
|
/**
|
|
* rtw_cbuf_alloc - allocte a rtw_cbuf with given size and do initialization
|
|
* @size: size of pointer
|
|
*
|
|
* Returns: pointer of srtuct rtw_cbuf, NULL for allocation failure
|
|
*/
|
|
struct rtw_cbuf *rtw_cbuf_alloc(u32 size)
|
|
{
|
|
struct rtw_cbuf *cbuf;
|
|
|
|
cbuf = (struct rtw_cbuf *)rtw_malloc(sizeof(*cbuf) + sizeof(void *) * size);
|
|
|
|
if (cbuf) {
|
|
cbuf->write = cbuf->read = 0;
|
|
cbuf->size = size;
|
|
}
|
|
|
|
return cbuf;
|
|
}
|
|
|
|
/**
|
|
* rtw_cbuf_free - free the given rtw_cbuf
|
|
* @cbuf: pointer of struct rtw_cbuf to free
|
|
*/
|
|
void rtw_cbuf_free(struct rtw_cbuf *cbuf)
|
|
{
|
|
rtw_mfree((u8 *)cbuf, sizeof(*cbuf) + sizeof(void *) * cbuf->size);
|
|
}
|
|
|
|
/**
|
|
* map_readN - read a range of map data
|
|
* @map: map to read
|
|
* @offset: start address to read
|
|
* @len: length to read
|
|
* @buf: pointer of buffer to store data read
|
|
*
|
|
* Returns: _SUCCESS or _FAIL
|
|
*/
|
|
int map_readN(const struct map_t *map, u16 offset, u16 len, u8 *buf)
|
|
{
|
|
const struct map_seg_t *seg;
|
|
int ret = _FAIL;
|
|
int i;
|
|
|
|
if (len == 0) {
|
|
rtw_warn_on(1);
|
|
goto exit;
|
|
}
|
|
|
|
if (offset + len > map->len) {
|
|
rtw_warn_on(1);
|
|
goto exit;
|
|
}
|
|
|
|
memset(buf, map->init_value, len);
|
|
|
|
for (i = 0; i < map->seg_num; i++) {
|
|
u8 *c_dst, *c_src;
|
|
u16 c_len;
|
|
|
|
seg = map->segs + i;
|
|
if (seg->sa + seg->len <= offset || seg->sa >= offset + len)
|
|
continue;
|
|
|
|
if (seg->sa >= offset) {
|
|
c_dst = buf + (seg->sa - offset);
|
|
c_src = seg->c;
|
|
if (seg->sa + seg->len <= offset + len)
|
|
c_len = seg->len;
|
|
else
|
|
c_len = offset + len - seg->sa;
|
|
} else {
|
|
c_dst = buf;
|
|
c_src = seg->c + (offset - seg->sa);
|
|
if (seg->sa + seg->len >= offset + len)
|
|
c_len = len;
|
|
else
|
|
c_len = seg->sa + seg->len - offset;
|
|
}
|
|
|
|
memcpy(c_dst, c_src, c_len);
|
|
}
|
|
|
|
exit:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* map_read8 - read 1 byte of map data
|
|
* @map: map to read
|
|
* @offset: address to read
|
|
*
|
|
* Returns: value of data of specified offset. map.init_value if offset is out of range
|
|
*/
|
|
u8 map_read8(const struct map_t *map, u16 offset)
|
|
{
|
|
const struct map_seg_t *seg;
|
|
u8 val = map->init_value;
|
|
int i;
|
|
|
|
if (offset + 1 > map->len) {
|
|
rtw_warn_on(1);
|
|
goto exit;
|
|
}
|
|
|
|
for (i = 0; i < map->seg_num; i++) {
|
|
seg = map->segs + i;
|
|
if (seg->sa + seg->len <= offset || seg->sa >= offset + 1)
|
|
continue;
|
|
|
|
val = *(seg->c + offset - seg->sa);
|
|
break;
|
|
}
|
|
|
|
exit:
|
|
return val;
|
|
}
|
|
|
|
/**
|
|
* is_null -
|
|
*
|
|
* Return true if c is null character
|
|
* false otherwise.
|
|
*/
|
|
inline bool is_null(char c)
|
|
{
|
|
if (c == '\0')
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* is_eol -
|
|
*
|
|
* Return true if c is represent for EOL (end of line)
|
|
* false otherwise.
|
|
*/
|
|
inline bool is_eol(char c)
|
|
{
|
|
if (c == '\r' || c == '\n')
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* is_space -
|
|
*
|
|
* Return true if c is represent for space
|
|
* false otherwise.
|
|
*/
|
|
inline bool is_space(char c)
|
|
{
|
|
if (c == ' ' || c == '\t')
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* IsHexDigit -
|
|
*
|
|
* Return true if chTmp is represent for hex digit
|
|
* false otherwise.
|
|
*/
|
|
inline bool IsHexDigit(char chTmp)
|
|
{
|
|
if ((chTmp >= '0' && chTmp <= '9') ||
|
|
(chTmp >= 'a' && chTmp <= 'f') ||
|
|
(chTmp >= 'A' && chTmp <= 'F'))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* is_alpha -
|
|
*
|
|
* Return true if chTmp is represent for alphabet
|
|
* false otherwise.
|
|
*/
|
|
inline bool is_alpha(char chTmp)
|
|
{
|
|
if ((chTmp >= 'a' && chTmp <= 'z') ||
|
|
(chTmp >= 'A' && chTmp <= 'Z'))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
inline char alpha_to_upper(char c)
|
|
{
|
|
if ((c >= 'a' && c <= 'z'))
|
|
c = 'A' + (c - 'a');
|
|
return c;
|
|
}
|