rtl8188eu/hal/rtl8188e_rf6052.c

944 lines
26 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
/******************************************************************************
*
*
* Module: rtl8192c_rf6052.c ( Source C File)
*
* Note: Provide RF 6052 series relative API.
*
* Function:
*
* Export:
*
* Abbrev:
*
* History:
* Data Who Remark
*
* 09/25/2008 MHC Create initial version.
* 11/05/2008 MHC Add API for tw power setting.
*
*
******************************************************************************/
#define _RTL8188E_RF6052_C_
#include <drv_conf.h>
#include <osdep_service.h>
#include <drv_types.h>
#include <rtl8188e_hal.h>
/*---------------------------Define Local Constant---------------------------*/
/* Define local structure for debug!!!!! */
typedef struct RF_Shadow_Compare_Map {
/* Shadow register value */
u32 Value;
/* Compare or not flag */
u8 Compare;
/* Record If it had ever modified unpredicted */
u8 ErrorOrNot;
/* Recorver Flag */
u8 Recorver;
/* */
u8 Driver_Write;
}RF_SHADOW_T;
/*---------------------------Define Local Constant---------------------------*/
/*------------------------Define global variable-----------------------------*/
/*------------------------Define global variable-----------------------------*/
/*------------------------Define local variable------------------------------*/
/* 2008/11/20 MH For Debug only, RF */
/* static RF_SHADOW_T RF_Shadow[RF6052_MAX_PATH][RF6052_MAX_REG] = {0}; */
static RF_SHADOW_T RF_Shadow[RF6052_MAX_PATH][RF6052_MAX_REG];
/*------------------------Define local variable------------------------------*/
/*-----------------------------------------------------------------------------
* Function: RF_ChangeTxPath
*
* Overview: For RL6052, we must change some RF settign for 1T or 2T.
*
* Input: u16 DataRate 0x80-8f, 0x90-9f
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 09/25/2008 MHC Create Version 0.
* Firmwaer support the utility later.
*
*---------------------------------------------------------------------------*/
void rtl8188e_RF_ChangeTxPath( struct adapter *Adapter,
u16 DataRate)
{
/* We do not support gain table change inACUT now !!!! Delete later !!! */
} /* RF_ChangeTxPath */
/*-----------------------------------------------------------------------------
* Function: PHY_RF6052SetBandwidth()
*
* Overview: This function is called by SetBWModeCallback8190Pci() only
*
* Input: struct adapter * Adapter
* WIRELESS_BANDWIDTH_E Bandwidth 20M or 40M
*
* Output: NONE
*
* Return: NONE
*
* Note: For RF type 0222D
*---------------------------------------------------------------------------*/
void
rtl8188e_PHY_RF6052SetBandwidth(
struct adapter * Adapter,
enum HT_CHANNEL_WIDTH Bandwidth) /* 20M or 40M */
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
switch (Bandwidth)
{
case HT_CHANNEL_WIDTH_20:
pHalData->RfRegChnlVal[0] = ((pHalData->RfRegChnlVal[0] & 0xfffff3ff) | BIT(10) | BIT(11));
PHY_SetRFReg(Adapter, RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask, pHalData->RfRegChnlVal[0]);
break;
case HT_CHANNEL_WIDTH_40:
pHalData->RfRegChnlVal[0] = ((pHalData->RfRegChnlVal[0] & 0xfffff3ff)| BIT(10));
PHY_SetRFReg(Adapter, RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask, pHalData->RfRegChnlVal[0]);
break;
default:
break;
}
}
/*-----------------------------------------------------------------------------
* Function: PHY_RF6052SetCckTxPower
*
* Overview:
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/05/2008 MHC Simulate 8192series..
*
*---------------------------------------------------------------------------*/
void
rtl8188e_PHY_RF6052SetCckTxPower(
struct adapter * Adapter,
u8* pPowerlevel)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
struct dm_priv *pdmpriv = &pHalData->dmpriv;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
u32 TxAGC[2]={0, 0}, tmpval=0,pwrtrac_value;
bool TurboScanOff = false;
u8 idx1, idx2;
u8* ptr;
u8 direction;
TurboScanOff = true;
if (pmlmeext->sitesurvey_res.state == SCAN_PROCESS)
{
TxAGC[RF_PATH_A] = 0x3f3f3f3f;
TxAGC[RF_PATH_B] = 0x3f3f3f3f;
TurboScanOff = true;/* disable turbo scan */
if (TurboScanOff)
{
for (idx1=RF_PATH_A; idx1<=RF_PATH_B; idx1++)
{
TxAGC[idx1] =
pPowerlevel[idx1] | (pPowerlevel[idx1]<<8) |
(pPowerlevel[idx1]<<16) | (pPowerlevel[idx1]<<24);
/* 2010/10/18 MH For external PA module. We need to limit power index to be less than 0x20. */
if (TxAGC[idx1] > 0x20 && pHalData->ExternalPA)
TxAGC[idx1] = 0x20;
}
}
}
else
{
/* 20100427 Joseph: Driver dynamic Tx power shall not affect Tx power. It shall be determined by power training mechanism. */
/* Currently, we cannot fully disable driver dynamic tx power mechanism because it is referenced by BT coexist mechanism. */
/* In the future, two mechanism shall be separated from each other and maintained independantly. Thanks for Lanhsin's reminder. */
if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_Level1)
{
TxAGC[RF_PATH_A] = 0x10101010;
TxAGC[RF_PATH_B] = 0x10101010;
}
else if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_Level2)
{
TxAGC[RF_PATH_A] = 0x00000000;
TxAGC[RF_PATH_B] = 0x00000000;
}
else
{
for (idx1=RF_PATH_A; idx1<=RF_PATH_B; idx1++)
{
TxAGC[idx1] =
pPowerlevel[idx1] | (pPowerlevel[idx1]<<8) |
(pPowerlevel[idx1]<<16) | (pPowerlevel[idx1]<<24);
}
if (pHalData->EEPROMRegulatory== 0)
{
tmpval = (pHalData->MCSTxPowerLevelOriginalOffset[0][6]) +
(pHalData->MCSTxPowerLevelOriginalOffset[0][7]<<8);
TxAGC[RF_PATH_A] += tmpval;
tmpval = (pHalData->MCSTxPowerLevelOriginalOffset[0][14]) +
(pHalData->MCSTxPowerLevelOriginalOffset[0][15]<<24);
TxAGC[RF_PATH_B] += tmpval;
}
}
}
ODM_TxPwrTrackAdjust88E(&pHalData->odmpriv, 1, &direction, &pwrtrac_value);
/* printk("ODM_TxPwrTrackAdjust88E => direction:%02x, pwrtrac_value:%d\n", direction, pwrtrac_value); */
/* printk(" ==> TxAGC:0x%08x\n",TxAGC[0] ); */
if (direction == 1) /* Increase TX pwoer */
{
TxAGC[0] += pwrtrac_value;
TxAGC[1] += pwrtrac_value;
}
else if (direction == 2) /* Decrease TX pwoer */
{
TxAGC[0] -= pwrtrac_value;
TxAGC[1] -= pwrtrac_value;
}
for (idx1=RF_PATH_A; idx1<=RF_PATH_B; idx1++)
{
ptr = (u8*)(&TxAGC[idx1]);
for (idx2=0; idx2<4; idx2++)
{
if (*ptr > RF6052_MAX_TX_PWR)
*ptr = RF6052_MAX_TX_PWR;
ptr++;
}
}
/* printk(" ==> TxAGC:0x%08x\n",TxAGC[0] ); */
/* rf-A cck tx power */
tmpval = TxAGC[RF_PATH_A]&0xff;
PHY_SetBBReg(Adapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, tmpval);
/* printk("CCK PWR 1M (rf-A) = 0x%x (reg 0x%x)\n", tmpval, rTxAGC_A_CCK1_Mcs32); */
tmpval = TxAGC[RF_PATH_A]>>8;
PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, 0xffffff00, tmpval);
/* printk("CCK PWR 2~11M (rf-A) = 0x%x (reg 0x%x)\n", tmpval, rTxAGC_B_CCK11_A_CCK2_11); */
} /* PHY_RF6052SetCckTxPower */
/* powerbase0 for OFDM rates */
/* powerbase1 for HT MCS rates */
static void getPowerBase88E(
struct adapter *Adapter,
u8* pPowerLevelOFDM,
u8* pPowerLevelBW20,
u8* pPowerLevelBW40,
u8 Channel,
u32* OfdmBase,
u32* MCSBase
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 powerBase0, powerBase1;
u8 Legacy_pwrdiff=0;
s8 HT20_pwrdiff=0;
u8 i, powerlevel[2];
for (i=0; i<2; i++)
{
powerBase0 = pPowerLevelOFDM[i];
powerBase0 = (powerBase0<<24) | (powerBase0<<16) |(powerBase0<<8) |powerBase0;
*(OfdmBase+i) = powerBase0;
/* DBG_88E(" [OFDM power base index rf(%c) = 0x%x]\n", ((i== 0)?'A':'B'), *(OfdmBase+i)); */
}
for (i=0; i<pHalData->NumTotalRFPath; i++)
{
/* Check HT20 to HT40 diff */
if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_20)
{
powerlevel[i] = pPowerLevelBW20[i];
}
else
{
powerlevel[i] = pPowerLevelBW40[i];
}
powerBase1 = powerlevel[i];
powerBase1 = (powerBase1<<24) | (powerBase1<<16) |(powerBase1<<8) |powerBase1;
*(MCSBase+i) = powerBase1;
/* DBG_88E(" [MCS power base index rf(%c) = 0x%x]\n", ((i== 0)?'A':'B'), *(MCSBase+i)); */
}
}
static void getTxPowerWriteValByRegulatory88E(
struct adapter *Adapter,
u8 Channel,
u8 index,
u32* powerBase0,
u32* powerBase1,
u32* pOutWriteVal
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct dm_priv *pdmpriv = &pHalData->dmpriv;
u8 i, chnlGroup=0, pwr_diff_limit[4], customer_pwr_limit;
s8 pwr_diff=0;
u32 writeVal, customer_limit, rf;
u8 Regulatory = pHalData->EEPROMRegulatory;
/* */
/* Index 0 & 1= legacy OFDM, 2-5=HT_MCS rate */
/* */
for (rf=0; rf<2; rf++) {
switch (Regulatory) {
case 0: /* Realtek better performance */
/* increase power diff defined by Realtek for large power */
chnlGroup = 0;
/* RTPRINT(FPHY, PHY_TXPWR, ("MCSTxPowerLevelOriginalOffset[%d][%d] = 0x%x\n", */
/* chnlGroup, index, pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)])); */
writeVal = pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)] +
((index<2)?powerBase0[rf]:powerBase1[rf]);
/* RTPRINT(FPHY, PHY_TXPWR, ("RTK better performance, writeVal(%c) = 0x%x\n", ((rf== 0)?'A':'B'), writeVal)); */
break;
case 1: /* Realtek regulatory */
/* increase power diff defined by Realtek for regulatory */
{
if (pHalData->pwrGroupCnt == 1)
chnlGroup = 0;
/* if (pHalData->pwrGroupCnt >= pHalData->PGMaxGroup) */
{
if (Channel < 3) /* Chanel 1-2 */
chnlGroup = 0;
else if (Channel < 6) /* Channel 3-5 */
chnlGroup = 1;
else if (Channel <9) /* Channel 6-8 */
chnlGroup = 2;
else if (Channel <12) /* Channel 9-11 */
chnlGroup = 3;
else if (Channel <14) /* Channel 12-13 */
chnlGroup = 4;
else if (Channel ==14) /* Channel 14 */
chnlGroup = 4;
if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_20)
chnlGroup++;
else
chnlGroup+=6;
}
writeVal = pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)] +
((index<2)?powerBase0[rf]:powerBase1[rf]);
}
break;
case 2: /* Better regulatory */
/* don't increase any power diff */
writeVal = ((index<2)?powerBase0[rf]:powerBase1[rf]);
break;
case 3: /* Customer defined power diff. */
/* increase power diff defined by customer. */
chnlGroup = 0;
if (index < 2)
pwr_diff = pHalData->TxPwrLegacyHtDiff[rf][Channel-1];
else if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_20)
pwr_diff = pHalData->TxPwrHt20Diff[rf][Channel-1];
if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_40)
customer_pwr_limit = pHalData->PwrGroupHT40[rf][Channel-1];
else
customer_pwr_limit = pHalData->PwrGroupHT20[rf][Channel-1];
if (pwr_diff >= customer_pwr_limit)
pwr_diff = 0;
else
pwr_diff = customer_pwr_limit - pwr_diff;
for (i=0; i<4; i++)
{
pwr_diff_limit[i] = (u8)((pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)]&0x7f<<(i*8))>>(i*8));
if (pwr_diff_limit[i] > pwr_diff)
pwr_diff_limit[i] = pwr_diff;
}
customer_limit = (pwr_diff_limit[3]<<24) | (pwr_diff_limit[2]<<16) |
(pwr_diff_limit[1]<<8) | (pwr_diff_limit[0]);
/* RTPRINT(FPHY, PHY_TXPWR, ("Customer's limit rf(%c) = 0x%x\n", ((rf== 0)?'A':'B'), customer_limit)); */
writeVal = customer_limit + ((index<2)?powerBase0[rf]:powerBase1[rf]);
/* RTPRINT(FPHY, PHY_TXPWR, ("Customer, writeVal rf(%c)= 0x%x\n", ((rf== 0)?'A':'B'), writeVal)); */
break;
default:
chnlGroup = 0;
writeVal = pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf?8:0)] +
((index<2)?powerBase0[rf]:powerBase1[rf]);
/* RTPRINT(FPHY, PHY_TXPWR, ("RTK better performance, writeVal rf(%c) = 0x%x\n", ((rf== 0)?'A':'B'), writeVal)); */
break;
}
/* 20100427 Joseph: Driver dynamic Tx power shall not affect Tx power. It shall be determined by power training mechanism. */
/* Currently, we cannot fully disable driver dynamic tx power mechanism because it is referenced by BT coexist mechanism. */
/* In the future, two mechanism shall be separated from each other and maintained independantly. Thanks for Lanhsin's reminder. */
/* 92d do not need this */
if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_Level1)
writeVal = 0x14141414;
else if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_Level2)
writeVal = 0x00000000;
/* 20100628 Joseph: High power mode for BT-Coexist mechanism. */
/* This mechanism is only applied when Driver-Highpower-Mechanism is OFF. */
if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_BT1)
{
/* RTPRINT(FBT, BT_TRACE, ("Tx Power (-6)\n")); */
writeVal = writeVal - 0x06060606;
}
else if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_BT2)
{
/* RTPRINT(FBT, BT_TRACE, ("Tx Power (-0)\n")); */
writeVal = writeVal ;
}
*(pOutWriteVal+rf) = writeVal;
}
}
static void writeOFDMPowerReg88E(
struct adapter *Adapter,
u8 index,
u32* pValue
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u16 RegOffset_A[6] = { rTxAGC_A_Rate18_06, rTxAGC_A_Rate54_24,
rTxAGC_A_Mcs03_Mcs00, rTxAGC_A_Mcs07_Mcs04,
rTxAGC_A_Mcs11_Mcs08, rTxAGC_A_Mcs15_Mcs12};
u16 RegOffset_B[6] = { rTxAGC_B_Rate18_06, rTxAGC_B_Rate54_24,
rTxAGC_B_Mcs03_Mcs00, rTxAGC_B_Mcs07_Mcs04,
rTxAGC_B_Mcs11_Mcs08, rTxAGC_B_Mcs15_Mcs12};
u8 i, rf, pwr_val[4];
u32 writeVal;
u16 RegOffset;
for (rf=0; rf<2; rf++)
{
writeVal = pValue[rf];
for (i=0; i<4; i++)
{
pwr_val[i] = (u8)((writeVal & (0x7f<<(i*8)))>>(i*8));
if (pwr_val[i] > RF6052_MAX_TX_PWR)
pwr_val[i] = RF6052_MAX_TX_PWR;
}
writeVal = (pwr_val[3]<<24) | (pwr_val[2]<<16) |(pwr_val[1]<<8) |pwr_val[0];
if (rf == 0)
RegOffset = RegOffset_A[index];
else
RegOffset = RegOffset_B[index];
PHY_SetBBReg(Adapter, RegOffset, bMaskDWord, writeVal);
/* printk("Set OFDM tx pwr- 0x%x = %08x\n", RegOffset, writeVal); */
/* 201005115 Joseph: Set Tx Power diff for Tx power training mechanism. */
if (((pHalData->rf_type == RF_2T2R) &&
(RegOffset == rTxAGC_A_Mcs15_Mcs12 || RegOffset == rTxAGC_B_Mcs15_Mcs12))||
((pHalData->rf_type != RF_2T2R) &&
(RegOffset == rTxAGC_A_Mcs07_Mcs04 || RegOffset == rTxAGC_B_Mcs07_Mcs04)) )
{
writeVal = pwr_val[3];
if (RegOffset == rTxAGC_A_Mcs15_Mcs12 || RegOffset == rTxAGC_A_Mcs07_Mcs04)
RegOffset = 0xc90;
if (RegOffset == rTxAGC_B_Mcs15_Mcs12 || RegOffset == rTxAGC_B_Mcs07_Mcs04)
RegOffset = 0xc98;
for (i=0; i<3; i++)
{
if (i!=2)
writeVal = (writeVal>8)?(writeVal-8):0;
else
writeVal = (writeVal>6)?(writeVal-6):0;
rtw_write8(Adapter, (u32)(RegOffset+i), (u8)writeVal);
}
}
}
}
/*-----------------------------------------------------------------------------
* Function: PHY_RF6052SetOFDMTxPower
*
* Overview: For legacy and HY OFDM, we must read EEPROM TX power index for
* different channel and read original value in TX power register area from
* 0xe00. We increase offset and original value to be correct tx pwr.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/05/2008 MHC Simulate 8192 series method.
* 01/06/2009 MHC 1. Prevent Path B tx power overflow or underflow dure to
* A/B pwr difference or legacy/HT pwr diff.
* 2. We concern with path B legacy/HT OFDM difference.
* 01/22/2009 MHC Support new EPRO format from SD3.
*
*---------------------------------------------------------------------------*/
void
rtl8188e_PHY_RF6052SetOFDMTxPower(
struct adapter *Adapter,
u8* pPowerLevelOFDM,
u8* pPowerLevelBW20,
u8* pPowerLevelBW40,
u8 Channel)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 writeVal[2], powerBase0[2], powerBase1[2], pwrtrac_value;
u8 direction;
u8 index = 0;
/* DBG_88E("PHY_RF6052SetOFDMTxPower, channel(%d)\n", Channel); */
getPowerBase88E(Adapter, pPowerLevelOFDM,pPowerLevelBW20,pPowerLevelBW40, Channel, &powerBase0[0], &powerBase1[0]);
/* */
/* 2012/04/23 MH According to power tracking value, we need to revise OFDM tx power. */
/* This is ued to fix unstable power tracking mode. */
/* */
ODM_TxPwrTrackAdjust88E(&pHalData->odmpriv, 0, &direction, &pwrtrac_value);
for (index=0; index<6; index++)
{
getTxPowerWriteValByRegulatory88E(Adapter, Channel, index,
&powerBase0[0], &powerBase1[0], &writeVal[0]);
if (direction == 1)
{
writeVal[0] += pwrtrac_value;
writeVal[1] += pwrtrac_value;
}
else if (direction == 2)
{
writeVal[0] -= pwrtrac_value;
writeVal[1] -= pwrtrac_value;
}
writeOFDMPowerReg88E(Adapter, index, &writeVal[0]);
}
}
static void
phy_RF6052_Config_HardCode(
struct adapter * Adapter
)
{
/* Set Default Bandwidth to 20M */
/* Adapter->HalFunc .SetBWModeHandler(Adapter, enum HT_CHANNEL_WIDTH_20); */
/* TODO: Set Default Channel to channel one for RTL8225 */
}
static int
phy_RF6052_Config_ParaFile(
struct adapter * Adapter
)
{
u32 u4RegValue;
u8 eRFPath;
BB_REGISTER_DEFINITION_T *pPhyReg;
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
static char sz88eRadioAFile[] = RTL8188E_PHY_RADIO_A;
static char sz88eRadioBFile[] = RTL8188E_PHY_RADIO_B;
char *pszRadioAFile, *pszRadioBFile;
pszRadioAFile = sz88eRadioAFile;
pszRadioBFile = sz88eRadioBFile;
/* 3----------------------------------------------------------------- */
/* 3 <2> Initialize RF */
/* 3----------------------------------------------------------------- */
/* for (eRFPath = RF_PATH_A; eRFPath <pHalData->NumTotalRFPath; eRFPath++) */
for (eRFPath = 0; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
{
pPhyReg = &pHalData->PHYRegDef[eRFPath];
/*----Store original RFENV control type----*/
switch (eRFPath)
{
case RF_PATH_A:
case RF_PATH_C:
u4RegValue = PHY_QueryBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV);
break;
case RF_PATH_B :
case RF_PATH_D:
u4RegValue = PHY_QueryBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV<<16);
break;
}
/*----Set RF_ENV enable----*/
PHY_SetBBReg(Adapter, pPhyReg->rfintfe, bRFSI_RFENV<<16, 0x1);
rtw_udelay_os(1);/* PlatformStallExecution(1); */
/*----Set RF_ENV output high----*/
PHY_SetBBReg(Adapter, pPhyReg->rfintfo, bRFSI_RFENV, 0x1);
rtw_udelay_os(1);/* PlatformStallExecution(1); */
/* Set bit number of Address and Data for RF register */
PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, b3WireAddressLength, 0x0); /* Set 1 to 4 bits for 8255 */
rtw_udelay_os(1);/* PlatformStallExecution(1); */
PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, b3WireDataLength, 0x0); /* Set 0 to 12 bits for 8255 */
rtw_udelay_os(1);/* PlatformStallExecution(1); */
/*----Initialize RF fom connfiguration file----*/
switch (eRFPath)
{
case RF_PATH_A:
if (HAL_STATUS_FAILURE ==ODM_ConfigRFWithHeaderFile(&pHalData->odmpriv,(enum rf_radio_path)eRFPath, (enum rf_radio_path)eRFPath))
rtStatus= _FAIL;
break;
case RF_PATH_B:
if (HAL_STATUS_FAILURE ==ODM_ConfigRFWithHeaderFile(&pHalData->odmpriv,(enum rf_radio_path)eRFPath, (enum rf_radio_path)eRFPath))
rtStatus= _FAIL;
break;
case RF_PATH_C:
break;
case RF_PATH_D:
break;
}
/*----Restore RFENV control type----*/;
switch (eRFPath)
{
case RF_PATH_A:
case RF_PATH_C:
PHY_SetBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV, u4RegValue);
break;
case RF_PATH_B :
case RF_PATH_D:
PHY_SetBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV<<16, u4RegValue);
break;
}
if (rtStatus != _SUCCESS) {
/* RT_TRACE(COMP_FPGA, DBG_LOUD, ("phy_RF6052_Config_ParaFile():Radio[%d] Fail!!", eRFPath)); */
goto phy_RF6052_Config_ParaFile_Fail;
}
}
/* RT_TRACE(COMP_INIT, DBG_LOUD, ("<---phy_RF6052_Config_ParaFile()\n")); */
return rtStatus;
phy_RF6052_Config_ParaFile_Fail:
return rtStatus;
}
int
PHY_RF6052_Config8188E(
struct adapter * Adapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
/* */
/* Initialize general global value */
/* */
/* TODO: Extend RF_PATH_C and RF_PATH_D in the future */
if (pHalData->rf_type == RF_1T1R)
pHalData->NumTotalRFPath = 1;
else
pHalData->NumTotalRFPath = 2;
/* */
/* Config BB and RF */
/* */
rtStatus = phy_RF6052_Config_ParaFile(Adapter);
return rtStatus;
}
/* */
/* ==> RF shadow Operation API Code Section!!! */
/* */
/*-----------------------------------------------------------------------------
* Function: PHY_RFShadowRead
* PHY_RFShadowWrite
* PHY_RFShadowCompare
* PHY_RFShadowRecorver
* PHY_RFShadowCompareAll
* PHY_RFShadowRecorverAll
* PHY_RFShadowCompareFlagSet
* PHY_RFShadowRecorverFlagSet
*
* Overview: When we set RF register, we must write shadow at first.
* When we are running, we must compare shadow abd locate error addr.
* Decide to recorver or not.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/20/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
static u32
PHY_RFShadowRead(
struct adapter * Adapter,
enum rf_radio_path eRFPath,
u32 Offset)
{
return RF_Shadow[eRFPath][Offset].Value;
} /* PHY_RFShadowRead */
static void
PHY_RFShadowWrite(
struct adapter * Adapter,
enum rf_radio_path eRFPath,
u32 Offset,
u32 Data)
{
RF_Shadow[eRFPath][Offset].Value = (Data & bRFRegOffsetMask);
RF_Shadow[eRFPath][Offset].Driver_Write = true;
} /* PHY_RFShadowWrite */
static bool
PHY_RFShadowCompare(
struct adapter * Adapter,
enum rf_radio_path eRFPath,
u32 Offset)
{
u32 reg;
/* Check if we need to check the register */
if (RF_Shadow[eRFPath][Offset].Compare == true)
{
reg = PHY_QueryRFReg(Adapter, eRFPath, Offset, bRFRegOffsetMask);
/* Compare shadow and real rf register for 20bits!! */
if (RF_Shadow[eRFPath][Offset].Value != reg)
{
/* Locate error position. */
RF_Shadow[eRFPath][Offset].ErrorOrNot = true;
/* RT_TRACE(COMP_INIT, DBG_LOUD, */
/* PHY_RFShadowCompare RF-%d Addr%02lx Err = %05lx\n", */
/* eRFPath, Offset, reg)); */
}
return RF_Shadow[eRFPath][Offset].ErrorOrNot ;
}
return false;
} /* PHY_RFShadowCompare */
static void
PHY_RFShadowRecorver(
struct adapter * Adapter,
enum rf_radio_path eRFPath,
u32 Offset)
{
/* Check if the address is error */
if (RF_Shadow[eRFPath][Offset].ErrorOrNot == true)
{
/* Check if we need to recorver the register. */
if (RF_Shadow[eRFPath][Offset].Recorver == true)
{
PHY_SetRFReg(Adapter, eRFPath, Offset, bRFRegOffsetMask,
RF_Shadow[eRFPath][Offset].Value);
/* RT_TRACE(COMP_INIT, DBG_LOUD, */
/* PHY_RFShadowRecorver RF-%d Addr%02lx=%05lx", */
/* eRFPath, Offset, RF_Shadow[eRFPath][Offset].Value)); */
}
}
} /* PHY_RFShadowRecorver */
static void
PHY_RFShadowCompareAll(
struct adapter * Adapter)
{
u32 eRFPath;
u32 Offset;
for (eRFPath = 0; eRFPath < RF6052_MAX_PATH; eRFPath++)
{
for (Offset = 0; Offset <= RF6052_MAX_REG; Offset++)
{
PHY_RFShadowCompare(Adapter, (enum rf_radio_path)eRFPath, Offset);
}
}
} /* PHY_RFShadowCompareAll */
static void
PHY_RFShadowRecorverAll(
struct adapter * Adapter)
{
u32 eRFPath;
u32 Offset;
for (eRFPath = 0; eRFPath < RF6052_MAX_PATH; eRFPath++)
{
for (Offset = 0; Offset <= RF6052_MAX_REG; Offset++)
{
PHY_RFShadowRecorver(Adapter, (enum rf_radio_path)eRFPath, Offset);
}
}
} /* PHY_RFShadowRecorverAll */
static void
PHY_RFShadowCompareFlagSet(
struct adapter * Adapter,
enum rf_radio_path eRFPath,
u32 Offset,
u8 Type)
{
/* Set True or False!!! */
RF_Shadow[eRFPath][Offset].Compare = Type;
} /* PHY_RFShadowCompareFlagSet */
static void
PHY_RFShadowRecorverFlagSet(
struct adapter * Adapter,
enum rf_radio_path eRFPath,
u32 Offset,
u8 Type)
{
/* Set True or False!!! */
RF_Shadow[eRFPath][Offset].Recorver= Type;
} /* PHY_RFShadowRecorverFlagSet */
static void
PHY_RFShadowCompareFlagSetAll(
struct adapter * Adapter)
{
u32 eRFPath;
u32 Offset;
for (eRFPath = 0; eRFPath < RF6052_MAX_PATH; eRFPath++)
{
for (Offset = 0; Offset <= RF6052_MAX_REG; Offset++)
{
/* 2008/11/20 MH For S3S4 test, we only check reg 26/27 now!!!! */
if (Offset != 0x26 && Offset != 0x27)
PHY_RFShadowCompareFlagSet(Adapter, (enum rf_radio_path)eRFPath, Offset, false);
else
PHY_RFShadowCompareFlagSet(Adapter, (enum rf_radio_path)eRFPath, Offset, true);
}
}
} /* PHY_RFShadowCompareFlagSetAll */
static void
PHY_RFShadowRecorverFlagSetAll(
struct adapter * Adapter)
{
u32 eRFPath;
u32 Offset;
for (eRFPath = 0; eRFPath < RF6052_MAX_PATH; eRFPath++)
{
for (Offset = 0; Offset <= RF6052_MAX_REG; Offset++)
{
/* 2008/11/20 MH For S3S4 test, we only check reg 26/27 now!!!! */
if (Offset != 0x26 && Offset != 0x27)
PHY_RFShadowRecorverFlagSet(Adapter, (enum rf_radio_path)eRFPath, Offset, false);
else
PHY_RFShadowRecorverFlagSet(Adapter, (enum rf_radio_path)eRFPath, Offset, true);
}
}
} /* PHY_RFShadowCompareFlagSetAll */
static void
PHY_RFShadowRefresh(
struct adapter * Adapter)
{
u32 eRFPath;
u32 Offset;
for (eRFPath = 0; eRFPath < RF6052_MAX_PATH; eRFPath++)
{
for (Offset = 0; Offset <= RF6052_MAX_REG; Offset++)
{
RF_Shadow[eRFPath][Offset].Value = 0;
RF_Shadow[eRFPath][Offset].Compare = false;
RF_Shadow[eRFPath][Offset].Recorver = false;
RF_Shadow[eRFPath][Offset].ErrorOrNot = false;
RF_Shadow[eRFPath][Offset].Driver_Write = false;
}
}
} /* PHY_RFShadowRead */
/* End of HalRf6052.c */