rtl8188eu/hal/HalPhyRf_8188e.c
Larry Finger 3a518f1886 rtl8188eu: Remove remainder of code that depends on DM_ODM_SUPPORT_TYPE
Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
2014-12-30 13:48:00 -06:00

2263 lines
74 KiB
C
Executable file

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#include "odm_precomp.h"
/*---------------------------Define Local Constant---------------------------*/
// 2010/04/25 MH Define the max tx power tracking tx agc power.
#define ODM_TXPWRTRACK_MAX_IDX_88E 6
#define CALCULATE_SWINGTALBE_OFFSET(_offset, _direction, _size, _deltaThermal) \
do {\
for(_offset = 0; _offset < _size; _offset++)\
{\
if(_deltaThermal < thermalThreshold[_direction][_offset])\
{\
if(_offset != 0)\
_offset--;\
break;\
}\
} \
if(_offset >= _size)\
_offset = _size-1;\
} while(0)
//3============================================================
//3 Tx Power Tracking
//3============================================================
void setIqkMatrix(
PDM_ODM_T pDM_Odm,
u1Byte OFDM_index,
u1Byte RFPath,
s4Byte IqkResult_X,
s4Byte IqkResult_Y
)
{
s4Byte ele_A=0, ele_D, ele_C=0, TempCCk, value32;
//printk("%s==> OFDM_index:%d \n",__FUNCTION__,OFDM_index);
//if(OFDM_index> OFDM_TABLE_SIZE_92D)
//{
//printk("%s==> OFDM_index> 43\n",__FUNCTION__);
//}
ele_D = (OFDMSwingTable[OFDM_index] & 0xFFC00000)>>22;
//new element A = element D x X
if((IqkResult_X != 0) && (*(pDM_Odm->pBandType) == ODM_BAND_2_4G))
{
if ((IqkResult_X & 0x00000200) != 0) //consider minus
IqkResult_X = IqkResult_X | 0xFFFFFC00;
ele_A = ((IqkResult_X * ele_D)>>8)&0x000003FF;
//new element C = element D x Y
if ((IqkResult_Y & 0x00000200) != 0)
IqkResult_Y = IqkResult_Y | 0xFFFFFC00;
ele_C = ((IqkResult_Y * ele_D)>>8)&0x000003FF;
if (RFPath == RF_PATH_A)
switch (RFPath)
{
case RF_PATH_A:
//wirte new elements A, C, D to regC80 and regC94, element B is always 0
value32 = (ele_D<<22)|((ele_C&0x3F)<<16)|ele_A;
ODM_SetBBReg(pDM_Odm, rOFDM0_XATxIQImbalance, bMaskDWord, value32);
value32 = (ele_C&0x000003C0)>>6;
ODM_SetBBReg(pDM_Odm, rOFDM0_XCTxAFE, bMaskH4Bits, value32);
value32 = ((IqkResult_X * ele_D)>>7)&0x01;
ODM_SetBBReg(pDM_Odm, rOFDM0_ECCAThreshold, BIT24, value32);
break;
case RF_PATH_B:
//wirte new elements A, C, D to regC88 and regC9C, element B is always 0
value32=(ele_D<<22)|((ele_C&0x3F)<<16) |ele_A;
ODM_SetBBReg(pDM_Odm, rOFDM0_XBTxIQImbalance, bMaskDWord, value32);
value32 = (ele_C&0x000003C0)>>6;
ODM_SetBBReg(pDM_Odm, rOFDM0_XDTxAFE, bMaskH4Bits, value32);
value32 = ((IqkResult_X * ele_D)>>7)&0x01;
ODM_SetBBReg(pDM_Odm, rOFDM0_ECCAThreshold, BIT28, value32);
break;
default:
break;
}
}
else
{
switch (RFPath)
{
case RF_PATH_A:
ODM_SetBBReg(pDM_Odm, rOFDM0_XATxIQImbalance, bMaskDWord, OFDMSwingTable[OFDM_index]);
ODM_SetBBReg(pDM_Odm, rOFDM0_XCTxAFE, bMaskH4Bits, 0x00);
ODM_SetBBReg(pDM_Odm, rOFDM0_ECCAThreshold, BIT24, 0x00);
break;
case RF_PATH_B:
ODM_SetBBReg(pDM_Odm, rOFDM0_XBTxIQImbalance, bMaskDWord, OFDMSwingTable[OFDM_index]);
ODM_SetBBReg(pDM_Odm, rOFDM0_XDTxAFE, bMaskH4Bits, 0x00);
ODM_SetBBReg(pDM_Odm, rOFDM0_ECCAThreshold, BIT28, 0x00);
break;
default:
break;
}
}
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("TxPwrTracking path B: X = 0x%x, Y = 0x%x ele_A = 0x%x ele_C = 0x%x ele_D = 0x%x 0xeb4 = 0x%x 0xebc = 0x%x\n",
(u4Byte)IqkResult_X, (u4Byte)IqkResult_Y, (u4Byte)ele_A, (u4Byte)ele_C, (u4Byte)ele_D, (u4Byte)IqkResult_X, (u4Byte)IqkResult_Y));
}
void doIQK(
PDM_ODM_T pDM_Odm,
u1Byte DeltaThermalIndex,
u1Byte ThermalValue,
u1Byte Threshold
)
{
struct adapter * Adapter = pDM_Odm->Adapter;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
ODM_ResetIQKResult(pDM_Odm);
pDM_Odm->RFCalibrateInfo.ThermalValue_IQK= ThermalValue;
PHY_IQCalibrate_8188E(Adapter, FALSE);
}
/*-----------------------------------------------------------------------------
* Function: ODM_TxPwrTrackAdjust88E()
*
* Overview: 88E we can not write 0xc80/c94/c4c/ 0xa2x. Instead of write TX agc.
* No matter OFDM & CCK use the same method.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 04/23/2012 MHC Create Version 0.
* 04/23/2012 MHC Adjust TX agc directly not throughput BB digital.
*
*---------------------------------------------------------------------------*/
void
ODM_TxPwrTrackAdjust88E(
PDM_ODM_T pDM_Odm,
u1Byte Type, // 0 = OFDM, 1 = CCK
pu1Byte pDirection, // 1 = +(increase) 2 = -(decrease)
pu4Byte pOutWriteVal // Tx tracking CCK/OFDM BB swing index adjust
)
{
u1Byte pwr_value = 0;
//
// Tx power tracking BB swing table.
// The base index = 12. +((12-n)/2)dB 13~?? = decrease tx pwr by -((n-12)/2)dB
//
if (Type == 0) // For OFDM afjust
{
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("BbSwingIdxOfdm = %d BbSwingFlagOfdm=%d\n", pDM_Odm->BbSwingIdxOfdm, pDM_Odm->BbSwingFlagOfdm));
//printk("BbSwingIdxOfdm = %d BbSwingFlagOfdm=%d\n", pDM_Odm->BbSwingIdxOfdm, pDM_Odm->BbSwingFlagOfdm);
if (pDM_Odm->BbSwingIdxOfdm <= pDM_Odm->BbSwingIdxOfdmBase)
{
*pDirection = 1;
pwr_value = (pDM_Odm->BbSwingIdxOfdmBase - pDM_Odm->BbSwingIdxOfdm);
}
else
{
*pDirection = 2;
pwr_value = (pDM_Odm->BbSwingIdxOfdm - pDM_Odm->BbSwingIdxOfdmBase);
}
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("BbSwingIdxOfdm = %d BbSwingIdxOfdmBase=%d\n", pDM_Odm->BbSwingIdxOfdm, pDM_Odm->BbSwingIdxOfdmBase));
//printk("BbSwingIdxOfdm = %d BbSwingIdxOfdmBase=%d pwr_value=%d\n", pDM_Odm->BbSwingIdxOfdm, pDM_Odm->BbSwingIdxOfdmBase,pwr_value);
}
else if (Type == 1) // For CCK adjust.
{
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("pDM_Odm->BbSwingIdxCck = %d pDM_Odm->BbSwingIdxCckBase = %d\n", pDM_Odm->BbSwingIdxCck, pDM_Odm->BbSwingIdxCckBase));
//printk("pDM_Odm->BbSwingIdxCck = %d pDM_Odm->BbSwingIdxCckBase = %d\n", pDM_Odm->BbSwingIdxCck, pDM_Odm->BbSwingIdxCckBase);
if (pDM_Odm->BbSwingIdxCck <= pDM_Odm->BbSwingIdxCckBase)
{
*pDirection = 1;
pwr_value = (pDM_Odm->BbSwingIdxCckBase - pDM_Odm->BbSwingIdxCck);
}
else
{
*pDirection = 2;
pwr_value = (pDM_Odm->BbSwingIdxCck - pDM_Odm->BbSwingIdxCckBase);
}
//printk("pDM_Odm->BbSwingIdxCck = %d pDM_Odm->BbSwingIdxCckBase = %d pwr_value:%d\n", pDM_Odm->BbSwingIdxCck, pDM_Odm->BbSwingIdxCckBase,pwr_value);
}
//
// 2012/04/25 MH According to Ed/Luke.Lees estimate for EVM the max tx power tracking
// need to be less than 6 power index for 88E.
//
if (pwr_value >= ODM_TXPWRTRACK_MAX_IDX_88E && *pDirection == 1)
pwr_value = ODM_TXPWRTRACK_MAX_IDX_88E;
*pOutWriteVal = pwr_value | (pwr_value<<8) | (pwr_value<<16) | (pwr_value<<24);
} // ODM_TxPwrTrackAdjust88E
/*-----------------------------------------------------------------------------
* Function: odm_TxPwrTrackSetPwr88E()
*
* Overview: 88E change all channel tx power accordign to flag.
* OFDM & CCK are all different.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 04/23/2012 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
void
odm_TxPwrTrackSetPwr88E(
PDM_ODM_T pDM_Odm,
PWRTRACK_METHOD Method,
u1Byte RFPath,
u1Byte ChannelMappedIndex
)
{
if (Method == TXAGC) {
u1Byte cckPowerLevel[MAX_TX_COUNT], ofdmPowerLevel[MAX_TX_COUNT];
u1Byte BW20PowerLevel[MAX_TX_COUNT], BW40PowerLevel[MAX_TX_COUNT];
u1Byte rf = 0;
u4Byte pwr = 0, TxAGC = 0;
struct adapter *Adapter = pDM_Odm->Adapter;
//printk("odm_TxPwrTrackSetPwr88E CH=%d, modify TXAGC \n", *(pDM_Odm->pChannel));
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("odm_TxPwrTrackSetPwr88E CH=%d\n", *(pDM_Odm->pChannel)));
//#if (MP_DRIVER != 1)
if ( *(pDM_Odm->mp_mode) != 1){
PHY_SetTxPowerLevel8188E(pDM_Odm->Adapter, *pDM_Odm->pChannel);
}
else
{
pwr = PHY_QueryBBReg(Adapter, rTxAGC_A_Rate18_06, 0xFF);
pwr += (pDM_Odm->BbSwingIdxCck - pDM_Odm->BbSwingIdxCckBase);
PHY_SetBBReg(Adapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, pwr);
TxAGC = (pwr<<16)|(pwr<<8)|(pwr);
PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, 0xffffff00, TxAGC);
DBG_871X("ODM_TxPwrTrackSetPwr88E: CCK Tx-rf(A) Power = 0x%x\n", TxAGC);
pwr = PHY_QueryBBReg(Adapter, rTxAGC_A_Rate18_06, 0xFF);
pwr += (pDM_Odm->BbSwingIdxOfdm - pDM_Odm->BbSwingIdxOfdmBase);
TxAGC |= ((pwr<<24)|(pwr<<16)|(pwr<<8)|pwr);
PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskDWord, TxAGC);
PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskDWord, TxAGC);
PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskDWord, TxAGC);
PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskDWord, TxAGC);
PHY_SetBBReg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskDWord, TxAGC);
PHY_SetBBReg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskDWord, TxAGC);
DBG_871X("ODM_TxPwrTrackSetPwr88E: OFDM Tx-rf(A) Power = 0x%x\n", TxAGC);
}
}
else if (Method == BBSWING)
{
if(* (pDM_Odm->pChannel) < 14)
{
ODM_Write1Byte(pDM_Odm, 0xa22, CCKSwingTable_Ch1_Ch13[pDM_Odm->BbSwingIdxCck][0]);
ODM_Write1Byte(pDM_Odm, 0xa23, CCKSwingTable_Ch1_Ch13[pDM_Odm->BbSwingIdxCck][1]);
ODM_Write1Byte(pDM_Odm, 0xa24, CCKSwingTable_Ch1_Ch13[pDM_Odm->BbSwingIdxCck][2]);
ODM_Write1Byte(pDM_Odm, 0xa25, CCKSwingTable_Ch1_Ch13[pDM_Odm->BbSwingIdxCck][3]);
ODM_Write1Byte(pDM_Odm, 0xa26, CCKSwingTable_Ch1_Ch13[pDM_Odm->BbSwingIdxCck][4]);
ODM_Write1Byte(pDM_Odm, 0xa27, CCKSwingTable_Ch1_Ch13[pDM_Odm->BbSwingIdxCck][5]);
ODM_Write1Byte(pDM_Odm, 0xa28, CCKSwingTable_Ch1_Ch13[pDM_Odm->BbSwingIdxCck][6]);
ODM_Write1Byte(pDM_Odm, 0xa29, CCKSwingTable_Ch1_Ch13[pDM_Odm->BbSwingIdxCck][7]);
}
else
{
ODM_Write1Byte(pDM_Odm, 0xa22, CCKSwingTable_Ch14[pDM_Odm->BbSwingIdxCck][0]);
ODM_Write1Byte(pDM_Odm, 0xa23, CCKSwingTable_Ch14[pDM_Odm->BbSwingIdxCck][1]);
ODM_Write1Byte(pDM_Odm, 0xa24, CCKSwingTable_Ch14[pDM_Odm->BbSwingIdxCck][2]);
ODM_Write1Byte(pDM_Odm, 0xa25, CCKSwingTable_Ch14[pDM_Odm->BbSwingIdxCck][3]);
ODM_Write1Byte(pDM_Odm, 0xa26, CCKSwingTable_Ch14[pDM_Odm->BbSwingIdxCck][4]);
ODM_Write1Byte(pDM_Odm, 0xa27, CCKSwingTable_Ch14[pDM_Odm->BbSwingIdxCck][5]);
ODM_Write1Byte(pDM_Odm, 0xa28, CCKSwingTable_Ch14[pDM_Odm->BbSwingIdxCck][6]);
ODM_Write1Byte(pDM_Odm, 0xa29, CCKSwingTable_Ch14[pDM_Odm->BbSwingIdxCck][7]);
}
// Adjust BB swing by OFDM IQ matrix
if (RFPath == RF_PATH_A)
{
setIqkMatrix(pDM_Odm, pDM_Odm->BbSwingIdxOfdm, RF_PATH_A,
pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[ChannelMappedIndex].Value[0][0],
pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[ChannelMappedIndex].Value[0][1]);
}
/*
else if (RFPath == RF_PATH_B)
{
setIqkMatrix(pDM_Odm, pDM_Odm->BbSwingIdxOfdm[RF_PATH_B], RF_PATH_B,
pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[ChannelMappedIndex].Value[0][4],
pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[ChannelMappedIndex].Value[0][5]);
}*/
}
else
{
return;
}
} // odm_TxPwrTrackSetPwr88E
void
odm_TXPowerTrackingCallback_ThermalMeter_8188E(
IN struct adapter *Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u1Byte ThermalValue = 0, delta, delta_LCK, delta_IQK, offset;
u1Byte ThermalValue_AVG_count = 0;
u4Byte ThermalValue_AVG = 0;
s4Byte ele_A=0, ele_D, TempCCk, X, value32;
s4Byte Y, ele_C=0;
s1Byte OFDM_index[2], CCK_index=0, OFDM_index_old[2]={0,0}, CCK_index_old=0, index;
s1Byte deltaPowerIndex = 0;
u4Byte i = 0, j = 0;
BOOLEAN is2T = FALSE;
BOOLEAN bInteralPA = FALSE;
u1Byte OFDM_min_index = 6, rf = (is2T) ? 2 : 1; //OFDM BB Swing should be less than +3.0dB, which is required by Arthur
u1Byte Indexforchannel = 0;/*GetRightChnlPlaceforIQK(pHalData->CurrentChannel)*/
enum _POWER_DEC_INC { POWER_DEC, POWER_INC };
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
struct dm_priv *pdmpriv = &pHalData->dmpriv;
//4 0.1 The following TWO tables decide the final index of OFDM/CCK swing table.
s1Byte deltaSwingTableIdx[2][index_mapping_NUM_88E] = {
// {{Power decreasing(lower temperature)}, {Power increasing(higher temperature)}}
{0,0,2,3,4,4,5,6,7,7,8,9,10,10,11}, {0,0,-1,-2,-3,-4,-4,-4,-4,-5,-7,-8,-9,-9,-10}
};
u1Byte thermalThreshold[2][index_mapping_NUM_88E]={
// {{Power decreasing(lower temperature)}, {Power increasing(higher temperature)}}
{0,2,4,6,8,10,12,14,16,18,20,22,24,26,27}, {0,2,4,6,8,10,12,14,16,18,20,22,25,25,25}
};
//4 0.1 Initilization ( 7 steps in total )
pDM_Odm->RFCalibrateInfo.TXPowerTrackingCallbackCnt++; //cosa add for debug
pDM_Odm->RFCalibrateInfo.bTXPowerTrackingInit = TRUE;
#if (MP_DRIVER == 1)
// <Kordan> RFCalibrateInfo.RegA24 will be initialized when ODM HW configuring, but MP configures with para files.
pDM_Odm->RFCalibrateInfo.RegA24 = 0x090e1317;
#endif
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("===>odm_TXPowerTrackingCallback_ThermalMeter_8188E, pDM_Odm->BbSwingIdxCckBase: %d, pDM_Odm->BbSwingIdxOfdmBase: %d \n", pDM_Odm->BbSwingIdxCckBase, pDM_Odm->BbSwingIdxOfdmBase));
ThermalValue = (u1Byte)ODM_GetRFReg(pDM_Odm, RF_PATH_A, RF_T_METER_88E, 0xfc00); //0x42: RF Reg[15:10] 88E
if( ! ThermalValue || ! pDM_Odm->RFCalibrateInfo.TxPowerTrackControl)
return;
//4 3. Initialize ThermalValues of RFCalibrateInfo
if( ! pDM_Odm->RFCalibrateInfo.ThermalValue)
{
pDM_Odm->RFCalibrateInfo.ThermalValue_LCK = ThermalValue;
pDM_Odm->RFCalibrateInfo.ThermalValue_IQK = ThermalValue;
}
if(pDM_Odm->RFCalibrateInfo.bReloadtxpowerindex)
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("reload ofdm index for band switch\n"));
}
//4 4. Calculate average thermal meter
pDM_Odm->RFCalibrateInfo.ThermalValue_AVG[pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index] = ThermalValue;
pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index++;
if(pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index == AVG_THERMAL_NUM_88E)
pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index = 0;
for(i = 0; i < AVG_THERMAL_NUM_88E; i++)
{
if(pDM_Odm->RFCalibrateInfo.ThermalValue_AVG[i])
{
ThermalValue_AVG += pDM_Odm->RFCalibrateInfo.ThermalValue_AVG[i];
ThermalValue_AVG_count++;
}
}
if(ThermalValue_AVG_count)
{
ThermalValue = (u1Byte)(ThermalValue_AVG / ThermalValue_AVG_count);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("AVG Thermal Meter = 0x%x \n", ThermalValue));
}
//4 5. Calculate delta, delta_LCK, delta_IQK.
delta = (ThermalValue > pDM_Odm->RFCalibrateInfo.ThermalValue)?(ThermalValue - pDM_Odm->RFCalibrateInfo.ThermalValue):(pDM_Odm->RFCalibrateInfo.ThermalValue - ThermalValue);
delta_LCK = (ThermalValue > pDM_Odm->RFCalibrateInfo.ThermalValue_LCK)?(ThermalValue - pDM_Odm->RFCalibrateInfo.ThermalValue_LCK):(pDM_Odm->RFCalibrateInfo.ThermalValue_LCK - ThermalValue);
delta_IQK = (ThermalValue > pDM_Odm->RFCalibrateInfo.ThermalValue_IQK)?(ThermalValue - pDM_Odm->RFCalibrateInfo.ThermalValue_IQK):(pDM_Odm->RFCalibrateInfo.ThermalValue_IQK - ThermalValue);
//4 6. If necessary, do LCK.
//if((delta_LCK > pHalData->Delta_LCK) && (pHalData->Delta_LCK != 0))
if ((delta_LCK >= 8)) // Delta temperature is equal to or larger than 20 centigrade.
{
pDM_Odm->RFCalibrateInfo.ThermalValue_LCK = ThermalValue;
PHY_LCCalibrate_8188E(Adapter);
}
//3 7. If necessary, move the index of swing table to adjust Tx power.
if (delta > 0 && pDM_Odm->RFCalibrateInfo.TxPowerTrackControl)
{
delta = ThermalValue > pHalData->EEPROMThermalMeter?(ThermalValue - pHalData->EEPROMThermalMeter):(pHalData->EEPROMThermalMeter - ThermalValue);
//4 7.1 The Final Power Index = BaseIndex + PowerIndexOffset
if(ThermalValue > pHalData->EEPROMThermalMeter) {
CALCULATE_SWINGTALBE_OFFSET(offset, POWER_INC, index_mapping_NUM_88E, delta);
pDM_Odm->RFCalibrateInfo.DeltaPowerIndexLast = pDM_Odm->RFCalibrateInfo.DeltaPowerIndex;
pDM_Odm->RFCalibrateInfo.DeltaPowerIndex = -1 * deltaSwingTableIdx[POWER_INC][offset];
} else {
CALCULATE_SWINGTALBE_OFFSET(offset, POWER_DEC, index_mapping_NUM_88E, delta);
pDM_Odm->RFCalibrateInfo.DeltaPowerIndexLast = pDM_Odm->RFCalibrateInfo.DeltaPowerIndex;
pDM_Odm->RFCalibrateInfo.DeltaPowerIndex = -1 * deltaSwingTableIdx[POWER_DEC][offset];
}
if (pDM_Odm->RFCalibrateInfo.DeltaPowerIndex == pDM_Odm->RFCalibrateInfo.DeltaPowerIndexLast)
pDM_Odm->RFCalibrateInfo.PowerIndexOffset = 0;
else
pDM_Odm->RFCalibrateInfo.PowerIndexOffset = pDM_Odm->RFCalibrateInfo.DeltaPowerIndex - pDM_Odm->RFCalibrateInfo.DeltaPowerIndexLast;
for(i = 0; i < rf; i++)
pDM_Odm->RFCalibrateInfo.OFDM_index[i] = pDM_Odm->BbSwingIdxOfdmBase + pDM_Odm->RFCalibrateInfo.PowerIndexOffset;
pDM_Odm->RFCalibrateInfo.CCK_index = pDM_Odm->BbSwingIdxCckBase + pDM_Odm->RFCalibrateInfo.PowerIndexOffset;
pDM_Odm->BbSwingIdxCck = pDM_Odm->RFCalibrateInfo.CCK_index;
pDM_Odm->BbSwingIdxOfdm = pDM_Odm->RFCalibrateInfo.OFDM_index[RF_PATH_A];
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("The 'CCK' final index(%d) = BaseIndex(%d) + PowerIndexOffset(%d)\n", pDM_Odm->BbSwingIdxCck, pDM_Odm->BbSwingIdxCckBase, pDM_Odm->RFCalibrateInfo.PowerIndexOffset));
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("The 'OFDM' final index(%d) = BaseIndex(%d) + PowerIndexOffset(%d)\n", pDM_Odm->BbSwingIdxOfdm, pDM_Odm->BbSwingIdxOfdmBase, pDM_Odm->RFCalibrateInfo.PowerIndexOffset));
//4 7.1 Handle boundary conditions of index.
for(i = 0; i < rf; i++)
{
if(pDM_Odm->RFCalibrateInfo.OFDM_index[i] > OFDM_TABLE_SIZE_92D-1)
{
pDM_Odm->RFCalibrateInfo.OFDM_index[i] = OFDM_TABLE_SIZE_92D-1;
}
else if (pDM_Odm->RFCalibrateInfo.OFDM_index[i] < OFDM_min_index)
{
pDM_Odm->RFCalibrateInfo.OFDM_index[i] = OFDM_min_index;
}
}
if(pDM_Odm->RFCalibrateInfo.CCK_index > CCK_TABLE_SIZE-1)
pDM_Odm->RFCalibrateInfo.CCK_index = CCK_TABLE_SIZE-1;
else if (pDM_Odm->RFCalibrateInfo.CCK_index < 0)
pDM_Odm->RFCalibrateInfo.CCK_index = 0;
}
else
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("The thermal meter is unchanged or TxPowerTracking OFF: ThermalValue: %d , pDM_Odm->RFCalibrateInfo.ThermalValue: %d)\n", ThermalValue, pDM_Odm->RFCalibrateInfo.ThermalValue));
pDM_Odm->RFCalibrateInfo.PowerIndexOffset = 0;
}
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("TxPowerTracking: [CCK] Swing Current Index: %d, Swing Base Index: %d\n", pDM_Odm->RFCalibrateInfo.CCK_index, pDM_Odm->BbSwingIdxCckBase));
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("TxPowerTracking: [OFDM] Swing Current Index: %d, Swing Base Index: %d\n", pDM_Odm->RFCalibrateInfo.OFDM_index[RF_PATH_A], pDM_Odm->BbSwingIdxOfdmBase));
if (pDM_Odm->RFCalibrateInfo.PowerIndexOffset != 0 && pDM_Odm->RFCalibrateInfo.TxPowerTrackControl)
{
//4 7.2 Configure the Swing Table to adjust Tx Power.
pDM_Odm->RFCalibrateInfo.bTxPowerChanged = TRUE; // Always TRUE after Tx Power is adjusted by power tracking.
//
// 2012/04/23 MH According to Luke's suggestion, we can not write BB digital
// to increase TX power. Otherwise, EVM will be bad.
//
// 2012/04/25 MH Add for tx power tracking to set tx power in tx agc for 88E.
if (ThermalValue > pDM_Odm->RFCalibrateInfo.ThermalValue)
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("Temperature Increasing: delta_pi: %d , delta_t: %d, Now_t: %d, EFUSE_t: %d, Last_t: %d\n",
pDM_Odm->RFCalibrateInfo.PowerIndexOffset, delta, ThermalValue, pHalData->EEPROMThermalMeter, pDM_Odm->RFCalibrateInfo.ThermalValue));
}
else if (ThermalValue < pDM_Odm->RFCalibrateInfo.ThermalValue)// Low temperature
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("Temperature Decreasing: delta_pi: %d , delta_t: %d, Now_t: %d, EFUSE_t: %d, Last_t: %d\n",
pDM_Odm->RFCalibrateInfo.PowerIndexOffset, delta, ThermalValue, pHalData->EEPROMThermalMeter, pDM_Odm->RFCalibrateInfo.ThermalValue));
}
if (ThermalValue > pHalData->EEPROMThermalMeter)
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("Temperature(%d) hugher than PG value(%d), increases the power by TxAGC\n", ThermalValue, pHalData->EEPROMThermalMeter));
odm_TxPwrTrackSetPwr88E(pDM_Odm, TXAGC, 0, 0);
}
else
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("Temperature(%d) lower than PG value(%d), increases the power by TxAGC\n", ThermalValue, pHalData->EEPROMThermalMeter));
odm_TxPwrTrackSetPwr88E(pDM_Odm, BBSWING, RF_PATH_A, Indexforchannel);
//if(is2T)
// odm_TxPwrTrackSetPwr88E(pDM_Odm, BBSWING, RF_PATH_B, Indexforchannel);
}
pDM_Odm->BbSwingIdxCckBase = pDM_Odm->BbSwingIdxCck;
pDM_Odm->BbSwingIdxOfdmBase = pDM_Odm->BbSwingIdxOfdm;
pDM_Odm->RFCalibrateInfo.ThermalValue = ThermalValue;
}
// if((delta_IQK > pHalData->Delta_IQK) && (pHalData->Delta_IQK != 0))
if ((delta_IQK >= 8)){ // Delta temperature is equal to or larger than 20 centigrade.
//printk("delta_IQK(%d) >=8 do_IQK\n",delta_IQK);
doIQK(pDM_Odm, delta_IQK, ThermalValue, 8);
}
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("<===dm_TXPowerTrackingCallback_ThermalMeter_8188E\n"));
pDM_Odm->RFCalibrateInfo.TXPowercount = 0;
}
//1 7. IQK
#define MAX_TOLERANCE 5
#define IQK_DELAY_TIME 1 //ms
u1Byte //bit0 = 1 => Tx OK, bit1 = 1 => Rx OK
phy_PathA_IQK_8188E(
IN struct adapter *pAdapter,
IN BOOLEAN configPathB
)
{
u4Byte regEAC, regE94, regE9C, regEA4;
u1Byte result = 0x00;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A IQK!\n"));
//1 Tx IQK
//path-A IQK setting
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path-A IQK setting!\n"));
ODM_SetBBReg(pDM_Odm, rTx_IQK_Tone_A, bMaskDWord, 0x10008c1c);
ODM_SetBBReg(pDM_Odm, rRx_IQK_Tone_A, bMaskDWord, 0x30008c1c);
ODM_SetBBReg(pDM_Odm, rTx_IQK_PI_A, bMaskDWord, 0x8214032a);
ODM_SetBBReg(pDM_Odm, rRx_IQK_PI_A, bMaskDWord, 0x28160000);
//LO calibration setting
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("LO calibration setting!\n"));
ODM_SetBBReg(pDM_Odm, rIQK_AGC_Rsp, bMaskDWord, 0x00462911);
//One shot, path A LOK & IQK
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("One shot, path A LOK & IQK!\n"));
ODM_SetBBReg(pDM_Odm, rIQK_AGC_Pts, bMaskDWord, 0xf9000000);
ODM_SetBBReg(pDM_Odm, rIQK_AGC_Pts, bMaskDWord, 0xf8000000);
// delay x ms
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Delay %d ms for One shot, path A LOK & IQK.\n", IQK_DELAY_TIME_88E));
//PlatformStallExecution(IQK_DELAY_TIME_88E*1000);
ODM_delay_ms(IQK_DELAY_TIME_88E);
// Check failed
regEAC = ODM_GetBBReg(pDM_Odm, rRx_Power_After_IQK_A_2, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xeac = 0x%x\n", regEAC));
regE94 = ODM_GetBBReg(pDM_Odm, rTx_Power_Before_IQK_A, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xe94 = 0x%x\n", regE94));
regE9C= ODM_GetBBReg(pDM_Odm, rTx_Power_After_IQK_A, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xe9c = 0x%x\n", regE9C));
regEA4= ODM_GetBBReg(pDM_Odm, rRx_Power_Before_IQK_A_2, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xea4 = 0x%x\n", regEA4));
if(!(regEAC & BIT28) &&
(((regE94 & 0x03FF0000)>>16) != 0x142) &&
(((regE9C & 0x03FF0000)>>16) != 0x42) )
result |= 0x01;
else //if Tx not OK, ignore Rx
return result;
return result;
}
u1Byte //bit0 = 1 => Tx OK, bit1 = 1 => Rx OK
phy_PathA_RxIQK(
IN struct adapter *pAdapter,
IN BOOLEAN configPathB
)
{
u4Byte regEAC, regE94, regE9C, regEA4, u4tmp;
u1Byte result = 0x00;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A Rx IQK!\n"));
//1 Get TXIMR setting
//modify RXIQK mode table
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path-A Rx IQK modify RXIQK mode table!\n"));
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0x00000000);
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_WE_LUT, bRFRegOffsetMask, 0x800a0 );
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_RCK_OS, bRFRegOffsetMask, 0x30000 );
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_TXPA_G1, bRFRegOffsetMask, 0x0000f );
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_TXPA_G2, bRFRegOffsetMask, 0xf117B );
//PA,PAD off
ODM_SetRFReg(pDM_Odm, RF_PATH_A, 0xdf, bRFRegOffsetMask, 0x980 );
ODM_SetRFReg(pDM_Odm, RF_PATH_A, 0x56, bRFRegOffsetMask, 0x51000 );
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0x80800000);
//IQK setting
ODM_SetBBReg(pDM_Odm, rTx_IQK, bMaskDWord, 0x01007c00);
ODM_SetBBReg(pDM_Odm, rRx_IQK, bMaskDWord, 0x81004800);
//path-A IQK setting
ODM_SetBBReg(pDM_Odm, rTx_IQK_Tone_A, bMaskDWord, 0x10008c1c);
ODM_SetBBReg(pDM_Odm, rRx_IQK_Tone_A, bMaskDWord, 0x30008c1c);
ODM_SetBBReg(pDM_Odm, rTx_IQK_PI_A, bMaskDWord, 0x82160c1f);
ODM_SetBBReg(pDM_Odm, rRx_IQK_PI_A, bMaskDWord, 0x28160000);
//LO calibration setting
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("LO calibration setting!\n"));
ODM_SetBBReg(pDM_Odm, rIQK_AGC_Rsp, bMaskDWord, 0x0046a911);
//One shot, path A LOK & IQK
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("One shot, path A LOK & IQK!\n"));
ODM_SetBBReg(pDM_Odm, rIQK_AGC_Pts, bMaskDWord, 0xf9000000);
ODM_SetBBReg(pDM_Odm, rIQK_AGC_Pts, bMaskDWord, 0xf8000000);
// delay x ms
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Delay %d ms for One shot, path A LOK & IQK.\n", IQK_DELAY_TIME_88E));
//PlatformStallExecution(IQK_DELAY_TIME_88E*1000);
ODM_delay_ms(IQK_DELAY_TIME_88E);
// Check failed
regEAC = ODM_GetBBReg(pDM_Odm, rRx_Power_After_IQK_A_2, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xeac = 0x%x\n", regEAC));
regE94 = ODM_GetBBReg(pDM_Odm, rTx_Power_Before_IQK_A, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xe94 = 0x%x\n", regE94));
regE9C= ODM_GetBBReg(pDM_Odm, rTx_Power_After_IQK_A, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xe9c = 0x%x\n", regE9C));
if(!(regEAC & BIT28) &&
(((regE94 & 0x03FF0000)>>16) != 0x142) &&
(((regE9C & 0x03FF0000)>>16) != 0x42) )
{
result |= 0x01;
}
else
{
//reload RF 0xdf
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0x00000000);
ODM_SetRFReg(pDM_Odm, RF_PATH_A, 0xdf, bRFRegOffsetMask, 0x180 );//if Tx not OK, ignore Rx
return result;
}
u4tmp = 0x80007C00 | (regE94&0x3FF0000) | ((regE9C&0x3FF0000) >> 16);
ODM_SetBBReg(pDM_Odm, rTx_IQK, bMaskDWord, u4tmp);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xe40 = 0x%x u4tmp = 0x%x \n", ODM_GetBBReg(pDM_Odm, rTx_IQK, bMaskDWord), u4tmp));
//1 RX IQK
//modify RXIQK mode table
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path-A Rx IQK modify RXIQK mode table 2!\n"));
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0x00000000);
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_WE_LUT, bRFRegOffsetMask, 0x800a0 );
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_RCK_OS, bRFRegOffsetMask, 0x30000 );
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_TXPA_G1, bRFRegOffsetMask, 0x0000f );
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_TXPA_G2, bRFRegOffsetMask, 0xf7ffa );
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0x80800000);
//IQK setting
ODM_SetBBReg(pDM_Odm, rRx_IQK, bMaskDWord, 0x01004800);
//path-A IQK setting
ODM_SetBBReg(pDM_Odm, rTx_IQK_Tone_A, bMaskDWord, 0x38008c1c);
ODM_SetBBReg(pDM_Odm, rRx_IQK_Tone_A, bMaskDWord, 0x18008c1c);
ODM_SetBBReg(pDM_Odm, rTx_IQK_PI_A, bMaskDWord, 0x82160c05);
ODM_SetBBReg(pDM_Odm, rRx_IQK_PI_A, bMaskDWord, 0x28160c1f);
//LO calibration setting
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("LO calibration setting!\n"));
ODM_SetBBReg(pDM_Odm, rIQK_AGC_Rsp, bMaskDWord, 0x0046a911);
//One shot, path A LOK & IQK
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("One shot, path A LOK & IQK!\n"));
ODM_SetBBReg(pDM_Odm, rIQK_AGC_Pts, bMaskDWord, 0xf9000000);
ODM_SetBBReg(pDM_Odm, rIQK_AGC_Pts, bMaskDWord, 0xf8000000);
// delay x ms
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Delay %d ms for One shot, path A LOK & IQK.\n", IQK_DELAY_TIME_88E));
//PlatformStallExecution(IQK_DELAY_TIME_88E*1000);
ODM_delay_ms(IQK_DELAY_TIME_88E);
// Check failed
regEAC = ODM_GetBBReg(pDM_Odm, rRx_Power_After_IQK_A_2, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xeac = 0x%x\n", regEAC));
regE94 = ODM_GetBBReg(pDM_Odm, rTx_Power_Before_IQK_A, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xe94 = 0x%x\n", regE94));
regE9C= ODM_GetBBReg(pDM_Odm, rTx_Power_After_IQK_A, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xe9c = 0x%x\n", regE9C));
regEA4= ODM_GetBBReg(pDM_Odm, rRx_Power_Before_IQK_A_2, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xea4 = 0x%x\n", regEA4));
//reload RF 0xdf
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0x00000000);
ODM_SetRFReg(pDM_Odm, RF_PATH_A, 0xdf, bRFRegOffsetMask, 0x180 );
if(!(regEAC & BIT27) && //if Tx is OK, check whether Rx is OK
(((regEA4 & 0x03FF0000)>>16) != 0x132) &&
(((regEAC & 0x03FF0000)>>16) != 0x36))
result |= 0x02;
else
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A Rx IQK fail!!\n"));
return result;
}
u1Byte //bit0 = 1 => Tx OK, bit1 = 1 => Rx OK
phy_PathB_IQK_8188E(
IN struct adapter *pAdapter
)
{
u4Byte regEAC, regEB4, regEBC, regEC4, regECC;
u1Byte result = 0x00;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path B IQK!\n"));
//One shot, path B LOK & IQK
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("One shot, path A LOK & IQK!\n"));
ODM_SetBBReg(pDM_Odm, rIQK_AGC_Cont, bMaskDWord, 0x00000002);
ODM_SetBBReg(pDM_Odm, rIQK_AGC_Cont, bMaskDWord, 0x00000000);
// delay x ms
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Delay %d ms for One shot, path B LOK & IQK.\n", IQK_DELAY_TIME_88E));
//PlatformStallExecution(IQK_DELAY_TIME_88E*1000);
ODM_delay_ms(IQK_DELAY_TIME_88E);
// Check failed
regEAC = ODM_GetBBReg(pDM_Odm, rRx_Power_After_IQK_A_2, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xeac = 0x%x\n", regEAC));
regEB4 = ODM_GetBBReg(pDM_Odm, rTx_Power_Before_IQK_B, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xeb4 = 0x%x\n", regEB4));
regEBC= ODM_GetBBReg(pDM_Odm, rTx_Power_After_IQK_B, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xebc = 0x%x\n", regEBC));
regEC4= ODM_GetBBReg(pDM_Odm, rRx_Power_Before_IQK_B_2, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xec4 = 0x%x\n", regEC4));
regECC= ODM_GetBBReg(pDM_Odm, rRx_Power_After_IQK_B_2, bMaskDWord);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xecc = 0x%x\n", regECC));
if(!(regEAC & BIT31) &&
(((regEB4 & 0x03FF0000)>>16) != 0x142) &&
(((regEBC & 0x03FF0000)>>16) != 0x42))
result |= 0x01;
else
return result;
if(!(regEAC & BIT30) &&
(((regEC4 & 0x03FF0000)>>16) != 0x132) &&
(((regECC & 0x03FF0000)>>16) != 0x36))
result |= 0x02;
else
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path B Rx IQK fail!!\n"));
return result;
}
void
_PHY_PathAFillIQKMatrix(
IN struct adapter *pAdapter,
IN BOOLEAN bIQKOK,
IN s4Byte result[][8],
IN u1Byte final_candidate,
IN BOOLEAN bTxOnly
)
{
u4Byte Oldval_0, X, TX0_A, reg;
s4Byte Y, TX0_C;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A IQ Calibration %s !\n",(bIQKOK)?"Success":"Failed"));
if(final_candidate == 0xFF)
return;
else if(bIQKOK)
{
Oldval_0 = (ODM_GetBBReg(pDM_Odm, rOFDM0_XATxIQImbalance, bMaskDWord) >> 22) & 0x3FF;
X = result[final_candidate][0];
if ((X & 0x00000200) != 0)
X = X | 0xFFFFFC00;
TX0_A = (X * Oldval_0) >> 8;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("X = 0x%x, TX0_A = 0x%x, Oldval_0 0x%x\n", X, TX0_A, Oldval_0));
ODM_SetBBReg(pDM_Odm, rOFDM0_XATxIQImbalance, 0x3FF, TX0_A);
ODM_SetBBReg(pDM_Odm, rOFDM0_ECCAThreshold, BIT(31), ((X* Oldval_0>>7) & 0x1));
Y = result[final_candidate][1];
if ((Y & 0x00000200) != 0)
Y = Y | 0xFFFFFC00;
TX0_C = (Y * Oldval_0) >> 8;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Y = 0x%x, TX = 0x%x\n", Y, TX0_C));
ODM_SetBBReg(pDM_Odm, rOFDM0_XCTxAFE, 0xF0000000, ((TX0_C&0x3C0)>>6));
ODM_SetBBReg(pDM_Odm, rOFDM0_XATxIQImbalance, 0x003F0000, (TX0_C&0x3F));
ODM_SetBBReg(pDM_Odm, rOFDM0_ECCAThreshold, BIT(29), ((Y* Oldval_0>>7) & 0x1));
if(bTxOnly)
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("_PHY_PathAFillIQKMatrix only Tx OK\n"));
return;
}
reg = result[final_candidate][2];
ODM_SetBBReg(pDM_Odm, rOFDM0_XARxIQImbalance, 0x3FF, reg);
reg = result[final_candidate][3] & 0x3F;
ODM_SetBBReg(pDM_Odm, rOFDM0_XARxIQImbalance, 0xFC00, reg);
reg = (result[final_candidate][3] >> 6) & 0xF;
ODM_SetBBReg(pDM_Odm, rOFDM0_RxIQExtAnta, 0xF0000000, reg);
}
}
void
_PHY_PathBFillIQKMatrix(
IN struct adapter *pAdapter,
IN BOOLEAN bIQKOK,
IN s4Byte result[][8],
IN u1Byte final_candidate,
IN BOOLEAN bTxOnly //do Tx only
)
{
u4Byte Oldval_1, X, TX1_A, reg;
s4Byte Y, TX1_C;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path B IQ Calibration %s !\n",(bIQKOK)?"Success":"Failed"));
if(final_candidate == 0xFF)
return;
else if(bIQKOK)
{
Oldval_1 = (ODM_GetBBReg(pDM_Odm, rOFDM0_XBTxIQImbalance, bMaskDWord) >> 22) & 0x3FF;
X = result[final_candidate][4];
if ((X & 0x00000200) != 0)
X = X | 0xFFFFFC00;
TX1_A = (X * Oldval_1) >> 8;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("X = 0x%x, TX1_A = 0x%x\n", X, TX1_A));
ODM_SetBBReg(pDM_Odm, rOFDM0_XBTxIQImbalance, 0x3FF, TX1_A);
ODM_SetBBReg(pDM_Odm, rOFDM0_ECCAThreshold, BIT(27), ((X* Oldval_1>>7) & 0x1));
Y = result[final_candidate][5];
if ((Y & 0x00000200) != 0)
Y = Y | 0xFFFFFC00;
TX1_C = (Y * Oldval_1) >> 8;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Y = 0x%x, TX1_C = 0x%x\n", Y, TX1_C));
ODM_SetBBReg(pDM_Odm, rOFDM0_XDTxAFE, 0xF0000000, ((TX1_C&0x3C0)>>6));
ODM_SetBBReg(pDM_Odm, rOFDM0_XBTxIQImbalance, 0x003F0000, (TX1_C&0x3F));
ODM_SetBBReg(pDM_Odm, rOFDM0_ECCAThreshold, BIT(25), ((Y* Oldval_1>>7) & 0x1));
if(bTxOnly)
return;
reg = result[final_candidate][6];
ODM_SetBBReg(pDM_Odm, rOFDM0_XBRxIQImbalance, 0x3FF, reg);
reg = result[final_candidate][7] & 0x3F;
ODM_SetBBReg(pDM_Odm, rOFDM0_XBRxIQImbalance, 0xFC00, reg);
reg = (result[final_candidate][7] >> 6) & 0xF;
ODM_SetBBReg(pDM_Odm, rOFDM0_AGCRSSITable, 0x0000F000, reg);
}
}
//
// 2011/07/26 MH Add an API for testing IQK fail case.
//
// MP Already declare in odm.c
BOOLEAN
ODM_CheckPowerStatus(
IN struct adapter * Adapter)
{
return TRUE;
}
void
_PHY_SaveADDARegisters(
IN struct adapter *pAdapter,
IN pu4Byte ADDAReg,
IN pu4Byte ADDABackup,
IN u4Byte RegisterNum
)
{
u4Byte i;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
if (ODM_CheckPowerStatus(pAdapter) == FALSE)
return;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Save ADDA parameters.\n"));
for( i = 0 ; i < RegisterNum ; i++){
ADDABackup[i] = ODM_GetBBReg(pDM_Odm, ADDAReg[i], bMaskDWord);
}
}
void
_PHY_SaveMACRegisters(
IN struct adapter *pAdapter,
IN pu4Byte MACReg,
IN pu4Byte MACBackup
)
{
u4Byte i;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Save MAC parameters.\n"));
for( i = 0 ; i < (IQK_MAC_REG_NUM - 1); i++){
MACBackup[i] = ODM_Read1Byte(pDM_Odm, MACReg[i]);
}
MACBackup[i] = ODM_Read4Byte(pDM_Odm, MACReg[i]);
}
void
_PHY_ReloadADDARegisters(
IN struct adapter *pAdapter,
IN pu4Byte ADDAReg,
IN pu4Byte ADDABackup,
IN u4Byte RegiesterNum
)
{
u4Byte i;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Reload ADDA power saving parameters !\n"));
for(i = 0 ; i < RegiesterNum; i++)
{
ODM_SetBBReg(pDM_Odm, ADDAReg[i], bMaskDWord, ADDABackup[i]);
}
}
void
_PHY_ReloadMACRegisters(
IN struct adapter *pAdapter,
IN pu4Byte MACReg,
IN pu4Byte MACBackup
)
{
u4Byte i;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Reload MAC parameters !\n"));
for(i = 0 ; i < (IQK_MAC_REG_NUM - 1); i++){
ODM_Write1Byte(pDM_Odm, MACReg[i], (u1Byte)MACBackup[i]);
}
ODM_Write4Byte(pDM_Odm, MACReg[i], MACBackup[i]);
}
void
_PHY_PathADDAOn(
IN struct adapter *pAdapter,
IN pu4Byte ADDAReg,
IN BOOLEAN isPathAOn,
IN BOOLEAN is2T
)
{
u4Byte pathOn;
u4Byte i;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("ADDA ON.\n"));
pathOn = isPathAOn ? 0x04db25a4 : 0x0b1b25a4;
if(FALSE == is2T){
pathOn = 0x0bdb25a0;
ODM_SetBBReg(pDM_Odm, ADDAReg[0], bMaskDWord, 0x0b1b25a0);
}
else{
ODM_SetBBReg(pDM_Odm,ADDAReg[0], bMaskDWord, pathOn);
}
for( i = 1 ; i < IQK_ADDA_REG_NUM ; i++){
ODM_SetBBReg(pDM_Odm,ADDAReg[i], bMaskDWord, pathOn);
}
}
void
_PHY_MACSettingCalibration(
IN struct adapter *pAdapter,
IN pu4Byte MACReg,
IN pu4Byte MACBackup
)
{
u4Byte i = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("MAC settings for Calibration.\n"));
ODM_Write1Byte(pDM_Odm, MACReg[i], 0x3F);
for(i = 1 ; i < (IQK_MAC_REG_NUM - 1); i++){
ODM_Write1Byte(pDM_Odm, MACReg[i], (u1Byte)(MACBackup[i]&(~BIT3)));
}
ODM_Write1Byte(pDM_Odm, MACReg[i], (u1Byte)(MACBackup[i]&(~BIT5)));
}
void
_PHY_PathAStandBy(
IN struct adapter *pAdapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path-A standby mode!\n"));
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0x0);
ODM_SetBBReg(pDM_Odm, 0x840, bMaskDWord, 0x00010000);
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0x80800000);
}
void
_PHY_PIModeSwitch(
IN struct adapter *pAdapter,
IN BOOLEAN PIMode
)
{
u4Byte mode;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("BB Switch to %s mode!\n", (PIMode ? "PI" : "SI")));
mode = PIMode ? 0x01000100 : 0x01000000;
ODM_SetBBReg(pDM_Odm, rFPGA0_XA_HSSIParameter1, bMaskDWord, mode);
ODM_SetBBReg(pDM_Odm, rFPGA0_XB_HSSIParameter1, bMaskDWord, mode);
}
BOOLEAN
phy_SimularityCompare_8188E(
IN struct adapter *pAdapter,
IN s4Byte result[][8],
IN u1Byte c1,
IN u1Byte c2
)
{
u4Byte i, j, diff, SimularityBitMap, bound = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
u1Byte final_candidate[2] = {0xFF, 0xFF}; //for path A and path B
BOOLEAN bResult = TRUE;
BOOLEAN is2T;
s4Byte tmp1 = 0,tmp2 = 0;
if( (pDM_Odm->RFType ==ODM_2T2R )||(pDM_Odm->RFType ==ODM_2T3R )||(pDM_Odm->RFType ==ODM_2T4R ))
is2T = TRUE;
else
is2T = FALSE;
if(is2T)
bound = 8;
else
bound = 4;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("===> IQK:phy_SimularityCompare_8188E c1 %d c2 %d!!!\n", c1, c2));
SimularityBitMap = 0;
for( i = 0; i < bound; i++ )
{
// diff = (result[c1][i] > result[c2][i]) ? (result[c1][i] - result[c2][i]) : (result[c2][i] - result[c1][i]);
if((i==1) || (i==3) || (i==5) || (i==7))
{
if((result[c1][i]& 0x00000200) != 0)
tmp1 = result[c1][i] | 0xFFFFFC00;
else
tmp1 = result[c1][i];
if((result[c2][i]& 0x00000200) != 0)
tmp2 = result[c2][i] | 0xFFFFFC00;
else
tmp2 = result[c2][i];
}
else
{
tmp1 = result[c1][i];
tmp2 = result[c2][i];
}
diff = (tmp1 > tmp2) ? (tmp1 - tmp2) : (tmp2 - tmp1);
if (diff > MAX_TOLERANCE)
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK:phy_SimularityCompare_8188E differnece overflow index %d compare1 0x%x compare2 0x%x!!!\n", i, result[c1][i], result[c2][i]));
if((i == 2 || i == 6) && !SimularityBitMap)
{
if(result[c1][i]+result[c1][i+1] == 0)
final_candidate[(i/4)] = c2;
else if (result[c2][i]+result[c2][i+1] == 0)
final_candidate[(i/4)] = c1;
else
SimularityBitMap = SimularityBitMap|(1<<i);
}
else
SimularityBitMap = SimularityBitMap|(1<<i);
}
}
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK:phy_SimularityCompare_8188E SimularityBitMap %d !!!\n", SimularityBitMap));
if ( SimularityBitMap == 0)
{
for( i = 0; i < (bound/4); i++ )
{
if(final_candidate[i] != 0xFF)
{
for( j = i*4; j < (i+1)*4-2; j++)
result[3][j] = result[final_candidate[i]][j];
bResult = FALSE;
}
}
return bResult;
}
else
{
if (!(SimularityBitMap & 0x03)) //path A TX OK
{
for(i = 0; i < 2; i++)
result[3][i] = result[c1][i];
}
if (!(SimularityBitMap & 0x0c)) //path A RX OK
{
for(i = 2; i < 4; i++)
result[3][i] = result[c1][i];
}
if (!(SimularityBitMap & 0x30)) //path B TX OK
{
for(i = 4; i < 6; i++)
result[3][i] = result[c1][i];
}
if (!(SimularityBitMap & 0xc0)) //path B RX OK
{
for(i = 6; i < 8; i++)
result[3][i] = result[c1][i];
}
return FALSE;
}
}
void
phy_IQCalibrate_8188E(
IN struct adapter *pAdapter,
IN s4Byte result[][8],
IN u1Byte t,
IN BOOLEAN is2T
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
u4Byte i;
u1Byte PathAOK, PathBOK;
u4Byte ADDA_REG[IQK_ADDA_REG_NUM] = {
rFPGA0_XCD_SwitchControl, rBlue_Tooth,
rRx_Wait_CCA, rTx_CCK_RFON,
rTx_CCK_BBON, rTx_OFDM_RFON,
rTx_OFDM_BBON, rTx_To_Rx,
rTx_To_Tx, rRx_CCK,
rRx_OFDM, rRx_Wait_RIFS,
rRx_TO_Rx, rStandby,
rSleep, rPMPD_ANAEN };
u4Byte IQK_MAC_REG[IQK_MAC_REG_NUM] = {
REG_TXPAUSE, REG_BCN_CTRL,
REG_BCN_CTRL_1, REG_GPIO_MUXCFG};
//since 92C & 92D have the different define in IQK_BB_REG
u4Byte IQK_BB_REG_92C[IQK_BB_REG_NUM] = {
rOFDM0_TRxPathEnable, rOFDM0_TRMuxPar,
rFPGA0_XCD_RFInterfaceSW, rConfig_AntA, rConfig_AntB,
rFPGA0_XAB_RFInterfaceSW, rFPGA0_XA_RFInterfaceOE,
rFPGA0_XB_RFInterfaceOE, rFPGA0_RFMOD
};
#if MP_DRIVER
u4Byte retryCount = 9;
#else
u4Byte retryCount = 2;
#endif
if ( *(pDM_Odm->mp_mode) == 1)
retryCount = 9;
else
retryCount = 2;
// Note: IQ calibration must be performed after loading
// PHY_REG.txt , and radio_a, radio_b.txt
if(t==0)
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQ Calibration for %s for %d times\n", (is2T ? "2T2R" : "1T1R"), t));
// Save ADDA parameters, turn Path A ADDA on
_PHY_SaveADDARegisters(pAdapter, ADDA_REG, pDM_Odm->RFCalibrateInfo.ADDA_backup, IQK_ADDA_REG_NUM);
_PHY_SaveMACRegisters(pAdapter, IQK_MAC_REG, pDM_Odm->RFCalibrateInfo.IQK_MAC_backup);
_PHY_SaveADDARegisters(pAdapter, IQK_BB_REG_92C, pDM_Odm->RFCalibrateInfo.IQK_BB_backup, IQK_BB_REG_NUM);
}
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQ Calibration for %s for %d times\n", (is2T ? "2T2R" : "1T1R"), t));
_PHY_PathADDAOn(pAdapter, ADDA_REG, TRUE, is2T);
if(t==0) {
pDM_Odm->RFCalibrateInfo.bRfPiEnable = (u1Byte)ODM_GetBBReg(pDM_Odm, rFPGA0_XA_HSSIParameter1, BIT(8));
}
if(!pDM_Odm->RFCalibrateInfo.bRfPiEnable){
// Switch BB to PI mode to do IQ Calibration.
_PHY_PIModeSwitch(pAdapter, TRUE);
}
//BB setting
ODM_SetBBReg(pDM_Odm, rFPGA0_RFMOD, BIT24, 0x00);
ODM_SetBBReg(pDM_Odm, rOFDM0_TRxPathEnable, bMaskDWord, 0x03a05600);
ODM_SetBBReg(pDM_Odm, rOFDM0_TRMuxPar, bMaskDWord, 0x000800e4);
ODM_SetBBReg(pDM_Odm, rFPGA0_XCD_RFInterfaceSW, bMaskDWord, 0x22204000);
ODM_SetBBReg(pDM_Odm, rFPGA0_XAB_RFInterfaceSW, BIT10, 0x01);
ODM_SetBBReg(pDM_Odm, rFPGA0_XAB_RFInterfaceSW, BIT26, 0x01);
ODM_SetBBReg(pDM_Odm, rFPGA0_XA_RFInterfaceOE, BIT10, 0x00);
ODM_SetBBReg(pDM_Odm, rFPGA0_XB_RFInterfaceOE, BIT10, 0x00);
if(is2T)
{
ODM_SetBBReg(pDM_Odm, rFPGA0_XA_LSSIParameter, bMaskDWord, 0x00010000);
ODM_SetBBReg(pDM_Odm, rFPGA0_XB_LSSIParameter, bMaskDWord, 0x00010000);
}
//MAC settings
_PHY_MACSettingCalibration(pAdapter, IQK_MAC_REG, pDM_Odm->RFCalibrateInfo.IQK_MAC_backup);
//Page B init
//AP or IQK
ODM_SetBBReg(pDM_Odm, rConfig_AntA, bMaskDWord, 0x0f600000);
if(is2T)
{
ODM_SetBBReg(pDM_Odm, rConfig_AntB, bMaskDWord, 0x0f600000);
}
// IQ calibration setting
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK setting!\n"));
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0x80800000);
ODM_SetBBReg(pDM_Odm, rTx_IQK, bMaskDWord, 0x01007c00);
ODM_SetBBReg(pDM_Odm, rRx_IQK, bMaskDWord, 0x81004800);
for(i = 0 ; i < retryCount ; i++){
PathAOK = phy_PathA_IQK_8188E(pAdapter, is2T);
if(PathAOK == 0x01){
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A Tx IQK Success!!\n"));
result[t][0] = (ODM_GetBBReg(pDM_Odm, rTx_Power_Before_IQK_A, bMaskDWord)&0x3FF0000)>>16;
result[t][1] = (ODM_GetBBReg(pDM_Odm, rTx_Power_After_IQK_A, bMaskDWord)&0x3FF0000)>>16;
break;
}
}
for(i = 0 ; i < retryCount ; i++){
PathAOK = phy_PathA_RxIQK(pAdapter, is2T);
if(PathAOK == 0x03){
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A Rx IQK Success!!\n"));
result[t][2] = (ODM_GetBBReg(pDM_Odm, rRx_Power_Before_IQK_A_2, bMaskDWord)&0x3FF0000)>>16;
result[t][3] = (ODM_GetBBReg(pDM_Odm, rRx_Power_After_IQK_A_2, bMaskDWord)&0x3FF0000)>>16;
break;
} else {
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A Rx IQK Fail!!\n"));
}
}
if(0x00 == PathAOK){
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A IQK failed!!\n"));
}
if(is2T){
_PHY_PathAStandBy(pAdapter);
// Turn Path B ADDA on
_PHY_PathADDAOn(pAdapter, ADDA_REG, FALSE, is2T);
for(i = 0 ; i < retryCount ; i++){
PathBOK = phy_PathB_IQK_8188E(pAdapter);
if(PathBOK == 0x03){
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path B IQK Success!!\n"));
result[t][4] = (ODM_GetBBReg(pDM_Odm, rTx_Power_Before_IQK_B, bMaskDWord)&0x3FF0000)>>16;
result[t][5] = (ODM_GetBBReg(pDM_Odm, rTx_Power_After_IQK_B, bMaskDWord)&0x3FF0000)>>16;
result[t][6] = (ODM_GetBBReg(pDM_Odm, rRx_Power_Before_IQK_B_2, bMaskDWord)&0x3FF0000)>>16;
result[t][7] = (ODM_GetBBReg(pDM_Odm, rRx_Power_After_IQK_B_2, bMaskDWord)&0x3FF0000)>>16;
break;
}
else if (i == (retryCount - 1) && PathBOK == 0x01) //Tx IQK OK
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path B Only Tx IQK Success!!\n"));
result[t][4] = (ODM_GetBBReg(pDM_Odm, rTx_Power_Before_IQK_B, bMaskDWord)&0x3FF0000)>>16;
result[t][5] = (ODM_GetBBReg(pDM_Odm, rTx_Power_After_IQK_B, bMaskDWord)&0x3FF0000)>>16;
}
}
if(0x00 == PathBOK){
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path B IQK failed!!\n"));
}
}
//Back to BB mode, load original value
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK:Back to BB mode, load original value!\n"));
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0);
if(t!=0) {
if(!pDM_Odm->RFCalibrateInfo.bRfPiEnable){
// Switch back BB to SI mode after finish IQ Calibration.
_PHY_PIModeSwitch(pAdapter, FALSE);
}
// Reload ADDA power saving parameters
_PHY_ReloadADDARegisters(pAdapter, ADDA_REG, pDM_Odm->RFCalibrateInfo.ADDA_backup, IQK_ADDA_REG_NUM);
// Reload MAC parameters
_PHY_ReloadMACRegisters(pAdapter, IQK_MAC_REG, pDM_Odm->RFCalibrateInfo.IQK_MAC_backup);
_PHY_ReloadADDARegisters(pAdapter, IQK_BB_REG_92C, pDM_Odm->RFCalibrateInfo.IQK_BB_backup, IQK_BB_REG_NUM);
// Restore RX initial gain
ODM_SetBBReg(pDM_Odm, rFPGA0_XA_LSSIParameter, bMaskDWord, 0x00032ed3);
if(is2T){
ODM_SetBBReg(pDM_Odm, rFPGA0_XB_LSSIParameter, bMaskDWord, 0x00032ed3);
}
//load 0xe30 IQC default value
ODM_SetBBReg(pDM_Odm, rTx_IQK_Tone_A, bMaskDWord, 0x01008c00);
ODM_SetBBReg(pDM_Odm, rRx_IQK_Tone_A, bMaskDWord, 0x01008c00);
}
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_IQCalibrate_8188E() <==\n"));
}
void
phy_LCCalibrate_8188E(
IN struct adapter *pAdapter,
IN BOOLEAN is2T
)
{
u1Byte tmpReg;
u4Byte RF_Amode=0, RF_Bmode=0, LC_Cal;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
//Check continuous TX and Packet TX
tmpReg = ODM_Read1Byte(pDM_Odm, 0xd03);
if((tmpReg&0x70) != 0) //Deal with contisuous TX case
ODM_Write1Byte(pDM_Odm, 0xd03, tmpReg&0x8F); //disable all continuous TX
else // Deal with Packet TX case
ODM_Write1Byte(pDM_Odm, REG_TXPAUSE, 0xFF); // block all queues
if((tmpReg&0x70) != 0)
{
//1. Read original RF mode
//Path-A
RF_Amode = PHY_QueryRFReg(pAdapter, RF_PATH_A, RF_AC, bMask12Bits);
//Path-B
if(is2T)
RF_Bmode = PHY_QueryRFReg(pAdapter, RF_PATH_B, RF_AC, bMask12Bits);
//2. Set RF mode = standby mode
//Path-A
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_AC, bMask12Bits, (RF_Amode&0x8FFFF)|0x10000);
//Path-B
if(is2T)
ODM_SetRFReg(pDM_Odm, RF_PATH_B, RF_AC, bMask12Bits, (RF_Bmode&0x8FFFF)|0x10000);
}
//3. Read RF reg18
LC_Cal = PHY_QueryRFReg(pAdapter, RF_PATH_A, RF_CHNLBW, bMask12Bits);
//4. Set LC calibration begin bit15
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_CHNLBW, bMask12Bits, LC_Cal|0x08000);
ODM_sleep_ms(100);
//Restore original situation
if((tmpReg&0x70) != 0) //Deal with contisuous TX case
{
//Path-A
ODM_Write1Byte(pDM_Odm, 0xd03, tmpReg);
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_AC, bMask12Bits, RF_Amode);
//Path-B
if(is2T)
ODM_SetRFReg(pDM_Odm, RF_PATH_B, RF_AC, bMask12Bits, RF_Bmode);
}
else // Deal with Packet TX case
{
ODM_Write1Byte(pDM_Odm, REG_TXPAUSE, 0x00);
}
}
//Analog Pre-distortion calibration
#define APK_BB_REG_NUM 8
#define APK_CURVE_REG_NUM 4
#define PATH_NUM 2
void
phy_APCalibrate_8188E(
IN struct adapter *pAdapter,
IN s1Byte delta,
IN BOOLEAN is2T
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
u4Byte regD[PATH_NUM];
u4Byte tmpReg, index, offset, apkbound;
u1Byte path, i, pathbound = PATH_NUM;
u4Byte BB_backup[APK_BB_REG_NUM];
u4Byte BB_REG[APK_BB_REG_NUM] = {
rFPGA1_TxBlock, rOFDM0_TRxPathEnable,
rFPGA0_RFMOD, rOFDM0_TRMuxPar,
rFPGA0_XCD_RFInterfaceSW, rFPGA0_XAB_RFInterfaceSW,
rFPGA0_XA_RFInterfaceOE, rFPGA0_XB_RFInterfaceOE };
u4Byte BB_AP_MODE[APK_BB_REG_NUM] = {
0x00000020, 0x00a05430, 0x02040000,
0x000800e4, 0x00204000 };
u4Byte BB_normal_AP_MODE[APK_BB_REG_NUM] = {
0x00000020, 0x00a05430, 0x02040000,
0x000800e4, 0x22204000 };
u4Byte AFE_backup[IQK_ADDA_REG_NUM];
u4Byte AFE_REG[IQK_ADDA_REG_NUM] = {
rFPGA0_XCD_SwitchControl, rBlue_Tooth,
rRx_Wait_CCA, rTx_CCK_RFON,
rTx_CCK_BBON, rTx_OFDM_RFON,
rTx_OFDM_BBON, rTx_To_Rx,
rTx_To_Tx, rRx_CCK,
rRx_OFDM, rRx_Wait_RIFS,
rRx_TO_Rx, rStandby,
rSleep, rPMPD_ANAEN };
u4Byte MAC_backup[IQK_MAC_REG_NUM];
u4Byte MAC_REG[IQK_MAC_REG_NUM] = {
REG_TXPAUSE, REG_BCN_CTRL,
REG_BCN_CTRL_1, REG_GPIO_MUXCFG};
u4Byte APK_RF_init_value[PATH_NUM][APK_BB_REG_NUM] = {
{0x0852c, 0x1852c, 0x5852c, 0x1852c, 0x5852c},
{0x2852e, 0x0852e, 0x3852e, 0x0852e, 0x0852e}
};
u4Byte APK_normal_RF_init_value[PATH_NUM][APK_BB_REG_NUM] = {
{0x0852c, 0x0a52c, 0x3a52c, 0x5a52c, 0x5a52c}, //path settings equal to path b settings
{0x0852c, 0x0a52c, 0x5a52c, 0x5a52c, 0x5a52c}
};
u4Byte APK_RF_value_0[PATH_NUM][APK_BB_REG_NUM] = {
{0x52019, 0x52014, 0x52013, 0x5200f, 0x5208d},
{0x5201a, 0x52019, 0x52016, 0x52033, 0x52050}
};
u4Byte APK_normal_RF_value_0[PATH_NUM][APK_BB_REG_NUM] = {
{0x52019, 0x52017, 0x52010, 0x5200d, 0x5206a}, //path settings equal to path b settings
{0x52019, 0x52017, 0x52010, 0x5200d, 0x5206a}
};
u4Byte AFE_on_off[PATH_NUM] = {
0x04db25a4, 0x0b1b25a4}; //path A on path B off / path A off path B on
u4Byte APK_offset[PATH_NUM] = {
rConfig_AntA, rConfig_AntB};
u4Byte APK_normal_offset[PATH_NUM] = {
rConfig_Pmpd_AntA, rConfig_Pmpd_AntB};
u4Byte APK_value[PATH_NUM] = {
0x92fc0000, 0x12fc0000};
u4Byte APK_normal_value[PATH_NUM] = {
0x92680000, 0x12680000};
s1Byte APK_delta_mapping[APK_BB_REG_NUM][13] = {
{-4, -3, -2, -2, -1, -1, 0, 1, 2, 3, 4, 5, 6},
{-4, -3, -2, -2, -1, -1, 0, 1, 2, 3, 4, 5, 6},
{-6, -4, -2, -2, -1, -1, 0, 1, 2, 3, 4, 5, 6},
{-1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6},
{-11, -9, -7, -5, -3, -1, 0, 0, 0, 0, 0, 0, 0}
};
u4Byte APK_normal_setting_value_1[13] = {
0x01017018, 0xf7ed8f84, 0x1b1a1816, 0x2522201e, 0x322e2b28,
0x433f3a36, 0x5b544e49, 0x7b726a62, 0xa69a8f84, 0xdfcfc0b3,
0x12680000, 0x00880000, 0x00880000
};
u4Byte APK_normal_setting_value_2[16] = {
0x01c7021d, 0x01670183, 0x01000123, 0x00bf00e2, 0x008d00a3,
0x0068007b, 0x004d0059, 0x003a0042, 0x002b0031, 0x001f0025,
0x0017001b, 0x00110014, 0x000c000f, 0x0009000b, 0x00070008,
0x00050006
};
u4Byte APK_result[PATH_NUM][APK_BB_REG_NUM]; //val_1_1a, val_1_2a, val_2a, val_3a, val_4a
// u4Byte AP_curve[PATH_NUM][APK_CURVE_REG_NUM];
s4Byte BB_offset, delta_V, delta_offset;
#if MP_DRIVER == 1
if ( *(pDM_Odm->mp_mode) == 1)
{
PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.MptCtx);
pMptCtx->APK_bound[0] = 45;
pMptCtx->APK_bound[1] = 52;
}
#endif
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("==>phy_APCalibrate_8188E() delta %d\n", delta));
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("AP Calibration for %s\n", (is2T ? "2T2R" : "1T1R")));
if(!is2T)
pathbound = 1;
//2 FOR NORMAL CHIP SETTINGS
// Temporarily do not allow normal driver to do the following settings because these offset
// and value will cause RF internal PA to be unpredictably disabled by HW, such that RF Tx signal
// will disappear after disable/enable card many times on 88CU. RF SD and DD have not find the
// root cause, so we remove these actions temporarily. Added by tynli and SD3 Allen. 2010.05.31.
//#if MP_DRIVER != 1
if (*(pDM_Odm->mp_mode) != 1)
return;
//#endif
//settings adjust for normal chip
for(index = 0; index < PATH_NUM; index ++)
{
APK_offset[index] = APK_normal_offset[index];
APK_value[index] = APK_normal_value[index];
AFE_on_off[index] = 0x6fdb25a4;
}
for(index = 0; index < APK_BB_REG_NUM; index ++)
{
for(path = 0; path < pathbound; path++)
{
APK_RF_init_value[path][index] = APK_normal_RF_init_value[path][index];
APK_RF_value_0[path][index] = APK_normal_RF_value_0[path][index];
}
BB_AP_MODE[index] = BB_normal_AP_MODE[index];
}
apkbound = 6;
//save BB default value
for(index = 0; index < APK_BB_REG_NUM ; index++)
{
if(index == 0) //skip
continue;
BB_backup[index] = ODM_GetBBReg(pDM_Odm, BB_REG[index], bMaskDWord);
}
//save MAC default value
_PHY_SaveMACRegisters(pAdapter, MAC_REG, MAC_backup);
//save AFE default value
_PHY_SaveADDARegisters(pAdapter, AFE_REG, AFE_backup, IQK_ADDA_REG_NUM);
for(path = 0; path < pathbound; path++)
{
if(path == RF_PATH_A)
{
//path A APK
//load APK setting
//path-A
offset = rPdp_AntA;
for(index = 0; index < 11; index ++)
{
ODM_SetBBReg(pDM_Odm, offset, bMaskDWord, APK_normal_setting_value_1[index]);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", offset, ODM_GetBBReg(pDM_Odm, offset, bMaskDWord)));
offset += 0x04;
}
ODM_SetBBReg(pDM_Odm, rConfig_Pmpd_AntB, bMaskDWord, 0x12680000);
offset = rConfig_AntA;
for(; index < 13; index ++)
{
ODM_SetBBReg(pDM_Odm, offset, bMaskDWord, APK_normal_setting_value_1[index]);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", offset, ODM_GetBBReg(pDM_Odm, offset, bMaskDWord)));
offset += 0x04;
}
//page-B1
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0x40000000);
//path A
offset = rPdp_AntA;
for(index = 0; index < 16; index++)
{
ODM_SetBBReg(pDM_Odm, offset, bMaskDWord, APK_normal_setting_value_2[index]);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", offset, ODM_GetBBReg(pDM_Odm, offset, bMaskDWord)));
offset += 0x04;
}
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0x00000000);
}
else if(path == RF_PATH_B)
{
//path B APK
//load APK setting
//path-B
offset = rPdp_AntB;
for(index = 0; index < 10; index ++)
{
ODM_SetBBReg(pDM_Odm, offset, bMaskDWord, APK_normal_setting_value_1[index]);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", offset, ODM_GetBBReg(pDM_Odm, offset, bMaskDWord)));
offset += 0x04;
}
ODM_SetBBReg(pDM_Odm, rConfig_Pmpd_AntA, bMaskDWord, 0x12680000);
PHY_SetBBReg(pAdapter, rConfig_Pmpd_AntB, bMaskDWord, 0x12680000);
offset = rConfig_AntA;
index = 11;
for(; index < 13; index ++) //offset 0xb68, 0xb6c
{
ODM_SetBBReg(pDM_Odm, offset, bMaskDWord, APK_normal_setting_value_1[index]);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", offset, ODM_GetBBReg(pDM_Odm, offset, bMaskDWord)));
offset += 0x04;
}
//page-B1
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0x40000000);
//path B
offset = 0xb60;
for(index = 0; index < 16; index++)
{
ODM_SetBBReg(pDM_Odm, offset, bMaskDWord, APK_normal_setting_value_2[index]);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", offset, ODM_GetBBReg(pDM_Odm, offset, bMaskDWord)));
offset += 0x04;
}
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0);
}
//save RF default value
regD[path] = PHY_QueryRFReg(pAdapter, path, RF_TXBIAS_A, bMaskDWord);
//Path A AFE all on, path B AFE All off or vise versa
for(index = 0; index < IQK_ADDA_REG_NUM ; index++)
ODM_SetBBReg(pDM_Odm, AFE_REG[index], bMaskDWord, AFE_on_off[path]);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0xe70 %x\n", ODM_GetBBReg(pDM_Odm, rRx_Wait_CCA, bMaskDWord)));
//BB to AP mode
if(path == 0)
{
for(index = 0; index < APK_BB_REG_NUM ; index++)
{
if(index == 0) //skip
continue;
else if (index < 5)
ODM_SetBBReg(pDM_Odm, BB_REG[index], bMaskDWord, BB_AP_MODE[index]);
else if (BB_REG[index] == 0x870)
ODM_SetBBReg(pDM_Odm, BB_REG[index], bMaskDWord, BB_backup[index]|BIT10|BIT26);
else
ODM_SetBBReg(pDM_Odm, BB_REG[index], BIT10, 0x0);
}
ODM_SetBBReg(pDM_Odm, rTx_IQK_Tone_A, bMaskDWord, 0x01008c00);
ODM_SetBBReg(pDM_Odm, rRx_IQK_Tone_A, bMaskDWord, 0x01008c00);
}
else //path B
{
ODM_SetBBReg(pDM_Odm, rTx_IQK_Tone_B, bMaskDWord, 0x01008c00);
ODM_SetBBReg(pDM_Odm, rRx_IQK_Tone_B, bMaskDWord, 0x01008c00);
}
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x800 %x\n", ODM_GetBBReg(pDM_Odm, 0x800, bMaskDWord)));
//MAC settings
_PHY_MACSettingCalibration(pAdapter, MAC_REG, MAC_backup);
if(path == RF_PATH_A) //Path B to standby mode
{
ODM_SetRFReg(pDM_Odm, RF_PATH_B, RF_AC, bMaskDWord, 0x10000);
}
else //Path A to standby mode
{
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_AC, bMaskDWord, 0x10000);
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_MODE1, bMaskDWord, 0x1000f);
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_MODE2, bMaskDWord, 0x20103);
}
delta_offset = ((delta+14)/2);
if(delta_offset < 0)
delta_offset = 0;
else if (delta_offset > 12)
delta_offset = 12;
//AP calibration
for(index = 0; index < APK_BB_REG_NUM; index++)
{
if(index != 1) //only DO PA11+PAD01001, AP RF setting
continue;
tmpReg = APK_RF_init_value[path][index];
#if 1
if(!pDM_Odm->RFCalibrateInfo.bAPKThermalMeterIgnore)
{
BB_offset = (tmpReg & 0xF0000) >> 16;
if(!(tmpReg & BIT15)) //sign bit 0
{
BB_offset = -BB_offset;
}
delta_V = APK_delta_mapping[index][delta_offset];
BB_offset += delta_V;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() APK index %d tmpReg 0x%x delta_V %d delta_offset %d\n", index, tmpReg, delta_V, delta_offset));
if(BB_offset < 0)
{
tmpReg = tmpReg & (~BIT15);
BB_offset = -BB_offset;
}
else
{
tmpReg = tmpReg | BIT15;
}
tmpReg = (tmpReg & 0xFFF0FFFF) | (BB_offset << 16);
}
#endif
ODM_SetRFReg(pDM_Odm, path, RF_IPA_A, bMaskDWord, 0x8992e);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0xc %x\n", PHY_QueryRFReg(pAdapter, path, RF_IPA_A, bMaskDWord)));
ODM_SetRFReg(pDM_Odm, path, RF_AC, bMaskDWord, APK_RF_value_0[path][index]);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x0 %x\n", PHY_QueryRFReg(pAdapter, path, RF_AC, bMaskDWord)));
ODM_SetRFReg(pDM_Odm, path, RF_TXBIAS_A, bMaskDWord, tmpReg);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0xd %x\n", PHY_QueryRFReg(pAdapter, path, RF_TXBIAS_A, bMaskDWord)));
// PA11+PAD01111, one shot
i = 0;
do
{
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0x80000000);
{
ODM_SetBBReg(pDM_Odm, APK_offset[path], bMaskDWord, APK_value[0]);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", APK_offset[path], ODM_GetBBReg(pDM_Odm, APK_offset[path], bMaskDWord)));
ODM_delay_ms(3);
ODM_SetBBReg(pDM_Odm, APK_offset[path], bMaskDWord, APK_value[1]);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", APK_offset[path], ODM_GetBBReg(pDM_Odm, APK_offset[path], bMaskDWord)));
ODM_delay_ms(20);
}
ODM_SetBBReg(pDM_Odm, rFPGA0_IQK, bMaskDWord, 0x00000000);
if(path == RF_PATH_A)
tmpReg = ODM_GetBBReg(pDM_Odm, rAPK, 0x03E00000);
else
tmpReg = ODM_GetBBReg(pDM_Odm, rAPK, 0xF8000000);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0xbd8[25:21] %x\n", tmpReg));
i++;
}
while(tmpReg > apkbound && i < 4);
APK_result[path][index] = tmpReg;
}
}
//reload MAC default value
_PHY_ReloadMACRegisters(pAdapter, MAC_REG, MAC_backup);
//reload BB default value
for(index = 0; index < APK_BB_REG_NUM ; index++)
{
if(index == 0) //skip
continue;
ODM_SetBBReg(pDM_Odm, BB_REG[index], bMaskDWord, BB_backup[index]);
}
//reload AFE default value
_PHY_ReloadADDARegisters(pAdapter, AFE_REG, AFE_backup, IQK_ADDA_REG_NUM);
//reload RF path default value
for(path = 0; path < pathbound; path++)
{
ODM_SetRFReg(pDM_Odm, path, 0xd, bMaskDWord, regD[path]);
if(path == RF_PATH_B)
{
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_MODE1, bMaskDWord, 0x1000f);
ODM_SetRFReg(pDM_Odm, RF_PATH_A, RF_MODE2, bMaskDWord, 0x20101);
}
//note no index == 0
if (APK_result[path][1] > 6)
APK_result[path][1] = 6;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("apk path %d result %d 0x%x \t", path, 1, APK_result[path][1]));
}
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("\n"));
for(path = 0; path < pathbound; path++)
{
ODM_SetRFReg(pDM_Odm, path, 0x3, bMaskDWord,
((APK_result[path][1] << 15) | (APK_result[path][1] << 10) | (APK_result[path][1] << 5) | APK_result[path][1]));
if(path == RF_PATH_A)
ODM_SetRFReg(pDM_Odm, path, 0x4, bMaskDWord,
((APK_result[path][1] << 15) | (APK_result[path][1] << 10) | (0x00 << 5) | 0x05));
else
ODM_SetRFReg(pDM_Odm, path, 0x4, bMaskDWord,
((APK_result[path][1] << 15) | (APK_result[path][1] << 10) | (0x02 << 5) | 0x05));
if(!IS_HARDWARE_TYPE_8723A(pAdapter))
ODM_SetRFReg(pDM_Odm, path, RF_BS_PA_APSET_G9_G11, bMaskDWord,
((0x08 << 15) | (0x08 << 10) | (0x08 << 5) | 0x08));
}
pDM_Odm->RFCalibrateInfo.bAPKdone = TRUE;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("<==phy_APCalibrate_8188E()\n"));
}
#define DP_BB_REG_NUM 7
#define DP_RF_REG_NUM 1
#define DP_RETRY_LIMIT 10
#define DP_PATH_NUM 2
#define DP_DPK_NUM 3
#define DP_DPK_VALUE_NUM 2
void
PHY_IQCalibrate_8188E(
IN struct adapter *pAdapter,
IN BOOLEAN bReCovery
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
#if (MP_DRIVER == 1)
PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.MptCtx);
#endif//(MP_DRIVER == 1)
s4Byte result[4][8]; //last is final result
u1Byte i, final_candidate, Indexforchannel;
u1Byte channelToIQK = 7;
BOOLEAN bPathAOK, bPathBOK;
s4Byte RegE94, RegE9C, RegEA4, RegEAC, RegEB4, RegEBC, RegEC4, RegECC, RegTmp = 0;
BOOLEAN is12simular, is13simular, is23simular;
BOOLEAN bStartContTx = FALSE, bSingleTone = FALSE, bCarrierSuppression = FALSE;
u4Byte IQK_BB_REG_92C[IQK_BB_REG_NUM] = {
rOFDM0_XARxIQImbalance, rOFDM0_XBRxIQImbalance,
rOFDM0_ECCAThreshold, rOFDM0_AGCRSSITable,
rOFDM0_XATxIQImbalance, rOFDM0_XBTxIQImbalance,
rOFDM0_XCTxAFE, rOFDM0_XDTxAFE,
rOFDM0_RxIQExtAnta};
BOOLEAN is2T;
is2T = (pDM_Odm->RFType == ODM_2T2R)?TRUE:FALSE;
if (ODM_CheckPowerStatus(pAdapter) == FALSE)
return;
if(!(pDM_Odm->SupportAbility & ODM_RF_CALIBRATION))
{
return;
}
#if MP_DRIVER == 1
if (*(pDM_Odm->mp_mode) == 1)
{
bStartContTx = pMptCtx->bStartContTx;
bSingleTone = pMptCtx->bSingleTone;
bCarrierSuppression = pMptCtx->bCarrierSuppression;
}
#endif
// 20120213<Kordan> Turn on when continuous Tx to pass lab testing. (required by Edlu)
if(bSingleTone || bCarrierSuppression)
return;
#if DISABLE_BB_RF
return;
#endif
if(bReCovery)
{
ODM_RT_TRACE(pDM_Odm, ODM_COMP_INIT, ODM_DBG_LOUD, ("PHY_IQCalibrate_8188E: Return due to bReCovery!\n"));
_PHY_ReloadADDARegisters(pAdapter, IQK_BB_REG_92C, pDM_Odm->RFCalibrateInfo.IQK_BB_backup_recover, 9);
return;
}
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK:Start!!!\n"));
for(i = 0; i < 8; i++) {
result[0][i] = 0;
result[1][i] = 0;
result[2][i] = 0;
if((i==0) ||(i==2) || (i==4) || (i==6))
result[3][i] = 0x100;
else
result[3][i] = 0;
}
final_candidate = 0xff;
bPathAOK = FALSE;
bPathBOK = FALSE;
is12simular = FALSE;
is23simular = FALSE;
is13simular = FALSE;
//ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK !!!interface %d currentband %d ishardwareD %d \n", pDM_Odm->interfaceIndex, pHalData->CurrentBandType92D, IS_HARDWARE_TYPE_8192D(pAdapter)));
// RT_TRACE(COMP_INIT,DBG_LOUD,("Acquire Mutex in IQCalibrate \n"));
for (i=0; i<3; i++)
{
phy_IQCalibrate_8188E(pAdapter, result, i, is2T);
if(i == 1) {
is12simular = phy_SimularityCompare_8188E(pAdapter, result, 0, 1);
if(is12simular) {
final_candidate = 0;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK: is12simular final_candidate is %x\n",final_candidate));
break;
}
}
if(i == 2)
{
is13simular = phy_SimularityCompare_8188E(pAdapter, result, 0, 2);
if(is13simular) {
final_candidate = 0;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK: is13simular final_candidate is %x\n",final_candidate));
break;
}
is23simular = phy_SimularityCompare_8188E(pAdapter, result, 1, 2);
if(is23simular) {
final_candidate = 1;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK: is23simular final_candidate is %x\n",final_candidate));
}
else
{
/*
for(i = 0; i < 8; i++)
RegTmp += result[3][i];
if(RegTmp != 0)
final_candidate = 3;
else
final_candidate = 0xFF;
*/
final_candidate = 3;
}
}
}
// RT_TRACE(COMP_INIT,DBG_LOUD,("Release Mutex in IQCalibrate \n"));
for (i=0; i<4; i++)
{
RegE94 = result[i][0];
RegE9C = result[i][1];
RegEA4 = result[i][2];
RegEAC = result[i][3];
RegEB4 = result[i][4];
RegEBC = result[i][5];
RegEC4 = result[i][6];
RegECC = result[i][7];
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK: RegE94=%x RegE9C=%x RegEA4=%x RegEAC=%x RegEB4=%x RegEBC=%x RegEC4=%x RegECC=%x\n ", RegE94, RegE9C, RegEA4, RegEAC, RegEB4, RegEBC, RegEC4, RegECC));
}
if(final_candidate != 0xff)
{
pDM_Odm->RFCalibrateInfo.RegE94 = RegE94 = result[final_candidate][0];
pDM_Odm->RFCalibrateInfo.RegE9C = RegE9C = result[final_candidate][1];
RegEA4 = result[final_candidate][2];
RegEAC = result[final_candidate][3];
pDM_Odm->RFCalibrateInfo.RegEB4 = RegEB4 = result[final_candidate][4];
pDM_Odm->RFCalibrateInfo.RegEBC = RegEBC = result[final_candidate][5];
RegEC4 = result[final_candidate][6];
RegECC = result[final_candidate][7];
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK: final_candidate is %x\n",final_candidate));
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK: RegE94=%x RegE9C=%x RegEA4=%x RegEAC=%x RegEB4=%x RegEBC=%x RegEC4=%x RegECC=%x\n ", RegE94, RegE9C, RegEA4, RegEAC, RegEB4, RegEBC, RegEC4, RegECC));
bPathAOK = bPathBOK = TRUE;
} else {
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK: FAIL use default value\n"));
pDM_Odm->RFCalibrateInfo.RegE94 = pDM_Odm->RFCalibrateInfo.RegEB4 = 0x100; //X default value
pDM_Odm->RFCalibrateInfo.RegE9C = pDM_Odm->RFCalibrateInfo.RegEBC = 0x0; //Y default value
}
if((RegE94 != 0)/*&&(RegEA4 != 0)*/)
_PHY_PathAFillIQKMatrix(pAdapter, bPathAOK, result, final_candidate, (RegEA4 == 0));
if (is2T) {
if((RegEB4 != 0)/*&&(RegEC4 != 0)*/)
_PHY_PathBFillIQKMatrix(pAdapter, bPathBOK, result, final_candidate, (RegEC4 == 0));
}
Indexforchannel = ODM_GetRightChnlPlaceforIQK(pHalData->CurrentChannel);
//To Fix BSOD when final_candidate is 0xff
//by sherry 20120321
if(final_candidate < 4)
{
for(i = 0; i < IQK_Matrix_REG_NUM; i++)
pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[Indexforchannel].Value[0][i] = result[final_candidate][i];
pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[Indexforchannel].bIQKDone = TRUE;
}
//RTPRINT(FINIT, INIT_IQK, ("\nIQK OK Indexforchannel %d.\n", Indexforchannel));
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("\nIQK OK Indexforchannel %d.\n", Indexforchannel));
_PHY_SaveADDARegisters(pAdapter, IQK_BB_REG_92C, pDM_Odm->RFCalibrateInfo.IQK_BB_backup_recover, 9);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK finished\n"));
}
void
PHY_LCCalibrate_8188E(
IN struct adapter *pAdapter
)
{
BOOLEAN bStartContTx = FALSE, bSingleTone = FALSE, bCarrierSuppression = FALSE;
u4Byte timeout = 2000, timecount = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
#if (MP_DRIVER == 1)
PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.MptCtx);
#endif//(MP_DRIVER == 1)
#if MP_DRIVER == 1
if (*(pDM_Odm->mp_mode) == 1)
{
bStartContTx = pMptCtx->bStartContTx;
bSingleTone = pMptCtx->bSingleTone;
bCarrierSuppression = pMptCtx->bCarrierSuppression;
}
#endif
#if DISABLE_BB_RF
return;
#endif
if(!(pDM_Odm->SupportAbility & ODM_RF_CALIBRATION))
{
return;
}
// 20120213<Kordan> Turn on when continuous Tx to pass lab testing. (required by Edlu)
if(bSingleTone || bCarrierSuppression)
return;
while(*(pDM_Odm->pbScanInProcess) && timecount < timeout)
{
ODM_delay_ms(50);
timecount += 50;
}
pDM_Odm->RFCalibrateInfo.bLCKInProgress = TRUE;
//ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("LCK:Start!!!interface %d currentband %x delay %d ms\n", pDM_Odm->interfaceIndex, pHalData->CurrentBandType92D, timecount));
if(pDM_Odm->RFType == ODM_2T2R)
{
phy_LCCalibrate_8188E(pAdapter, TRUE);
}
else
{
// For 88C 1T1R
phy_LCCalibrate_8188E(pAdapter, FALSE);
}
pDM_Odm->RFCalibrateInfo.bLCKInProgress = FALSE;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("LCK:Finish!!!interface %d\n", pDM_Odm->InterfaceIndex));
}
void
PHY_APCalibrate_8188E(
IN struct adapter *pAdapter,
IN s1Byte delta
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
#if DISABLE_BB_RF
return;
#endif
return;
if(!(pDM_Odm->SupportAbility & ODM_RF_CALIBRATION))
return;
#if FOR_BRAZIL_PRETEST != 1
if(pDM_Odm->RFCalibrateInfo.bAPKdone)
#endif
return;
if(pDM_Odm->RFType == ODM_2T2R){
phy_APCalibrate_8188E(pAdapter, delta, TRUE);
}
else
{
// For 88C 1T1R
phy_APCalibrate_8188E(pAdapter, delta, FALSE);
}
}
void phy_SetRFPathSwitch_8188E(
IN struct adapter *pAdapter,
IN BOOLEAN bMain,
IN BOOLEAN is2T
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
if(pAdapter->hw_init_completed == false)
{
u1Byte u1bTmp;
u1bTmp = ODM_Read1Byte(pDM_Odm, REG_LEDCFG2) | BIT7;
ODM_Write1Byte(pDM_Odm, REG_LEDCFG2, u1bTmp);
//ODM_SetBBReg(pDM_Odm, REG_LEDCFG0, BIT23, 0x01);
ODM_SetBBReg(pDM_Odm, rFPGA0_XAB_RFParameter, BIT13, 0x01);
}
if(is2T) //92C
{
if(bMain)
ODM_SetBBReg(pDM_Odm, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6, 0x1); //92C_Path_A
else
ODM_SetBBReg(pDM_Odm, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6, 0x2); //BT
}
else //88C
{
if(bMain)
ODM_SetBBReg(pDM_Odm, rFPGA0_XA_RFInterfaceOE, BIT8|BIT9, 0x2); //Main
else
ODM_SetBBReg(pDM_Odm, rFPGA0_XA_RFInterfaceOE, BIT8|BIT9, 0x1); //Aux
}
}
void PHY_SetRFPathSwitch_8188E(
IN struct adapter *pAdapter,
IN BOOLEAN bMain
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
#if DISABLE_BB_RF
return;
#endif
if(pDM_Odm->RFType == ODM_2T2R)
{
phy_SetRFPathSwitch_8188E(pAdapter, bMain, TRUE);
}
else
{
// For 88C 1T1R
phy_SetRFPathSwitch_8188E(pAdapter, bMain, FALSE);
}
}